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From image to graph: Topological representation of Wire harnesses using deep learn-
ing
Department of Industrial and Materials Science
Chalmers University of Technology

Abstract
The ability to classify an abstract representation into an image of a wire harness is
a key step in automating the wire harness assembly industries. This study examines
different methods and machine learning architectures to extract visual and physical
features from an image of a wire harness. To identify suitable methods for abstractly
representing and classifying a wire harness, a systematic literature review was con-
ducted. The systematic literature review was not limited to studies about wire
harnesses, but expanded to studies about deformable linear objects. Following the
systematic literature review, an experimental study was conducted that evaluated
an existing implementation for graph representation of a wire harness and a novel
method based on a You Only Live Once (YOLO) segmentation model together with
a Graph Convolutional Network (GCN) to classify the graph representation against
a validation file of known harnesses. The segmentation output from the YOLO net-
work is fed into a skeletonization method that returns a graph that represents the
wire harness. In order to classify the graph representation against known harness
structures, a GCN along with a validation step is performed. The models are trained
on a proprietary dataset and two open-source datasets. The proposed solution can
be easily adapted to classify new wire harnesses.

Keywords: Computer vision, Deep learning, Wiring harness, Abstract represen-
tation, Classification, Deformable linear objects, Graph representation, Machine
learning.
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1
Introduction

1.1 Background

The manufacturing industry is highly dependent on robotic assembly to handle pro-
duction needs while reducing cost, human error, and injuries [32]. However, in the
automotive industry and many other �elds where wiring harnesses are used, they are
still manufactured by manual assembly [38]. The manual assembly of wire harness is
one of the bottlenecks for production needs [38]. Although there are many challenges
to fully automate the wiring harness assembly, extracting a graph representation of
a wiring harness from an image is a step on the way towards automation. One of
the reasons it is hard to extract a graph representation of a wring harness is due
to the deformable nature of wires, more broadly called deformable linear objects
(DLO) [31]. This makes the number of possible con�gurations almost inde�nite
for each harness. Rigid objects are much easier to label with traditional bounding
boxes. Trying to �t a wire harness within a bounding box results in most of the
bounding box consists of background 1.1. In recent years, deep learning solutions
such as convolution neural networks (CNNs) have exploded in various applications
[9]. Recent progress in pixel-level labeling has made it possible to capture these
deformable objects much easier [20]. Being able to extract a graph representation
of a wiring harness, could help automating industries that rely heavily on wiring
harnesses like automotive and aviation industries. They are also applied to reduce
the failure of the wiring harness assembly on the manufacturing line [20].

1.2 Problem description

The problem in this paper is, from an image of a wire harness extract a graph
representation for down-the-line classi�cation, it involves deciding on a format of
how to represent a wire harness as a graph. The wire harness community su�ers
from data scarcity, with few annotated wiring harnesses available publicly. The
deformable and branched nature of the wiring harness with possible overlapping
wires makes the number of con�gurations in�nite. Current solutions for automation
of wiring harness assembly are that they often rely on arti�cial markers or other
features to recognize a harness [31]. A computer vision model capable of extracting
a graph representation only based on its visual properties is a solution needed for
automation of wire harness assembly. A possible solution is semantic segmentation
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1. Introduction

Figure 1.1: Comparison of bounding box around a rigid object versus a wire
harness

that manages to extract a segmentation of the harness that can be used to extract
a graph representation.

1.3 Purpose

The number of wire harnesses that are being produced is constantly growing [31].
Being able to create a method that can extract a graph representation of a wiring
harness is an important step towards automation of wire harness assembly. This
could later be used in applications for real-time visualization on the assembly line,
assessment of harness completeness, and quality assurance. The aim of this thesis
is to create a model that can extract the graph representation of a wire harness
from an image of a wire harness. The model should also be able to classify the
components within the wire harness, such as connectors, terminals, etc. This will be
useful for classi�cation against known harnesses and result in an informative graph
representation. A recent study has been able to extract a graph representation from
an image of a wiring harness [23]. [23] estimates each wire segment with keypoints
to extract a graph representation. Another possible solution is to take advantage
of semantic segmentation. Being able to segment the wire harness accurately will
help extract additional features such as color, length, geometrical features, etc. This
contributes to a more detailed graph representation.

1.4 Research Questions

This paper will investigate and answer these questions to complete the goal of clas-
sifying a graph representation of a wire harness to an image of a wire harness with
computer vision. To gain knowledge of previous work and what di�erent visual cues
such as wire, connectors, etc. that a wire harness exists ofRQ1 will be investi-
gated. As mentioned above, [23] manages to extract a graph representing the wire

2



1. Introduction

harness. HenceRQ2 was crafted to instigate di�erent network architectures able
to extract topological information. The last research question will investigate the
transformation of an image of a wire harness into an abstract representation.

ˆ RQ1 : What kind of visual features can be used to represent a wire harness in
an abstract way?

ˆ RQ2 : What kind of network architectures are suitable for extracting topolog-
ical information from a wire harness image?

ˆ RQ3 : How can you classify a wire harness to previously known harnesses?

1.5 Scope and Delimitations

The scope of this study is to develop and evaluate di�erent methods for converting
an image of a wire harness into a graph representation and classi�cation of a wire
harness. The study will evaluate existing techniques, tweak and combine them to
create a pipeline able to extract a graph representation and classifying wire har-
nesses. In this study wiring harnesses with overlap will not be taken into account.
Existing network architectures will be evaluated and tweaked toward the problem
at hand, a network built entirely from scratch will not be evaluated.

1.6 AI Disclaimer

ChatGPT was used for text generation to ensure that the text does not contain
spelling and grammatical errors. Its also been used for suggesting rephrasing with-
out a�ecting the core content of this study. All AI-generated content has been
critically reviewed by the author taking full responsibility for any content generated
by ChatGPT. ChatGPT has also been used in collaboration with the author to solve
implementation issues of machine learning models written in Python.

1.7 Thesis outline

Chapter 1 : Outlines the background, problem description, purpose, goal, research
questions, and the scope and delimitations.

Chapter 2 : Introduces some fundamental knowledge of machine learning and key
concepts used later in the report.

Chapter 3 : Details the overall methodology of the paper.

Chapter 4 : Describes the approach and steps in the systematic literature review.

Chapter 5 : Presents the �ndings of the systematic literature review and ends
with a comparison listing current gaps in similar studies.

3



1. Introduction

Chapter 6 : Explains the experimental study conducted to implement current mod-
els and implementing a custom pipeline to extract topological information from a
wire harness image and match against known harnesses.

Chapter 7 : Showcases the results of the experimental study.

Chapter 8 : Discussion of the results of the systematic literature review and the
experimental study.

Chapter 9 : Conclusion and future work.

4



2
Theory

2.1 Machine learning

Arti�cial intelligence is part of the computer science �eld and has gained signi�cant
attention in recent years. Its goal is to mimic the behaviour of the human brain.
The set of methods to train a computer to recognize patterns in data is called
machine learning (ML). A popular part of machine learning is deep learning, it is
an architecture that consists of several hidden layers [26].

