
Evaluating the Effectiveness of Regression Testing

Master of Science Thesis Software Engineering and Technology

MEHVISH RASHID

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
Göteborg, Sweden, February 2011

The Author grants to Chalmers University of Technology and University of Gothenburg
the non-exclusive right to publish the Work electronically and in a non-commercial
purpose make it accessible on the Internet.
The Author warrants that he/she is the author to the Work, and warrants that the Work
does not contain text, pictures or other material that violates copyright law.

The Author shall, when transferring the rights of the Work to a third party (for example a
publisher or a company), acknowledge the third party about this agreement. If the Author
has signed a copyright agreement with a third party regarding the Work, the Author
warrants hereby that he/she has obtained any necessary permission from this third party to
let Chalmers University of Technology and University of Gothenburg store the Work
electronically and make it accessible on the Internet.

Evaluation of Regression Test Effectiveness , Industry based Master Thesis

© Mehvish Rashid, 2011.

Examiner: Robert Feldt

Chalmers University of Technology
University of Gothenburg
Department of Computer Science and Engineering
SE-412 96 Göteborg
Sweden
Telephone + 46 (0)31-772 1000

Cover: Figure 6: Test case i and j in a pair wise matrix each with pass denoted by 1 and
fail by -1 and possible combinations of schemes derivation.

Department of Computer Science and Engineering
Göteborg, Sweden February 2011

Abstract

Regression testing is the retesting of a software to check its reliability against the new
functionality that is implemented or changes are made to the software. Regression testing plays
a significant role to assess the quality of a product that is changed frequently in functionality as
expected by the end user of the software. There has been a number of studies on various
regression testing techniques as mentioned by Yoo and Harman in their survey but a very few are
dedicated to the evaluating regression testing techniques.

In this study various methods or schemes are suggested to measure the uniqueness of a test case.
The uniqueness measure of a test case is a tool that is utilized to make decision on the
effectiveness of various regression test techniques.

Finally, building blocks for the construction of a framework are provided in the form of various
schemes classified by their level of complexity involved. Concepts and methods that are utilized
are already proven by academia and literature that help to devise the schemes or methods in the
conducted industrial study. The formulated schemes can be applied to the extracted information
in the form of 0, 1's and -1's. The solution given here can be considered as a generalized one for
a wide range of industry and academia to facilitate in the decision making with various kind of
existing data situations.

Acknowledgment

The study was conducted with the cooperation of Ericsson AB, Karlskrona. I would like to thank
Ericsson for their extended cooperation and guidance throughout the duration of the project. The
purpose of the study conducted would have not been accomplished without the supervision of
Dr. Robert Feldt from Chalmers University of Technology, I thank him with the depth of my
heart.

Mehvish Rashid

Evaluating the Effectiveness of Regression Testing

Mehvish Rashid
Chalmers University of Technology, Goteborg.

mehvish@student.chalmers.se, rmehvish@gmail.com

Abstract

Regression testing is the retesting of a
software to check its reliability against the
new functionality that is implemented or
changes are made to the software.
Regression testing plays a significant role to
assess the quality of a product that is
changed frequently in functionality as
expected by the end user of the software.
There has been a number of studies on
various regression testing techniques as
mentioned by Yoo and Harman in their
survey but a very few are dedicated to the
evaluating regression testing techniques.

In this study various methods or schemes are
suggested to measure the uniqueness of a test
case. The uniqueness measure of a test case
is a tool that is utilized to make decision on
the effectiveness of various regression test
techniques.

Finally, building blocks for the construction
of a framework are provided in the form of
various schemes classified by their level of
complexity involved. Concepts and methods
that are utilized are already proven by
academia and literature that help to devise
the schemes or methods in the conducted
industrial study. The formulated schemes
can be applied to the extracted information
in the form of 0, 1's and -1's. The solution
given here can be considered as a
generalized one for a wide range of industry
and academia to facilitate in the decision
making with various kind of existing data
situations.

