
Latent Vector Synthesis

Exploring the Aesthetic Affordances of Latent Audio Spaces

Master’s thesis in Computer science and engineering

DAVID HÖGBERG

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023

Master’s thesis 2023

Latent Vector Synthesis

Exploring the Aesthetic Affordances of Latent Audio Spaces

DAVID HÖGBERG

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023

Latent Vector Synthesis
Exploring the Aesthetic Affordances of Latent Audio Spaces
DAVID HÖGBERG

© DAVID HÖGBERG, 2023.

Supervisor: Kıvanç Tatar, Computer Science and Engineering
Examiner: Staffan Björk, Computer Science and Engineering

Master’s Thesis 2023
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2023

iv

Latent Vector Synthesis
Exploring the Aesthetic Affordances of Latent Audio Spaces
DAVID HÖGBERG
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Generative deep learning models for sound synthesis applications have gathered
interest recently that are able to generate novel sound material based on the char-
acteristics of a given audio dataset. A subcategory of these models are variational
autoencoders, which build generative latent spaces of audio where sounds are organ-
ised based on similarity. Although expressive uses of these models abound, questions
around their practical applicability and aesthetic implications as part of an artistic
process remain underexplored. This thesis investigates the technological and aes-
thetic affordances of latent audio spaces in the context of creative sound design and
exploration. To this end, a sound synthesis tool in the form of a latent vector syn-
thesizer is conceptualised and developed from a first-person research through design
perspective. The prototype addresses issues around real-time playability of current
machine learning models for sound generation by training a variational autoencoder
on short samples of audio signals. The generated waveforms are incorporated as
part of a wavetable- and vector synthesis engine that enables timbral interpolations
and explorations of sonic textures. Positioned at the intersection of sonic art and
audio technology the design implementation uncovers some latent potentials and
affordances of new technologies for musical tasks.

Keywords: sound synthesis, variational autoencoders, latent audio spaces, vector
synthesis, wavetable synthesis, research through design

v

Acknowledgements
I would like to express my deepest gratitude to my supervisor Kıvanç Tatar for his
invaluable feedback and encouragement throughout the process of completing this
thesis. His enthusiasm and expertise have been instrumental in guiding me forward
towards finalization. I would also like to give special appreciation to Palle Dahlstedt,
who in his inspiring role as a researcher and teacher led me down this path in the first
place and opened my eyes to novel fields of research. His guidance planted the initial
seeds of this project. Finally, a warm thank you to Kelsey Cotton, whose feedback
on the synthesis tool elicited many insights and inspirations for future work.

David Högberg, Gothenburg, June 2023

vii

Contents

List of Figures xiii

1 Introduction 1
1.1 Overview . 1
1.2 Aim & Research Question . 2
1.3 Contributions . 2

2 Background 5
2.1 Musicking with Algorithms . 5
2.2 Organised Sound . 6
2.3 Related Research . 6

2.3.1 Timbre Spaces . 6
2.3.2 Audio Feature Extraction . 7
2.3.3 Dimensionality Reduction . 7
2.3.4 Generative Models . 7
2.3.5 Spectral Models . 8
2.3.6 Raw Audio Models . 9
2.3.7 Generative Wavetable Synthesis 10

3 Theory 11
3.1 Timbre Spaces . 11
3.2 Audio Analysis . 11

3.2.1 Time- and Frequency Representations 12
3.2.2 Windowed Fourier Transforms 12
3.2.3 Wavelet Transforms . 13

3.3 Dimensionality Reduction . 13
3.4 Audio Synthesis . 14
3.5 Generative Models . 15

4 Methodology 19
4.1 First-person Methods . 19
4.2 Research through Design . 20
4.3 Evaluation of Musical Interfaces . 21

5 Design Process 23
5.1 Ideation . 23

ix

Contents

5.1.1 On Sonic Art . 23
5.1.2 Sustained Sustain . 24
5.1.3 A Drone Synthesizer . 24
5.1.4 Wavetable Synthesis . 25
5.1.5 Vector Synthesis . 25
5.1.6 Latent Vector Synthesis . 26

5.2 Musicking with Sound Data . 27
5.2.1 Dataset Selection . 27
5.2.2 Random Waveforms . 28
5.2.3 Data Visualisation . 28

5.3 Building a Latent Audio Space . 29
5.3.1 Dataset . 30
5.3.2 Network Architecture . 30
5.3.3 Model Training . 30
5.3.4 Model Evaluation . 32
5.3.5 Model Improvements . 32

5.4 Pipeline Design . 33
5.4.1 Latency and Throughput . 33
5.4.2 Audio Programming Environment 34
5.4.3 Open Sound Control . 35
5.4.4 Pipeline Overview . 35

5.5 Prototype Design . 36
5.5.1 Jupyter Notebook . 36
5.5.2 Proof of Concept VAE . 36
5.5.3 Single Waveform to Pd . 36
5.5.4 Sequence of Waveforms to Pd 36
5.5.5 Latent Space Interpolations to Pd 37
5.5.6 Synthesis Modules . 37
5.5.7 Pd to Python . 38
5.5.8 Latent Space Explorations . 38
5.5.9 Refining the Model . 38
5.5.10 Graphical User Interface . 39

6 Results 41
6.1 Latent Vector Synthesizer . 41

6.1.1 Source Waveform Selection and Modification 41
6.1.2 Vector Synth Pad . 41
6.1.3 Sound Synthesis Modules . 42

6.2 Key Considerations . 43
6.2.1 Musical Task and Aesthetic Framing 43
6.2.2 Forming a Sound Space . 43
6.2.3 Building a Latent Audio Space 43
6.2.4 From Audio Data to Sound Output 44
6.2.5 Strategies for Latent Explorations 44
6.2.6 Interfacing the Latent . 44

7 Evaluation 47

x

Contents

7.1 Collaborative Drone Session . 47
7.2 First-person Evaluation . 47
7.3 Participant Feedback . 48

7.3.1 Sound Aesthetics . 48
7.3.2 Learnability . 49
7.3.3 Functionality . 49
7.3.4 Frustrations . 49
7.3.5 Collaboration . 49
7.3.6 Application Domains . 50

8 Discussion 51
8.1 Model Performance . 51
8.2 Aesthetics of Failure . 53
8.3 Evaluating Interaction Design Research 54

8.3.1 Process . 54
8.3.2 Invention . 55
8.3.3 Relevance . 56
8.3.4 Extensibility . 56

8.4 Ethics and Biases . 57

9 Conclusion 59
9.1 Future Work . 60

Bibliography 61

A Evaluation Questions I

xi

Contents

xii

List of Figures

3.1 Time plot (left) of a waveform and the corresponding frequency plot
(right) as given by the Fourier transform of the signal. 12

3.2 Spectrogram (right) of a signal (left) that shows the frequency content
through time as given by the short-time Fourier transform. 13

3.3 General autoencoder architecture with an input vector x that is en-
coded to a latent space vector z and then decoded as a reconstructed
vector x̂. The performance of the coupled encoder and decoder is
optimised based on the reconstruction error between the input x and
the output x̂. 16

3.4 General variational autoencoder architecture with an input vector x
that is encoded to the parameters µ and σ of a normal distribution.
The latent variable z is then sampled from the normal distribution us-
ing the reparametrisation trick, with ζ ∼ N (0, I), before it is decoded
as x̂. 17

5.1 A set of 64 wavetables sequentially ordered on a grid from the WaveEdit
software. The position of the dot determines which waveform is
played to generate a tone, with morphing capabilities between the
waveforms. 25

5.2 Vector synthesis uses the position in a vector plane to control a mix
of four sound sources. This control surface can be mapped to for
example a joystick. Image from [1]. 26

5.3 A selection of 16 random waveforms from the dataset. 28
5.4 Visualisation of the waveforms using the UMAP dimensionality re-

duction algorithm, with points colour coded according to the sub-
folder they were in. 29

5.5 Network architecture of the variational autoencoder, adopted from
Tatar et al. [2]. 31

5.6 Some randomly selected waveforms from the test set (left) and their
reconstructions as predicted by the trained variational autoencoder
(right). 32

5.7 Overview of the pipeline for the synthesis tool. A Python script
handles waveform selection, interpolations and latent space compu-
tations. The waveforms are then sent as OSC messages to a Pure
Data patch as part of a wavetable and vector synthesis engine. . . . 35

5.8 Synthesis modules of the Pd-patch. 37

xiii

List of Figures

5.9 An example of how functionality can be embedded in Pure Data as
part of a module (in this case a filter) with certain controls exposed
to the user. 39

5.10 Overview of the GUI for the synthesis tool. 40

6.1 The Graphical User Interface (GUI) of the sound synthesis tool in
Pure Data, divided in three main sections. 42

8.1 Comparison of a cross-fade (top) versus a latent space interpolation
(bottom) between two waveforms with an interpolation factor α rang-
ing from 0 to 1 in steps of 0.2. The latent space interpolation here
share characteristics with the linear cross-fade. 52

8.2 Comparison of the original waveforms (left) and the waveforms after
many iterations of latent space perturbations (right). Waveforms A
and C, in this case, deteriorate into harsh waveforms of alternating
values between -1 and 1, whereas waveforms B and D remain stable. . 52

xiv

1
Introduction

1.1 Overview
Recently, a plethora of generative AI models have emerged that challenge the ideas
we have about machines within artistic creation. These are models that can learn
to generate new content based on given examples of training data in the form of
images, text or audio. Popular examples include ChatGPT1 for text generation
and Midjourney2 or DALL-E 23 for text to image generation. In the audio domain,
in particular, DDSP4 facilitates style transfers between instrument classes whereas
Dadabots5 generates music that imitates the style of a specific genre or band. The
research on generative models for sound and music applications, however, has yet to
fully mature and there are unaddressed questions as to how artists and creators can
practically incorporate these new technologies as part of their artistic workflows.

Variational Autoencoders (VAEs) form a particular category of generative models,
which build latent representations of data so that data points that share similarities
are organised in proximity to each other in a reduced latent space. This latent
space is regularised so that new samples ”in-between” the original data points can
be generated, for example a completely new image or sound that is an interpolation
between given images or sounds. In the audio domain, generative models have been
used to construct timbre spaces of sounds, but many of them rely on large network
architectures or otherwise computationally expensive conversions in the spectral
domain. The applicability of these models for real-time sound synthesis is therefore
limited and requires a deeper investigation.

This project in a general sense addresses the opportunities and limitations of incor-
porating machine learning algorithms and latent space representations in the context
of sound and music computing. On the one hand, this points to concrete problems
of compatibility between sound synthesis tools and machine learning frameworks as
well as the effects of specific audio representations on model performance for musical
tasks. But more importantly, we have to consider the use of these models as part of
an artistic process, with close attention to the aesthetic implications of the models

1https://openai.com/blog/chatgpt
2https://www.midjourney.com/home/?callbackUrl=%2Fapp%2F
3https://openai.com/product/dall-e-2
4https://magenta.tensorflow.org/ddsp
5https://dadabots.com

1

https://openai.com/blog/chatgpt
https://www.midjourney.com/home/?callbackUrl=%2Fapp%2F
https://openai.com/product/dall-e-2
https://magenta.tensorflow.org/ddsp
https://dadabots.com

1. Introduction

on the artistic output and how they can support creative agency.

New technologies both constrain and liberate creative impulses in how they invite
or inhibit certain actions. Exploring the adoption of new tools in an artistic context
may therefore unlock the creative affordances of those tools, but also shine a light on
their particular limiting functions. Artists have always pushed the affordances of new
technologies for aesthetic effects in ways that elicit unintended uses of engineered
artefacts. Such explorations may in turn may inform the (re-)construction of new
tools. Positioned at the intersection of audio technology, interaction design and
sound art, this project aims to trace out the hidden affordances of novel synthesis
techniques as well as putting a different lens onto those tools that reveal new aspects
of their internal functioning.

1.2 Aim & Research Question
This thesis approaches the question:

How can we utilise and interface with latent spaces of audio in order to
aid real-time navigation and creative exploration of sound textures?

The general aim of the project is to design a real-time playable sound synthesis
tool that uncovers some creative and aesthetic affordances of latent audio spaces for
purposes of sound exploration.

This points towards some specific research objectives:

1. To train a generative machine learning model to encode short samples of audio
in a latent audio space.

2. To implement a sound synthesis engine that can interface with the latent space
of audio in real-time.

3. To develop a prototype of a latent vector synthesizer that enables exploration
of the sonic textures and aesthetic affordances of the latent audio space.

1.3 Contributions
The primary contribution of this thesis with respect to machine learning frameworks
is to train a variational autoencoder on wavetables, i.e. collections of single cycle
waveforms, that can be flexibly utilised in sound synthesis applications. Implement-
ing a lightweight network architecture trained on short samples of raw audio in this
way addresses some problems around real-time applicability of generative machine
learning models for audio applications. Also, many of the current machine learning
models for music applications focus on audio data from standard acoustic instru-
ments, whereas this project takes inspiration from the domain of electronic music
and more experimental forms of sonic art.

Furthermore, a sound synthesis tool in the form of a latent vector synthesizer is

2

1. Introduction

developed from a first-person perspective, as a technologist designing musical in-
terfaces for personal artistic expression, in order to trace out the practical utility
and aesthetic implications of latent spaces in the context of sound exploration. The
developed interface and workflow not only enables real-time interaction with the ma-
chine learning model but also suggests strategies for exploring the potentials of the
latent audio space. From the perspective of research through design, then, the main
research output and contribution is in the form of explicating a particular design
process in order to reveal and uncover the creative potentials of new technologies.

3

1. Introduction

4

2
Background

This project draws on related work in the field of sound synthesis techniques and
the use of machine learning algorithms in artistic processes. Positioned at the in-
tersection of sonic art and technology, inspirations are drawn from musical practice
and music technology alike.

2.1 Musicking with Algorithms
The starting point of this thesis is that music is a complex form of activity that
extends beyond the apparent artefacts of consumption that we denote as music.
Music is made, performed, improvised, heard, danced, enacted and acted out as
a social activity, in a cultural and historical context, synthesising influences from
ourselves, others and the environment that we are in.

Music-making is rather musicking [3].

But more importantly, musicking is conditioned by technology [4]. Our musical
expressions are constrained and liberated by the tools we use. Not only do we shape
technology and tools to fit our needs, but we are also shaped in return.

The materiality of recording inscriptions, electronics and computer circuits, in par-
ticular, challenged the conceptions we have had about music and musical composi-
tion. For example, recording technology has permitted a decoupling of the sound
object from its original source, allowing it to be edited, cut up, copied, pasted, trans-
ferred, reversed, stretched and finally played back in perhaps a completely different
aural context (see musique concrète [5]). Electronic signal flows, in addition, paved
the way for the generation of continuous streams of sound as opposed to sequences of
notes, through voltage controlled oscillators [6]. Finally, digital analysis, synthesis
and processing of sound materials opened up new possibilities of sound control and
design, by further decoupling the sound-generating source from the gestural control
of that sound source (as opposed to acoustic instruments where they are intimately
coupled). In digital sound synthesis, therefore, the inner workings of the musical
instruments are even more occluded from the perspective of the performer in that
the digital flows of numbers can be transformed and re-mapped through code in any
number of ways.

Arguably, one of the most talked about technological developments today is the rise

5

2. Background

of AI and machine learning algorithms and their implications within society, which
points to a key question for this project: how does AI and machine learning tools
allow for and inhibit musical expression and creative agency? What are the current
aesthetic affordances of AI tools and what is missing [7]? Because all artistic tools
have aesthetic implications, the question is if we are aware of them and how we
make use of them.

2.2 Organised Sound
The technological developments mentioned above in electronic and digital music
radically challenge the idea that musical material is naturally organised on a finite
lattice structure based on pitch, duration and timbre in how it allows for continuous
and timbrally transforming streams of sound [8]. Musicking in the computer age,
therefore, becomes more about organising sound-events in time rather than organ-
ising notes on paper. Equipped with the computer as a musical instrument, the
composer becomes a sound designer in the task of sculpting sonic landscapes and
textures.

