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Abstract

Road accidents are one of the leading causes of deaths worldwide (Road traffic injuries
2022). Around 1.3 million fatalities were reported due to road traffic crashes, and the
injuries and economic losses are even higher. The cause of the majority of these car
accidents can be attributed to human errors while driving (research note: 2016 fatal
motor vehicle crashes: overview - transportation 2017), emphasizing the importance of
reliable safety systems in modern automobiles. Lane Keep Assist (LKA) is one such
system commonly referred to as an Advanced Driver Assistance System (ADAS). The
LKA system plays a critical role in ADAS-equipped vehicles by assisting vehicles in
maintaining their lane positions. This research explores various factors that affect the
performance of a neural network-based LKA system. Real-world driving data, including
ego vehicle states and environmental information captured through a forward-looking
camera, has been collected and been made available for this study. The collected data
then underwent processing and normalization as part of this study, to facilitate subsequent
machine learning and analysis.

To enhance the dataset’s variability and improve the performance of the machine learn-
ing models, various data augmentation techniques were employed. The augmented data,
along with an appropriate sample size, was then used to train different machine learning
models. A main objective was to determine the optimal combination of data sampling,
data augmentation, and machine learning algorithms.

The evaluation of the models is based on multiple metrics, with a primary focus on in-
tervention prediction accuracy. This metric measures the system’s ability to accurately
predict the need for LKA intervention based on the input signals provided. Additionally,
the Area Under Curve of the Receiver Operating Characteristics curve (AUC-ROC) is
used as a secondary evaluation metric. Furthermore, tools such as the confusion matrix
are utilized to obtain a visual representation of the system’s performance.

The findings of this study provide valuable insights into the influence of a variety of
modeling parameters and methodological choices on the performance of neural network-
based LKA systems.

Keywords: Road accidents, Advanced Driver Assistance System (ADAS), Lane Keep
Assist (LKA), False Positives, Neural Network
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1. Introduction

1 Introduction

1.1 Background

Road accidents have consistently remained a significant concern for our society. Accord-
ing to a report by (WHO 2018), road accidents are the eighth leading cause of death in
the world. The number of injuries is close to 50 million annually, some of them requiring
serious medical attention (Ritchie, Spooner, and Roser 2018). The consequences of these
accidents are not limited only to impacting human lives. Fatal and non-fatal injuries are
estimated to cost the world nearly 1.8 trillion dollars from 2015 to 2030 (NHTSA esti-
mates for first nine months of 2022 suggest roadway fatalities beginning to level off after
two years of dramatic increases 2023).

As concluded in a study conducted by the National Highway Transportation Safety Ad-
ministration (NHTSA), human error accounts for 94-96% of road vehicle accidents (re-
search note: 2016 fatal motor vehicle crashes: overview - transportation 2017). This in-
cludes causes such as distraction, drowsiness, reckless driving, and intoxication. Despite
federal laws in many countries mandating safe driving practices, instances of distraction
and drowsiness are still observed frequently on long drives on highways, which could lead
to safety-critical situations such as unintended lane departure.

Lane departure is one of the most common safety-critical road behaviors that lead to
crashes, especially when it comes to resulting fatalities (Dean and Riexinger 2022). Ad-
vanced Driver assistance systems (ADAS) have been developed to aid drivers in pre-
venting many such situations, including unintentional lane departure. A Lane Departure
Warning (LDW) system can prevent such situations by warning the user through audio
and visual cues when the user crosses the lane markers. A Lane Keep Assist (LKA) sys-
tem offers similar functionality but instead triggers an intervention by applying a gentle
steering input to keep the vehicle within the lane when the user does not respond to the
LDW warning.

ADAS systems in general have found good acceptance from drivers (ConsumerReports
2019). Though LKA has been implemented with good effectiveness in vehicles (Stern-
lund et al. 2017), it is limited by weather conditions (snow or rain causing an error in sen-
sor perception of the road and environment) and drivers’ noncompliance i.e., the driver
turning the feature off, citing “too many false alarms” (Erie Insurance 2020). It is there-
fore imperative to make the system less prone to false interventions to improve driver
satisfaction and give the system more opportunity to save the users from accidents caused
by unintended lane departures.

Several attempts have been made to optimally design the LKA system. These approaches
can broadly be classified into rule-based approaches and learning-based approaches. Rule-
based approaches involve modeling the dynamics of the system (or ‘plant’) and using
control methodology to optimize system parameters. (Marino et al. 2009) proposed an
active steering controller that uses nested Proportional integral derivative (PID) control
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1. Introduction

with only two inputs: yaw rate from the gyroscope and lateral offset from the vision sys-
tem. They simulated their controller in CarSim (CarSim n.d.) simulation environment
where their model showed improved performance over the pre-existing controller in Car-
Sim.

While rule-based approaches offer high interpretability, they suffer from a lack of adapt-
ability of novel and uncertain driving scenarios. This limitation can be addressed by using
a large amount of driving data and with a learning-based approach. This also ensures that
complex non-linearities could be included in the solution. Tan, Chen, and Wang (2017)
proposed an architecture to predict lane departure using Deep Fourier Neural Network
(DFSS). They used Monte-Carlo simulation to generate different vehicle states (this in-
cluded variables like lateral speed, acceleration, yaw angle, etc) and calculated time to
Lane change for each. This was used for training the DFSS. The authors found out that
this method reduced the false-positive rate significantly, while also ensuring driver safety
by limiting lateral acceleration. Deep learning also enables incorporating driver behavior
as one of the influencing parameters which would lead to a more user-friendly system
design. Beglerovic et al. (2018) used Deep Learning to classify various driving scenarios
into those relevant to LKA. In some cases, the problem can instead be reversed, and the
system performance can help predict driver behavior. McDonald et al. (2013) monitored
the steering wheel angle to identify patterns that may indicate driver drowsiness.