Machine learning algorithms

There are four types of machine learning algorithms that most ML algorithms can be
divided into: supervised, unsupervised, reinforcement, and semi-supervised machine
learning. Supervised machine learningincludes labeled data, a labeled dataset is
made up of input points and a label which represents the ground truth. The ground
truth is the desired output from the network given a certain input. One part of
supervised learning is classi�cation, given an input, trying to classify what class
it belongs to. Segmentation is a type classi�cation, where, given an image, the
model tries to predict which pixel in the image is a certain object. This can be in
binary form 0 (no) or 1 (yes), or multiclass classi�cation where the model outputs
a probability for each class, the sum of all probabilities should sum up to 1. The
predicted value of the model can then be compared with ground truth in order to
update the model with the knowledge if the predicted answer was correct or not
[29]. Compared to supervised learning,Unsupervised machine learningconsists of
unlabeled data. This method is mainly used to cluster data points into di�erent
classes. An example is K-means clustering where the algorithm tries to group the
input data points into K di�erent classes [29]. Reinforcement machine learning (RL)
algorithm trains an agent in a given environment, it learns by interacting with the
environment though taking di�erent actions and evaluating the result of the action.
The purpose of RL training is to maximize the reward function after certain steps
of actions [10]. Creating a model capable of playing a game like Tetris would be a
suitable task for a RL model. The idea ofSemi-supervised machine learningis to use
both labeled and unlabeled data in order to train a network. Often the unlabeled
data makes up the larger part of the data. An example where this is useful is e-mail
spam, where a user marks some of the emails as spam but not all [18].

Neural network

5



2. Theory

A neural network (NN) is a subpart of ML that mimics the neurons and connections
of the human brain. Figure 2.1 shows a basic architecture of a fully connected neural
network. It consists of an input layer with three neurons that receives the input.
A hidden layer with four neurons, where each neuron is connected to all neurons in
both the input and output layer. Each connection has its own weight, the value of
this weight will determine how much each node a�ects the output. Eventually, one
of the output neurons is activated, indicating the class of the input.

Figure 2.1: Example structure of a neural network

Training

The goal of training a neural network is to minimize the loss functions of the network.
The loss functions are di�erentiable functions that compare the di�erence between
the ground truth label of the input data and the predicted label from the network
during a forward pass. An example of a loss function is the mean squared error
(MSE).

MSE =
1
n

nX

i = i

(yi � ~yi )² (2.1)

MSE calculates the mean squared error from all predicted values and true values.
When training neural networks, the input gets passed to the network and goes
trough all its layers until it reaches the output, this is called a forward pass. When
the forward pass is completed and the predicted label is known, the loss is computed.
Then with the help of backward propagation, calculates the gradients of each weight
and its impact on the loss. Finally the loss regarding each weight is used by an
optimizer in order to update the weights to perform better in the next iteration,
this completes the training cycle Figure 2.2 illustrates the training cycle with code.

6



2. Theory

Figure 2.2: Code indicating the key steps for training an machine learning model

Evaluation

The evaluation of a neural network can be done in many di�erent ways. Intersec-
tion over Union (IoU) is a metric within computer vision that compares the ground
truth bounding box or segmentation of an object to the predicted bounding box or
segmentation by the model. The IoU is calculated by dividing the Area of Overlap
by Area of Union Figure 2.3. Mean average precision (mAP) is another similar eval-
uation metric for object detection. It gives some insight into the mean of all classes,
where you measure four di�erent values together, called the confusion matrix, IoU,
precision in (2.3), and recall in (2.4). The confusion matrix in Figure 2.4 depends
on 4 di�erent values:

ˆ True negatives (neither the predicted label or actual is the class)

ˆ False negatives (the predicted is not the class but actual is)

ˆ True positives (both predicted and actual label is the class)

ˆ False positive (the predicted is the class but not the label)

Figure 2.3: Illustration of Intersection over Union equation

7



2. Theory

Figure 2.4: Visual representation of the confusion matrix

From the confusion matrix other valuable evaluation metrics like accuracy, precision
and recall can be calculated:

Accuracy=
TP + TN

TP + TN + FN + FP
(2.2)

Precision=
TP

FP + TP
(2.3)

Recall=
TP

FN + TP
(2.4)

There are endless ways to evaluate a model, most popular being the standard ones
mentioned above, but also many custom evaluation formulas tailored to a speci�c
task exist. All evaluation methods, however, have the same goal: to get the most
accurate and meaningful assessment of how well the models perform on the task at
hand.

2.2 Application

There is no machine learning architecture that is best suited for every application.
Knowing the expected output of the network is important in deciding the best
architecture for the speci�c problem. For a model that recognizes dogs in images,
a CNN would be well suited. However, if the expected output of the model is to
remove the dog from an image, a semantic segmentation model would be preferred.

Object detection

There are di�erent types of object detection methods, such as two-stage and one-
stage detectors. In one stage both object classi�cation and bounding-box regression
are done directly without any pre-generated region proposals. In two-stage detec-
tion, the model �rst identi�es regions of interest and then applies the bounding box

8



2. Theory

and classi�es what object it is [21]. One problem that the early object detection
algorithms faced was that the region proposal algorithms was a bottleneck for the
computation speed.
A convolutional neural network is inspired by the feedforward neural network except
for that it utilizes �lters to learn di�erent features within the image. Compared to
traditional classi�cation algorithms, they require very little pre-processing of the
images. CNNs are very good at object recognition by applying convolutions and
pooling layers. CNN's ability to recognize patterns is very good. These patterns are
recognized with the help of the �lter, kernel and stride operations [15]. An example
of object detection applications today are self-driving cars, where the car must detect
objects surrounding the car, like tra�c lights, pedestrians and stop signs [25].

Image segmentation

Image segmentation has had a rapid growth in recent years because of its ability to
tell you exactly where the object is. Compared to earlier object detection techniques
where a bounding-box is predicted around the predicted object. Image segmentation
has the ability to classify speci�c regions of image into di�erent classes. Especially
in cases where more than just the approximate position of the object is necessary.
A segmentation of an object identi�es exactly what pixels a certain object in the
image belongs to that object. This gives the ability to analyse properties of the
object better. Such as the color of the object, shape and length. Popular semantic
segmentation architectures are U-Net [28] and LinkNet [3] which are all built upon
the CNN structure. YOLO is also a very popular image segmentation network.
Image segmentation applications are very popular in medical imaging. There are
applications that from a CT scan is able to predict whether cancer is benign or
malignant [28].

Figure 2.5: Di�erence between object detection and semantic segmentation on
the same harness

Graph classi�cation

An issue with trying to classify a wire harness without and arti�cial markers using
object detection or segmentation is hard because they are very good at learning
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2. Theory

local visual features and spatial patterns. However, for classi�cation of a graph
they don't understand that a wire is connected to a Connector. To be able to
learn and classify relationships like that Graph Neural Networks (GNNs) and Graph
Convolutional Networks (GCNs) are two machine learning architectures that are
much more suitable. The goal of these architectures is to predict a label for an
entire graph, e.g a graph representation of a wire harness. They are especially good
for topological reasoning and understand how components are connected to each
other [13].

2.3 Machine learning architecture

Deciding on if the model should involve object detection, classi�cation or segmenta-
tion, needs to be decided before choosing a network architecture, all network archi-
tecture have di�erent strengths and weaknesses. Knowing what the model should
output is the �rst step in answering the previous question, but knowing what is the
best method to achieve that result is the second step. In recent years several ma-
chine learning models have become widely adopted and used in many applications
because of their strengths.