1. Introduction

Ericsson has been a world leader in Telecom
Industry since 1876 providing
telecommunication equipment, and related
services to the mobile and fixed networks
operators. The systems developed are to
facilitate the mobile operators in more than
175 countries and more than 40 percent of the
world’s mobile traffic passes through
Ericsson networks. The systems are
consistently tested for their quality standards
while performing the regression testing.
Regression testing is the process of retesting
of a system or component to verify that
changes made to the system code have not
caused unintended effects and that the system
is still compliant with the specified
requirements [1]. Several techniques have
been suggested in the literature such as
Prioritization of Requirements for Test
(PORT). PORT can be used to prioritize
system-level black box test when traceability
between requirements, test case, and test field
failures is maintained by the development
team [2]. Another technique given, is not
based on any selection criteria but cuts down
on the number of obsolete and redundant test
cases. It works by an association between the
test cases and the testing requirements to find
a subset of test suite but still provides the
desired test coverage [3]. Further a version
specific regression test and incorporation of
fault proneness into prioritization techniques
was studied in [4]. A new equation is
proposed in [5] to compute the priority of test
cases in each session of regression testing
that incorporates three factors: historical
effectiveness in fault detection, test case
execution history and last priority assigned to
test case.

mailto:rmehvish@gmail.com
mailto:mehvish@student.chalmers.se

Yoo and Harman [6] conducted a survey
based on 159 papers that consists of four
categories on the trends of regression test.
Three of the categories relate to the test suite
minimization, regression test selection and
test case prioritization. The fourth category
is considered to be more concerned with the
empirical evaluation methodologies of
regression testing techniques. Korel et al.
compared different prioritization techniques
while taking the average of detected faults for
each technique by changing the ordering of
test cases in initial test suite. Elbaum et al.
studied the variance in APFD (Average
Percentage of Fault Detection) by performing
the statistical analysis. Rothermal and
Harrold gave a framework to compare
different regression test selection technique.
The metrics provided in the framework such
as rate of reduction in size and rate of fault
detection is used as a de-facto standard to
evaluate test suite minimization techniques.
Further evaluation of technique effectiveness
by cutting the cost in the form of time is
given by Rothermal and others.
From the sources of literature discussed
above empirical evaluation methodologies of
regression testing techniques are confined to
be compared on the basis of their quality
attributes such as cost and test suite size
reduction. In a situation where there is
limited information on test cases in a test
suite, a different mechanism is required to
compare test cases. Current academic
literature does not present such example
where we can compare the effectiveness of
regression testing technique by first
establishing a value for each test case in the
test pool with limited information and then
find an accumulative value for a test suite.

The focus of this industrial project will be on
establishing the mechanism to evaluate the
effectiveness of regression testing techniques.
The technique that reveals the most unique
defects is the most effective one. Uniqueness
measure of a defect is of an importance since

it refers to the overall relation of a defect
with all existing defects in the product.
Evaluation of regression testing techniques as
studied in this paper are suggested to be
conducted through building blocks identified
in the form of evaluation schemes. The
details on the formulation of the evaluation
schemes are given in the section 5.

2. Background

A considerable amount of academic work
exists in the area of regressions testing.
According to the findings of survey by Yoo
and Harman [1] Meta - Empirical Studies has
emerged as a separate area of study. There is
limited work present in the area of empirical
and comparative studies. The trend of study
topics in regression testing is given in the
Figure 1 [6]. In the four categories identified
the major work is done in the area of
selection techniques in regression. An
increase in number as shown in Figure 1 for
first three category of regression testing
indicates advancement and innovation in this
area. The increasing number in development
and innovations of regression testing
techniques requires a mechanism to evaluate
them for their effectiveness. The main
purpose of regression testing is to find
defects pertaining to the changes brought in
the application; still the underlying objective
is to find the unknown defects in the system.

Each regression technique functions
differently according to the criteria defined
i.e. finding the minimized test suite or
prioritizing test cases in a test suite based on
the coverage criteria for the product. When it
comes to the evaluation of the regression
testing techniques one of the main concerns
is to find maximum number of unique defects
in minimum duration of time. Time is of
value to perform testing of system to gain
higher level of confidence in its functioning
but not at the risk of an unidentified or
unknown defect present when the product is

shipped to the customer. If a defect remains
unknown until the later stage of software
development it becomes more costly to fix it
later on. There is a need of mechanism that
identifies each of the defect with some value
assigned to it in relation to its presence
among other test cases in a test pool. The
measure of uniqueness of a test case will give
its worth in the test pool.

Evaluation of regression testing can be well
understood if it is based on the real situations
faced by current software industry.
Acquiring knowledge on settings of the
organization and testing process being
followed constantly is of significance to
researchers in order to suggest a
solution that can be utilized in long term.The
ultimate goal is to formulate a generalized

Figure 1: Trend of Study Topics in Regression Testing
classified in four categories Minimization, Selection,
Prioritization and Empirical/ Comparative [6].

solution from a study based on software
industry that can be easily adapted to other
diverse systems.