1.2 Aim and Objectives

This thesis focuses on the analysis of driving data, consisting of approximately 3600 an-
notated segments with four labels: True positive, False positive, True negative, and False
negative. The labeled data is then processed to extract information about the specific time
intervals and signal states associated with each event. This serves as a foundation for the
machine learning model to comprehend the environment and establish correlations with
the desired output. Various machine learning and data processing techniques are explored,
and the performance of the model is assessed to determine the impact of different param-
eters on the output’s sensitivity.
The aim is to explore a neural network-based approach to model an LKA system. The ob-
jective is to assess the impact of a set of factors on the performance of a neural-network-
based LKA system, to help developers make more informed decisions in the design of
such systems. This is a learning-based algorithm that is trained on data available from
various driving scenarios of a car equipped with the conventional LKA system. The re-
search can be formulated into the following research questions:
1. Is it possible to achieve good prediction accuracy for LKA intervention using Neu-
ral Networks?
2. Are there ways through which one can work with limited annotated data and still
achieve good accuracy?
3. What is the effect of different parameters such as sequence length, data augmen-
tation, and different machine learning methods on the output model performance,
and which method is best to adopt?
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The thesis is organized as follows. The theory section, later in this chapter, covers the the-
oretical background of the work.The methods section explains the methodology used to
prepare the Machine Learning model for the given problem. The results section presents
the various result metrics for the model performance. In the discussion section, the au-
thors’ inference, conclusion, as well as limitations and proposed future work are pre-
sented.

1.3 Theory

1.3.1 Neural Networks

Neural Networks emerged as a mathematical model inspired by the functionality of Neu-
rons in the brain. (Palm 1986) used logical calculus to define the inputs and outputs of
these mathematical neurons. A major breakthrough came in 1958 with the introduction
to the perceptron by (Rosenblatt 1958) which was the first and simplest neural network.

Figure 1.1: Neural Network Architecture

Mathematically speaking, each node (see Figure 1.1) is dependent on the nodes before it,
in the following way:

i S o111, 4l

a; = f(2})
The first layer is the input layer, the rightmost layer is called Output Layer and all other

layers in between are called hidden layers. f{.) is called the activation function.
The architecture shown above is typical of Feed Forward Neural Network (FFNN). Here
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1. Introduction

while the information is passed forward (feed forward) and backward (back propagation)
between layers, it is never passed within the layer. That’s where the Recurrent Neural
Networks (RNNs) come in.

1.3.2 Recurrent Neural Networks and LSTM

The Feed-forward Neural Networks struggle with scenarios where the input nodes may
be dependent on each other, for instance, time series data, language sentences, musical
notes etc. RNNs address this issue by passing the current state of the node (called hidden
state)as an input for the next iteration of the feed forward operation. This is indicated in
Figure 1.2 below with curved lines around each node in hidden layers.

jt™" node

Figure 1.2: Recurrent Neural Network Architecture

Long Term Short Memory (LSTM) is a type of RNN that has proven to be quite efficient
when it comes to sequential data. Typically, machine learning models use gradient de-
scent to achieve an optimal solution. Gradients are partial derivatives of the loss function
(optimization objective) in terms of model parameters. A model trains itself iteratively
such that the combination of weights that produce the maximum gradient descent is the
combination for maximum improvement in performance compared to the previous itera-
tion. In the case of sequential data, the model parameters for RNNs are dependent over a
large span of time. Usually, this leads to very small gradients or very large gradients for
updating the prediction towards the optimal value, resulting in the network either taking
excessively long to converge (called "vanishing gradient problem") or overshooting the
optimal solution (called "exploding gradient problem"). LSTM addresses this by using a
memory cell to decide which information to keep or forget based on the variation of gra-
dients (Hochreiter and Schmidhuber 1997). This way excessively high or low gradients
are dropped and learning proceeds normally.
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1.3.2.1 Pre-training in Machine Learning

Pre-training is an approach where a model is first trained on large amounts of unlabeled
data to help learn the general patterns in the data. It is then fine-tuned using a relatively
small quantity of labeled data.

Auto-encoders, a type of Neural Network that works primarily by transforming input data
into a different representation (called encoding) and using that to recreate the input (called
decoding) are often used in the pre-training of time series data. (Yang et al. 2022) and
(Hinton and R. R. Salakhutdinov 2006) provides a detailed review of Autoencoders’ typ-
ical architecture, the training process and recent applications. (Sagheer and Kotb 2019)
used a layer-wise pre-training with Autoencoders to generate initialization weights for the
Deep LSTM architecture. They used this combined model, referred to as LSTM-based
stacked Autoencoder (LSTM-SAE) for time series forecasting and presented improved
results compared to the deep LSTM model.

1.3.3 Data Handling and over-fitting

Data is central to machine learning model development and evaluation and thus available
data for Machine learning is often split into two parts: the part used for training and
learning and another used for testing. Usually, the split is 80% training and 20% test but
it also depends on the size of the data available and the complexity of the model (Xu
and Goodacre 2018). While the test data can be any subset of available data, Training
data should be representative of the problem the ML model is tasked with, and should
generalize the problem well. In the case where this isn’t met, the ML model may run into
the problem of over-fitting.

1.3.3.1 Over-fitting

Every machine learning model have some model parameters which are iteratively updated
as the model learns the patterns and relationships in the data. For a neural network, these
are the weights that connect one node to another. The number of model parameters is
decided by the number of layers and number of nodes in each layer. In many cases, it may
happen that the available data is too small or lacking enough samples to cover all possible
patterns in the real-time data. Alternatively, the model architecture is too complex/deep
1.e., it has too many nodes and layers for it to train. In this case, the model may end up
memorizing the data provided for training. As a result, while the model may achieve very
high performance on training data, it might show poor performance with test data. This is
often referred to as the model ‘overfitting’ the data (Ying 2019).

To catch and visualize over-fitting early on during the training, K-fold cross-validation is
often used. This consists of splitting the data into K-parts such that during every iteration
the model is trained on (K-1) parts and tested on the remaining part, which is referred to
as the validation data for that given iteration. For example, for K=5, the data is divided
into 5 equal parts in every epoch, 4 of which are used for training and 1 for validation
(refer Figure 1.3). The model accuracy for the training data is monitored alongside the
validation data. Since the validation data is unseen data for that given iteration, normally
the validation accuracy is slightly worse than the training accuracy. If the model begins
to over-fit the training data, the training loss/accuracy may still improve but the validation
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loss/accuracy becomes stagnant.