In the words of Edgar Varèse, a pioneer in the conceptualisation of new forms of
music [9]: ”I decided to call my music ’organized sound’ and myself, not a musician,
but ’a worker in rhythms, frequencies, and intensities.’ ”

The question remains, however, whether these free floating sonic textures can be
systematically organised in a way that extends beyond conventional forms of lattice
sonics [8], in order to support creative exploration and expression in sound design
and performance. In particular, how can we utilise recent developments in machine
learning and deep learning to construct organised timbre spaces (see Section 3.1)
that allow for continuous movements between different sound textures? Are there
fundamental obstructions and discontinuities as part of these timbral movements
that cannot be accurately modelled? As Wishart (1996) points towards [8]:

It will be interesting to see if the flexibility of the computer will allow
us to overcome all such topological restrictions in timbre space (in some
ways this would be a pity) or will we discover that timbre space has an
intrinsic and insurmountable topological structure quite different from
the infinite-coloured fog it is usually taken to be. A second and related
question is, can there be any qualitative distinctions between the ways
we move through this multi-dimensional continuum? Can motion itself
in the continuum have any structure?

2.3 Related Research

2.3.1 Timbre Spaces
The technological problem we are faced with, therefore, is that of structuring and
organising a set of sounds by imposing some measure of distance between sonic tex-

6

2. Background

tures that share characteristics with each other. This issue has been explored in
the foundational work of Grey [10] and Wessel [11], who apply dissimilarity ratings
of sounds from acoustic instruments to construct a measure of distance between
sound objects as input to a multidimensional scaling (MDS) algorithm. The algo-
rithm reduces the original space in a way that as closely as possible preserves the
original distances between sounds as provided by listening tests. The resulting low-
dimensional timbre space can then be used for learning audio representations and
interpolating between existing timbre textures.

2.3.2 Audio Feature Extraction
Rather than relying on subjective ratings of acoustic contrast, audio signals can
also be analysed and measured for quantitative properties and summarised in the
form of audio features. These features can then be used to aid organisation and
classification of sounds. The field of Music Information Retrieval, in particular, deals
with different methods for ”processing, searching, organizing, and accessing music-
related data”1. In addition, Hoffman and Cook [12] describes a general framework
for automatic extraction of audio features based on quantifiable characteristics of
sounds that can be used to structure a sonic control space.

2.3.3 Dimensionality Reduction
Similarly to extracting new features from audio data, we may also want to represent
the original high-dimensional data in a compressed form that retains the essential
characteristics of the original data distribution. The problem of extracting new
features for representing audio data is therefore related to that of reducing the
dimensionality of the original search space in a way that supports exploration. This
can also be used for visualisation purposes.

The most common dimensionality reduction techniques rely on methods that pre-
serve directions of maximum variability in the data (i.e. discards directions of low
variability) or preserve pairwise distances between sound objects (according to some
measure of variation and distance). Specifically, Fasciani and Wyse apply princi-
pal component analysis (PCA) and Isomap [13, 14] (see also [15]) to match the
dimensions between a general timbre space D and a control space C. The inverse
direction of the mapping is made possible by maintaining pairwise associations be-
tween elements of each transformed matrix, or alternatively by training a neural
network. Modern forms of (nonlinear) dimensionality reduction techniques include
t-SNE [16] and UMAP [17], which learn low-dimensional embeddings of the original
high-dimensional data (see Section 3.3).

2.3.4 Generative Models
Recent advances in machine learning have introduced methods for representation
learning [18] that build abstract (latent) representations of data sets (encodings)

1https://www.ismir.net

7

https://www.ismir.net

2. Background

that can be used to also generate new data with a similar structure (decodings).
Specifically, Autoencoders (AEs) are trained to reproduce its data input through a
low-dimensional bottleneck in the form of a latent space. That is, the algorithm
tries to find a coupled encoder and decoder that minimises the reconstruction error
based on input from the original data set. In addition, Variational Autoencoders
(VAEs) [19, 20] instead encode the input as a stochastic distribution with a particular
mean and variance, which enables a smoother interpolation and generation of novel
outputs from the decoder in-between data points in the training set.

Another category of generative models are General Adversarial Networks (GANs)
[21], which instead of a coupled encoder-decoder network train a coupled generator
and discriminator model. The function of the generator model is to generate new
content, whereas the task of the discriminator is to classify the content as either
”real” (from the training data) or ”fake” (generated). As the generator improves,
the discriminator performs worse on content classification.

Finally, since audio is a temporal signal, many generative models for audio con-
tent include different forms of Autoregressive (AR) techniques, where the prediction
of a temporal sequence is conditioned also on its history. Recurrent Neural Net-
works (RNNs), in addition, include recurrent connections within a neural network
to include a form of internal state or memory that can model sequential data.

2.3.5 Spectral Models
In the context of sound exploration, Tatar et al. [22] apply variational autoencoders
to learn latent encodings of audio textures that enable interpolation and extrap-
olation of new sounds in what they term Latent Timber Synthesis. The training
of the model is based on the spectrogram of the audio, specifically the magnitude
Constant-Q Transform (CQT) spectrogram, which is then converted back to the
audio domain using (Griffin-Lim) phase reconstruction.

Similarly, Esling et al. [23] apply VAEs on a dataset of acoustic instrument record-
ings, with a comparison of different spectrogram types as input (the Short-Term
Fourier Transform (STFT), Discrete Cosine Transform (DCT) and Non-Stationary
Gabor Transform (NSGT), respectively). In addition, they introduce an additional
regularisation term in the model in order to ensure that the structure of the learned
latent space is perceptually relevant. The regularisation is based on collected per-
ceptual metrics of acoustic sounds in order to ensure that the constructed latent
space follows a structure as indicated by these perceptual timbre studies (similarly
to Wessel [11]). Furthermore, Esling et al. [24] proposes normalising flows as a
way to transform the simple variational representation to a more complex distribu-
tion. Sounds are assigned semantic tags that enable disentanglement of perceptual
dimensions in a semi-supervised model.

Conducting listening studies and labelling data based on perceptual ratings often
require significant amounts of work and also introduces biases regarding which types
of sounds that are listened to (e.g. only sounds from acoustic instruments). In
contrast, this project relies on no other data than the sounds themselves and focuses

8

2. Background

complementarily in the domain of electronic music and digitally synthesised sounds.

Secondly, the models mentioned work with frequency based representations (spec-
trograms) as input rather than time domain waveforms, which has clear motivations
but also restricts the applicability of the models for real-time processing. Therefore,
this project focuses on models that are fast and flexible so that inference can run in
real-time.

2.3.6 Raw Audio Models
One reason to use frequency domain features in training audio representations is
that audio signals change quickly in the time domain, typically tens of thousands of
samples per second (depending on the sampling rate). Since the samples in a time
series condition also the following samples, a generative model for long-term audio
has to learn to encode these time correlations in the signal. Techniques for learning
conditional patterns have been successfully implemented in generative image models
(such as PixelRNN [25] and PixelCNN [26]), but was recently adopted also for audio
in the WaveNet model [27]. The deep learning architecture works by introducing
various dilation paths in the convolutional layers that increase the receptive field
and allows for learning of long-term dependencies in the signals.

The WaveNet model, however powerful, is computationally costly in both training-
and inference times, which puts a barrier on use in real-time sound synthesis ap-
plications. To mitigate these computational constraints, Hantrakul et al. [28] ex-
perimented with a convolutional neural network in combination with a WaveRNN
model [29] as a form of vocoder for generation of instrument sounds. The model
works by analysis and re-synthesis of sounds conditioned on frequency and amplitude
as control input to the sound synthesis.

These autoregressive/recurrent models work by generating waveforms sample by
sample as part of a time-varying signal. Audio, however, is a special form of sig-
nal with a bias towards periodic structures and oscillations that the human ear has
evolved to detect and decompose. Traditional synthesizers and vocoders are de-
veloped based on this knowledge about how sound is generated and perceived to
synthesise new oscillations using digital signal processing (DSP) modules. Building
on this idea, Engel et al. developed Differential DSP (DDSP) [30] to explicitly in-
clude DSP modules as part of a neural network architecture. They trained a model
to analyse and encode audio as parameters of a differentiable additive and filtered
noise synthesizer that can re-synthesise new audio. The model was similarly condi-
tioned on pitch and loudness to control the synthesis. The training was performed
on the NSynth dataset2 [31] with applications such as transforming the timbre of an
input sound between different instrument classes.

Finally, Tatar et al. [2] encodes frames of raw audio in a lightweight VAE architec-
ture trained on audio data that bypasses the problems of learning long correlations
in the audio in favour of faster inference times. The move towards real-time run-

2https://magenta.tensorflow.org/datasets/nsynth

9

https://magenta.tensorflow.org/datasets/nsynth

2. Background

ning models was motivated by an underexplored problem of how to realistically and
practically utilise latent spaces as part of real-world artistic practices.

The following approach builds on the the same ideas of training light architectures
on raw audio, with the addition of learning to encode only single cycle waveforms
as part of a wavetable synthesis engine. Similarly, a shift towards the perspective
of the artist or sound designer utilising these techniques puts emphasis more on the
practical strategies of exploring the inherent potentials of latent spaces rather than
building them perfectly.

2.3.7 Generative Wavetable Synthesis
Some recent works have been devoted particularly to the use of generative models
in wavetable synthesis applications.

Hantrakul and Yang [32] applies the WaveNet model pre-trained on the NSynth
dataset of instrument sounds to generate short waveforms of 512 samples. The model
can generate playable wavetables by interpolation with combinations of sinusoid, saw
and triangle waveforms as input. Because of slow inference times (several seconds
on a GPU), however, the wavetables need to be pre-rendered.

In addition, Shan et al. [33] replaces the additive synth in the original DDSP
autoencoder with a learnable wavetable synth trained on the NSynth dataset. The
model is similarly conditioned on pitch and loudness.

Finally, Hyrkas [34] trains a variational autoencoder on STFT frames of audio from
the NSynth dataset. The model relies on a pitch estimation algorithm for the frames
of audio as well as phase reconstruction using the Griffin-Lim algorithm back to the
audio domain.

10

3
Theory

3.1 Timbre Spaces
Timbre is the perceived quality of a sound that gives it a distinct colour of tone
in comparison to other sounds with the same pitch, loudness and duration [35]. In
conventional music theory, the timbre of a sound therefore allows us to distinguish
different instrument classes from one another. Importantly, then, timbre is not
an intrinsic physical property of a sound, but rather a multi-dimensional texture
dependent on the specifics of how the sound is generated, how it reverberates in
an environment and how it interacts with the physiology of the ear. This multi-
dimensionality of timbre can be referred to in different ways using labels such as
brightness, roughness, hollowness or inharmoniciy [36].

Since timbre is defined in terms of a perceived distinctness between sounds, scientific
approaches to characterise timbre often relies on listening studies where sounds
with the same pitch and loudness are rated based on their perceived dissimilarity.
The ratings can then be used to construct a timbre space structured by dimensions
or audio descriptors that most accurately separate sounds perceived as having a
distance from each other. The assumption is that we may represent timbre in
the form of a reduced set of auditory dimensions that listeners implicitly utilise in
comparing sounds.

As mentioned, the work of Grey [10] and Wessel [11] here introduce multi-dimensional
scaling (MDS) as a dimension reduction technique to represent audio in a way that
maintains perceived distances between sound object. The idea is that the dimen-
sions of the generated timbre space may correspond to measurable properties of the
sounds that influence the tone colour in a specific way [36].

3.2 Audio Analysis
Through grounded knowledge in psycho-acoustics and the physicality of sound, we
may understand and represent sound and audio in this way by analysing its com-
ponent parts. Through analysis, therefore, we seek to understand complex sonic
textures by abstract concepts and representations that capture certain essential
characteristics of the perceived phenomenon. To this end, computational tools for
audio signal processing and audio representations can be applied that quantitatively

11

3. Theory

capture certain aspects of a time-varying audio signal [37].

3.2.1 Time- and Frequency Representations
Any sound can be intuitively graphed out as a waveform that captures the physical
nature of sound as deviations in air pressure through time at a given location.
The rate of repeated fluctuations in pressure determines the frequency of the audio
wave, which in turn relates to the pitch of a perceived tone, whereas the size of the
fluctuations (i.e. the amplitude) influences the perceived loudness or intensity of the
sound.

In theory, any complex waveform can be decomposed into or approximated by a sum
of simpler periodic waveforms with distinct amplitudes and frequencies. Therefore,
rather than looking at the temporal amplitude variation through time of a waveform,
we may consider the different frequencies of basic waveforms that make up the sound.
The Fourier transform (FT) of a signal here functions as a mathematical tool to
convert a time-dependent continuous signal to a representation of the frequency
content in that signal.

Figure 3.1 shows an example waveform as a superposition of sine waves and its
corresponding frequency content as given by the Fourier transform.

0.000 0.005 0.010 0.015 0.020
Time

2

1

0

1

2

Am
pl

itu
de

0 200 400 600 800 1000 1200
Frequency (Hz)

0

5000

10000

15000

20000

M
ag

ni
tu

de

Figure 3.1: Time plot (left) of a waveform and the corresponding frequency plot
(right) as given by the Fourier transform of the signal.

Working with digital audio, however, we have to consider ways of discretising a
continuous signal for digital processing. In practise, we therefore need to choose a
sampling rate, i.e. a rate at which to store amplitude values of the time-varying
continuous signal. Similarly, there is a corresponding discrete approximation of the
continuous Fourier transform termed the discrete Fourier transform (DFT) that
translates between time- and frequency representations of a sound.

3.2.2 Windowed Fourier Transforms
As we progress from a time-varying waveform representation of sound to an image
of the frequency content in the waveform (by applying the Fourier transform), we
hide information about when these frequencies are found as part of the waveform.

12

3. Theory

We therefore have a trade-off between retaining time- vs. frequency information
in representations of audio. A method to reduce the effects of averaging the time
information of a whole signal is to calculate the Fourier transform on smaller time
windows as given by a window function. Specifically, the short-time Fourier trans-
form (STFT) utilises this notion of short-time windows that are transported across
the signal (with a step size determined by the hop size) to apply the transform.

This introduced time-dependency in the frequency representation can be visualised
in the form of a spectrogram that describes the frequency content of the signal
through time in a 2D-plot (see Figure 3.2).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Time

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Am
pl

itu
de

0.2 0.4 0.6 0.8 1.0 1.2
Time

0

2500

5000

7500

10000

12500

15000

17500

20000

Fr
eq

ue
nc

y
(H

z)

Figure 3.2: Spectrogram (right) of a signal (left) that shows the frequency content
through time as given by the short-time Fourier transform.

3.2.3 Wavelet Transforms
With the windowed Fourier transform, we can analyse signals with time-varying
frequency content in this way. Since the windows have fixed length, however, we
need to decide on a fixed time-resolution and therefore a preferred scale of anal-
ysis. The problem is that detecting high frequency content requires shorter time
resolution than low frequency components, which introduces the need for multires-
olution models that can capture frequency information at different scales. Wavelet
transforms [38], for example, here include different time-resolutions depending on
the frequency range (band) under consideration.

3.3 Dimensionality Reduction
The general idea behind dimension reduction techniques is that we might repre-
sent high-dimensional data in a compressed form that still captures the essential
characteristics of the true data distribution. This can be used for visualising high-
dimensional datasets, but also for extracting new types of features and data repre-
sentations that defines a latent generative space for data reconstruction and explo-
ration.

13

3. Theory

These techniques can be broadly divided in two categories depending on how dis-
tances between data points are utilised and preserved as part of the algorithm.
Either the algorithm aims to preserve pairwise distances globally between all data
points (PCA, MDS), or the local distance structure is emphasised (Isomap, t-SNE)
[17].

In Principal Component Analysis (PCA) [39], the original data is projected (lin-
early) onto the directions of highest variance in the data (the principal components).
This means that PCA discards directions of low variability in order to preserve the
maximum amount of information (variance) in the data. Multidimensional Scaling
(MDS) [40], on the other hand, takes a distance matrix of pairwise connections be-
tween points as input and builds a lower-dimensional representation that tries to
preserve the information contained in the mutual distances between objects in the
dataset.

In addition, there are non-linear manifold techniques based on learning an embed-
ding that represents similarities (distances) in the original data. These include for
example Isomap, t-SNE and UMAP.

Isomap [41] builds on similar principles as MDS but using geodesic distances instead
of a Euclidean metric. The algorithm imposes a graph structure on the original data
and then preserves local neighbourhoods of the graph through an isometric mapping.
In addition, t-SNE [16] is a nonlinear probabilistic dimensionality reduction method
that models the probability that different data points are close to each other in
a high-dimensional space and then tries to preserve those probability distributions
also in a low-dimensional embedding. Finally, UMAP [17] builds on t-SNE but with
lower computation times and a better preserved global structure of the data.