U-Net

U-Net is an architecture initially developed for biomedical image segmentation. U-
Net requires pixel-level segmentation and not traditional bounding boxes. The net-
work consists of two phases, an encoder and a decoder. The encoder receives the
input and contracts it with max pooling 2x2, in order to capture context. The de-
coder then expands the input by up-convoluting 2x2 to capture localization. Due
to its heavy data augmentation, it requires less data to be trained. U-Net does
not require any pre-training on large datasets like "ImageNet", which makes it more
suitable to be trained on speci�c tasks like medical images and wiring harnesses [28].

Feature Pyramid Network

The Feature Pyramid Network (FPN) was developed in 2017 by Facebook AI re-
searchers (Meta). Compared to normal image pyramids that depend on multiple
scales of an input image, FPN can build a feature pyramid with the help of a single
deep neural network. This helps reduce the amount of computation. The architec-
ture start with a bottom-up pathway; this helps capture both high- and low-level
features. Then it up-samples the deeper feature maps to enhance the features in the
images. With lateral connections, high-resolution images are merged with low-level
feature maps in order to combine semantic information and spatial details. This
architecture can detect objects on multiple scales, such as small wires and large
connectors [16]. FPN has a similar structure to U-Net, but the predictions di�er
where U-Net outputs a prediction of a segmentation mask at the highest level and
despite a few training images perform well [20].

LinkNet
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2. Theory

The application for LinkNet is semantic segmentation. Spatial information is often
lost in the encoder because of pooling and strided convolution. U-Net is an example
of an architecture where the spatial information is lost [3]. LinkNet is fast and
optimal for real-time segmentation [20].

YOLO

Finally YOLO, (You only look once) consists of a single neural network that predicts
bounding boxes and class probabilities directly from an image in one evaluation. It
divides the image into anS � S grid. Each cell predictsB bounding boxes. Each
bounding box consists of 5 predictions(x; y; w; h) and con�dence. It also predicts C
conditional class probabilities. So the tensor size isS � S � (B � 5 + C). YOLO can
very accurately perform single-shot multi-object detection. That is, it can locate
multiple objects within a picture in one single stage [27].

2.4 Previous work

Previous work has been conducted within the wire harness community. In [23]
they investigate di�erent ways of extracting a topological graph representing a wire
harness from an image. They comparedirect versusindirect topology extraction.
Indirect topology extraction consists of two steps, starting o� by predicting bounding
boxes for all wire segments. During the second stage it tries to predict keypoints
on the wire segment for each bounding box. Direct topology extraction treats the
harness as one whole harness instead of di�erent wire segments. And from the
entire harness predict keypoints on the wires. From these keypoints, [23] proposes a
method involving spline interpolation to estimate the structure of the wire. Studies
focusing on image segmentation have also been tried, [20] compares di�erent image
segmentation methods to classify the di�erent parts of a wire harness, in order to
predict the harness type. The di�erent methods compared are LinkNet, U-Net and
FPN, the best achieving model in their case was FPN with SE-ResNeXt101 as the
backbone which achieved an IoU of 86.2%. However, this relies on markers and
features other than the visual clues of the harness. The harnesses tested in this
paper were from a car door and is mounted on a foam board with clips. The model
would most likely perform worse in a di�erent setting where the harness lies on
a table and is not mounted in a speci�c position. [4], [2], [12] does not focus on
wire harnesses but DLOs so their work is still relevant. They all try to predict
the con�guration of wires from a segmentation mask or image of wires. They all
consider the inference time, to maximize the FPS in an application. [4] proposes a
skeleton traversal strategy to minimize the bending energy to predict the individual
wire segments in real-time, even in cases of overlapping wires.

2.5 Graph Theory

There are multiple abstract ways to describe a wire harness, one that is obvious is
a graph. Graphs are represented by nodes and edges, e wire in the harness would
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be represented as an edge and each connector as a node. There are directed and
undirected graphs. Directed graphs have a directiona ! b6= b ! a while undirected
graphs are like two-way streetsa ! b = b ! a. The direction does not matter for
a wire harness, due to the cable being equal in both direction. To encode more
information in the graph a weighted graph is useful, which includes a weight for
each edge. This would be the length of the wire. Isomorphic graphs are graphs that
have equivalent edges. If two graphs have a bijective functionV(G) ! V(H ) such
that any two vertices of G u; v that are adjacent in G i� f (u); f (v) are adjacent in
H, as seen in Figure 2.6. To decide if two graphs are equivalent, knowing if they are
isomorphic is not enough. For two graphsG = ( Vg; Eg) and H = ( Vg; Eg), it must
follow the conditions: All nodes must have the same label and an edge that exists
between two nodes inE must exist in H

Vg = Hg (2.5)

Eg = Hg (2.6)

Figure 2.6: Image visualizing the di�erence between Equivalent and Isomorphic
graphs
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3
Methodology

3.1 Overview

This chapter describes the research design and methodology for this study. A
multiple-method research is performed, starting with a quantitative systematic lit-
erature review and a quantitative experimental study. Both follows well established
guidelines in order to ensure scienti�c rigour and reproducibility. The systematic lit-
erature review follows Kitchenham's guidelines for a systematic literature review for
software development [14]. The experimental study follows the guidelines presented
Pe�ers et al.'s Design Science Research Methodology (DSRM) [24].

3.2 Research design

To answer the research questions in order to ful�ll the aim of this paper, a mixed-
method research approach was selected. In order to gain knowledge of previous
studies strengths and identify weaknesses. A systematic literature review aims to
answer RQ1 and partially help to gain some knowledge of network architectures
suitable for extracting topological information from an image of a wire harness.
Succeeding the SLR, an experimental study will be performed in order to compare
di�erent existing solutions and evaluate them against a novel method to extract an
abstract representation and answering RQ2 and RQ3.

Research Questions

ˆ RQ1 : What kind of visual features can be used to represent a wire
harness in an abstract way?

ˆ RQ2 : What kind of network architectures are suitable for extracting
topological information from a wire harness image?

ˆ RQ3 : How can you classify a wire harness to previously known har-
nesses?

3.3 Research Methods

The following section explains the methods for the SLR and the experimental study.
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3.3.1 Systematic literature review

A systematic literature review (SLR) was performed to gain knowledge of previous
studies in similar areas. The review helps primarily to answer what kind of fea-
tures best describe a wire harness and which network architectures are suitable for
extracting topological information. The SLR will follow the guidelines of Kitchen-
ham's [14]. To help mitigate common issues such as publication bias, forward and
backward snowballing will be performed [8]. Figure 3.1 illustrates the di�erent steps
described in [14]:

Figure 3.1: Overview of the methodology for the systematic literature review

ˆ Development of review protocol De�ne the scope, search terms, inclusion
and exclusion criteria

ˆ Search strategy Search strategy to identify primary papers, de�ne database
ˆ Study Selection Filter all found studies based on de�ned inclusion and ex-

clusion criteria
ˆ Quality Assessment Evaluate the quality of the paper based on prede�ned

checklist determined in the protocol.
ˆ Data extraction Extract data from the studies that have been de�ned in the

protocol, eg. accuracy of model.
ˆ Data synthesis Present the data from the primary papers and analyse the

�ndings.