[ | training data
- validation data

dataset

training
epoch K_\/K_/_\ — validation

OO [ —
2 e

Loss

3 T
4| | | [ [

| | | | [
] —————————

0 40 100
7 epoch
a) b)

Figure 1.3: a) K-fold cross validation for K=5, and b) Loss variation vs epoch for training
and validation data-set. Over-fitting initiates at 40 epochs

In figure 1.3, we see both the validation and training loss decreases as the model trains
epoch by epoch. After around 40 epochs, the model doesn’t learn any new patterns in the
data, but rather memorizes the patterns specific to the training data.

There are many ways to address over-fitting in machine learning models, including reg-
ularization, dropout, data augmentation (which is discussed later), ensembling, feature
selection, etc. See (Nusrat and Jang 2018) for an overview of methods to address over-
fitting.

1.3.4 Data Balancing

Another important consideration while preparing the data for ML model development
is data balancing. Real-world data can often be imbalanced in terms of the amount of
data/number of samples available for each class used in the training. An example would
be real-world driving data collection to study accident prevention. A data collection activ-
ity that mimics real-world driving would be biased heavily toward samples with normal
driving, having very few recorded instances of the rare events. As a result, the ML model
which is trained on such data may also show a similar bias (Haibo and Garcia 2009).
In order to avoid this behavior, the input data to the model must be balanced. There are
various approaches to achieve data balancing. Some common approaches are listed below
* Random under-sampling: Here the samples in the majority are dropped to match
the minority count. This may also lead to loss of information and under-fitting.
* Random oversampling: Here the samples in the minority are duplicated to match
the majority count. As this may lead to repetitive data, the model may run into the
risk of over-fitting.
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* Ensembling: Ensembling involves combining various sub-models trained on bal-
anced subsets of the data. These subsets could be balanced using a combination of
randomly under-sampled and over-sampled data. This helps the model combine the
learning from these sub-models into a single model.

* Cost-sensitive Learning: In this method, a custom loss function is created that can
assign higher penalties to misclassification in minority classes.

The authors in (Haibo and Garcia 2009) have described these methods in detail.

1.3.5 Machine Learning Model Evaluation

Machine learning models are used to make predictions from a given set of input data and
thus their performance is dependent on the data that has been used to generate the model.
Evaluation of such models can help in accessing whether the model can be used for unseen
data and further, whether it can be generalized to suit a wider range of applications. There
are various ways to evaluate model performance, but in the context of this thesis, the
following methods are identified to be important.

1.3.5.1 Confusion Matrix

When a machine learning model is tasked with classification, there is a possibility that the
model may give an output that is different from what is expected. Many such cases are
possible. For binary classification tasks, it usually takes the form of a 2X2 matrix This
matrix, referred to as a Confusion Matrix for the given model, helps in evaluating the
performance of a classification model by summarising predicted and actual class labels of
the data set (Figurel.4).

Actual Values
Positive(1)  Negative(0)

TP | FP

FN | TN

Negative(0) Positive(1)

Predicted Values

Figure 1.4: Confusion Matrix

To construct Confusion Matrix for a machine learning model, the model’s predicted out-
put is compared with the actual output and classified into the following four categories
(note: this applies to a binary classifier. For multi-class Classifier, the matrix could be
different but can be simplified into a 2X2 matrix)
* True Positive (TP): where the predicted output matches the actual output and both
are positive (1).
* True Negative (TN): where the predicted output matches the actual output and both
are negative (0).
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» False Positive (FP): where the predicted output is positive (1) while the actual
output is negative (0).
* False Negative (FN): where the predicted output is negative (0) while the actual
output is positive (1).
A good model should maximize *True’ predictions and minimize ’False’ predictions. The
easiest way to quantify this is through accuracy, which means the total count of samples
in the prediction that exactly matches the actual sample. In other words:

(TP+TN)
(TP+TN+FP+FN)

Accuracy =

A more comprehensive understanding of the model can be achieved through the True
Positive Rate (TPR) and False Positive Rate (FPR) metrics. True Positive rate indicates
the total number of true (1) output predicted correctly out of the actual true output i.e,

TP

TPR= ——
(TP+FN)

Similarly, FPR provides this information for the total number of false (0) output predicted
correctly. It is defined as follows

FP

FPR= ———
(FP+TN)

However, in certain applications minimizing False Negatives may be more important than
False Positives, such as in the medical diagnosis of chronic diseases like breast cancer
(Bleyer and Welch 2013) whereas in other applications, such as intrusion detection in
computer systems (Abouabdalla et al. 2009), minimizing False Positives may be more
important. In order to find the best model for any given application, ROC curves are often
used.

1.3.5.2 ROC Curve

A machine learning model never outputs an absolute value in classification. It rather
outputs a probability of the prediction falling under one of the prediction classes. For a
binary classifier where the classes are 0 and 1, the model would output a value between
0 and 1 (e.g., 0.6846, 0.3447, etc). In order to convert these values to absolute classes, a
threshold value can be chosen such that values lesser than this threshold are classified as
0, while those equal to or greater than the threshold are identified as 1. This threshold is
called as discrimination threshold.

A receiver operating characteristics (ROC) curve is a graphical representation of model
performance as this discrimination threshold is varied. ROC curves have been extensively
used in medicine to evaluate the performance of new proposed diagnostic tests in terms
of their ability to predict positive cases against negative cases. An example would be
measuring the effectiveness of fluid pressure in a patient’s eyes to diagnose Glaucoma. By
varying the threshold pressure, one may see varying rates of positive and false diagnoses
and a suitable value can then be chosen (Swets, Dawes, and Monahan 2000). ROC curves
have been in use in Machine Learning since (Spackman 1989) used them to evaluate and
compare various algorithms.
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In cases where the benefit gained by a correct diagnosis/prediction is equivalent to the loss
born by an incorrect diagnosis/prediction, the performance of the model can be quantified
by the area under the ROC curve (AUC).