3.4 Audio Synthesis

In addition to analysing audio through abstract representations, we can also un-
derstand sounds by learning how to generate and produce them, which introduces
a more experimental approach of understanding by synthesising the complex phe-
nomenon under observation [35]. Acoustic instruments could be conceived of as
tools for sound synthesis through manipulating the physical and mechanical proper-
ties of objects in order to generate acoustically interesting effects. The introduction
of the computer, however, enables new types of analysis and synthesis of sounds
in the form of adding, subtracting, filtering and in different ways manipulating the
properties of sound generating oscillators and recorded audio samples [6].

In additive synthesis, complex waveforms are constructed by adding simpler wave-
forms together (e.g. sine waves). This follows from principles in Fourier theory that
state that all periodic signals can be expressed as a sum of sinusoidal functions,
which enables us to construct a desired sound by adding signals together.

Subtractive synthesis takes the opposite approach of starting with a complex wave-
form and filtering away undesired frequencies and properties of that complex sound.

14

3. Theory

In contrast to the constructive approach of additive synthesis, then, subtractive
synthesis is more about sculpting a sound than building it from scratch.

Additionally, we can add variation and complexity to a sound by modulation, which
means that e.g. the frequency of the sound is altered based on the current amplitude
of another wave. Typically, the modulation signal has low frequency (a low frequency
oscillator or LFO), but we can also use high frequency waves to modulate other high
frequency waves. This underlies the theory of frequency modulation synthesis [42] (or
correspondingly, amplitude modulation synthesis). The complexity and character of
the resulting sounds depends to a large extent on the harmonic relationship between
the modulation signal and the original (carrier) signal.

3.5 Generative Models

In practise, there is a feedback loop between methods of analysis and synthesis in
that an analysis can be evaluated by (re-)synthesising new observations from the
abstract model. If we can decompose a complex sound texture by some abstract
representation and then re-synthesise similar textures using that abstract representa-
tion, we have to some extent confirmed that the representation carries experimental
value [43].

With this perspective of sound analysis and synthesis in mind, we can take advantage
of recent advances in machine learning and similar computational methods to first
analyse the contents of audio data in order to then (re-)synthesise new samples
through a different lower-dimensional data representation that enables novel ways
of exploring the sound space.

In the application domain of audio analysis and synthesis, therefore, we are inter-
ested in not only compressing, reducing or representing audio data (encoding data),
but also reconstructing it in order to synthesise new sounds (decoding from a reduced
representation). Ideally, there is a lossless encoding of the original data that enables
perfect data reconstruction from its compressed form (which requires some level of
redundancy in the original data representation). In the case of a lossy encoding,
however, we may still encode data in a way that minimises the reconstruction er-
ror, i.e. the difference between the original data and the reconstruction by some
measure of error. This is essentially how autoencoders work, a set of techniques
for training a coupled encoder and decoder to reconstruct its own input through
a lower-dimensional bottleneck [44] (see Figure 3.3). This also means that we can
use the decoder directly to synthesise new samples ’in-between’ data points of the
original data set.

While autoencoders learn a way to encode the input data in the form of a latent
representation, there is no guarantee that the input is encoded in an organised way,
i.e. that we can generate new content from the latent space that resembles the
original data.

Variational Autoencoders (VAEs) [19, 20] extend autoencoders in that instead of

15

3. Theory

𝑥 𝑧 𝑥#Encoder Decoder

Latent Space

Reconstruction Error

Figure 3.3: General autoencoder architecture with an input vector x that is en-
coded to a latent space vector z and then decoded as a reconstructed vector x̂. The
performance of the coupled encoder and decoder is optimised based on the recon-
struction error between the input x and the output x̂.

encoding data as points in a latent space, we encode the input as parameters for a
latent probability distribution that enables a smoother and more meaningful recon-
struction of nearby data points (see Figure 3.4). VAEs can represent and reconstruct
data points in the training set, while maintaining levels of continuity between sam-
ples. VAEs therefore adds an element of regularisation of the latent space in order
to ensure meaningful and smooth outputs from the decoder.

Formally (see [44]), we assume that the original data samples x comes from an
unknown data distribution p(x) that we want to represent or approximate. Fur-
thermore, we assume that the original data share a relationship with and can be
generated by some latent (hidden) variables z from a latent distribution p(z). We
can then calculate the joint probability p(x, z) = p(x|z)p(z), where p(x|z) is the con-
ditional probability of observing x given the latent variable z. This is the decoder
part of the network, describing how to generate samples x given a latent z.

Here, we consider p(z) to be a standard Gaussian distribution and p(x|z) to be
normally distributed with a mean as given by a function f(z) and a fixed covariance
given by a constant c. That is,

p(z) ∼ N (0, I),
p(x|z) ∼ N (f(z), cI), f ∈ F, c > 0,

where f belongs to a family of functions F (to be determined).

Through Bayes theorem, we also know that the posterior distribution

p(z|x) = p(x|z)p(z)
p(x) = p(x|z)p(z)∫

p(x|u)p(u)du
,

which constitutes the encoder part of the network, i.e. how to generate latent z
given an input x.

16

3. Theory

𝑥

𝜇

𝜎

𝜁

𝑧 𝑥&

Encoder Decoder

𝑔

ℎ

𝑓

Figure 3.4: General variational autoencoder architecture with an input vector x
that is encoded to the parameters µ and σ of a normal distribution. The latent
variable z is then sampled from the normal distribution using the reparametrisation
trick, with ζ ∼ N (0, I), before it is decoded as x̂.

The integral in the denominator, however, is generally intractable to solve analyti-
cally for complex distributions. The idea behind Variational Inference, therefore, is
to assume that p(z|x) can be approximated using a simpler distribution q(z|x) ∈ Q
belonging to some family of distributions Q. The problem of inference can therefore
be transformed into a problem of optimisation by minimising the ”distance” between
p(z|x) and q(z|x), which can be measured by the so called Kullback-Leibler (KL)
divergence. This gives us a problem of finding

q∗(z|x) = argminq(z|x)∈QDKL[q(z|x)||p(z|x)], (3.1)

where we optimise the parameters of the distribution q(z|x).

Specifically, we may assume that q(z|x) belongs also to a family of normal distri-
butions, whose parameters (the mean µ and variance σ) are functions of x. I.e. we
assume that

q(z|x) ∼ N (g(x), h(x)), g ∈ G, h ∈ H,

where g and h belong to a family of functions G and H, respectively.

Now, we let the functions f , g and h that determine the parameters of the prob-
ability distributions be chosen from a set of functions defined by a neural network
architecture. The encoder part of the variational autoencoder therefore seek to ap-
proximate the functions g(x) = µx and h(x) = σx that become the parameters of the
normally distributed q(z|x). Similarly, the decoder network determines the function
f(z) = µz and the mean of the distribution p(x|z).

The whole model is then a concatenation of the encoder and the decoder. Since
the encoder returns a probability distribution rather than a point in a latent space,
however, we need to sample a latent vector z from this distribution. This introduces
a problem in the training of the network in that a random sampling from a dis-
tribution is not differentiable and therefore blocks the error from backpropagating

17

3. Theory

through the network. The solution is what is called the reparametrisation trick,
utilising the fact that z can be expressed as a function of g(x) = µx and h(x) = σx

as
z = σxζ + µx, ζ ∼ N (0, I),

where ζ is from a standard Gaussian distribution.

Based on our original optimisation problem (equation 3.1), by expanding the KL
divergence and re-arranging terms, we can derive the following loss function for
training the neural network:

Lf,g,h = Eq(z|x)[log p(x|z)]︸ ︷︷ ︸
Reconstruction Term

− β · DKL[q(z|x)||p(z)]︸ ︷︷ ︸
Regularisation Term

, (3.2)

where the functions f , g and h are determined by the weights of the network. The en-
coder network approximates the probability p(z|x) through the functions g(x) = µx

and h(x) = σx, whereas the decoder approximates the distribution p(x|z) through
the function f(z) = f(σxζ + µx) = µz. The first expectation term of the loss func-
tion corresponds to the reconstruction error of the model whereas the second term
regularises the distribution q(z|x) to follow that of the prior p(z). The parameter β
is set as a hyperparameter for training that adjusts the trade-off between these two
terms, namely between reconstruction error and regularisation of the latent space.

The detailed explication of this loss function is laid out in [19].

18

4
Methodology

This project lies at the intersection of technology, interaction design and sound art,
with an emphasis on the adoptability of engineering tools for artistic purposes. We
therefore need to consider the value of doing research within this particular context
in order to elucidate what kind of research results we might expect and how to
evaluate the results.

There are several ways in which these fields can intersect. From one point of view,
the engineer/technologist develops technologies for sound processing (e.g. the back-
end of a DAW or VST), the designer constructs a user-friendly interface that enables
interaction with these tools, which the artist then utilises for musical creation. To-
day, however, the lines between these different roles are increasingly blurred with the
rapid development and distribution of new digital technologies. With tools such as
Pure Data, Max and SuperCollider, a technologically savvy sound artist can develop
and design their own instruments. Also, with new forms of multi-media expressions,
the artist increasingly becomes a designer of immersive and interactive tools and
experiences that hinges on technological knowledge or support.

In terms of methodology, therefore, we necessarily move in the tension between
different roles and how they influence the research output.

4.1 First-person Methods

Conventionally, user-centric design takes a third-person perspective in project eval-
uation based on for examples user interviews, observations and prototype testing.
Recently in HCI research, however, first-person perspectives have gathered interest
as an approach for using the designers own body and lived experience as an impor-
tant resource in the design process. This brings the designers own perspectives and
intentions to the forefront and tightens the loop between design and user experience
in a way that allows for faster iterations and evaluations [45].

The first-person perspective also emphasises how designers and users are not always
that easily separated into categories of active creators and passive consumers of a
product or tool. In fact, many tools are in a perpetual state of redesign, where user
experience and design reconstitute each other in a feedback loop. As Höök et al.
notes [45], ”[t]he end-user will actively co-construct their experience, the meaning

19

4. Methodology

of the interactions, together shaping practices and engagements over time.” This is
particularly true of aesthetic experiences, which according to the pragmatist philoso-
pher John Dewey have a singularity to them that hinges on active and subjective
participation rather than passive reception. Interactive technologies transform our
experiences and participation in the world by either ”amplifying or reducing reality”
as well as through ”inviting and inhibiting actions” [45].

The current work explores designing a sound synthesis tool using new technolo-
gies in a way that permits certain aesthetic explorations of sounds. Therefore, the
work centres on the first-person perspective of the technologist as designer as artist,
adapting current technological tools for personal use and developing personalised
interfaces to enable interaction with those tools. Furthermore, beyond the func-
tional affordances of these tools, the process centres on expressing a creative intent
through new technologies as well as using new technologies creatively.

To this end, autobiographical design is about designing with and for the self by
tracking the experiences and desires of the designer in utilising the system as it is
being developed [46]. Rather than trying to separate functions of designing and
using, therefore, autobiographical design takes advantage of the designer being able
to take on different roles and perspectives as part of the design process. In this
project, therefore, a project log was kept during the design process to trace the
specific ideas, experiences and developments that influenced the direction of the
design implementation.

4.2 Research through Design
Research and design are two fields that inevitably influence and inform each other
in many ways. But what, exactly, is design research? Based on Frayling’s influential
categorisation [47], we can do research about (into) design, research for design or
research through design [48]. Research about design takes the field of design itself as
its object of study and traces the forms and shapes it inhabits. Research for design,
on the other hand, aims at generating design frameworks, methods, philosophies and
recommendations that help designers navigate and frame the problems at hand.
In contrast, research through design (RtD) is rather about generating knowledge
and insight by acting out a particular design process for a specific situated task.
Instead of objectively studying and/or developing frameworks for design practises
from a distance, RtD actively engages in those practises and includes that particular
engagement as part of the research output. Specifically, Gaver states that ”reserach
through design is likely to produce theories that are provisional, contingent, and
aspirational” [49], and in that sense aims at expressing the particularities of a given
process and its generative potentials rather than general statements about ”what is”.
In other words, from this perspective, there is no optimal design, since the specifics
of the context, the intended user and the situated task changes with each new design
implementation.

As Zimmerman et al. point out [48], because of its provisional and situated na-
ture, research through design serves as a viable approach towards so called ”wicked

20

4. Methodology

problems” for which there are no optimal solutions that hold for all times and all
contexts. Furthermore, research through design is essentially aimed at the future
by implementing design artefacts that pushes the world towards a desired state,
rather than focusing on what was or what is, which makes it a suitable approach
for exploring new fields of knowledge that are not fully formed yet.

In this context, the main research output of the project is the design process itself
rather than the particular design artefact that come out of this process (although
that is also significant). The act and process of designing interfaces and tools for
musical expression in this way functions to draw out the particular affordances of
technologies in generating creative content and aesthetic experiences.

There are relevant critiques and calls for further developments of these perspec-
tives on doing design research. In particular, the question is in what ways research
through design can produce actual design theory and systematic forms of knowl-
edge [48]. Also, there is still a call for and a need to evaluate what a good outcome
and performance means in this context. Importantly, however, first-person methods
and research through design practices are complimentary to and not a replacement
for other methodologies in Human-Computer Interaction (HCI). Focusing on first-
person perspectives, in particular, does not bypass the need for conventional methods
of user evaluation and feedback in prototype design.

4.3 Evaluation of Musical Interfaces
In designing interfaces for musical expression, each instantiation of a new interface
carries with it the intentions and artistic interests of the creator of the interface, as
well as the context in which the musical task is situated. It is therefore a common
feature in musical interface design that the creator of the interface is also the main
user of the interface [50]. This points to a consideration whether the interface should
have broad usability (a common evaluation criterion in HCI), or rather expressive
potential for certain use cases that can then be re-appropriated and developed by
others. The artistic intentions and context therefore plays an important role in how
to approach evaluation in interactive computer music [51]. For example, a sound
exploration tool would be valued according to its potential of finding new types of
sounds that can be used in sound design and composition tasks, whereas a perfor-
mance instrument would be evaluating based on the immediacy and expressivity of
the interaction and the way it affords musical agency.

With regards to specific evaluation criteria for musical tasks, Wanderley and Orio [51]
mentions the importance of learnability, explorability, controllability of audio fea-
tures and controllability of timing when interacting with a musical interface. Tim-
ing, rhythm and haptic feedback are particularly desired characteristics of a musical
interface that might not be so relevant in other evaluation contexts. The gesture-
sound interaction also requires a level of consistency, continuity and coherence to
ensure an intuitive feedback process for learning and exploring an interface [52].

In this context, the evaluation centres around the particular situated musical task of

21

4. Methodology

sound exploration and design of sonic textures with a specific aesthetic quality. To
this end, an evaluation study of the prototype was performed that focused on users in
a similar context and with similar interests to compliment and extend the first-person
perspectives on the musical interface. Evaluation questions were formed to elicit the
aesthetic affordances and experience of using the tool, in particular, but also general
concerns of usability and navigability. In addition to individual user experiences,
the evaluation situated the prototype within a collaborative performance setting.

22

5
Design Process

This chapter outlines the design process, starting with an initial ideation phase and
leading up to a final prototype. As retroactively constructed from the end point, this
process takes the shape of a linear movement from beginning to end, which allows
us to draw out the significant moments and general trends that contributed to this
movement. In practice, however, any design process is of course highly non-linear
and iterative and full of contradictions.

The first section describes the inspirations and influences that led up to the idea
of a latent vector synthesizer. These influences are conceptual and artistic as well
as technological. The next design phase delved into the opportunities and compli-
cations of working with sound from a data-centred perspective, as well as building
latent spaces of audio. This in the end pointed to a pipeline design that could
encompass these data-centred tasks, but also handle low latency audio signal pro-
cessing. Finally, the whole process of designing the prototype is outlined, from the
initial coding to the final graphical interface design.

5.1 Ideation

5.1.1 On Sonic Art
An important influence on this project is the creative opportunities opened up by
digital computing technologies for the sonic arts. As mentioned, these technologies
push the conceptions we have about music towards a ”liberation of sound” [9] from
conventional ”lattice sonics” [8]. Personal experimentation and experience with
modular synthesis techniques, in particular, served as a starting point for new forms
of sound explorations focusing more on the qualities of the sound textures themselves
than their particular musicality and harmonicity as defined by conventional notation
systems.

Building on rather than negating these conventional modes of music making and
composition, the liberation of sonic textures in this way allows us to conceive of
sound as organised without a clear delineation between pitch, noise, timbre, and
rhythm. The question remains, however, how these sound textures can be organised
in other ways, utilising modern computing technologies. That is, can we construct a
timbre space of sounds that allows us to creatively express transitions between any

23

5. Design Process

types of timbres? What kind of structure (if any) does this space exhibit?