3.3.2 Experimental study

To help answer RQ2 and RQ3, which type of model architecture is best suited to
extract and classify a graph representation from an image of a wire harness, an
experimental study was conducted. In which existing models were evaluated and
tweaked to create an optimal model that performs best on the provided dataset.
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The experimental study will follow the standard guideline of Pe�ers et al.'s Design
Science Research Methodology (DSRM) [24]. This research design is especially
tailored for solution-oriented research in software development. Starting o� with
problem identi�cation and object de�nition, which is already described in the SLR.
The next stage of the design phase is where this experimental study will start.
Design and development of an artifact. The artifact in this experimental will be a
pipeline of machine learning models for graph extraction and classi�cation of a wire
harness. After the development stage, demonstration and evaluation will provide
informative insights of the artifact and allow further re�nements. It consists of
iterative development and evaluation of artifacts which is ideal for developing an
ML model. The iterative process allows for better quality and e�ciency of the �nal
artifact.

Figure 3.2: The methodology for the experimental study

Figure 3.2 illustrates the four steps outlined in [24].

ˆ Design & Development
The study will involve a pipeline for wire harness representation and classi�-
cation, guided by the results from the SLR.

ˆ Demonstration
The developed pipeline will be applied to an open source and Wiretronics
proprietary dataset to demonstrate its capabilities.

ˆ Evaluation
The artifact will be evaluated with the same evaluation metrics as previous
studies in order to compare them against each other.

ˆ Communication
All the results are documented within this study.

3.4 Research quality

To ensure internal validity during the review clear inclusion / exclusion criteria
were decided before conducting the review in order to minimize research bias. A
screening process of peer-reviewed sources and snowballing to avoid publication bias
and ensure that no relevant papers got excluded. Regarding external validity, the
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�ndings from this study can help future work in classifying wire harnesses from an
image, quality assurance and robotic assembly of wiring harnesses. The abstract
representation of BDLOs is not only applicable to wire harnesses, there are other
areas like ropes and textile manufacturing.

To validate the reliability, the study can be reproduced on the Scopus database,
which returns consistent result for the same search string. Another research could
follow the same steps provided above and come to the same results. Scopus is a big
database, but no database captures all, to help mitigate this, snowballing, was used
[8]. 42 papers were excluded because they were not in English or Swedish so some
relevant papers might have been �ltered out during the screening process. Since only
one researcher conducted the screening unintentional biases might have occurred.

To ensure research quality for the experimental study clear evaluation criteria are
stated. The dataset carefully curated, no overlapping wires within the dataset, all
images annotated manually. Using transfer learning from a model trained on a large
dataset (COCO [17]) helps to avoid over�tting. The di�erent models developed
in this study are tested with the same train/test/val (70/20/10) splits. Internal
validity is ensured by verifying di�erent parts of the pipeline by evaluating them
independently. By testing on both real data and synthetic data external validity is
considered. Reproducibility is ensured by documenting all the steps in this report
from data collection to model evaluation.
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Systematic literature review

4.1 Review protocol

To gain a deeper understanding of the di�erent features of a wire harness and net-
work architectures suitable to extract topological information. The systematic lit-
erature review will follow the steps explained in [14], which is a publicly available
template for conducting a systematic literature review aimed at software engineer-
ing.

ˆ RQ1 : What kind of visual features can be used to represent a wire harness in
an abstract way?

ˆ RQ2 : What kind of network architectures are suitable for extracting topolog-
ical information from a wire harness image?

4.1.1 Search strategy

The search was performed on the "Scopus" database, Scopus was selected because its
widely recognized as a standard for engineering education research. Unlike databases
like Google Scholar that return di�erent results with same search string, Scopus
searches are re-creatable, which is key for a reproducible study. A study was con-
ducted that compared di�erent databases. It showed that Scopus has a higher
impact ranking than "Web of Science" and covers more journals within the engi-
neering community [5]. It also has more content and citations to Web of Science
and greater overlap with modern databases such as Microsoft Academic [19]. To
�nd primary studies, an initial search string segmentation was performed to gain an
estimate of the e�ectiveness of di�erent keywords. The �rst search being:

"(Wire OR cable*) AND (Harness* OR Bundl*)"

However, this returned more than 10,000 results; to narrow it down, this search
query was combined with keywords to only extract relevant papers to the research
objectives. This ensures that the �nal search string yields a comprehensive yet
manageable number of results. The �nal query that will be used to search the
Scopus database is:

(Wire OR Wires OR Cable*) AND (Harness* OR Bundl*) AND
(representation OR topology OR segmentation OR

classification)
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4. Systematic literature review

The �rst part of the search query "(Wire OR wires OR Cable*) AND (Harness*
OR Bundl*)", is matched with keywords in the Title, Abstract, and Keywords. The
second part "Representation OR Topology OR segmentation OR classi�cation" is
matched with all �elds of the papers. In order to include more synonyms to "wire
harness" the OR operand was used and to include plural phrases an asterisk operator
(*) was included. The �nal search query produced 766 documents on March 4, 2025.
Table 4.1 shows the inclusion and exclusion criteria.

Database Scopus

Keywords

Article title, Abstract, Keywords :
(Wire OR Wires OR Cable*) AND (Harness* OR
Bundl*)

All �elds :
(representation OR topology OR segmentation OR
classi�cation)

Search �elds First part: Title, abstract, and Keywords, Second part
all �elds

Inclusion criteria Papers that focus on abstract or graphs representation,
segmentation, topology prediction or classi�cation of a
wire harness or DLOs in an image

Exclusion criteria Poorly structured reports or language, not about wire
harnesses or DLOs

Search date March 4, 2025

Table 4.1: Overview of the review criteria

4.1.2 Study selection

The inclusion criteria for a primary study will be evaluated by one researcher. The
screening process will be performed in two stages. The �rst stage assesses the title
and abstract according to the inclusion criteria. The second stage will be a complete
read of the through the papers that were selected according to the inclusion criteria in
the �rst stage. In the second stage, papers that do not align with the research scope
will be discarded and papers that meet the inclusion criteria and quality criteria
will be included as a primary study. The primary studies will be summarized and
compared with each other to �nd any gaps in current research. Because of the
overlap between "Wire harness" and "Deformable linear objects", DLOs were added
as inclusion criteria, because techniques that are applied to DLOs can be transferred
to wire harness applications.

4.1.3 Quality Assessment

The quality of the papers will be evaluated on the basis of di�erent attributes.
For the language criteria, the paper must be written in English or Swedish for the
reader to understand. The paper must also have some relevance to the research

18



4. Systematic literature review

questions. One reason for choosing the Scopus database is because the papers that
are published are peer reviewed. To ensure the quality of the study, it must follow a
clear structure and have some form of scienti�c value. An example of a paper that
would be included is an English, peer reviewed document about abstractly matching
a wire harness from an image.

ˆ Language and structure � Is the text in Swedish or English?
ˆ Peer-review status � Has the paper gone though a peer-review process?
ˆ Relevance � Is the study relevant to the research questions?
ˆ Content quality � Does the text have a clear methodology and scienti�c

rigour?