~AUC=0.5)

TPR

0 FPR 1
Figure 1.5: The ROC curves for three classifiers

The ROC curve for three different classifiers is shown in Figurel.5. Model I has an
AUC of 0.5 computed by the area of the triangle. Here the change in the discrimination
threshold does not affect the prediction, which is equivalent to using a flip of a coin.
Model II is better with an AUC of 0.75, but worse than Model III which has an AUC of
0.8. However, model II would perform better on TPs than III since for the same FPR, II
provides a better TPR than III. In the case where the benefit caused by a True Positive
is larger than the drawback caused by a true negative, model II is a better choice for
prediction. In all the other cases, model III is a better choice.
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2. Method

2 Method

This section describes the methodology employed to develop and assess a Neural Network
architecture for an LKA system. It begins with a brief description of the collected data
and pre-processing steps to transform the data into a form suitable for the ML model to
train on. Next, the supervised learning and unsupervised learning methods (along with
some pre-processing steps specific to each of the methods) are described. Finally, an
overview of the analysis of model performance is presented leading to the results in the
next section.

2.1 Data Pre-processing

The available driving data consists of drives across different regions in Europe, America,
and Asia collected using a fleet of vehicles driven by professional drivers. The vehi-
cles were equipped with a front-looking camera and other sensors to monitor the vehicle
kinematics. All ADAS/AD systems inbuilt into the vehicles were disabled for the entire
duration.

A drive is typically a few hours long. Each of these drives is further divided into segments
that are 1-min long. The data is collected at 40 Hz, resulting in 2400 frames in each seg-
ment. Each of these segments can be further split into smaller samples based on a chosen
time step. For example, a sample with 40 frames would correspond to a time step of 1
second. The collected data containing all the signals is fed into the prototype software
and the software makes a decision whether to trigger or not. This process is called re-
simulation and the output data of the intervention decision is called the re-simulated data
from here on.

2.1.1 Labelled data extraction

For a given build version of sensor and system software, we have several interventions
events from the system during the re-simulation, which are events where the LKA system
is triggered. These events could be anywhere between 10 to 100 frames long. The data
received from the forward-looking camera is processed by the perception system of the
prototype software. An example of an perception-processed frame is shown in figure
2.1. The events are then manually annotated as TP, FP, TN and FN based on analysing
the perception processed image. These labels are used for the evaluation of intervention
in the re-simulated data. This is similar to the labels decribed in the confusion matrix
in 1.3.5.1, except that it is applied to the re-simulated data instead of machine learning
model. For this application:
* A True Positive (TP) is where the LKA system intervened as intended
» A False Positive (FP) is where the system intervened but it wasn’t intended by the
user.
* A False Negative (FN) is where the system should have intervened as per the user’s
intention, but it didn’t.
* A True Negative (TN) is where neither the user intended for system intervention,
nor did the system intervene.

11



2. Method

The green lines in the figures shows lane markers as detected or perceived by the percep-
tion system. It can be seen in this specific case in figure 2.1 that the perception system
detected the left lane marker to be offset towards the right relative to the actual lane marker
position. This could be the reason for the false positive in this case. Similarly for all the
events the perception processed image is analyzed and suitable labels are assigned.

Figure 2.1: Sample instance of a false positive: the system identified the left lane marker
to be closer than it actually is

As far as this thesis is concerned two of the labels (TP, FP) are already available for all
the events (around 4000). From this point onward, the term "labelled data" will be used to
refer to this data-set that includes the labels (TP, FP) for all the events. There are several
more events available where the annotations corresponding to any intervention event are
missing. These are referred to as the "unlabelled data" in this thesis.
To add to the labelled data, an estimate for the scenario for a TN is made. Recall that a TN
is where the system didn’t intervene, nor was an intervention expected. This is equivalent
to a typical driving scenario i.e., the car driving sufficiently far from the lane markers.
Hence, from the unlabelled data, a subset where:

1. The distance between the center of the ego vehicle and lane markers is greater than

1.5 meters, and

2. There was no intervention
would be representative of a TN scenario.
There is no available data set which is annotated as FN by annotators. This means that
the system was not able to classify and train on the FN scenarios.

2.1.2 Signal Selection and Analysis

The existing LKA system utilizes a subset of signals from an Electronic Control unit
(ECU) that receives and processes all the data from the sensors. These signals can either
take a value from a pre-defined set of values (e.g., Turn indicator, intervention direction,
presence of snow, lane quality etc.) or a range of values (ego velocity, lane clothoid
coefficients etc.). An LKA intervention is when some or all of these signals assume the
values specified in the logic. For instance, LKA intervention is triggered when there

12
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is no snow on the road, Lane Quality is sufficiently high (> 0.8, to give an example),
ego velocity is above 40 km/h and lateral distance from the lane marker is below 0.5
meters. Please note that the values provided here are arbitrary and intended solely to help
the reader comprehend that the LKA (Lane Keeping Assist) system operates only when
certain conditions are satisfied.

In this work, twenty such signals have been considered for the Neural Network based
model, which captures the majority of lane information. These signals are:

1. Eight coefficients, four each for left lane and right lane, of the clothoid curve that
describes the shape of the lane in front of the ego vehicle a;,a,.,b;,b,,c;,cr,d;,d,

2. lane selection confidence C;,C,

3. longitudinal distance from ego to the end of the first clothoid curve for each lane
ld, ld,

4. transition distance(for control transfer from driver to LKA and vice versa) for each
lane td; td,

5. ego vehicle data such as velocity, v,, and acceleration, a,
6. ego vehicle lane heading with respect to lane markers, 0

A LSTM model (section 1.3.2) is used for learning the relationship between the input sig-
nals and the output signal for intervention. The model expects an input to be a 3-D matrix
of the dimension (number of samples, sequence length, no of features), where number
of samples and number of features are equivalent to the drive samples and number of sig-
nals (which is 20) respectively, while sequence length is the number of frames considered
in one sample or the length of the sequence fed into the model. Corresponding to this
input, the model would return an output of shape ( nrumber of samples, sequence length,
N) where N would be decided by the number of cells/nodes in the output layer. Since we
require the model to predict only 1 signal value L.e., the intervention, N would be 1.

2.1.3 Normalization

Varying the range of different input signals may significantly affect the prediction ac-
curacy of some machine learning methods, specifically Neural Networks. Thus, some
sort of data normalization is necessary. Many of the input signals have both positive and
negative values and thus it is required to normalize in such a way that sign is preserved.
This can be achieved by using the maximum value out of the absolute value of the signal
(i.e., max(abs(signal values)) as the normalizing factor. The normalized signals, as a re-
sult, would lie in (-1,1). Normalization needs to be done before sampling since different
samples may have different range of values.