A particular genre of sound art dealing with slowly evolving streams of sounds and
changing timbres is drone music, which functioned as an important aesthetic framing
and creative constraint in the design of the synthesis tool. This is a type of music
that relies heavily on being able to make such smooth transitions in timbre space.

5.1.2 Sustained Sustain
”In essence, drone equals sustain – sustained sustain, if you will.” [53]

Drone music utilises the power of sustained vibrations.

These can be heard today as part of ambient soundscapes, but drones are ancient,
reverberating through time from the beginnings of human activity or perhaps even
the universe itself. In particular, Harry Sword traces the history of drone from
Neolithic burial chambers and the sounds of nature through Buddhist chanting,
Indian ragas, Greek aulos pipes and Sufi trance rituals to the modern underground
and its experimentation with ringing feedback and noise [53].

Aesthetically, these sustained tones and textures can range from soothing and warm
to sharp and agitating. The drone is ”an audio carrier vessel capable of evoking
womb-like warmth or cavernous dread alike” [53]. In fact, a good drone probably
strikes a balance between the smooth and the harsh, between tension and relaxation.

In the late 20th century, drones were perhaps associated with different forms of
drone metal, utilising heavily amplified electric guitars, but also as a sub-genre of
electronic music, enabled by the sustained tones of voltage controlled oscillators.
Today, these oscillators are a fundamental part of any synthesizer or digital audio
workstation and the opportunities to generate and modify drones digitally abound.

5.1.3 A Drone Synthesizer
What constitutes a good drone synthesizer? What are its component parts?

With computer music, the drone transitions from physically vibrating sound sources
to internally generated electronic or digital signals. A key aspect of a good drone
synthesizer, therefore, is the oscillator, the sound generating source, the beating
heart.

Secondly, the drone is monotonous but always evolving and transforming. The drone
is sustained but with continuous changes in timbre and texture. A good drone synth
therefore hinges on these slow transformations of timbre in the sound.

Finally, in acoustic environments and instruments, the generated sounds bounce
off of objects and materials and return in the form of echoes and reverberations of
filtered aspects of the sounds. These reverberations of the original tone are crucial
for a rich drone sound and has to be digitally emulated in a synthesizer.

These three aspects (sustained tones, timbral transitions and reverberation) were

24

5. Design Process

Figure 5.1: A set of 64 wavetables sequentially ordered on a grid from the WaveEdit
software. The position of the dot determines which waveform is played to generate
a tone, with morphing capabilities between the waveforms.

put down as key components of a drone synthesizer and added technological con-
straints and requirements to the design of the synthesis tool. In particular, wavetable
synthesis and vector synthesis were conceptualised as promising methods of sound
synthesis to allow for sustained oscillations with smooth timbral transitions, which
in combination with post-processing modules such as filters, delays and reverb would
meet the technical requirements of a good drone synth.

5.1.4 Wavetable Synthesis
Wavetable synthesis [54] builds on the principle that in order to generate a sustained
tone from a periodic signal, we only need to store one cycle of the waveform in a
circular table and then read that table sample by sample in a loop. The frequency
of the tone will depend on how fast the table is read through. Additionally, with
several waveforms stacked on top of each other comes the ability to cross-fade or
interpolate between them to dynamically change the timbre of the tone.

An open source tool, WaveEdit [55], was used in the early stages of the project to
explore the potential of wavetables for generating complex evolving sound textures.
The tool includes functionality for constructing and editing a set of periodic wave-
forms as well as morphing between them (see Figure 5.1). The tool also includes
functionality for importing audio files to generate custom wavetables.

5.1.5 Vector Synthesis
Vector synthesis, in addition, is a synthesis technique that introduces movement and
texture to a sound by cross-fading between a set of predetermined sound sources.

25

5. Design Process

Figure 5.2: Vector synthesis uses the position in a vector plane to control a mix of
four sound sources. This control surface can be mapped to for example a joystick.
Image from [1].

The technique was introduced by Sequential Circuits in their Prophet VS synthesizer
in 1986 [56], which implemented cross-fading in a vector plane between four different
wavetable oscillators (labelled A, B, C and D), using a joystick as a controller (see
Figure 5.2).

A vector plane of sounds can be explored using a controller in this way to change the
position, but the position can also be modulated using envelopes or low frequency
oscillators (LFOs). Here, a modern form of vector synthesizer like Vector1 lets the
user define modulation trajectories in the form of shapes on a display. As the point
follows the trajectory the sound changes character.

This inspired the implementation of a vector synth with four wavetable oscillators as
source waveforms, with the additional functionality to create morphing trajectories
in the vector plane for introducing movement to the sounds.

5.1.6 Latent Vector Synthesis
The notion of tracing out a path for a sound texture in a vector plane rhymes
well with the idea of a latent space, since each latent vector points to a sound in
an organised space of sound textures that can be traversed through interpolation
and/or extrapolation in different directions. Any four points in the latent space
span a vector plane that can be utilised for sound synthesis in this way. Cross-
fading between waveforms then corresponds to interpolation in the latent space.

Additionally, wavetable synthesis generates sustained tones using only short single
cycle waveforms, which means that a latent encoder only has to learn to encode
short samples of sounds rather than longer tones with timbral fluctuations and time
correlations. Utilising neural network architectures in this way for generating single
cycle waveforms and interpolating between them therefore enables us to reliably form

1https://www.vectorsynth.com

26

https://www.vectorsynth.com

5. Design Process

longer sustained tones such as drones that evolve slowly as the original waveform is
altered.

An important step in the design process of the synthesis tool, therefore, was the
idea of revisiting or revitalising old synthesis techniques using new technologies, in
this case replacing vector planes with latent vector planes.

5.2 Musicking with Sound Data
Having formed an idea about the aesthetic framing and the technology to support it,
the next phase of the design process looked more carefully at data processing tools
and machine learning frameworks to address problems of sound exploration. To this
end, there are a variety of Python libraries suitable for data retrieval and process-
ing, ranging from audio analysis and feature extraction tools (such as librosa [57])
to dimensionality reduction algorithms (as part of scikit-learn [58]). For deep
learning tasks, PyTorch [59] is one of the most widely used libraries. This makes
Python a suitable programming language for data-centred tasks. The question re-
mains, however, how to integrate these frameworks and tools as part of a sound
synthesis application (as will become an important consideration).

Any data science or machine learning project starts with data and the exploration
of data. An important step in this project was therefore to select a suitable audio
datset to work with, that would in turn determine the structure of the sound space
that we want to explore. Because, as often pointed out with regards to machine
learning applications, the algorithms can only learn what you feed it, which means
that the initial data selection and processing will greatly influence the performance
and aesthetic output of the model.

5.2.1 Dataset Selection
Sound data come either in the form of recorded audio or synthesised sounds. A
website like Freesound2 offers user uploaded sounds and sound packs, but sometimes
researchers publish their data for public use as well.

In order to incorporate sounds as part of a wavetable synthesizer, however, we need
data in the form of a single cycle of a periodic tone. Given a sound file, we may
attempt to extract these single cycle waveforms by estimating the period of the
wave or by cutting up the sound in segments and applying an amplitude envelope.
In this project, however, a dataset was selected consisting of waveforms specifically
prepared for wavetable synthesis, compiled by Ekstrand [60]. The dataset contains
4358 waveforms in total, that are 600 samples long with a sampling rate of 44100
samples per second. All waveforms also start and end at amplitude 0, which enable
looping as part of a wavetable. Furthermore, the dataset is divided in 45 subfolders
based on the type of waveform contained in it or how it was generated. Many of
these folders have generic names but some show labels such as ’square’, ’saw’ or

2https://freesound.org

27

https://freesound.org

5. Design Process

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

0 600
1
0
1

Figure 5.3: A selection of 16 random waveforms from the dataset.

’eorgan’ that indicate what type of waveform or shape is contained in the folder.

5.2.2 Random Waveforms
The initial exploration of the dataset was performed interactively in a Jupyter Note-
book3, where the first step was to generate and listen to randomly selected wave-
forms from the collection to get a view of the range of sounds available. This random
waveform selection was also later implemented as a function in the synthesis tool.

The dataset shows a variety of waveforms ranging from smooth sine waves to square
waves and more rugged bit-reduced forms (see Figure 5.3 for a random selection).

5.2.3 Data Visualisation
For visualisation, the raw waveforms were reduced to a 2-dimensional embedding
using the UMAP dimensionality reduction algorithm [17] (see Figure 5.4), which in
its Python implementation includes convenient functions for generating interactive
scatter plots of the data. The categorisation of the waveforms into subfolders here
enabled a simple form of labelling and colour coding of the data points to indicate
where the sounds came from. In particular, the algorithm picked out some clusters
of sounds, corresponding to square waves in the ’AKWF_bw_squ’-folder (leftmost
yellow cluster), some rugged outliers in the ’AKWF_vgame’-folder (rightmost blue

3https://jupyter.org

28

https://jupyter.org

5. Design Process

Figure 5.4: Visualisation of the waveforms using the UMAP dimensionality reduc-
tion algorithm, with points colour coded according to the subfolder they were in.

cluster) as well as some smoother waves from the ’AKWF_0001’-folder (bottom red
cluster).

A further step here would be to incorporate corpus exploration tools to be able to
also hear the sounds as they are pointed at in the 2-dimensional space. In addition,
there are also many other visualisation and clustering tools to apply in this step
that would give additional information about the structure of the sound space.

5.3 Building a Latent Audio Space

The next step in the design process was to figure out whether the abstract concept
of a latent space synthesizer carried actual potential. Importantly, then, a proof of
concept was needed to assess if the current strategy would be a relevant path to
explore further.

29

5. Design Process

For the latent space construction, a variational autoencoder model was implemented,
inspired by previous research that showed some promising results regarding these
models. Building on the works of others in this step reduced the development time
significantly from conceptualisation to having a proof of concept ready to experiment
with.

5.3.1 Dataset
The training data for the model was based on the dataset of wavetable audio intro-
duced in Section 5.2.1, i.e. a collection of single cycle waveforms, each 600 samples
long and 4358 in total. To be able to test the performance of the model, a random
10/90 train-test split of the dataset was generated (i.e. 436 waveforms were ran-
domly set aside as a test set). Furthermore, 200 silent audio samples were added to
let the model learn also to recognise silent audio.

The sample size is rather strange in this case in that most wavetables have lengths
in powers of 2, normally 256, 512 or 1024 samples. In order not to interfere with
the original waveforms through methods of resampling, however, the waveforms were
kept at their original size. For better compatibility with input from external sources,
though, it would make sense to adjust the input to a more commonly used wavetable
size in future developments of the model.

5.3.2 Network Architecture
The neural network architecture for the VAE was adopted in large parts based on
Tatar et al. [2], who use a lightweight model trained on short frames of raw audio,
which enables faster than real-time inference.

In comparison, Tatar et al. [22] use a similar network architecture but trained
on spectral audio, which in the end requires some form of phase reconstruction
algorithm to invert the spectrograms to the audio domain (see Section 3.2.1). These
phase reconstruction algorithms usually run slower than real-time and therefore
inhibit use in real-time sensitive applications.

Specifically, in this case, the input to the network is a single cycle waveform with
600 samples. The second layer expands the input layer into 2048 units which are
then encoded into a latent space of 256 dimensions (see Figure 5.5). The decoder
part of the network, in turn, reverses this process from the latent space back to an
output of 600 samples that constitutes the reconstructed signal.

5.3.3 Model Training
The model was trained for 1000 epochs on a CPU with a learning rate of 0.0001 and a
batch size of 32 samples. The KL divergence parameter was set to 0.0001 in the first
run, but then increased to 0.001 to improve the regularisation of the latent space
and the extrapolations around the latent vectors. In return, the reconstructions
became slightly less accurate.

30

5. Design Process

Encoder

Decoder

Input Layer
600

Dense Layer
600 :: 2048

Dense Layer
2048 :: 256

Dense Layer
2048 :: 256

256256

256

Dense Layer
256 :: 2048

Dense Layer
2048 :: 600

Output Layer
600

𝑥

𝜎𝜇

𝑧

𝑥%

Figure 5.5: Network architecture of the variational autoencoder, adopted from
Tatar et al. [2].

31

5. Design Process

0 200 400 600
1

0

1

0 200 400 600
1

0

1

0 200 400 600
1

0

1

0 200 400 600
1

0

1

0 200 400 600
1

0

1

0 200 400 600
1

0

1

Figure 5.6: Some randomly selected waveforms from the test set (left) and their
reconstructions as predicted by the trained variational autoencoder (right).

The training loss function was tracked for each epoch. With more data available,
it would have made sense to also generate a validation set and track the validation
loss in the training (which helps to identify whether the model over- or under-fits
the data). Having other means of evaluating the performance of the model (e.g.
through interacting with the synthesizer), however, as much data as possible was
reserved for training.

5.3.4 Model Evaluation
At this initial stage, the model performance was evaluated based on the quality
of randomly chosen reconstructions. These were plotted and listened to in order
to hear the effects of the model on the audio, which included some high-pitched
artefacts. Also, interpolations between the test data points were calculated in order
to estimate the model’s ability to move in-between data samples.

Figure 5.6 shows some randomly selected waveforms and their corresponding recon-
structions from the test set.

5.3.5 Model Improvements
Some potential sources of improvement of the model performance were identified,
namely regarding the size of the dataset, the model architecture as well as the audio
representation used for training.

With regards to alternative datasets, the WaveEdit [55] software includes an online
wavetable bank with user generated wavetables in the public domain4, which was

4https://waveeditonline.com

32

https://waveeditonline.com

5. Design Process

explored as a potential alternative or extension to the original dataset. Most of
the audio files in that database, however, were not pre-processed into clear single
cycle waveforms, which again introduced a problem of modifying the waves to be
compatible with wavetable playback. A future implementation would therefore need
to consider ways of using general audio samples to extract wavetable data, which
would expand the number of available datasets significantly, in turn addressing
problems of data sparsity (e.g. using datasets from Freesound etc.).

Secondly, the network architecture of course affects the model’s ability to construct
a good latent representation of audio. Therefore, an alternative architecture was
implemented based on Hyrkas [34], who uses STFT frames of audio as input to a
VAE for wavetable synthesis applications. The model takes an input of size 1025
and reduces that to a latent dimension of 16 in two intermediate steps of hidden
layers (of size 256 and 64, respectively). In this case, the network architecture was
adapted to fit inputs of 600 samples of raw audio. However, the significantly lower
dimensionality of the latent audio space made the interpolations more irregular and
unpredictable, and therefore the original architecture was preferred.

Finally, the chosen audio representation determines what it is that the model learns
to represent and reconstruct. An initial attempt to train the model in the frequency
domain was performed, but produced quite low quality reconstructions. This could
be due to the specific setup of the model, but also due to the need for phase esti-
mation in the spectrogram conversions to the audio domain. A direction of future
work would be to explore the possibilities of utilising frequency representations in
ways that produce reliable reconstructions and also work in real-time.

These additional experiments were performed using GPUs accessed remotely through
a cloud computing service, which enabled faster iterations and lower training times.

5.4 Pipeline Design
The main question in this project is how to utilise and interface with these latent
spaces of audio as part of a real-time playable synthesis application. The next
important problem to address was therefore how to move from these data-centred
and machine learning focused perspectives to a synthesis tool that could enable and
support creative exploration of sound textures.

5.4.1 Latency and Throughput
Approaching sound synthesis from a data-centred perspective in this way illuminated
an important trade-off between latency and throughput. The performance of a
sound synthesizer relies on carefully crafted digital signal processing lines where
small disturbances or delays may cause audible artefacts in the output. A data
science project, on the other hand, utilises the power of large datasets to learn
statistical models based on batch processing. For large models, then, inference may
not be suitable for or even applicable in real-time applications.

33

5. Design Process

Many of the available tools that incorporate machine learning and data exploration
tools for audio applications share this problem of being able to generate audio files
and samples but not in a particularly interactive or playable way. As an example,
Torchsynth [61] is an expansive data-centred synthesis tool that can quickly generate
a large number of sounds from a synthesizer that can then be incorporated into
machine learning workflows, but the generated sounds come in batches of samples
that inhibit real-time exploration and control of the sound output.