4.1.4 Publication bias

Since only one researcher is conducting the review and only English or Swedish
papers are reviewed and Scopus is the only selected database, there is a risk of
publication bias. To help mitigate the publication bias, snowballing method will
be performed to help reduce the publication bias [8]. Both forward and backward
snowballing will be carried out. The snowballing method consists of identifying
additional relevant literature that might have been missed during the initial scoping.
Forward snowballing investigates all references cited in the primary studies, and
backward snowballing consists of searching for studies that cite any of the primary
papers [8]. Even though this helps to reduce the publication bias there is still some
bias towards well written Swedish/English papers from top journals.

4.1.5 Data Extraction

From the primary studies, the following information is extracted and presented in
a table 5.1: publication year, method used, and key �ndings. This is extracted
manually and compared with each other to present common approaches and gaps
in current research and techniques that can be further worked on in this study.
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Results - Systematic literature

review

The following chapter presents the results of the systematic literature review. The
data synthesis summarizes all the 12 primary papers from the systematic literature
review in Table 5.1. It consists of 5 columns Reference number, Year, Method, Key
�ndings.

5.1 Conducting the review

The �rst stage of screening included reading the title and abstract of 766 docu-
ments. All were evaluated according to inclusion criteria. After �ltering the initial
studies to show only English or Swedish papers, 42 articles were �ltered due to a
language barrier. Of the 724 existing articles, the �rst screening stage began. This
involved reading the title and abstract and evaluating according to the inclusion
criteria whether or not the articles should go to the second screening. After the
�rst screening 695 papers were discarded because they did not meet the inclusion or
quality criteria. 29 articles were taken to the second stage of the screening. However,
after completing a full read through, eight papers were selected as primary studies
based on the inclusion criteria and study quality. From the primary studies, forward
and backward snowballing was performed. This resulted in four more papers being
included. Figure 5.1 illustrates a Prisma �ow chart of the review screening stages.
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Figure 5.1: Prisma �ow chart of the review process
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5.2 Data Synthesis

Ref Year Method / Model Key Findings

[23] 2024 Swin-Transformer
Panoptic Spline Predic-
tor (SPS), YOLOv8-
Pose

SPS model outperforms YOLOv8-Pose in direct topol-
ogy prediction using keypoint detection and spline in-
terpolation. Achieved mAP@50-95 of 82.5%.

[37] 2023 Graph segmentation
and topology matching
of BDLOs

Graph-based approach enables abstract comparison
of wiring harness topology. Matching performed via
topology graphs. achieved an topology matching ac-
curacy of 96.3%

[36] 2023 Instance segmenta-
tion (Mask R-CNN,
DeepLabV3+)

Extracts topological features (wires and connectors)
for downstream robotic manipulation (e.g., gripping).

[1] 2023 DLO3DS: Multi-view
2D camera, B-spline
modeling + stereo
triangulation

Accurate 3D reconstruction of DLOs from 2D views
using robotic-arm-mounted camera.

[33] 2024 Particle Filter with B-
spline tracking on depth
images

Per-branch tracking without segmentation enables ro-
bust BDLO tracking under occlusions and low con-
trast.

[7] 2024 OpenCV + Agglomera-
tive Clustering

Uses clustering and vision to detect grip points along
harness branches for robot interaction.

[22] 2021 CNN + depth pro�le
correction for 3D path
extraction

Enables robot-guided harness assembly using 3D pro-
�ling from grayscale and depth input. Demonstrated
72.5% success rate in automated assembly tests.

[20] 2021 Deep learning-based se-
mantic segmentation for
AOI

Enables in-line inspection of rigid/deformable harness
components, improving traceability and QA.

[12] 2023 Skeletonization +
B-spline �tting
(DLOFTBs)

Fast, accurate shape tracking without deep learning.
Handles occlusion, self-intersections.

[11] 2021 CNN with saliency
maps for wiring harness
classi�cation

Provides interpretable classi�cation of wire branches
for robotics guidance.

[2] 2022 Skeleton-based segmen-
tation with similarity
learning (FASTDLO)

Fast and e�cient segmentation of DLOs using
skeleton-based structure, useful for matching harness
shapes.

[4] 2023 Minimal Bending En-
ergy Skeleton Traversal
(mBEST)

Optimized for real-time, skeleton-based DLO detec-
tion by minimizing bending energy. E�ective for com-
plex intersections.

Table 5.1: Summary of Primary Studies and Key Findings
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The following tables list the primary papers divided into four di�erent tables. All
focus on some part of the wire harness or DLO classi�cation or segmentation, topol-
ogy prediction or matching, and feature extraction. All tables consist of the same
information: paper, model/method used, task, metric, and metric score from the
results of the primary studies. Table 5.2 compares studies that focus on matching
a known topology to an image of a wire harness and topological prediction of a
wire harness. Table 5.3 lists the results between the studies that focus on image
segmentation and instance segmentation of electrical wires and wire harnesses. The
following table, Table 5.4 shows the quantitative results of the studies that focus
on feature extraction. Two of the features that both papers have in common are
endpoints and branch points (junctions). The last table, Table 5.5 shows the results
from [11]. This study tries to classify a wire harness from an image.

Paper Model/Method Task Metric Value
[37] Graph-based matching Topology matching Topology accuracy 96.3%
[23] YOLOv8-Pose Topology prediction mAP@50-95 89.8%

Table 5.2: Comparison of primary papers focusing on matching and prediction of
wire harness topologies

Paper Model/Method Task Metric Value

[4] mBEST
DLO detection and
segmentation

DICE 92.17%

[2] U-Net variant Instance segmentation mIoU 77.0%
[36] Not speci�ed Image segmentation mAP@50 89%

Table 5.3: Results from the image and instance segmentation papers

Paper Model/Method Task Metric Value

[33]
Particle �lter with
B-spline

Endpoint/junction
prediction

mAP@50-95 88.5%

[20] Mask R-CNN Feature segmentation Accuracy 85.55%
[22] Masked R-CNN Feature extraction Accuracy 94%

Table 5.4: Results of the primary papers focusing on feature extraction

Paper Model/Method Task Metric Value
[11] CNN variations Classi�cation Accuracy 96.76%

Table 5.5: Table of the primary papers that focus on classi�cation of a wire
harness
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5.3 Graph representation

To predict the topology of a deformable linear object there are two main strategies,
direct and indirect topology prediction. Direct topology prediction can without a
region of interest step predict keypoints on a BDLO. Meanwhile, indirect topology
prediction requires a region of interest such as the prediction of bounding boxes
around the wire segments. After bounding box prediction of all wire segment the
model tries to predict keypoints on the wires.

A deep learning method for direct topology prediction is introduced by [23], they
propose a novel Swin-transformer model (SPS). The model predicts keypoints on
each segment from an image of a wire harness, then each keypoint is interpolated
using cubic splines to form a structured representation of the harness. This can be
interpreted as a graph with predicted keypoints as nodes and splines as edges. This
method managed to outperform a YOLOv8m-pose model in direct topology predic-
tion with a mAP@50-95 of 82.5 % compared to YOLO's 11.8% mAP@50-95. Al-
though this approach is fast and compact, the paper also evaluates indirect topology
prediction using YOLOv8m-pose, where a bounding box is predicted around each
wire segment, and then keypoints are predicted. This takes more computer power
than direct topology prediction, but results in better accuracy, the YOLOv8m-pose
model achieved mAP@50-95 of 89.8% contra [23]s 81.1% [23].