2.2 Building the prediction Model

This section covers the steps taken to build the prediction model. This includes the various
data augmentation techniques to increase the sample size for training and methods to
utilize the unlabeled data for prediction.
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2.2.1 Supervised Method

The simplest and most robust way to build an intervention prediction model from the pro-
cessed data is through supervised learning. In supervised learning, the model is supplied
with both the input signals and the output signals for training. This means that the model
only can train on labeled data.

2.2.1.1 Sampling strategy

This section describes how samples are extracted from drive segments. Figure 2.2 shows
one of the 20 selected signals (the process for all the other signals is identical) from a
segment. The segment is in the form of a time series signal where an intervention event
is observed within a certain time duration as shown. In the figure, the highlighted portion
denotes the intervention event as described in section 2.1. We want to use the network to
learn:

» what caused it to trigger i.e., what caused the beginning of an intervention event,

and

¢ what caused it to turn off i.e., what caused the end of the intervention event
In order to train the network on these scenarios, we need to capture frames where the tran-
sition to the start of the intervention event occurred and transition from the intervention
event to normal driving occurred(i.e., the end of the intervention event).

event
segment

sample 1 sample 2

Figure 2.2: sample extraction from a drive segment

The data is thus captured in the following way: for the first sample (’sample 1’ in Figure
2.2) the sampling is done so that the last n frames contains the events. For the second
sample(’sample 2’ in Figure 2.2), the sampling is done so that all frames except the last n
frames contain the event. This way we get 2 samples per event. Note that n is considered
the same for both samples to reduce computational complexity. It is however an adjustable
parameter.

2.2.1.2 Data Augmentation

Given that only 4000 segments were available for a deep neural network to train on,
it would be prone to overfitting (see 1.3.3.1). In such cases, the existing data can be
modified to generate additional data for training. This is called Data augmentation. In
this thesis, the following types of augmentations have been used:
1. Time-shift Augmentation: This involves shifting the samples backwards in time
by a few frames while retaining the sequence length. (Figure 2.3)
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segment

Original samples

Augmented samples

sample (p-1) sample p

Figure 2.3: Time-shift augmentation on extracted signals

In this case, a total of 10 (p in the figure) augmented samples, 5 each close to
intervention start and intervention end, were generated by shifting the samples ran-
domly within 10 frames to the left (i.e., before in time). This increases the number
of samples while also providing additional information on signal variation around
the intervention time.

2. "Flip-scene' Augmentation: This involves modifying the scenario to simulate a
mirrored case, which means the signals associated with the car in the lateral direc-
tion would be flipped, while those in the longitudinal direction remain the same (see
Figure 2.4).

Original frame Frame in flipped scene
Figure 2.4: Flip-scene Augmentation: The input signals in longitudinal direction e.g.,

longitudinal velocity, would be same while those in lateral direction e.g., lateral velocity,
would change its sign
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The augmented samples are finally organized into an array and fed to the LSTM network
for training.In summary, the supervised method can be described in the following steps
(Figure 2.5):

A. Extract the chosen signals of interest from the datalogger and normalize them.
B. Sample the signals according to the sampling strategy in section 2.2.2.1.

C. Augment the samples using one or both of the techniques described in section
2.2.1.2.

D. Re-organize the signals in the form (number of samples, sequence length, no of
features).

E. Train the machine learning model using the inputs and outputs.

Input Signals +
interventon signal

|

[

. Signal

| length

[

[ No. Of

S8y Tt omo- S samples

No. Of
signals

. Intervention
Input Signals /\ signal

Signal —) —_—) Signal
length length
ATOf ML Model . Ao. of
Si sy - -I-\I;).-O-f- - = Sy samples n samples
signals

Figure 2.5: Supervised Method summarised

2.2.2 Unsupervised method: Training with unlabeled data

The annotations in the available data for model development is limited leading to limita-
tions in supervised model accuracy. However, a lot of data is available where the events
aren’t classified into TP, FP, TN, and FN. In this case, the model can be ‘pre-trained’ over
unlabeled data by training it over the existing signals (but then unrelated to the TP, FP, TN
and FN). The trained model can then be saved and used for the supervised traning. That is,
when the model is trained on the labeled data (supervised), the old model is loaded again
with the weights frozen (i.e., they are not changed during the model training) with new
layers added on top, which trains with labeled data. This can provide an improvement in
prediction even with a low quantity of labeled data (Sagheer and Kotb 2019).

16



2. Method

2.2.2.1 Sampling Strategy

Note that the events are not labeled in the data used for unsupervised learning. Thus the
samples are generated by slicing the segment over uniform intervals (Figure 2.6). This
mean that the unsupervised model is trained on the entire segment and not just the samples
where the LKA system intervened.

segment . I N Y O O O
=

samples

Figure 2.6: sample extraction from a drive segment in unsupervised model

2.2.2.2 Pre-training

The following are two ways to pre-train the model used in this study to predict intervention
from LKA:

1. Signal masking: After the input signals are normalized and sampled, a small part
of each sample is chosen to be masked. As we know after normalization, all signals
are limited in (-1,1) (see section 2.1.3), and thus in the masked part of the signal,
the original values are replaced by values outside (-1,1). Here the masked signal
values are replaced with -2 (used purely for illustration). This becomes the input.

(0.2350.442 0.587 0.766 0.879 0.996.....0.210 0.12) (0235 -2 -2 -2 0.8790.99....0.210 0.12)
] %
A sample A masked sample
a) b)

Figure 2.7: signal masking

A copy of unmasked data is stored as output. The model used here is LSTM too but
with more nodes to learn more patterns in the data. The entire process is pictorially
summarised in figure
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Figure 2.8: Unsupervised method with masking

2. training with unlabeled intervention: In the unlabeled segment, the output for
intervention is present, but it isn’t clear whether the intervention was TP or FP. In
this case, all the interventions are considered TP and trained i.e., the existing system
is considered the actual output on which the model will be trained. In other words,
this method can be used to mimic the existing system and present its performance.

As explained earlier in this section, the unsupervised model is now used with weights
already trained on the "type of data" it will use also for the supervised training. That is, the
supervised training is done "on top" of the unsupervised model. A pictorial approximation
is shown below.