The objective of this work is to measure the
uniqueness of defects in a product in relation
to with other test cases. Uniqueness here is
defined in the terms of difference in behavior
or relation of the found defect as compared to
the other defects present in the product.
Presence of a defect in a product is marked

by the failure of a test case. Utilizing pass
fail information against test cases in the test
runs and applying already present methods in
academia on the information the uniqueness
of a test case can be measured.

3. Method

In Ericsson automated regression testing is
performed on regular basis to constantly
maintain the quality of the system. The
organization follows an agile approach for
software development therefore the
regression testing is scheduled on regular
intervals to update the status of defects
induced due to ongoing changes in the
application. Regression testing was studied
on two of the main telecommunication
products referred here as product A and
product B. Details of the process utilized for
regression testing and how the data is stored
in the database can be seen in Appendix 1.

Automated regression testing is scheduled
within the organization in which test cases
are executed on the most updated versions of
systems. The results of the test runs are
stored in a database in the form of sessions
corresponding to each run. Failing of a test
case indicates a defect in the system. In this
study the reason (evaluated only through
manual efforts) behind the test case failure is
ignored i.e. the product fault or unidentified
fault. Hence the failure of a test case
irrespective of reason is considered as a
presence of a defect in the system. All
failures in the system are considered equally
important and have similar concerns when
the quality of the system is monitored.

3.1 Missing Information

The project specific information is retrieved
from the database containing the executed
runs in the form of 1’s and -1 representing
the pass and fail status of a test case
respectively. Test cases are scheduled for

automated run in the form referred to as
“Group” here. Sometimes not all the groups
are scheduled for regression run but only
selected ones. As shown in Figure 2 there are
ten test cases that are divided in five groups.
The rightmost column indicates the sessions
or test runs in ascending order with the most
recent run at the end. Besides pass and fail
status of test cases information is also present
in the form of 0’s. For instance Group 3 of
test cases is not executed for session 2,3,6,8
and 10, therefore no information is available
for these sessions. Similarly information can
be missing in a situation where a test case is
newly added i.e. test case 7 and 8 are newly
added in the recent session 9 and 10 and
therefore preceding sessions are marked with
0. There could be unknown situations where
test cases are not executed and hence the
information is again found to be missing i.e.
test case 3 is obsolete. The information in
database that is indicated by presence of 0 in
the test runs and for which the reason is
unknown is said to be “missing information”.

Figure 2: The data representation as retrieved from the
database in the form of 0’s and 1’s and -1’s

Information in three different form has been
observed after test case data is retrieval from
the organization’s database. 1 indicates that
the test case passes for the session or test run,

 -1 is the indication of defect found by failing
test case and 0 where information is missing.

Missing information is a special kind of time
based information that has to be dealt with in
a specific way. The idea is to add value to
the calculated uniqueness of a testcase as
described in more detail in section 5.3.

3.2 Pre-processing

The method adopted for this study is
developed in three phases. The first phase is
the pre-processing step that facilitates to
transform the data in the form suitable for
further computations. Transformation of data
is followed by finding the relation of test
cases in the test pool by applying a set of
suitable steps to perform the computations.
The final phase conducts the evaluation of
the calculations performed on the
transformed data. More formally the term
for each phase is defined as Pre-processing,
Uniqueness and Evaluation.

Pre-processing is not the pre-requisite for
finding the uniqueness. Uniqueness can be
found without utilizing the pre-processing
step. Pre-processing, as will become clearer
in the later sections, is the mandatory step in
presence of 0s (as missing information). In
this situation pre-processing becomes an
important step realizing the importance of
missing information in uniqueness
calculations.

4. Validity Threats

The study is conducted for industry based
project with the time constraint to implement
it on real time industrial environment. It
requires a thoughtful strategic approach and
resources to implement the suggested
schemes. The most appropriate mechanism
is to first do implementation on a smaller
project and then move on to a large scale
projects. A considerable planning and efforts

are required before proceeding with
implementation so that daily work routine in
the organization is not affected.

Results of calculations performed on scheme
are dependent on the kind of data selected.
The data representation can vary and
therefore some advance techniques are
required to highlight the data variation
patterns. The study of variation patterns is
not in the scope of this project since main
goal is to give building blocks that helps in
decision making while evaluating the
regression test techniques.