Meanwhile, [37] proposes a graph-based matching algorithm that aligns a previ-
ously known wire harness topology with a detected topology from a stereo camera
image. The known topology is explicitly represented as a directed graph:

F = ( N k+1 ; "k ; Ak) (5.1)

Where N is a set of nodes," is a set of segments, k is the number of segments,
and A is a set of features. An example of di�erent features are the length and
color of the wire segments. Their method uses a segmentation and skeletonization
technique, with a minimum spanning tree (MST) method to locate leaf nodes and
branch nodes. They achieved 96.3% accuracy, on a dataset limited to no overlapping
wires [37].

There are also di�erent methods that do not explicitly state the structure as a
graph, FASTDLO [2], mBEST [4], and DLOFTBs [12] output a representation that
can be converted to a graph representation even though they are not explicitly de-
scribed as such. These methods extract a skeleton from a segmentation mask, which
inherently de�nes a set of connected keypoints that can be treated as a graph struc-
ture. Future work could explore unifying [37] mathematical graph based abstraction
with the segmentation pipelines, enabling better extraction and classi�cation of the
DLOs.
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5.4 Semantic and instance segmentation

Some of the primary papers focus on segmenting deformable linear objects. [2], [12],
[4] are papers that manage to extract individual wires from a BDLO segmentation
mask. All three methods rely on a segmentation mask of a DLO, they di�er in the
algorithms used to estimate the structure from the mask. FASTDLO and mBEST
use a CNN to estimate a segmentation mask from the input image, while DLOFTBs
takes an already segmented wire mask as input. A skeletonization algorithm is then
applied to this mask; this gives the centerline which maintains the connectivity of
the DLO.

The main di�erence between the three methods is how they interpret intersections
and reconstruct the structure. FASTDLO uses a neural network to decide how
segments should be connected, based on di�erent features: color, thickness, and
directional consistency to resolve overlap. DLOFTBs, takes a geometry-driven ap-
proach, linking segments based on distance and orientation heuristics. This makes
DLOFTBs computationally e�cient, as it avoids the need for additional neural net-
work processing. Meanwhile, mBEST �ts a spline to a wire skeleton, then traverses
the skeleton to �nd keypoints such as junctions and endpoints. To resolve over-
lapping wires a minimize bending energy method is used to help ensure correct
topology. The minimum bending energy helps with the path generation in order
to ensure that the centerline follows the most probable physical structure [4]. This
achieves a fast computational time but can only handle one intersection per DLO
and relies on a manually tuned threshold based on the number of objects in the
image.

Another key di�erence between these methods is how they represent the �nal struc-
ture of the DLOs. FASTDLO outputs a set of keypoints along each segmented DLO,
which can be used for further processing or potential spline �tting. DLOFTBs in-
stead �ts a B-spline curve that is continuos which is useful for real-time applications.
mBEST, on the other hand, reconstructs the centreline of each DLO by following a
minimal bending energy path, which ensures that the structure adheres to physically
probable con�gurations. FASTDLO is capable of segmenting DLOs that is di�erent
from electrical wires, as shown in Figure 5.2, where it manages to segment medical
wires.

Figure 5.2: Medical wire segmentation from FASTDLO[2]
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They all have di�erent evaluation metrics, so comparing exact results is hard.
FASTDLO evaluates its segmentation performance using the IoU metric, on their
own custom dataset consisting of 135 labeled images, this was evaluated with two
di�erent backbone networks, ResNet-50 and ResNet101. ResNet101 provides the
best IoU with a result of 77.77 %. This increased to 84.49% when pre-trained on
synthetic dataset with chroma-keys. DLOFTBs does not report IoU but instead
evaluates the tracking accuracy of its B-spline representation, measuring how well
the �tted curve approximates the ground truth shape. mBEST, on the other hand,
uses the DICE score, which is similar to IoU but better suited for thin, elongated
objects. It also evaluates runtime performance in frames per second (FPS), demon-
strating a 50% speed improvement over FASTDLO while maintaining higher seg-
mentation accuracy.

FASTDLO is best for instance segmentation in cluttered environments where mul-
tiple DLOs need to be identi�ed and separated. DLOFTBs has very fast com-
putation which �ts for real-time applications, mBEST outperforms the others in
handling complex DLOs curvatures and overlapping structures. All these methods
have di�erent advantages, they all contribute to advancing DLO segmentation and
reconstruction, opening new possibilities for robotic manipulation, automation, and
industrial applications. They also solve some problems that [33] mention with the
large background noise that a�ects keypoint prediction when dealing with bounding
boxes around wire segments. Another study that focused on segmentation is [20],
this study evaluated three di�erent architectures and compared their Intersection
over Union, this was chosen because it heavily penalizing bad predictions. The ar-
chitectures compared were U-Net [28], LinkNet [3] and Feature Pyramid Network
(FPN) [16]. These models were chosen because of their strength in semantic seg-
mentation and the ability to extract low-level features. Just as [33] mention labeling
on a pixel level and using semantic segmentation is very good in for applications
regarding deformable linear objects. All models they test use transfer learning with
di�erent pre-trained networks, E�cientNet-B3 an ResNet50. The same hyperparam-
eters were used to ensure fair comparison between the networks. The best overall
architecture was the FPN with Se-ResNeXt101 as the backbone, averaging around
86.2 % IoU and a precision of 100%. However, this solution trained and tested on
one wire harness from a car door. The model predicts the nine di�erent components
that the harness consists of: fully taped wires, spiral taped wires, clips, and con-
nectors. The solution is limited to a single wire harness that lies �at in a assembly
position with arti�cial markers as can be seen in Figure 5.3.
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Figure 5.3: Segmentation results of the Volkswagen car door from [20]

5.5 Feature extraction

Earlier DLO tracking methods, that do not depend on segmentation have certain
limitations such as having to retrain the network for new wire harnesses or DLOs [33].
[33] method focus on keypoint detection using a YOLOv7-based detector trained on
synthetic depth images. Comparable to [23], this solution predicts the topology
indirectly. This allows each wire segment of the BDLO to be individually tracked
using particle �lters. The bene�t of this approach is improved generalization to
new wire harness topologies, and it also reduces the need of color information of
the wires which is common in wire harnesses where all wires are black. However,
the keypoints are sometimes inaccurate, believed to be due to the gap between the
bounding box around the wire. They suggested that future work should rely on
pixel-level annotation method could improve performance.

Another method for obtaining features from a DLO proposed by [22] is a method
that combines convolutional neural networks with depth pro�le correction to ex-
tract the 3D path of real-world wiring harnesses. It uses grayscale depth images to
guide robotic assembly, achieving a mean absolute error of 8.15 mm. This method is
validated in a real industrial context and demonstrates a 72.5% success rate in auto-
mated harness assembly tasks. This method may be more precise 3D path extraction
than [33] but less generalizable towards new topologies. Another paper that focuses
on feature extraction is [1], they introduce a system for reconstructing DLOs by
fusing multiple 2D views from a stereo camera mounted on a robotic arm. B-spline
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curve method is used on the segmented 2D projections and triangulates their po-
sitions to obtain an accurate 3D model, achieving a reconstruction error of 0.82 mm.