Input Signals Intervention
Frozen Active signal

weights weights

Signal === Signal
length length
NoOr el s W
""""" S, samples N
e No. Of * P ML Model samples
signals

Figure 2.9: Supervised model with pre-training
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For more information about this approach and successful applications of pre-training see
(Srivastava, Mansimov, and R. Salakhutdinov 2016) and (Sagheer and Kotb 2019).

2.3 Analysis

In the section that follows, different machine learning and data processing methods are
tried out and the model performance is evaluated to understand the sensitivity of each of
these parameters on the output performance. The different choices and methods assessed
in this thesis are:
* Sequence length
* Different data augmentation techniques :
— Time shift augmentation.
— Flip-scene augmentation.
— Flip-scene augmentation with Time shift augmentation.
* Different machine training methods:
— Only supervised training.
— Only unsupervised training.
— Unsupervised training followed by supervised training.
The metrics that are used for evaluating system performance are:
— Accuracy (refer 1.3.5.1)
— FPR and TPR (refer 1.3.5.1)
— ROC and AUC-ROC
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3 Results

3.1 Effect of different machine learning and data pro-
cessing methods

Different machine learning and data processing methods are tried out and the model per-
formance is evaluated to understand the sensitivity of each of these parameters on the
output performance.

3.1.1 Sequence length

The model is trained on samples with different number of frames. The ML performance
is measured in terms of the accuracy of the predicted data and plotted in y-axis against
different sequence lengths in x-axis as shown in Figure 3.1. Looking from the left to
right in the figure 3.1,and examining the sequence length as it increases from left to right,
a clear change in accuracy is evident around 60 frames, exhibiting a distinctive "knee"
shape. It becomes apparent that beyond this point, there is no further improvement in
model accuracy.Since there is no improvement in model accuracy for sequence lengths
more than 60 frames it is suitable to choose 60 frames as the sequence length for further
processing.

0.94

0.93

Model Accuracy
o
[1s}
Pl
i

0.91 ~

0.90 ~

T
20 40 60 80 100
Sequence Length

Figure 3.1: Effect of sequence length on the model performance
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3.2 Effect of data augmentation

Figure 3.2 illustrates the prediction accuracy of the machine learning model on the test
data, specifically for a sequence length of 60 frames. The y-axis represents the accuracy,
and the figure displays different combinations of data augmentation methods and machine
learning methods that were implemented.

The prediction accuracy is observed to be the highest for all the machine learning methods
when time shift augmentation is performed. Hence, time shift augmentation method is
chosen as the augmentation method for further processing.
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Figure 3.2: Effect of data augmentation techniques on the model performance

3.3 Overall system performance metrics

For the sequence length of 60 frames and augmentation technique of time shifting, the
three different machine learning models (supervised learning, unsupervised learning, pre-
training and then supervised learning) are assessed with a test data-set, and their perfor-
mance is visualized and compared using the following metrics:

1. Area under curve of ROC (AUC-ROC)

2. Confusion matrix

3. False positive rate (FPR)

4. True positive rate (TPR)
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3.3.1 AUC-ROC

The Area Under the Curve (AUC) in the Receiver Operating Characteristic (ROC) curve
is a measure of the machine learning model’s ability to classify LKA (Lane Keeping As-
sistance) intervention decisions, specifically between triggering (1) or not triggering (0).
A higher AUC value indicates better classification capability. By considering all proba-
bility threshold values from O to 1, the ROC-AUC helps determine the best ML model
for overall classification performance in accurately identifying when LKA intervention
should be triggered or not. Figure 3.3 shows the ROC curve for the different machine
learning models (supervised model, *mask’ pretraining+supervised model *mimic’ pre-
training + supervised model) tested out with an optimal sequence length of 60 frames and
the best augmentation technique of time shifting. As seen in the Figure 3.3 the supervised
machine learning model achieves the highest AUC-ROC value of 0.98, indicating strong
classification performance. Following that, the "pretraining + supervised" model obtains
the next highest ROC-AUC value of 0.97. In comparison, the unsupervised model ex-
hibits the lowest ROC-AUC value among all models, measuring 0.95.The blue dotted line
represents a base model, a random classifier with no predictive ability. Details on ROC
and AUC are described in 1.3.5.2

ROC

TPR

Supervised model (auc=0.98)
s "masked" pre-training + supervised (auc=0.97)
Py — "mimick" pre-training + supervised (auc=0.96)

0.0 | T | |
0.0 0.2 0.4 0.6 0.8 1.0

FPR

Figure 3.3: ROC curves for different models
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3.3.2 FPR, TPR, Confusion Matrix

The True Positive Rate (TPR) and False Positive Rate (FPR) of the three ML-models (su-
pervised, unsupervised, pre-training + supervised) for the sequence length of 60 frames
and augmentation technique of time shifting are tabulated below.

Model TPR | FPR

Supervised Model 0.884 | 0.051
(Pre-training + Supervised) Model | 0.815 | 0.061
Unsupervised Model 0.789 | 0.068

Table 3.1: TPR and FPR values for the selected models

The best model, which is the supervised ML model, with sequence length of 60 frames
and time shifted augmentation is tested with the test data and its prediction checked
against the ground truth. The output of this comparison is shown in the confusion matrix
1.3.5.1 shows the number of instances of all the four possible outcomes: True positives,
False positives, True negatives and False negatives. The results indicate nearly 75.11%
predictions as TNs and 14.71% as TPs, giving a total accuracy of 93%. The TNs consti-
tute the majority of the data, followed by TPs, TNs and lastly the FPs. More details on
confusion matrix is provided in the section 1.3.5.1)

o True Neg False Pos 80000
w 97345 4627
2 75.11% 3.57%
] i
g 60000
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-20000
Faise Tr'ue
Predicted Values

Figure 3.4: Obtained confusion matrix from the best model (only supervised)
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4 Discussion

This thesis aims to explore various machine learning method components for a decision-
making system of a LKA (Lane Keeping Assist) system. Different data processing tech-
niques (such as varied sample size or sequence length, time shift augmentation of the
data, flip scene augmentation of data) and machine learning models (such as supervised
learning, unsupervised learning, pre-training with unlabeled data followed by supervised
learning with labeled data) were examined.