The problem here is that audio is inherently temporal. This is also why there is
a significant difference in training machine learning models for images vs. audio.
Images are static collections of pixel values whereas sounds are signals that evolve
through time. The current status on the performance of generative models for audio
reflects this discrepancy in that either the inference times are too long for real-time
applications (e.g. WaveNet) or the output carries the effects and artefacts from
the models necessarily having to cut up the sounds in frames and put them back
together again.

This stage of the design process therefore raised questions around how to design
interfaces that utilise the power of these high-throughput tools in real-time syn-
thesis applications. Instead of integrating latency and throughput within the same
framework, the path in this project was rather to separate the two functions of data
retrieval and processing, on the one hand, and audio signal processing, on the other.

5.4.2 Audio Programming Environment

Pure Data (Pd)5 is a visual and node based programming environment for audio
signal processing and interactive music computing. The tool was developed by
Miller Puckette in the 1990s [62] to aid programming of signal flows and custom
made synthesis engines.

The programs developed in Pure Data as called ”patches”, with reference to the lan-
guage of modular synthesis where physical synthesis modules are connected through
”patch cables” in more or less complicated arrangements. Similarly, Pd-patches
contain different synthesis modules in the form of nodes with (signal) inputs and
outputs.

Combining the capabilities of Pure Data patches and Python scripts therefore en-
abled both handling of real-time audio signal processing as well as tools for pro-
cessing sound data and training machine learning models. A Pure Data patch can
therefore incorporate wavetable- and vector synthesis functionality independently of
how the waveforms are generated (i.e. either directly from a dataset or through a
latent audio space).

5https://puredata.info

34

https://puredata.info

5. Design Process

5.4.3 Open Sound Control

Dividing the different tasks between Python and Pure Data in this way of course
requires a form of communication between them.

Open Sound Control (OSC) [63] is a type of protocol that supports communication
between networked applications for sound- or media control. The messages can be
simple parameter values, but also whole arrays of numbers, which in the current
context means that we can send whole waveforms at once from Python to a Pd-
patch. In the same way, we can send control messages from the Pd-patch to the
Python application, for example to receive new waveforms.

5.4.4 Pipeline Overview

The functionality of the synthesis tool, therefore, was divided in this way between
Python scripts and a Pure Data patch, with OSC communication between them.

The Python script in this way provides a link to the original dataset of waveforms,
computes cross-fades and interpolations as well as interfaces with the latent space
of a trained variational autoencoder.

The role of the Pure Data patch, on the other hand, is to collect and read the
waveform output of the Python computations in a wavetable and then channel the
audio through different modules such as filters, delays and reverb to add depth and
additional texture to the plain oscillator tones.

The whole pipeline design is illustrated in Figure 5.7.

WAVEFORMS

PYTHON PURE DATA

LATENT SPACE

OSC

Figure 5.7: Overview of the pipeline for the synthesis tool. A Python script handles
waveform selection, interpolations and latent space computations. The waveforms
are then sent as OSC messages to a Pure Data patch as part of a wavetable and
vector synthesis engine.

35

5. Design Process

5.5 Prototype Design
Finally, the pipeline was to be implemented as an actual prototype, using and in-
terfaceing with the constructed latent audio space. This whole process is outlined
below.

5.5.1 Jupyter Notebook
As described, the first step in the prototype design was to set up an interactive
Python notebook for loading, modifying and exploring the dataset of waveforms.

5.5.2 Proof of Concept VAE
Secondly, the feasibility of the prototype was evaluated by training a proof of concept
VAE on the dataset of audio. As mentioned, the main code for this was adopted
from Tatar et al. [2], which also included a Jupyter Notebook tutorial with a pre-
trained model to explore the potentials of building latent spaces on raw audio in
this way. The code was adjusted to fit the current project and dataset before a
model was trained using the default training parameters. The reconstructions were
then evaluated in the Jupyter Notebook to get a sense of the audio quality and the
particular effects of the model on the audio.

5.5.3 Single Waveform to Pd
At this stage, the audio is only accessible through Python code. As pointed out,
this makes sense from a data-centred perspective, but not necessarily as part of a
live playable application (although see forms of live coding [64]). The next step,
therefore, was to establish a connection between Python and Pure Data through
OSC communication. To test this out, a simple osc-client was set up in Python
that could send waveforms of 600 samples to be received by a Pd-patch and stored
in an array. Using methods of wavetable synthesis, this array then formed a basic
oscillator with a pure tone as audio output.

5.5.4 Sequence of Waveforms to Pd
The idea of using wavetable synthesis as part of the drone synth was that changing
the content of the wavetable would allow us to alter the underlying tone of the
oscillator. Therefore, the next step was to send not only a single waveform but
a sequence of waves. To this end, an interpolation function was implemented in
Python that could cross-fade between two given waveforms, which could then be
received and played back by Pd in a sequence, altering the tone of the oscillator.

A 2-dimensional interpolation function was also implemented here that could cross-
fade between four source waveforms as inspired by vector synthesis. This also en-
abled cross-fading by calculating interpolation points following different 2-dimensional
morphing shapes (e.g. a circle, triangle or square).

36

5. Design Process

5.5.5 Latent Space Interpolations to Pd
Having formed an interpolation path between waveforms with a simple cross-fade
in this way, the following question was whether the prototype could support also
latent space interpolations. The same functions were therefore implemented but for
interpolations in the (preliminary) latent audio space, to test if there was real-time
compatibility in the pipeline. Instead of calculating interpolations as a cross-fade
between source waveforms, therefore, the ’in-between’ waveforms were generated
through the latent audio space. This of course increased the computational demands
but could be done in real-time on a laptop CPU.

5.5.6 Synthesis Modules
At this point, the prototype included a simple oscillator with the capacity to change
the underlying waveform through different interpolation paths, either by cross-fading
between the original waves or between the latent vectors. Aesthetically, however,
the sound was still just a simple tone and to make it more ’drone-like’ the following
development stage focused on the synthesis engine itself, i.e. making the sound more
interesting by adding post-processing modules.

Here there is of course plenty of creative freedom in how to design the synthesis
engine. The original signal from the wavetable oscillator could be routed in different
ways through modules that filter or add effects to the sound. In this case, the
synthesis engine was intentionally kept relatively simple so that the sound of the
original tone would not be lost in effects, so that the implications of the latent audio
space would be heard.

The main synthesis engine was developed as a vector synthesizer with four source
waveforms and a wavetable oscillator output (VCO), based on a cross-fade or inter-
polation between the four source waveforms. These waveforms were received from
Python. The oscillator output was then connected to a set of modules in the form of
a resonant low-pass/band-pass filer (VCF), a delay, a mixer and a reverb (see Fig-
ure 5.8). The filter parameters could be modulated using a low-frequency oscillator
(LFO).

Figure 5.8: Synthesis modules of the Pd-patch.

37

5. Design Process

Worth pointing out here is that any audio programming environment or tool could
be used for developing the synthesis engine in this step (i.e. not necessarily Pure
Data), as long as it has wavetable compatibility and can receive the waveforms
through OSC messages.

5.5.7 Pd to Python
So far, the waveforms were sourced and sent directly from Python, but then modified
with post-processing in Pd, which meant that there were two places of interfacing
with the synthesizer. Subsequently, in order to gather the control capabilities as part
of the same application, a communication line between also Pd and Python was im-
plemented. The Python functions were incorporated as part of a main function that
could receive messages from Pure Data regarding sending waveforms and calculating
interpolations. The functions were implemented first for the regular waveforms and
then for the latent space, with a toggle between the different spaces.

5.5.8 Latent Space Explorations
Next, having the essentials of the pipeline in place, the question of navigating and
exploring the latent audio space was emphasised. A purpose with incorporating a
latent space as part of the synthesizer is that the latent space itself may open up new
trajectories for sound exploration and methods of generating variations on sounds.

Many different strategies for latent space exploration could be conceived and imple-
mented here. In this case, the local neighbourhood of the latent vectors were ex-
plored by making a random deviation in the latent space. ’Random’ in this context
means a Gaussian deviation with a certain mean and variance that was calculated
based on the mean and variability of the latent vectors in the whole dataset.

Also, as a second exploration strategy, a feedback loop was established between the
output and the input of the model, in order to generate variations on the original
waveform by utilising the probabilistic nature of the VAE.

In combination with replacing the waveform completely with a new one, these meth-
ods of altering the waveforms was inspired by the principle of exploration vs. ex-
ploitation (divergence vs. convergence) that is often employed in research around
creativity. This emphasises that creative exploration often functions in the tension
between generating completely new ideas and being surprised, on the one hand, and
being able to hone in on a particular aesthetic effect and fine tune the details of
it, on the other. The exploration of timbre spaces can therefore be aided by these
global and local moves within the sonic space.

5.5.9 Refining the Model
At this point, all the parts of the pipeline and the important functionality of the
synthesizer were in place, but the latent space was still a rough initial construction
that needed refinement. In particular, even though the interpolations were of suffi-

38

5. Design Process

Figure 5.9: An example of how functionality can be embedded in Pure Data as
part of a module (in this case a filter) with certain controls exposed to the user.

cient quality, the step of generating extrapolations in the latent audio space revealed
some deficiencies in the model’s capacity to generate new sound material.

To address these deficiencies, the KL-beta parameter was slightly adjusted, which
affects the trade-off in the training between reconstruction and regularisation. In-
creasing the KL-beta parameter means that the model will put higher emphasis on
regularising the posterior distribution to fit that of the latent distribution, in essence
making transitions in the latent space more smooth and traversable. This enabled
more interesting extrapolations, but also reduced the quality of the reconstructions
somewhat.

Additional experimentation with the model settings and architecture was also per-
formed at this stage (see Section 5.3.5), but did not point towards particular im-
provements in performance. For future work, these paths could be explored more
diligently in terms of finding alternative datasets, architectures and audio represen-
tations for building the latent audio space.

5.5.10 Graphical User Interface
The final step in the prototype design was to develop the actual user interface. This
was done by embedding the internal wiring of the Pd-patch in modules with relevant
controls in order to make the tool understandable for the user.

The main design consideration that comes into play here pertains to choices around
what is exposed to the user, and what is left hidden or covered within the modules.
This will constrain what the user can do in certain ways, but also more clearly
outline the relevant points of control in the synthesizer. With this point in mind,
the GUI was developed iteratively based on the specific controls and functions that
were found particularly expressive in altering the sound textures. Figure 5.9 shows
an example of how the functionality of a filter can be exposed to the user in a way
that hides the internal wiring and emphasises the relevant points of control (in this
case the cutoff and resonance of the filter).

The general layout of the GUI was developed to follow the actual signal flow of

39

5. Design Process

Figure 5.10: Overview of the GUI for the synthesis tool.

audio between the modules, from waveform selection and modification, to vector
plane interpolations and finally post-processing modules (see Figure 5.10).

The main functions for communicating with the Python script and sourcing the
waveforms were allocated to the leftmost part of the GUI. This part also included
the interactivity with the latent space of audio in terms of waveform explorations.

The main visual component of the GUI is the vector synth pad, consisting of a 2x2
grid of the source waveforms and functionality to interpolate between them and
modulate the position on the vector grid according to certain morphing trajectories
(e.g. a circle, triangle or square). A graphical representation of these morphing
shapes imposed on the vector plane would be a useful addition, but was omitted
because of time constraints for this iteration of the GUI.

Finally, the post-processing modules were developed and wired together as described
in Section 5.5.6.

A final point of imposing design choices in this step that either expand or inhibit the
user’s agency relates to the fine tuning of control ranges. Some parameter settings
were found to produce quite noisy and unreliable output (usually involving large
amounts of feedback), which prompted an adjustment of the ranges that could be
explored for each parameter. In order not to impose unnecessary constraints on the
aesthetic affordances of the synthesizer, however, these considerations were evaluated
based primarily on the reliability of the audio output rather than the characteristics
of the sounds themselves.

40

6
Results

The results of the design process is a prototype of a latent vector synthesizer as well
as some key considerations that can be extracted from this process.

6.1 Latent Vector Synthesizer
The final GUI for the Pd-patch is divided in three sections (see Figure 6.1):

1. Source waveform selection and modification.

2. Vector synth pad with morphing capabilities.

3. Sound synthesis modules and effects.

6.1.1 Source Waveform Selection and Modification
In the first section, the waveforms for each corner of the vector plane can be selected
(A, B, C and D). These are selected randomly from the dataset.

The latent space toggle, in turn, calculates the latent encodings of the source wave-
forms and then switches to latent space interpolation instead of a simple cross-fade.

Activating the latent space also enables the generation of variations on each source
waveform in the form of a local deviation in the latent space. This takes the latent
vector and outputs a normally distributed perturbation from the latent vector, where
the size of the perturbation can be adjusted.

In addition, the latent space offers the option to run the waveform again through
the network in a feedback loop, which will also generate a latent vector close to but
not the same as the original vector, due to the probabilistic nature of variational
autoencoders.

6.1.2 Vector Synth Pad
The second section of the GUI is the actual vector synth functionality with cross-
fading, morphing and interpolation capabilities between the source waveforms, de-
termined by the xy-position in a vector plane. The xy-position can also be mod-
ulated through different morphing shapes imposed on the plane, namely a circle,

41

6. Results

1 2 3

Figure 6.1: The Graphical User Interface (GUI) of the sound synthesis tool in
Pure Data, divided in three main sections.

triangle, square or (horizontal/vertical) line. These modulation trajectories come
with a speed and a radius parameter.

6.1.3 Sound Synthesis Modules

Finally, the third column of functions offers a few standard sound synthesis modules
in the form of an oscillator (VCO), a filter (VCF), a low frequency oscillator (LFO),
a delay, an audio mixer and a reverb (see also Figure 5.8).

• The main oscillator is a wavetable (WT) oscillator that reads the output from
the vector position, with additional frequency control and a sub oscillator
output 1 or 2 octaves down.

• The filter is a resonant low-pass plus band-pass filter that alters the high
frequency content of the sound.

• The parameters of the filter can be optionally modulated by an LFO to add
movement and texture to the sound.

• The filter output is channelled through a delay line with parameters for delay
time and feedback amount.

• Finally, the output passes an audio mixer and a reverb module that adds
reverberation to the sound.

42

6. Results

6.2 Key Considerations
For future reference, this section summarises some key questions and considerations
as part of the design process that may serve as a blueprint for similar projects that
explore the use of latent audio spaces in sound synthesis applications.

6.2.1 Musical Task and Aesthetic Framing
What is the situated musical task that the technology is supposed to address? What
are the aesthetic expressions that should be afforded?

The process of designing musical interfaces and sound synthesis tools is situated at
the intersection of technology and artistic practices. Therefore, being clear on the
particular musical context and aesthetic framing of the sound application provides a
grounding of technological opportunities in a particular artistic reality. This initial
musical and aesthetic framing of course does not limit the use cases of the tool to
those particular tasks and expressions, but constrains the subsequent development
in important ways.

The latent vector synthesizer, in particular, is developed as a drone synthesizer for
purposes of sound exploration and design.

6.2.2 Forming a Sound Space
What sound textures should the model learn to represent? How are these sound
textures represented to the model?

Machine learning models will learn what you feed them. Therefore, an initial data
selection and exploration phase will put constraints on what sounds can be generated
from the synthesis tool. This also includes how the audio is represented to the
algorithm, which will determine the coordinate axes of the original sound space
(e.g. raw audio, spectrograms or audio features).

The current implementation points to the utility of using short frames of raw
wavetable audio to form the original sound corpus, for the benefit of fast model
training and inference times.

6.2.3 Building a Latent Audio Space
How is the latent space of audio (iteratively) constructed? How can its structural
properties be evaluated?

The process of building latent audio spaces for sound synthesis tasks raises questions
around iterative design of network architectures and how to evaluate the model
output. As in any prototype design process, the value of being able to quickly set
up a proof of concept should not be underestimated, which in the case of training
neural networks is significantly aided by having access to GPUs and setting up a
structure for iterating through different architecture variations and hyperparameter

43

6. Results

settings. The performance of the model variations can be measured quantitatively,
but also needs to be evaluated based on the quality and aesthetics of the sound
output in relation to the implied musical context.

In this case, an important leverage in the prototype design was building on the
works of others in order to set up an initial architecture and evaluate if the ab-
stract ideas bore concrete utility. The model output was then evaluated based on
reconstructions, interpolations and extrapolations from a test set of audio.

6.2.4 From Audio Data to Sound Output
How is the machine learning model integrated with audio signal processing in the
synthesis tool?