Finally, [36] uses a deep learning method using Mask R-CNN, for instance seg-
mentation, to extract important features such as junctions and endpoints in order
for robotic manipulation of the BDLO. The Mask R-CNN used ResNet50-FPN back-
bone pre-trained on the ImageNet dataset. Individual connectors are located with
object detection along with shape matching to a CAD model. They used a semi-
manual annotation that they mentioned could reduce training time, and by doing
this they achieved a reduced training time per image by 248%. They also propose
future work using predicted labels extracted by the model and fuse them with depth
information to perform segment machining of the BDLO. Figure 5.4 illustrates an
example of feature extractions of a wire harness from [36].

Figure 5.4: Feature extraction of a wire harness from [36]

Figure

5.6 Classi�cation of wire harness

One of the primary studies only focuses on classi�cation is [11], they try to classify
four di�erent branches of a wire harness from a Volkswagen Caddy cockpit. They
present a deep neural network with saliency maps to classify the di�erent branches,
improving the interpretability for downstream robotic tasks. With the help of visual
cues, such as shape and color, to distinguish segments. The best performing model
achieved an accuracy of 96.67%. A similar paper is [7], but in contrast to [11],
focuses on locating grip points along the harness. The method uses OpenCV and
agglomerative clustering to �nd junctions and endpoints where a robot can interact
with the harness safely and e�ectively.
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These papers both tries to classify the harness but focus mainly on di�erent things.
[11] classi�es the harness segment, while [7] identi�es where to interact with it.

5.7 Summarization

One thing most of these papers highlight is the lack of a large enough dataset (data
scarcity). An comprehensive annotated wire harness dataset would allow for better
benchmarking in di�erent studies. Many of the papers also rely on some form of
B-spline and spline interpolation to estimate the structure of the harness or DLOs.
Estimating the wire structure with interpolation instead of segmenting the entire
wire decreases the inference time and is more optimized for real-time application,
but sacri�ces some accuracy in wire structure.
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6
Experimental study

Since there is no way of knowing how well a model will perform on a given dataset
without implementing a model and testing it on the dataset an experimental study
is performed to measure how well the di�erent models perform. This chapter will
introduce the Design & Development of the study, chapter 7 will cover the demon-
stration and chapter 9 the evaluation. The list below demonstrates the di�erent
steps from the research design [24]:

ˆ Design & Development
Two di�erent YOLO-based models will be developed, one involving keypoint
detection to extract a graph representation and one segmentation model fol-
lowed by skeletonization to extract the topology. Following the topology ex-
traction, validate it against known harnesses to classify which harness it is.

ˆ Demonstration
The model is trained and tested on an open source dataset (D2 Figure 6.2)
and Wiretronics proprietary dataset (D1 Figure 6.2).

ˆ Evaluation
To evaluate the solution di�erent parts of the pipeline will be evaluated against
similar studies regarding that area. For classi�cation of the wire harness ac-
curacy will be measured. Meanwhile, the segmentation part will be evaluated
using mAP and IoU to compare the segmentation against previous studies.

ˆ Communication
All the results are documented in this study.

The �nal objective is to propose a pipeline capable of accurately extracting a graph
representation of wire harnesses and being able to match them to an image of a wire
harness under realistic conditions.

6.1 Data scarcity

There is data scarcity within the wiring harness community [23], [30]. [38] explains a
way to increase the size of a dataset by using the "Copy-Paste" method. In their case
they created a simple dataset of wire harness bags and then extracted the harness
bag from the image in order to paste onto various backgrounds to simulate the real
world with di�erent lightning and shadows. Evaluating the same model trained on
only real images versus trained on both real images and synthetic images. The model
trained on the synthetic dataset increased the dice score from 0.464 to 0.525 and
IoU from 0.374 to 0.411. Another way to mitigate data scarcity is to use transfer
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learning. That is, using a model that has been trained on a larger dataset and
then training on a smaller dataset to achieve higher accuracies. However, [36] did a
study in which they should segment a deformable linear object and decided to use
transfer learning of a ResNet50 pre-trained on ImageNet [6]. But in their case it
did not perform better because the di�erence in the datasets, ImageNet lacked some
features that deformable linear objects introduce. This required annotating more
data to get the model to e�ciently capture harnesses. [34] released an open source
annotated dataset of 28 646 electrical wires.

6.2 Data collection

Wiretronic provided ten di�erent wire harnesses with a simpler design; each harness
consists of three connectors connected by two wires. To generate a dataset, the
harnesses were photographed with a Samsung Galaxy S22. This resulted in 82
di�erent images of the wire harnesses. Between each image, the harness was moved
around to change its structure. All harnesses where photographed on a �at surface,
without any overlapping wires. Another open source dataset of around 1100 images
was reduced to 96 images when excluding all images with overlapping wires [23].
This dataset included two di�erent types of wire harness, one with three connectors
connected by two wires and one with seven connectors and nine wire segments. The
images were then annotated with Wiretronics internal annotation tool. In order
to evaluate the di�erent models, two datasets were annotated. One including all
images along with polygon annotations, and one dataset with keypoint annotations.
The keypoint annotation is done by placing a certain number of keypoints on each
wire segment, [23] chose �ve keypoints per wire segment. In order to train their
model on Wiretronics wires, �ve keypoints per wire segment were chosen to annotate
Wiretronics harnesses as well. The polygon annotation involved placing polygons
around the entire harness and each pixel group was assigned a label "Wire", "A" etc.
as can be seen in Figure 6.1. The annotations were then exported in the YOLO
segmentation format. Lastly another open source dataset was downloaded from
Kaggle containing 30 000 images of electrical wires provided by [35].
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Figure 6.1: Labels for each connector

6.3 Pre processing dataset

All datasets are split up into a 70/20/10 split, 70% training data, 20% validation
and 10% test data. All images were resized to 640x640 px, to increase the size
of the dataset synthetic images were included. This to help avoid the problem
of data scarcity all images are rotated 45 degrees all the way up to 315 degrees.
The training data was further augmented using the copy-paste method [38] onto 4
di�erent backgrounds. This helped the model generalize and recognize the object
within the images [38].
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Figure 6.2: The di�erent datasets used for training models

6.4 Design & Development

6.4.1 Keypoint detection

After the datasets had been generated, the �rst approach towards predicting the
topology of a wire harness was a keypoint approach. It started with download-
ing [23] publicly available models in order to evaluate them on D1. From scratch
this model performed badly and overestimated the amount of wires. To improve
the model it was trained further on D1 dataset. With transfer learning from the
best performing model from [23] YOLO_D2&D3_A2_PretrainedD4.pt. After that
a YOLO pose estimation model was trained from scratch on a combined dataset
"D1&D2". Yolo-pose requires a number of keypoints it should estimate per wire
segment. To ensure that the model could be trained on D1, D1 was annotated with
the same number of keypoints per segment.