The objective of this study was to identify the best method, among these combinations,
based on the accuracy of intervention decision predictions. In other words, the goal was
to determine how accurately each method predicted whether to trigger an intervention or
not for a given set of 20 input signals in test data.

Initially, the basic model (a supervised ML model with no augmentation performed) was
tested with different sequence lengths, ranging from 15 frames to 100 frames, to deter-
mine the optimal sequence length.

Subsequently, for the selected optimal sequence length, various machine learning models
and data augmentation techniques were assessed. The performance of these combinations
was assessed by measuring the prediction accuracy when tested with prepared test data.
The objective was to identify the best method among these combinations based on the
accuracy of intervention decision predictions on the prepared test data.

4.1 Contribution

In this section, we will outline the contributions we, as authors, hope that this thesis can
make toward understanding the application of Neural Networks for modeling an LKA
system. Our primary objective was to address the research questions we outlined at the
beginning of this thesis. We will provide explanations of our inferences based on the re-
sults of our work to answer these research questions and thereby attempt to contribute to
the existing knowledge in the field.

1. Is it possible to achieve good prediction accuracy for LKA intervention using Neu-
ral Networks?
As observed in figure 3.1, LSTM-based Neural Networks have been able to provide
high prediction accuracy with a limited number of input signals. It is however ob-
served that the model has a high count for FPs and FNs (Figure 3.4). This could
be attributed to a lack of sufficient data for training on FPs and FNs that can be
explained as follows: for each of the annotations (TP, FP, TN, and FN), It can be
said that there is a specific combination of input signals leading to a scenario cor-
responding to that annotation. The samples available from the training data mostly
contains TP and TN scenario, with few FP scenarios and no FN scenarios. A model
trained on this data would have limited classification capability for FP and FN sce-
narios. Such imbalance often leads to the model classifying more test scenarios into
the majority class (i.e., the class/scenario dominantly present in the training data).
This is explained in (Haibo and Garcia 2009). In our case, since the model has lim-
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ited training on what to do in an FP scenario (where the expected outcome would
be to not trigger an intervention), it may choose to trigger intervention (TP being
the majority of the scenarios), resulting in a False intervention (FP). Similarly, in an
FN scenario, where the right course of action is to trigger intervention, the model,
having been majorly exposed to the TN scenario, would rather choose to not trigger,
resulting in a False no-intervention (FN). If the data is balanced between all four
scenarios, the FP and FN count could be lower.

The LKA feature is designed for enhanced driving comfort, indicating that it doesn’t
hold primary safety responsibility. The driver remains primarily accountable for
vehicle control and lateral safety. This feature aims to further enhance the driver’s
lateral control experience.

The occurrence of an FP would cause driver annoyance and conflict with the core
goal of providing driver comfort. Therefore, for this specific type of LKA feature,
minimizing FP instances is the objective. While the overall aim is to reduce all false
predictions, which include FPs and FNs, there’s a greater emphasis on minimizing
FPs for this particular LKA variant.

Additionally, the LKA system ensures driver engagement in lateral vehicle con-
trol through continuous checks and alerts for hands-on-wheel presence."Hands-
on-wheel" is a system designed to ensure the driver’s consistent engagement in
driving activities by verifying the presence of their hands on the steering wheel
through various mechanisms. These mechanisms include checking steering torque,
steering angle, and touch sensing on the steering wheel. The paper by (Moreillon
2017) delves into hands-on-steering wheel detection and highlights its significance
in ADAS systems of Level 2 and beyond. Due to the presence of such mechanisms,
even if an opportunity is missed (FN), the risk is relatively mitigated as the driver
remains available for vehicle control. Moreover, the LDW system consistently pro-
vides supplementary assistance, remaining vigilant in alerting the driver to respond,
even in cases where no intervention prompt is triggered by an LKA system tailored
to prioritize minimal FPs over low FNs. In contrast to the Automated Emergency
Braking (AEB) feature, where a missed opportunity often leads to a collision, a
missed opportunity in LKA does not inherently result in a collision event. The po-
tential impact of a missed opportunity varies based on the circumstances, such as
the external environment beyond the lane, such as the presence of obstacles like
trees or the presence or absence of oncoming vehicles.

2. Are there ways through which one can work with limited annotated data and still
achieve good accuracy?
We could achieve an overall accuracy of about 90% in intervention prediction. That
is, we predicted X based on Y. As we can see in ?? we could marginally increase
the intervention prediction accuracy using data augmentation technique. But, as
can be observed in Figure 3.2, this increase is marginal, from 0.898 (blue bar in
’No Augmentation’ block) without any augmentation to 0.935 (blue bar in *Time-
shift Only’ block) with time-shift augmentation. Hence in our study, it was not
possible to increase the accuracy substantially using data augmentation techniques.
We would need more data to be able to increase the accuracy substantially. As
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inferred from the paper by (Dahl n.d.), a data set containing 10000 data points (la-
beled events) has previously been sufficient to achieve a good result. We currently
are using only 3600 data points in our model. Additionally, as pointed out ear-
lier, a balanced representation of all four scenarios is crucial to effectively train the
model and enhance its performance in correctly identifying these specific events.
However, the specifics on what distribution of TP, FP, TN, and FN in the resulting
confusion matrix would qualify to be called good LKA performance is a part of the
core intellectual property of the companies developing such systems and is hence
not shared.

3. What is the effect of different parameters such as sequence length, data augmenta-

tion, and different machine learning methods on the output model performance and
which method is best to adopt?
Each parameter mentioned has a substantial impact on the prediction performance
of the model. After evaluating different combinations, it was found that utilizing
a supervised machine learning model with a sequence length of 60 frames, along
with time-shifted augmentation, yields the highest prediction accuracy on the test
data.

4.2 Effect of sequence length

From figure 3.1, the model’s prediction accuracy on test data tends to increase as the
sequence length is extended; however, this also leads to a reduction in the amount of
sampled data. Consequently, there exists an optimal point where the model achieves the
best overall prediction performance. In this study, it was determined that a sequence
length of 60 frames yields the most accurate predictions for the specific problem at hand.
Considering the sensor frequency of 40 Hz, 60 frames are equivalent to a time horizon of
1.5 seconds. This finding is supported by Dahl in (Dahl n.d.), who has noted this number
to be around 1.25 seconds.