Machine learning models are data-intensive, whereas sound synthesis tools rely on
low-latency signal processing. Given that we want to interact with the tool in
real-time, therefore, we need to consider how machine learning frameworks can be
integrated as part of audio signal processing flows (and vice versa). An important
consideration is whether these two domains are divided between separate applica-
tions or integrated within the same programming environment.

The pipeline for the latent vector synthesizer relies on communication between a
Python script and a Pure Data patch through OSC messages.

6.2.5 Strategies for Latent Explorations
What are the strategies for exploring the latent audio space in the synthesis tool?

A latent audio space is a reordering and restructuring of the original sound space
according to a learned latent audio representation. An important consideration,
then, is how to utilise the structure of this latent audio space for sound synthesis
tasks. Here, the principle of exploration and exploitation comes in handy, which
builds on the idea that creativity in musical tasks is supported by finding completely
new directions of exploration, but also being able to finely tune and find variations
on a current sound texture. Latent audio spaces can support this form of exploration
by enabling local and global moves within the sound space.

Strategies for latent space exploration in the current application includes random
waveform selection, waveform vector interpolations as well as local (Gaussian) ex-
trapolations around the latent vectors.

6.2.6 Interfacing the Latent
What are the methods of interfacing with the latent audio space in the synthesis
tool?

Finally, a sound synthesis tool is only as potent as the user interface allows for. The
backend of a machine learning supported sound synthesis engine contains different

44

6. Results

control parameters that need to be exposed to a user in order to reveal the affor-
dances of the latent audio space. This interface also provides an important way of
evaluating the performance of the model in relation to the musical task at hand.

The functionality of the Latent Vector Synthesizer is embedded within synthesis
modules in the Pure Data applications that includes interactive control sliders and
buttons exposed to the user.

45

6. Results

46

7
Evaluation

7.1 Collaborative Drone Session
The final prototype was evaluated based on a collaborative drone session with two
additional participants, both with extensive experience in developing and utilising
musical interfaces for sound exploration and performance. The selection of partici-
pants therefore reflected the specific situated task of generating experimental drone
based soundscapes for sound exploration and performance.

The purpose of the session was to evaluate the tool and the interface from a first-
person perspective in a structured way, but also to receive feedback on how other
users approach experimenting with the tool and perhaps use it in ways that ex-
tend beyond the particular first-person perspectives of the developer. Finally, the
evaluation sought to map out the affordances of the tool in a collaborative setting.

To this end, the tool was evaluated in two instances: first individually one after
another (5 minutes each) and then together as a group (15 minutes in total). Each
participant downloaded and ran the tool on separate computers but played through
the same sound system in a studio lab environment.

After the evaluation session, each participant answered a set of evaluation questions
(see Appendix A) aimed to elicit the particular affordances and limitations of the tool
and the experience of using it both individually and collaboratively. The reflections
were collected in writing after the session to reduce any biases and influences between
the participants.

7.2 First-person Evaluation
From a first-person point of view, the final prototype in the end provided a tool
for synthesising rich and varying drone-based soundscapes. The vector synth with
morphing capabilities, in particular, offered ways to continuously but slowly alter
the waveforms in order to change the sound textures. In addition, the subsequent
filter, delay and reverb added further characteristics and depth to the sounds.

The experience of using the latent space interpolations was not particularly different
from cross-fading between the original sounds, and the latent extrapolations usually

47

7. Evaluation

introduced some distortion to the original waveforms. In spite of this, the latent
space explorations and feedback options were used quite extensively to add dynamics
and harmonics to the sounds. In combination with filtering and modulation, this
added variability and contrast to the smoother tones available. The tool was also
kept relatively simple in terms of additional functionality and effects in order to be
able to hear the effects of the latent interpolations and extrapolations of the sounds.
Otherwise, with enough added effects and reverb, any sound can be a drone sound.

Importantly, exploring the tool both as a performer and developer gave a deeper
understanding of the relationship between the back-end of the tool and its effect
on the output. Playing the instrument therefore provided a lens onto the internal
wiring of the technology, in particular around the structure of the latent space and
how the model made inferences.

Inhabiting both these roles also drew forth a trade-off between designing tools for
purely personal use and for sharing also with others. In particular, from a devel-
opment point of view, there was a tendency to hide functionality, on the one hand,
but also safe-proof the tool for failure, on the other hand, in favour of better nav-
igability and user-friendliness of the interface. In both cases, the possible sounds
and interesting textures that could be generated were restricted in some way, while
aspects like navigability and reliability were improved.

Finally, the evaluation session put emphasis on the contrast between individual
sound exploration and collaborative performance. Since the tool was developed
mainly for individual and personal use, the collaborative affordances were not in-
tentionally built into the system. This points to the importance of considering the
musical task at hand when designing musical interfaces. A collaborative perfor-
mance setting, for instance, requires a different level of immediacy and expressivity
in the interaction, in order to be able to entice and respond to other musicians, than
say a sound design task within a studio setting.

The experience of playing together with others, however, invited each participant
to delineate their own expression in using the tool, in order to occupy contrasting
positions in the collaboratively generated soundscape.

7.3 Participant Feedback
As mentioned, after the evaluation session, each participant answered questions
around their experience using the synthesis tool. The qualitative results of this
feedback is summaries below.

7.3.1 Sound Aesthetics
The participants described the generated sound textures as containing a richness
in harmonics and overtones, with a bias towards pure tones and waveforms. This
reflects the intended application domain of the instrument as a drone synth that
can generate sustained tones and slowly varying sound textures. There was also an

48

7. Evaluation

experienced variability in the sounds, ranging from ”subtle and smooth” at times to
”harsh and noisy” at other times, attributed to gradual variations in the underlying
waveforms as well as to filtering and modulation of the sound output.

7.3.2 Learnability
The evaluation session only permitted a short amount of time for the participants
to familiarise themselves with the interface beforehand, which made it difficult to
methodically discover all the functions, but an intuitive and familiar labelling of
the parameters and a meaningful grouping of similar functions helped navigation.
The sequential signal flow from left to right was also reflected in the layout of the
interface in a clear way.

7.3.3 Functionality
The waveform mixing and interpolation was found useful for creating long term
variation in the sound, whereas the post-processing modules were complementarily
explored to generate short-time variations and glitch effects. One participant felt
particularly drawn to the filtering and delay options to stir up the sound with
rhythmic beatings and noise.

The latent space functionality was considered particularly useful for adding harmon-
ics and texture to the source waveforms, which allowed for movement from smooth
waves to richer and harsher sound textures.

7.3.4 Frustrations
All participants experienced some frustrations with working with the mouse to con-
trol the sliders, which could be mitigated by mapping a separate tangible interface
or controller to the parameters of the interface. In particular, the mouse control did
not allow for sufficient precision and dexterity in tuning the parameter values.

7.3.5 Collaboration
In the individual sessions, each participant had their own unique way of using the
interface, which brought variability and complementarity to the collaborative session
in that the different sonic streams could occupy different layers in the performance.
In this way, each participant contributed to the combined soundscape through their
personal ways of approaching the tool. Although the tool permitted a certain range
of expressivity, the cohesiveness of the generated sound-world also made it difficult
”to provoke or push certain gestures of others to create a more dynamic improvisa-
tion”.

Finally, the process of downloading and installing the tool was considered smooth
and it was also easy to get started making sounds, which lower the barrier of entry
for collaborative uses of the tool and sharing it with others in different ways.

49

7. Evaluation

7.3.6 Application Domains
In its current form, the tool was conceived to work well in the context of generat-
ing drone textures that could be used as sound material for musical composition or
in further audio processing. As to speculations on future applications and improve-
ments of the instrument, one participant longed for a controller for a more expressive
control of the output and also thought about ways to spatialise the sound. Addi-
tionally, the ability to input live recordings or pre-recorded files in buffers was put
forth as a future development.

The ease of installation and navigability in combination with cpu-compatibility also
makes the synthesizer available for distribution to others as an example of how to
utilise latent spaces as part of a sound synthesis tool, without much necessary prior
knowledge of these methods.

50

8
Discussion

The reserch contribution of this project is a particular design process leading up
to a prototype of a latent vector synthesizer that was evaluated from a first-person
perspective as well as through feedback from other users. In this chapter, general
and specific learnings from this process are emphasised, in particular with regards
to the different perspectives on what a ”good” performance means in this context.

8.1 Model Performance
First, we may summarise some model specific learnings and outcomes from this
project. Here, interestingly, the GUI of the synthesis tool in some ways worked as a
visual and aural lens onto the internal workings of the variational autoencoder, that
brought forth insight as to how the model handles its inputs. There are of course
many ways to measure the performance of a model quantitatively, but for sound
synthesis applications, in particular, the value in actually seeing and hearing the
effects of model inferences on the output should not be underestimated.

A first thing to point out is that the model can be incorporated as part of a real-time
audio synthesis tool because of a lightweight architecture that takes short samples of
raw audio as input. This specifically means that the model organises the waveforms
based on similarity in the raw audio domain. In other words, the model uses a
notion of similarity that compares the wavforms sample by sample. The question
remains, then, if this is a particularly good measure of timbral similarity, i.e. if
the constructed latent space is in fact comparable to a form of ”timbre space” (see
Section 3.1).

Since the implementation of the interface included both the option to simply cross-
fade between the waveforms as well as the option to interpolate in the latent space,
a visual comparison could be made between the two respective methods that indi-
cated a clear similarity between them, i.e. that what the variational autoencoder
most likely learns is actually to cross-fade between waveforms (see Figure 8.1). An
interesting comparison, therefore, would be to replace the raw audio model with a
spectral model (or using alternative audio representations) to delineate if the two
different forms of interpolation are perceptually distinguishable, i.e. if interpolation
in the spectral domain is in some ways closer to motion in a timbre space. This,
however, would require efficient methods for spectrogram inversion back to the audio

51

8. Discussion

Figure 8.1: Comparison of a cross-fade (top) versus a latent space interpolation
(bottom) between two waveforms with an interpolation factor α ranging from 0 to
1 in steps of 0.2. The latent space interpolation here share characteristics with the
linear cross-fade.

Figure 8.2: Comparison of the original waveforms (left) and the waveforms af-
ter many iterations of latent space perturbations (right). Waveforms A and C, in
this case, deteriorate into harsh waveforms of alternating values between -1 and 1,
whereas waveforms B and D remain stable.

domain, which in most cases limits the real-time applicability of the model.

A second point to address is the sometimes fairly poor performance of the model in
terms of extrapolations and perturbations around the latent vectors. The stability
of these latent explorations, however, depends to a large extent on the shape of
the original waveform. Figure 8.2 shows the transformed waveforms after many
iterations of latent space perturbations, which indicates that the waveforms either
deteriorate into a quite noisy shape of alternating values between -1 and 1, or remain
quite stable even after several iterations. The explanation for this could be many
things, but most probably a too sparse and asymmetric dataset in combination
with perhaps over-fitting the model to the data that was available. With more
data available, the dataset could be split into a training set, a test set as well as
a validation set to better track the ability of the model to generalise beyond the
training data.

Interesting to note is also that the most stable waveforms seem to be the ones
that are square shaped (although this would require a more systematic study). In a

52

8. Discussion

sense, the square wave is on the one extreme of internal waveform variability between
samples (the other one being complete silence), which adds to the observation that
waveforms often transition into this kind of shape. Square waveforms were also
specifically picked out and clustered by the UMAP algorithm in the data exploration
part (see Section 5.2.3).

In this particular project, the model could be trained rather conveniently on a laptop
with a CPU, but increasing the size of the dataset or the model to improve model
performance would realistically require access to GPUs in order to maintain feasible
training times. This is also because the hyperparameters of the model generally
need tuning based on several runs of the training process. This, in turn, points to
an important drawback in using machine learning tools for musical tasks in that the
setup of the architectures and sometimes quite extensive computations needed to
train the models inhibit quick and iterative prototyping of interfaces and feedback
on the particular aesthetic output of the models.

8.2 Aesthetics of Failure
As Dahlstedt points out [7], the use of AI tools in creative tasks points to an impor-
tant tension between optimisation and exploration. Essentially, engineering works
primarily in the mode of optimisation, making systems and processes function more
efficiently as to some set performance standard. Art and creativity, on the other
hand, hinges on exploration and expanding the field of what is possible, making
use of tools and concepts in ways that reveal and extend the affordances in new
directions. In fact, in order to be truly creative, we have to let go of set performance
standards and goals. Since most AI algorithms are trained to optimise, the question
is how we can utilise the computational affordances of these tools for exploratory
purposes?

Here we can draw a distinction also between a form of ”logic of success” in con-
trast to an ”aesthetics of failure” [65]. Whereas the engineer is focused on solving
problems and optimising for a specific goal, the artist is oriented rather towards
finding interesting problems and exploring the implications of those problems. In
the history of electronic music, this tension plays out repeatedly in that the engineer
(or designer) first develops a tool to solve a particular problem for an intended user.
The artist then takes that tool and uses it in unintended ways, pushes it beyond
its apparent affordances, for artistic effects. In a digital context (and the context of
industrial society), for example, there is an aesthetic turn from the foreground to
the background of technology itself, utilising sonic artefacts like noises, glitches and
buzzes that constantly surrounds us for artistic purposes in a form of ”post-digital”
aesthetics [65].

Interestingly, the evaluation study of the vector synthesis tool pointed precisely in
this direction, that the eventual failure of the latent space to preserve the smooth-
ness and consistency of the waveforms introduced harmonics to the sounds that
were positively received as adding richness and texture and contrast to the more
predictable sonics of the original waveforms. From an engineering perspective, then,

53

8. Discussion

the model ”failed” to learn a ”good” latent representation that ”performs well” also
on extrapolations from data points, but from an artistic perspective, the model
”performed well” in that it generated interesting sound textures.

Secondly, there were certain functions and signal flows in the Pure Data patch
that were not sufficiently safe-proofed for failure from a development perspective.
For instance, altering the delay time caused audible cracks and scratches in the
output and ramping up the feedback too much made the sound textures crackle
in unexpected ways. From the perspective of user interface design, these artefacts
were deficiencies that the user of the interface should not be exposed to. However,
the evaluation rather indicated how the deficiencies were appropriated for aesthetic
noise and glitch effects that added crucial intrusions and dynamics to the sustained
backdrop of drones that can otherwise become quite monotonous. In fact, one of
the participants mentioned that ”my initial instinct was to see how far (and in
what ways) I could push the interface to generate a wide palette of sounds”, which
delineates a specific strategy when exploring the affordances of a new interface to
push it in all sorts of directions until it fails.

This points to a cliché yet important lesson: success is not about not failing, but
rather about failing in interesting ways.

8.3 Evaluating Interaction Design Research
The methodology of this project centres around first-person approaches in HCI and
research through design (RtD). Although these approaches have generated signifi-
cant contributions and supported further theories and investigations in HCI research,
there is a lack of clarity around how to evaluate contributions produced by these
methods systematically. To address these concerns, Zimmerman et al. [66] put
forth a set of criteria for evaluating interaction design research focusing on process,
invention, relevance and extensibility, respectively. In the following sections, these
four criteria are related to the current design implementation.

8.3.1 Process
Research through design aims to generate knowledge and contributions through
explicating a particular design process. The process itself, therefore, is a key part
of the research output and should be evaluated accordingly. In addition, due to
the situated and contextual nature of any design process, conventional expectations
on reproducibility have to be addressed. That is, attempts to reproduce a design
process would start from different initial conditions that would in turn influence
the direction of the process and lead to different results. Rather than focusing
on the reproducibility of the research output by way of a specific design process,
therefore, RtD should be evaluated based on the rationale behind the process and
its methodological underpinnings.

The design process, in this case, consisted of different design phases centred around
ideation, data selection and exploration, model development, pipeline design and a

54

8. Discussion

final prototype development. A project log was kept to track and delineate these
phases of the process and the important decisions that were made.

The ideation phase imposed an important aesthetic framing on the project and a
grounding in a particular sound aesthetics that influenced the subsequent investiga-
tion and implementation of synthesis methods as part of the prototype. Conversely,
the aesthetic framing was in turn influenced by developments in sound and music
technology. This phase of the design process therefore pointed to the influence of
artistic inspirations on technological development as well as the influence of novel
technologies on artistic imagination. Furthermore, it pointed to the importance of
creative constraints in the development of musical interfaces as well as getting clear
on the forms of musical tasks that the tool is sought to address.