6.4.2 Semantic segmentation

As mentioned in 2.5 there are multiple di�erent ways to represent a graph and the
one de�nition that will be used in the study is an undirected weighted graph. This
is the one that represents the wire harness the most. Hence the wires doesn't have a
direction and the weights for each edges will represent the length of that wire. This
is required if two harnesses have the same components and topology but di�erent
wire lengths.
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The second network implemented in this experimental study consists of a two-stage
model. The �rst stage is a YOLO-11 based segmentation model that extracts the
di�erent parts of the harness. These results are then processed with a skeletonization
technique to extract the topology, the information is then fed into a Graph Convo-
lutional Network (GCN) which is very good at recognizing graphs. The prediction
is then validated against a validation �le, this �le contains the correct structure
for each harness Figure 6.3. The accuracy of the GCN was evaluated with accu-
racy where it can be correct or incorrect (1 or 0). With the help of the validation
�le however, even if the GCN isn't accurate again it will return the most plausible
harness along with an error list. The error list contains information about missing
nodes or edges and wrongly labeled nodes in order to be one of the known harnesses.

Figure 6.3: Architecture of �nal model

The topology of a harness will always be the same no matter how you place it. To
obtain the topology from the segmentation, a skeletonization algorithm similar to
mBEST [4] was implemented. Instead of extracting one continuous wire mask from
an image, mBEST tries to di�erentiate between di�erent wires in an image. The
proposed solution uses a skeletonization algorithm to narrow the wires down to 1px
in width. Followed by a using minimum bending energy to di�erentiate between
di�erent wires. In this study a skeletonization technique was implemented with
some di�erences. It starts o� by narrowing down the width of the wire mask to
1-pixel-wide. Then removing shorter branches that can be caused by the segmenta-
tion. Following the removal of shorter branches the skeleton is traversed to ensure
connectivity, that its one solid skeletonization structure. This is advantageous in
non-overlapping wires. From this skeleton traverses the skeleton and assigns end-
points to each part of the skeleton that only includes one neighbour pixel, and
classi�es each pixel that has three neighbours a junction. This is done together with
the input of all the connector positions within the harness. Each endpoint is assigned
the closest connector position. Following the skeletonization the generated graph
with the help of python package "networkx", all the lengths between the junctions
and endpoints are calculated in pixels. To gain an estimate of the lengths of the
wire segments. The information from the connector labels, edges and wire segment
lengths are then saved in a .json �le A.1.
In the initial iteration the topology �le was structured so each endpoint was con-
nected to a connector. The connector was presented with the label of the connector
like "A". But after a while when training on harnesses with multiple connectors with
the same name, it was impossible to know what connector each endpoint was con-
nected to. As visualized in Figure 7.10 in the image below. The �gure demonstrates
a connector with 4 connectors connected with 5 wire segments. In the initial extrac-
tion of the graph representation the label of the connectors was used as endpoints.
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This introduced an issue were multiple di�erent topologies could be extracted from
that presentation which made it di�cult to classify against known harnesses. To
solve this problem, the extracted graph was represented with endpoints instead of
the label as key. This ensures that the extracted graph representation can only rep-
resent one harness. To classify a wire harness with a GCN along with a validation
�le has not been tested by any previous studies.

Figure 6.4: Example showing the need for endpoints and not connector id

6.5 Evaluation

The topology model [23] is evaluated with mAP and mAP@50-95 in order to compare
it against their results. The �nal model developed in this study will be evaluated in
multiple steps. The segmentation model will be evaluated with IoU, Dice, mAP@50
and precision, to compare it to [20], [2], [4]. The harness prediction GCN model will
only be evaluated using precision / accuracy to compare it with [23].

6.6 Experiment setup

Wiretronic provided all compute for the training of the machine learning model.
The computer has two "GeForce RTX 3090 24GB" graphics cards, which allowed for
at least two trainings to run simultaneously.
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This chapter presents the results of they experimental study. Its divided into four
sections, the �rst one shows the results from the pose estimation models that predict
keypoints along the wire segments 7.1. Following this section, the results of the
segmentation models will be presented 7.2, after the segmentation results, the next
step in the pipeline will be presented, the skeletonization 7.3. Finally, the GCN
model that classi�es the extracted graph representation will be demonstrated 7.4.

7.1 Keypoint prediction

This section presents the results of the keypoint prediction models. Table 7.1
presents the evaluation results for each model: model, which dataset the model
was tested on, mAP and mAP@50-95.

ˆ Model 1 : YOLO_D2&D3_A2_PretrainedD4 from [23], without any further
training.

ˆ Model 2 : YOLO11n-pose that uses YOLO_D2&D3_A2_PretrainedD4 as
backbone trained on D1.

ˆ Model 3 : YOLO11n-pose trained on the combined dataset D1&D2.

Model Dataset mAP mAP@50-95

1 D1 0.021 0.002

1 D2 0.901 0.731

2 D1 0.390 0.210

3 D1&D2 0.610 0.422

Table 7.1: Results of the pose estimation models

Listed below are four di�erent images, from the keypoint prediction models. Figure
7.2 and Figure 7.1 are keypoint predictions by model 1. Figure 7.3 shows the pre-
dictions by model 2 and the �nal Figure 7.4 is model 3's prediction of a wire harness
from D1.
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Figure 7.1: Model 1 prediction on an image from D1

Figure 7.2: Model 1 prediction on an image from D2 with spline interpoolation
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Figure 7.3: Model 2 predictions on an image from D1

Figure 7.4: Model 3 predictions on an image from D1 with spline interpoolation
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7.2 Semantic segmentation

Following the pose estimation models, the segmentation pipeline was implemented.
Table 7.2 explains how the di�erent segmentation models were trained and what
backbone models they have. The results are split up into three di�erent tables that
list: Model, what dataset the model was trained on, precision, recall, F1 Score,
mAP@50, mAP@50-95. Table 7.3 shows the results for segmentation on the elec-
trical wires dataset, Table 7.4 shows the results on the combined dataset D1&D2.
Finally Table 7.4 shows the evaluation metrics of the di�erent models for the class:
Wire.

Model Explanation

1 Yolo11n-seg trained on electrical wires

2 Yolo11n-seg pre-trained on D1&D2

3 Yolo11n-seg trained on electric wires then D1&D2

4 Yolo11n-seg trained electric wires then D1&D2 with initial 10 layers frozen

Table 7.2: Explanation for how each model was trained

Model Dataset Precision Recall F1 Score mAP@50 mAP@50-95

1 Electrical wires 0.996 0.945 0.970 0.967 0.910

Table 7.3: Segmentation results on the electrical wire dataset

Model Dataset Precision Recall F1 Score mAP@50 mAP@50-95

2 D1&D2 0.827 0.942 0.881 0.925 0.721

3 D1&D2 0.837 0.938 0.885 0.973 0.734

4 D1&D2 0.828 0.858 0.843 0.883 0.657

Table 7.4: Segmentation results from models

Model Dataset DICE IoU Precision

1 D1&D2 0.007 0.003 0.004

2 D1&D2 0.962 0.962 0.962

3 D1&D2 0.950 0.904 0.904

4 D1&D2 0.989 0.978 0.978

Table 7.5: Segmentation results from models (only wire)

The images below visualize segmentation results. Figures 7.5, 7.8 and 7.8 are all
test images from D1 and D2. The last two �gures, Figure 7.6 and Figure 7.9 are
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