When the sequence length is increased beyond this optimal point, the number of avail-
able samples for training diminishes. This limitation arises due to the data extraction
method employed, which requires a sufficient number of consecutive frames within the
same segment surrounding the event of interest (LKA intervention).

4.3 Effect of Augmentation

Time-shift augmentation:The results in Figure 3.2 demonstrate that the use of time aug-
mentation contributes to a slight improvement in accuracy. In theory, time shift augmen-
tation should enhance intervention prediction accuracy by introducing temporal variations
to augment the existing labeled data. These variations help the ML model become more
resilient to temporal patterns, thereby enhancing its capability to identify distinct features
or patterns in the data, as discussed in the paper by Zheng et al. (Zheng et al. 2014). The
results shown in Figure 3.2 align with this expectation, illustrating an improved prediction
accuracy when time shift augmentation is applied.

Flip-scene augmentation: The flip-scene augmentation has a negative effect on perfor-
mance, which means the prediction accuracy of the ML model on test data decreases com-
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pared to the base model when flip-scene augmentation is performed (the base model is the
model with supervised learning without any data augmentation technique performed).
This could be caused by multiple reasons such as over-fitting, the creation of unrealistic
scenes on flipping, and generalization. These issues are discussed in the papers (Ke-
shavarzi et al. 2021) and (Sai Abhishek 2022)

4.4 Effect of different machine learning models

1. Effect of masked pre-training: Ideally, pre-training using unlabeled data com-

bined with supervised learning of labeled data should improve accuracy compared
to mere supervised learning, as explained in the paper by (Srivastava, Mansimov,
and R. Salakhutdinov 2016). This is because, in an ideal case, pre-training helps the
model understand the context of the environment, such as the sequence continuity
of each of the 20 signals and the interrelation between these signals. However, as
seen in Figure 3.3 and Figure 3.2, the model with masked pre-training exhibits the
lowest intervention prediction accuracy compared to the mere supervised model.
A possible reason for this discrepancy could be the difference in context between
pre-training and supervised learning. During pre-training, the ML model predicts
the missing parts (masked entries) of the input signals. In supervised learning,
however, the model predicts the output signal (intervention side) based on the in-
put signals (the 20 signals). This issue is known as domain mismatch, and further
information about this can be found in the paper by (Ganin and Lempitsky 2015)
Effect of Mimic Pre-training: Ideally, pre-training should improve accuracy, as
explained in the paper by (Srivastava, Mansimov, and R. Salakhutdinov 2016)
However, as observed in Figure 3.3 and Figure 3.2, the model with mimic pre-
training exhibits lower intervention prediction accuracy compared to the mere su-
pervised learning model, although it performs better than the model with masked
pre-training.
One possible reason for this lower performance could be over-regularization or
overfitting. Since the unlabeled data significantly outnumbers the labeled data, the
model as a whole may become overfitted to the unlabeled data. As a result, the
learning from the supervised data might not be fully or appropriately utilized for
predicting the intervention decision. For more information about this problem of
overfitting during pre-training and its potential solutions, please see to the paper by
(Pereyra et al. 2017)

4.5 Limitations and Future Work

The work is based on several assumptions. Firstly, we do not have any information re-
lated to the drivers. False positive is often subjective to the driver, hence the annotations
would be more relevant if they are made based on the driver’s information or feedback.In
other words, after a data collection drive is done, the driver can be asked for instances
where the system intervened and if it was an acceptable intervention - at least in larger
field operational tests. Naturally, this would require that the data collection drives are con-
ducted with the ADAS system enabled. Additionally information such as driver glances
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from a driver monitoring system could also be added as an additional input signal to the
ML model to predict an intervention output that is more adaptive to the driver. In both
approaches, utilizing driver data would have facilitated the development of a machine
learning model that has the potential to be more widely accepted by the driver in terms of
the Lane Keeping Assist (LKA) feature.The paper (Davoli et al. 2020) discusses use of
driver behaviour data for driver state estimation, driving intent understanding for ADAS
feature development.

Secondly, the thesis has focused only on optimizing the performance using one type of
neural network (LSTM). It is possible that other Machine Learning methods can produce
even more accurate results, or reduce the computational effort.(add John Dahl reference
and methods he used)

Finally, we had the labels only for True positive and False positive events. Since we didn’t
have any labels specifically indicating True negative or False negative data, we used an
alternative approach to generate simplified True Negative events as described in 1.3.5.1.
The implication of this, i.e., the lack of labeled data for TNs and FNs, would be that the
model would have limited performance, similar to the impact of unbalanced data with
respect to existing labels (TPs and FPs). A poor performance in predicting FNs would
mean that system would be compromised in terms of safety. This is in contrast to that in
FPs, which would mean poor acceptance by drivers.

4.6 Conclusion

This thesis aimed to model the threat assessment and decision-making of an LKA system
through learning-based methods, specifically using a Neural Network. An LSTM network
was trained as an LKA system based on 20 signals related to lane markers, road geom-
etry, and ego vehicle kinematics.In this thesis, we investigate a range of data processing
techniques and machine learning models, including both supervised learning models and
pre-training models. The pre-training models involved training the model with unlabelled
data and then transferring this learned knowledge to a supervised learning model that
learned from labeled data. The objective was to identify the most accurate method for
predicting intervention decisions based on 20 input signals. We initially tested a basic
model without augmentation using different sequence lengths, then evaluated different
machine learning models and augmentation techniques for the selected optimal sequence
length. The goal was to determine the best method for intervention decision predictions
on the prepared test data.

We determined that the optimal method, which combines a specific machine learning
model and data augmentation technique, achieved a prediction accuracy of 93.5% for
intervention decisions on the test data. This accuracy implies that out of the 100 cases
provided, the ML model accurately predicted the correct outcome in 93 cases, compared
to the the ground truth (manually annotated data).

Further, this ideal model consists of samples with sequence length of 60 frames (which
is close to 1.5 seconds), used only time-shift type of augmentation, and uses only super-
vised learning without any pre-training. This can be further improved with annotations on
FPs and FNs to generate a sufficient and balanced training set and data on driver glance
behavior and reevaluated with other Machine Learning methods.
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