The data selection and exploration, in turn, was a crucial next step in order to get
a sense of the sounds contained in the dataset that in turn would inform the sonic
potentials of the final prototype and the structure of the latent audio space. In
addition, building a latent space based on the audio data illustrated the potentials
of using variational autoencoders in this way and provided a proof of concept for the
prototype design. Subsequently, this pointed to the importance of latency consid-
erations in audio processing, in contrast to the high-throughput of data processing
tools, and the relevance of real-time compatibility in the pipeline.

Finally, the prototype and GUI was implemented from a first-person RtD perspective
that enabled fast iterations and evaluations of design decisions. The evaluations were
based on the aesthetic output of the synthesis tool as well as the performance of the
model in audio reconstruction and interpolation. In this phase, also, the importance
of being able to switch between different roles as developer became apparent.

8.3.2 Invention
The latent vector synthesis tool constitutes a particular invention and novel interven-
tion in how it integrates latent audio spaces with vector synthesis techniques. The
project synthesises perspectives on machine learning tools, sound synthesis tech-
niques, musical interface design and the sonic arts to address the situated musical
task of generating transforming and sustained drones.

An extensive literature review provided background for the project and situated it
within a context and lineage of related research. The history of this lineage can
be traced back to the initial attempts to construct timbre spaces of perceptually
related sounds, followed by forms of audio feature extraction- and dimensionality
reduction techniques, ending in modern variations of generative models that build
latent spaces of audio.

The initial explorations of related research, however, were rather biased towards a
specific category of generative models, namely variational autoencoders, that per-
haps excluded a more open exploration of what methods would best address the task
of exploring and navigating latent audio spaces. The literature on dimensionality
reduction algorithms and feature extraction tools here deserve a closer investigation

55

8. Discussion

in their potential to aid organisation of sounds.

8.3.3 Relevance

In the context of research through design, the research expectations shift from as-
pirations towards validity and truth towards instead what is real and relevant [66].
A design implementation cannot be valid for all cases, but only relevant as part
of a particular context and framing. In addition, design implementations point to-
wards the future in wanting to bring the world towards some desired state by way
of designing artefacts and prototypes.

As mentioned, situating design research within the context of artistic uses of new
technologies points towards a tension between optimisation and exploration. On
the one hand, design research has to be goal oriented, in order to provide a clear
contribution within a particular research field. On the other hand, a design imple-
mentation centred on artistic expression has to be open ended to allow for discovery
of unseen possibilities and affordances. The question, then, is how research within
this context can offer relevant contributions and avoid ”to be a self-indulgent, per-
sonal exploration that informs the researcher but makes no promise to impact the
world” [66]? In this particular case, what is the relevance of exploring new sound
synthesis methods? What is the preferred state of the world that the design imple-
mentation is thought to bring forth?

As pointed out, novel technologies may both inhibit and support creative expression
through its affording and limiting functions. In the context of machine learning
techniques and AI for musical tasks, therefore, there is a relevance in examining the
aesthetic implications and potentials of using these tools that are perhaps otherwise
left unseen and/or undiscovered. Also, as the history of music technology teaches us,
novel tools condition musical expression and sometimes even pushes the boundaries
of what we consider to be music. Examining the feedback loop between tools and
artistic practises may therefore open up for completely new forms of sonic possi-
bilities and musical affordances that would be left unseen within fields of research
centred on performance and optimisation.

8.3.4 Extensibility

Lastly, a necessary feature of doing research is that others can build on the research
results and leverage it for further discoveries. To this end, the current project is made
available open source on GitHub for others to use an/or develop [67]. Also, the design
process itself was documented and described in order to outline some general design
considerations and affordances of using these technologies for purposes of sound
exploration and design. These general learnings are exemplified by this process and
can be brought forward into future work and design problems.

56

8. Discussion

8.4 Ethics and Biases
Ethical considerations during the project relate primarily to the use of interview
material from other participants in the evaluation study. In this case, the partici-
pants were made aware that their answers and feedback would be used as part of
the evaluation of the project. The results of the evaluation were also presented in
a way that hinders attribution to specific participants. As to data collection and
storage, the answers to the questions were collected by email, but otherwise stored
offline only.

The main purpose of the evaluation was to receive feedback from a few additional
users within the same research context on the extended utility of a personalised
musical interface. Therefore, due to the small group size and niche focus of the study,
many perspectives were left out that would shine light on the broader usability of
the interface. Within this particular situated context, however, participants were
selected with a variation in musical background and interests in order to explore
and expand the particular affordances of the tool.

The project supports FLOSS (Free/Libre & Open Source Software) and encourages
the use and further developments of the tool by others. To this end, the source
code of the project is made available open source through GitHub [67]. In addition,
attributions have been made to tools and libraries developed by others that were
utilised in this project. Furthermore, to mitigate copyright concerns and ensure
compliance with intellectual property rights, an audio dataset in the public domain
was selected.

57

8. Discussion

58

9
Conclusion

This thesis set out to explore the opportunities and limitations of utilising latent
audio spaces for purposes of creative sound exploration and design. To this end, a
latent vector synthesizer was conceptualised, combining a variational autoencoder
model, able to generate short samples of audio, with the idea of a vector synthesizer
that interpolates between sonic textures using four wavetable source oscillators. This
provided a promising framework for interacting with and exploring the generated
content of latent audio spaces in real-time.

In contrast and addition to research on the performance and development of these
generative models, the main focus of the project was rather to explicate a first-
person research through design process that in its particularity traced out some
technological and aesthetic affordances of these latent spaces of audio. The artistic
framing of the project was inspired by the novel perspectives on music sparked by
the developments in electronic and digital computer technology of the 20th century.
Rather than focusing on conventional acoustic instrument sounds and systems of
notation, the aesthetic focus was rather within the field of the sonic arts and pointed
to the development of a drone synthesizer able to generate continuous and slowly
transforming streams of sound.

To compliment the first-person perspectives of the design process, the prototype
was evaluated as part of a collaborative session with two other sound artists and
researchers, where the synthesis tool was explored individually as well as in collab-
oration. In this way, the aesthetic affordances of the tool could be more clearly
mapped out in the different and complementary ways the participants approached
the tool.

The latent space functionality of the synthesis tool enabled interpolations between
given audio samples as well as local explorations around latent vectors to generate
variations in the source waveforms. This provided a proof of concept of a strategy for
latent vector exploration of sounds, but also brought some particular characteristics
to the sounds in the form of added harmonics that were utilised for aesthetic effects.

From a model performance point of view, however, the latent space was rather
unstable in extrapolations from given sound textures. The reason for this might
have been the sparsity of the dataset or the model architecture itself. Therefore,
further investigations are needed on this point in order to fully map out the utility

59

9. Conclusion

of latent audio spaces in these kinds of sound applications.

The use of machine learning models in artistic practices is positioned in the tension
between engineering optimisation and artistic exploration, and how technology and
aesthetics influence and inform each other in crucial ways. By methods of research
through design, therefore, we can navigate this tension in order to uncover the latent
potentials of new technologies.

9.1 Future Work
Since the main focus of this work was directed towards providing a proof of concept
of an interface utilising latent audio spaces in this way, less focus was directed
towards the selection, curation and exploration of a suitable sound dataset as well
as experimentation with different model architectures and hyperparameter tunings.
These are important considerations that deserve further investigation. In addition,
different audio representations and similarity measures will affect how the model
organises the sounds. Also, the data selection process greatly influences the aesthetic
output of the synthesis in that it constitutes the basis for waveform selection and
training of the latent audio space. A different dataset might therefore affect the
model performance, but also provide different sonic possibilities.

The idea of using a vector synth with a vector plane in this way also points to further
considerations around tangible control interfaces for exploration of that plane of
sound textures. A simple extension would be to map the xy-control to a tangible
xy-pad as well as mapping parameter controls to a MIDI control interface. This was
also expressed as a desired feature of the interface in the evaluation. The importance
of expressive gestural control of sound synthesizers, therefore, should be stressed
here. In theory, this framework for synthesis could implement also interpolation in
a higher dimensional control space or subset of the latent space through interpolation
between more sound sources.

Furthermore, the fundamental problem that is addressed here is how to organise
sounds by timbre or texture. Variational autoencoders are one method for con-
structing organised and regularised audio spaces, but there are of course many tech-
niques that may be suitably applied in this context. A simple extension of the tool
to this end could implement different dimensionality reduction techniques and clus-
tering algorithms to organise the waveforms by similarity by other means, in order
to support functions of waveform selection and variation.

60

Bibliography

[1] Wikimedia Commons. Vector synthesis diagram, 2007. [Online; ac-
cessed 2023-05-20]. URL: https://commons.wikimedia.org/wiki/File:
VectorSynthesisDiagram.svg.

[2] Kıvanç Tatar, Kelsey Cotton, and Daniel Bisig. Sound design strategies for
latent audio space explorations using deep learning architectures. In Proceedings
of Sound and Music Computing 2023, 2023.

[3] Christopher Small. Musicking: The meanings of performing and listening. Wes-
leyan University Press, 1998.

[4] Thor Magnusson. Sonic Writing: Technologies of Material, Symbolic, and Sig-
nal Inscriptions. Bloomsbury Publishing, 2019.

[5] Pierre Schaeffer. Traité des objets musicaux. Seuil, nouv. éd edition edition.

[6] Jean-Claude Risset. Fifty years of digital sound for music. In Proceedings of
the 4th Sound and Music Computing Conference (SMC’07), Lefkada, Greece,
July 2007.

[7] Palle Dahlstedt. Musicking with algorithms: Thoughts on artificial intelligence,
creativity, and agency. In Eduardo Reck Miranda, editor, Handbook of Artificial
Intelligence for Music: Foundations, Advanced Approaches, and Developments
for Creativity, pages 873–914. Springer International Publishing, 2021. doi:
10.1007/978-3-030-72116-9_31.

[8] Trevor Wishart. On sonic art. Contemporary music studies, 12. Harwood
Academic, Amsterdam, 1996.

[9] Edgard Varèse and Chou Wen-chung. The liberation of sound. Perspectives of
New Music, 5:11, 1966.

[10] John M. Grey. Multidimensional perceptual scaling of musical timbres.
The Journal of the Acoustical Society of America, 61(5):1270–1277, 1977.
URL: http://asa.scitation.org/doi/10.1121/1.381428, doi:10.1121/1.
381428.

[11] David L. Wessel. Timbre space as a musical control structure. Computer Mu-
sic Journal, 3(2):45, 1979. URL: https://www.jstor.org/stable/3680283?

61

https://commons.wikimedia.org/wiki/File:VectorSynthesisDiagram.svg
https://commons.wikimedia.org/wiki/File:VectorSynthesisDiagram.svg
https://doi.org/10.1007/978-3-030-72116-9_31
https://doi.org/10.1007/978-3-030-72116-9_31
http://asa.scitation.org/doi/10.1121/1.381428
https://doi.org/10.1121/1.381428
https://doi.org/10.1121/1.381428
https://www.jstor.org/stable/3680283?origin=crossref
https://www.jstor.org/stable/3680283?origin=crossref
https://www.jstor.org/stable/3680283?origin=crossref

Bibliography

origin=crossref, doi:10.2307/3680283.

[12] Matthew D. Hoffman and Perry R. Cook. Feature-Based Synthesis: Map-
ping Acoustic and Perceptual Features onto Synthesis Parameters. In Pro-
ceedings of the 2006 International Computer Music Conference (ICMC 2006),
New Orleans, Louisiana, USA, November 2006. Michigan Publishing. URL:
http://hdl.handle.net/2027/spo.bbp2372.2006.111.

[13] Stefano Fasciani and Lonce Wyse. Adapting General Purpose Interfaces to
synthesis Engines using Unsupervised Dimensionality Reduction Techniques
and inverse Mapping from Features to parameters. In Non-Cochlear Sound:
Proceedings of the 38th International Computer Music Conference (ICMC
2012), Ljubljana, Slovenia, September 2012. Michigan Publishing. URL:
http://hdl.handle.net/2027/spo.bbp2372.2012.087.

[14] Stefano Fasciani and Lonce Wyse. Vocal control of sound synthesis personalized
by unsupervised machine listening and learning. Computer Music Journal,
42(1):37–59, April 2018. URL: https://direct.mit.edu/comj/article/42/
1/37-59/94655, doi:10.1162/comj_a_00450.

[15] Stefano Fasciani. Interactive computation of timbre spaces for sound synthesis
control. In ICMA Array, vol 2016, Special Issue: Proceedings of the 2nd In-
ternational Symposium on Sound & Interactivity, pages 69–78, Singapore, Au-
gust 2015. URL: https://journals.qucosa.de/array/article/view/2528,
doi:10.25370/array.v20152528.

[16] Laurens van der Maaten and Geoffrey Hinton. Visualizing data using t-sne.
Journal of Machine Learning Research, 9(86):2579–2605, 2008. URL: http:
//jmlr.org/papers/v9/vandermaaten08a.html.

[17] Leland McInnes, John Healy, and James Melville. Umap: Uniform manifold
approximation and projection for dimension reduction. 2018. URL: https:
//arxiv.org/abs/1802.03426.

[18] Y. Bengio, A. Courville, and P. Vincent. Representation Learning: A Review
and New Perspectives. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(8):1798–1828, August 2013. URL: http://ieeexplore.ieee.
org/document/6472238/, doi:10.1109/TPAMI.2013.50.

[19] Diederik P. Kingma and Max Welling. Auto-encoding variational bayes. In
Yoshua Bengio and Yann LeCun, editors, Proceedings of the 2nd International
Conference on Learning Representations (ICLR 2014), Banff, AB, Canada,
April 2014. URL: http://arxiv.org/abs/1312.6114.

[20] Diederik P. Kingma and Max Welling. An introduction to variational autoen-
coders. Foundations and Trends in Machine Learning, 12(4):307–392, 2019.
URL: http://dx.doi.org/10.1561/2200000056, doi:10.1561/2200000056.

[21] Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative adver-

62

https://www.jstor.org/stable/3680283?origin=crossref
https://www.jstor.org/stable/3680283?origin=crossref
https://www.jstor.org/stable/3680283?origin=crossref
https://www.jstor.org/stable/3680283?origin=crossref
https://doi.org/10.2307/3680283
http://hdl.handle.net/2027/spo.bbp2372.2006.111
http://hdl.handle.net/2027/spo.bbp2372.2012.087
https://direct.mit.edu/comj/article/42/1/37-59/94655
https://direct.mit.edu/comj/article/42/1/37-59/94655
https://doi.org/10.1162/comj_a_00450
https://journals.qucosa.de/array/article/view/2528
https://doi.org/10.25370/array.v20152528
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/1802.03426
https://arxiv.org/abs/1802.03426
http://ieeexplore.ieee.org/document/6472238/
http://ieeexplore.ieee.org/document/6472238/
https://doi.org/10.1109/TPAMI.2013.50
http://arxiv.org/abs/1312.6114
http://dx.doi.org/10.1561/2200000056
https://doi.org/10.1561/2200000056

Bibliography

sarial networks, 2014. arXiv:1406.2661.

[22] Kıvanç Tatar, Daniel Bisig, and Philippe Pasquier. Latent Timbre Synthesis:
Audio-based variational auto-encoders for music composition and sound design
applications. Neural Computing and Applications, 33(1):67–84, January 2021.
URL: https://link.springer.com/10.1007/s00521-020-05424-2, doi:10.
1007/s00521-020-05424-2.

[23] Philippe Esling, Axel Chemla–Romeu-Santos, and Adrien Bitton. Generative
timbre spaces: regularizing variational auto-encoders with perceptual metrics.
In Mathew Davies, Aníbal Ferreira, Guilherme Campos, and Nuno Fonseca, ed-
itors, Proceedings of the 21st International Conference on Digital Audio Effects
(DAFx-18), Aveiro, Portugal, September 2018.

[24] Philippe Esling, Naotake Masuda, Adrien Bardet, Romeo Despres, and Axel
Chemla-Romeu-Santos. Flow synthesizer: Universal audio synthesizer control
with normalizing flows. Applied Sciences, 10(1):302, 2019. URL: https://www.
mdpi.com/2076-3417/10/1/302, doi:10.3390/app10010302.

[25] Aäron van den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recur-
rent neural networks. CoRR, abs/1601.06759, 2016. URL: http://arxiv.org/
abs/1601.06759, arXiv:1601.06759.

[26] Aaron van den Oord, Nal Kalchbrenner, Oriol Vinyals, Lasse Espeholt, Alex
Graves, and Koray Kavukcuoglu. Conditional image generation with pixelcnn
decoders, 2016. arXiv:1606.05328.

[27] Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan,
Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray
Kavukcuoglu. Wavenet: A generative model for raw audio, 2016. arXiv:
1609.03499.

[28] Lamtharn (Hanoi) Hantrakul, Jesse Engel, Adam Roberts, and Chenjie Gu.
Fast and flexible neural audio synthesis. 2019. URL: https://archives.
ismir.net/ismir2019/paper/000063.pdf.

[29] Nal Kalchbrenner, Erich Elsen, Karen Simonyan, Seb Noury, Norman
Casagrande, Edward Lockhart, Florian Stimberg, Aaron van den Oord, Sander
Dieleman, and Koray Kavukcuoglu. Efficient neural audio synthesis, 2018.
arXiv:1802.08435.

[30] Jesse Engel, Lamtharn Hantrakul, Chenjie Gu, and Adam Roberts. Ddsp:
Differentiable digital signal processing, 2020. arXiv:2001.04643.

[31] Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Douglas Eck,
Karen Simonyan, and Mohammad Norouzi. Neural audio synthesis of musical
notes with wavenet autoencoders, 2017. arXiv:1704.01279.

[32] Lamtharn Hantrakul and Li-Chia Yang. Neural wavetable: a playable wavetable
synthesizer using neural networks, 2018. arXiv:1811.05550.

63

http://arxiv.org/abs/1406.2661
https://link.springer.com/10.1007/s00521-020-05424-2
https://doi.org/10.1007/s00521-020-05424-2
https://doi.org/10.1007/s00521-020-05424-2
https://www.mdpi.com/2076-3417/10/1/302
https://www.mdpi.com/2076-3417/10/1/302
https://doi.org/10.3390/app10010302
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1601.06759
http://arxiv.org/abs/1606.05328
http://arxiv.org/abs/1609.03499
http://arxiv.org/abs/1609.03499
https://archives.ismir.net/ismir2019/paper/000063.pdf
https://archives.ismir.net/ismir2019/paper/000063.pdf
http://arxiv.org/abs/1802.08435
http://arxiv.org/abs/2001.04643
http://arxiv.org/abs/1704.01279
http://arxiv.org/abs/1811.05550

Bibliography

[33] Siyuan Shan, Lamtharn Hantrakul, Jitong Chen, Matt Avent, and David
Trevelyan. Differentiable wavetable synthesis, 2022. arXiv:2111.10003.

[34] Jeremy Hyrkas. Wavaetable synthesis. In Proceedings of the 15th Interna-
tional Symposium on CMMR, CMMR 2021, page 263–268, Tokyo, Japan, 2021.
CMMR 2021 Organizing Commitee.

[35] Jean-Claude Risset and David L. Wessel. Exploration of timbre by analysis
and synthesis. In Diana Deutsch, editor, The Psychology of Music (Second
Edition), Cognition and Perception, pages 113–169. Academic Press, San Diego,
CA, USA, second edition edition, 1999. URL: https://www.sciencedirect.
com/science/article/pii/B9780122135644500068, doi:https://doi.org/
10.1016/B978-012213564-4/50006-8.

[36] Stephen McAdams. The perceptual representation of timbre. In Kai Siedenburg,
Charalampos Saitis, Stephen McAdams, Arthur N. Popper, and Richard R. Fay,
editors, Timbre: Acoustics, Perception, and Cognition, pages 23–57. Springer
International Publishing, 2019. doi:10.1007/978-3-030-14832-4_2.

[37] Meinard Müller. Fundamentals of Music Processing: Audio, Analysis, Algo-
rithms, Applications. Springer International Publishing, Switzerland, 1st edi-
tion, 2015. doi:10.1007/978-3-319-21945-5.

[38] Gerald Kaiser. A Friendly Guide to Wavelets. Modern Birkhäuser Classics.
Birkhäuser Boston, 2011.

[39] Harold Hotelling. Analysis of a complex of statistical variables into prin-
cipal components. Journal of Educational Psychology, 24(6):417–441, 1933.
URL: https://psycnet.apa.org/record/1934-00645-001, doi:10.1037/
h0071325.

[40] J. B. Kruskal. Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika, 29(1):1–27, 1964. doi:10.1007/
BF02289565.

[41] Joshua B. Tenenbaum, Vin de Silva, and John C. Langford. A global geometric
framework for nonlinear dimensionality reduction. Science, 290(5500):2319–
2323, 2000. URL: https://www.science.org/doi/abs/10.1126/science.
290.5500.2319, doi:10.1126/science.290.5500.2319.

[42] John M. Chowning. The synthesis of complex audio spectra by means of
frequency modulation. Computer Music Journal, 1(2):46–54, 1977. URL:
http://www.jstor.org/stable/23320142.

[43] Axel Chemla–Romeu-Santos. Manifold representations of musical signals and
generative spaces. PhD thesis, Università degli Studi di Milano – Sorbonne
Université, Milan, Italy, 2020.

[44] Joseph Rocca. Understanding variational autoencoders (vaes), 2019.
[Online; accessed 2023-05-20]. URL: https://towardsdatascience.com/

64

http://arxiv.org/abs/2111.10003
https://www.sciencedirect.com/science/article/pii/B9780122135644500068
https://www.sciencedirect.com/science/article/pii/B9780122135644500068
https://doi.org/https://doi.org/10.1016/B978-012213564-4/50006-8
https://doi.org/https://doi.org/10.1016/B978-012213564-4/50006-8
https://doi.org/10.1007/978-3-030-14832-4_2
https://doi.org/10.1007/978-3-319-21945-5
https://psycnet.apa.org/record/1934-00645-001
https://doi.org/10.1037/h0071325
https://doi.org/10.1037/h0071325
https://doi.org/10.1007/BF02289565
https://doi.org/10.1007/BF02289565
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://www.science.org/doi/abs/10.1126/science.290.5500.2319
https://doi.org/10.1126/science.290.5500.2319
http://www.jstor.org/stable/23320142
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73

Bibliography

understanding-variational-autoencoders-vaes-f70510919f73.

[45] Kristina Höök, Baptiste Caramiaux, Cumhur Erkut, Jodi Forlizzi, Nassrin Ha-
jinejad, Michael Haller, Caroline C. M. Hummels, Katherine Isbister, Martin
Jonsson, George Khut, Lian Loke, Danielle Lottridge, Patrizia Marti, Edward
Melcer, Florian Floyd Müller, Marianne Graves Petersen, Thecla Schiphorst,
Elena Márquez Segura, Anna Ståhl, Dag Svanæs, Jakob Tholander, and He-
lena Tobiasson. Embracing first-person perspectives in soma-based design.
Informatics, 5(1), 2018. URL: https://www.mdpi.com/2227-9709/5/1/8,
doi:10.3390/informatics5010008.

[46] Andrés Lucero, Audrey Desjardins, Carman Neustaedter, Kristina Höök, Marc
Hassenzahl, and Marta E. Cecchinato. A sample of one: First-person research
methods in hci. In Companion Publication of the 2019 on Designing Interactive
Systems Conference 2019 Companion, DIS ’19 Companion, page 385–388, New
York, NY, USA, 2019. Association for Computing Machinery. doi:10.1145/
3301019.3319996.

[47] Christopher Frayling. Research in art and design. Royal College of Art Research
Papers, 1(1):1–5, 1993. URL: https://researchonline.rca.ac.uk/384/.

[48] John Zimmerman, Erik Stolterman, and Jodi Forlizzi. An analysis and critique
of research through design: Towards a formalization of a research approach.
DIS ’10, New York, NY, USA, 2010. Association for Computing Machinery.
doi:10.1145/1858171.1858228.

[49] William Gaver. What should we expect from research through design? In Pro-
ceedings of the SIGCHI Conference on Human Factors in Computing Systems,
CHI ’12, page 937–946, New York, NY, USA, 2012. Association for Computing
Machinery. doi:10.1145/2207676.2208538.

[50] Rodrigo Medeiros, Filipe Calegario, Giordano Cabral, and Geber Ramalho.
Challenges in designing new interfaces for musical expression. In Aaron Mar-
cus, editor, Design, User Experience, and Usability. Theories, Methods, and
Tools for Designing the User Experience, pages 643–652. Springer International
Publishing, 2014.

[51] Marcelo Mortensen Wanderley and Nicola Orio. Evaluation of Input Devices
for Musical Expression: Borrowing Tools from HCI. Computer Music Journal,
26(3):62–76, 09 2002. doi:10.1162/014892602320582981.

[52] Palle Dahlstedt. Dynamic mapping strategies for expressive synthesis perfor-
mance and improvisation. In Sølvi Ystad, Richard Kronland-Martinet, and
Kristoffer Jensen, editors, Computer Music Modeling and Retrieval. Genesis of
Meaning in Sound and Music, pages 227–242, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg.

[53] Harry Sword. Monolithic Undertow: In Search of Oblivion. White Rabbit,
2021.

65

https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://towardsdatascience.com/understanding-variational-autoencoders-vaes-f70510919f73
https://www.mdpi.com/2227-9709/5/1/8
https://doi.org/10.3390/informatics5010008
https://doi.org/10.1145/3301019.3319996
https://doi.org/10.1145/3301019.3319996
https://researchonline.rca.ac.uk/384/
https://doi.org/10.1145/1858171.1858228
https://doi.org/10.1145/2207676.2208538
https://doi.org/10.1162/014892602320582981

Bibliography

[54] Robert Bristow-Johnson. Wavetable synthesis 101, a fundamental perspective.
In Audio Engineering Society Convention 101, Nov 1996. URL: http://www.
aes.org/e-lib/browse.cfm?elib=7379.

[55] Synthesis Technology. Waveedit (1.1), 2018. URL: https://synthtech.com/
waveedit/.

[56] Sound on Sound. Sequential prophet vs [retrozone], 2001. [Online;
accessed 2023-05-20]. URL: https://www.soundonsound.com/reviews/
sequential-prophet-vs-retrozone.

[57] Brian McFee, Colin Raffel, Dawen Liang, Daniel PW Ellis, Matt McVicar,
Eric Battenberg, and Oriol Nieto. librosa: Audio and music signal analysis
in python. In Proceedings of the 14th python in science conference, volume 8,
2015.

[58] Fabian Pedregosa, Gaël Varoquaux, Alexandre Gramfort, Vincent Michel,
Bertrand Thirion, Olivier Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine learning in python. Jour-
nal of machine learning research, 12(Oct):2825–2830, 2011.

[59] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-
bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,
Luca Antiga, Alban Desmaison, Andreas Kopf, Edward Yang, Zachary
DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit
Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An
imperative style, high-performance deep learning library. In Advances
in Neural Information Processing Systems 32, pages 8024–8035. Cur-
ran Associates, Inc., 2019. URL: http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.
pdf.

[60] Kristoffer Ekstrand. AKWF FREE (waveform samples). https://www.
adventurekid.se/akrt/waveforms/adventure-kid-waveforms/. Accessed:
2023-03-06.

[61] Joseph Turian, Jordie Shier, George Tzanetakis, Kirk McNally, and Max Henry.
One billion audio sounds from GPU-enabled modular synthesis. In Proceedings
of the 23rd International Conference on Digital Audio Effects (DAFx2020),
Vienna, Austria, September 2021.

[62] Miller S. Puckette. Pure data: another integrated computer music environment.
In Proceedings of the Second International Computer Music Conference, pages
269–272, San Francisco, 1996. International Computer Music Association.

[63] Wikipedia contributors. Open sound control — Wikipedia, the free en-
cyclopedia. https://en.wikipedia.org/w/index.php?title=Open_Sound_
Control&oldid=1130824556, 2023. [Online; accessed 2023-05-20].

[64] Wikipedia contributors. Live coding — Wikipedia, the free encyclope-

66

http://www.aes.org/e-lib/browse.cfm?elib=7379
http://www.aes.org/e-lib/browse.cfm?elib=7379
https://synthtech.com/waveedit/
https://synthtech.com/waveedit/
https://www.soundonsound.com/reviews/sequential-prophet-vs-retrozone
https://www.soundonsound.com/reviews/sequential-prophet-vs-retrozone
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.adventurekid.se/akrt/waveforms/adventure-kid-waveforms/
https://www.adventurekid.se/akrt/waveforms/adventure-kid-waveforms/
https://en.wikipedia.org/w/index.php?title=Open_Sound_Control&oldid=1130824556
https://en.wikipedia.org/w/index.php?title=Open_Sound_Control&oldid=1130824556

Bibliography

dia. https://en.wikipedia.org/wiki/Live_coding, 2023. [Online; accessed
2023-06-19].

[65] Kim Cascone. The aesthetics of failure: ”post-digital” tendencies in contem-
porary computer music. Computer Music Journal, 24(4):12–18, 2000. URL:
http://www.jstor.org/stable/3681551.

[66] John Zimmerman, Jodi Forlizzi, and Shelley Evenson. Research through design
as a method for interaction design research in hci. CHI ’07, page 493–502, New
York, NY, USA, 2007. Association for Computing Machinery. doi:10.1145/
1240624.1240704.

[67] David Högberg. Latent vector synthesis, 2023. [Online]. URL: https:
//github.com/david-hogberg/latent-vector-synthesis.git.

67

https://en.wikipedia.org/wiki/Live_coding
http://www.jstor.org/stable/3681551
https://doi.org/10.1145/1240624.1240704
https://doi.org/10.1145/1240624.1240704
https://github.com/david-hogberg/latent-vector-synthesis.git
https://github.com/david-hogberg/latent-vector-synthesis.git

Bibliography

68

A
Evaluation Questions

1. What was your overall impression and experience of experimenting with the
sound synthesis tool?

2. How would you describe the sound textures that were generated? Could you
identify any specific aesthetic affordances?

3. How was the experience of learning and navigating the interface?

4. Did you feel control and agency over the generated sound material?

5. Did you resort to a particular function of the tool?

6. In what ways (if any) did you use the latent space functionality of the interface?
Did you find it useful?

7. Were there any moments of frustration while using the tool? How could it be
improved?

8. How would you imagine using the tool as part of a creative workflow?

9. How would you imagine using the tool in a performance setting?

10. How was the experience of using the tool in collaboration with others?

11. How did you experience the aesthetic affordances of this tool in collaboration
with others?

I

	List of Figures
	Introduction
	Overview
	Aim & Research Question
	Contributions

	Background
	Musicking with Algorithms
	Organised Sound
	Related Research
	Timbre Spaces
	Audio Feature Extraction
	Dimensionality Reduction
	Generative Models
	Spectral Models
	Raw Audio Models
	Generative Wavetable Synthesis

	Theory
	Timbre Spaces
	Audio Analysis
	Time- and Frequency Representations
	Windowed Fourier Transforms
	Wavelet Transforms

	Dimensionality Reduction
	Audio Synthesis
	Generative Models

	Methodology
	First-person Methods
	Research through Design
	Evaluation of Musical Interfaces

	Design Process
	Ideation
	On Sonic Art
	Sustained Sustain
	A Drone Synthesizer
	Wavetable Synthesis
	Vector Synthesis
	Latent Vector Synthesis

	Musicking with Sound Data
	Dataset Selection
	Random Waveforms
	Data Visualisation

	Building a Latent Audio Space
	Dataset
	Network Architecture
	Model Training
	Model Evaluation
	Model Improvements

	Pipeline Design
	Latency and Throughput
	Audio Programming Environment
	Open Sound Control
	Pipeline Overview

	Prototype Design
	Jupyter Notebook
	Proof of Concept VAE
	Single Waveform to Pd
	Sequence of Waveforms to Pd
	Latent Space Interpolations to Pd
	Synthesis Modules
	Pd to Python
	Latent Space Explorations
	Refining the Model
	Graphical User Interface

	Results
	Latent Vector Synthesizer
	Source Waveform Selection and Modification
	Vector Synth Pad
	Sound Synthesis Modules

	Key Considerations
	Musical Task and Aesthetic Framing
	Forming a Sound Space
	Building a Latent Audio Space
	From Audio Data to Sound Output
	Strategies for Latent Explorations
	Interfacing the Latent

	Evaluation
	Collaborative Drone Session
	First-person Evaluation
	Participant Feedback
	Sound Aesthetics
	Learnability
	Functionality
	Frustrations
	Collaboration
	Application Domains

	Discussion
	Model Performance
	Aesthetics of Failure
	Evaluating Interaction Design Research
	Process
	Invention
	Relevance
	Extensibility

	Ethics and Biases

	Conclusion
	Future Work

	Bibliography
	Evaluation Questions