How many test runs data is required for
reliable results is related to the regression
testing technique that is applied as given by
classification into three areas in [6]; Test
Suite Minimization, Test Case Selection and
Test Case Prioritization. Each of the
Regression Test Techniques is devised on
different definitions [6]. In order to state that
which techniques gives best result with the
suggested numbers of test runs experiments
have to be conducted with some candidate
techniques for the organization. In this study
we experiment with simple techniques in the
evaluation phase but do not intend to
generalize results due to diverse nature of
regression testing techniques.

Finally the study is conducted to give
schemes or methods to measure the
uniqueness of test case as a tool for the
evaluation of regression test techniques. The
calculations were performed on industrial
data. It is difficult to generalize the results as
each of the regression testing technique vary
in nature.

5. Construction of Evaluation Schemes

The question now is how to deal with data in
the form of 1, -1 and 0 to analyze the pattern
of test cases in regards of their behavior with
other test cases in the test pool. How can we

measure the value of a test case in the test
pool based on the available information?
What can be the basis of comparison of one
test case with another? The design of tool
that measures the value of a test case should
be flexible enough to incorporate the details
of changes in the software on time basis.

.1 Formalizing (Uniqueness)

To analyze the behavior of the test cases with
the available information as 1, -1 and 0
described above, a limited number of
sessions are selected. In each session a test
case either passes or fails. In the consequent
test runs changing status of test cases from
fails to pass and vice versa can be a way to
identify similar behavior in a group of test
cases. For a number of test cases that pass
and fail together this can suggest some kind
of relation or association among them.
Similar kind of work was done by Sherriff et.
el in [7], where association clusters were built
based on the changing files structures during
software development. Each of the code file
that changed with the developing artifact was
compared with other files to count the
number of times change in one file effect the
code in the other file.

To develop the relation among test cases
based on the above suggested approach, the
smallest possible subset that can be utilized
to study the test case behavior can be in a set
of two. The subset of two test cases when
compared for the possible outcome results in
pair wise matrix. Figure 3 below describes a
pairwise matrix structure.

Since each test case can have two possible
status Pass or Fail, a 2 x 2 pairwise matrix is
created to calculate four possible outcomes
for two test cases i and j. The test cases i and
j can either pass together or fail together.
There is a possibility that one of them fails
while other passes and reverse can be true as
well.

Figure 3: Test case i and j in a pair wise matrix each
with two possible statuses Pi and Fi and four possible
combinations PiPj, FiPj, PiFj and FiFj.

All these four possibilities are expressed by
A, B, C and D in Figure 3. The behavior of
the test cases in A and D depicts the same
outcome that both test cases either pass or fail
together. The value in B and C shows that
one of the test case is passing while other is
failing. The value in cell D shows when the
two test cases in the subset are failing
together.

The similarity behavior of subset of test cases
can be predicted by comparing the
probability of pass and fail from the cells A
and D in pair wise matrix. The dissimilarity
behavior of test case can be identified by
comparing the values in the cell B and C.
Similarly the value in cell D depicts the
behavior of test case in a subset that fail
together. This can be a representation of Co-
Fail behavior of the test cases in a subset.
How often each test case behaves differently
from the other test case within the same
system is predicted in the outcome in the
form of pass and fail. If two test case test the
same functionality in a system they are
expected to pass or fail together, the only
situation one passes and other fails is when
they are testing different functionality.
Figure 4 represents the behavior of test cases
in a test pool with A, B and C different types
of functionality in the system. Test case 2, 3
and 4 test the same functionality so it is
believed that they pass and fail together.

Figure 4: A, B and C three areas of test subject. tc1,
tc2 and tc3 test the same area

Understanding the behavior of the test cases
in subsets of two test cases with all possible
combinations and repeating the process for
all selected test runs can give an insight into
the test case behavior.

In Figure 5 each cell of the matrix is
populated with a value that describes the
behavior of the pairwise comparison. The
value of the similar behavior can be
represented by 1 and dissimilar behavior by
-1. Here the idea is to evaluate the two test
cases based on their behavior when they are
executed together in a test run. The number
of test runs for which test cases are run is
denoted by N. For each N number of test run
n x n matrix is calculated for n number of test
cases. The populated values in the upper half
of the triangle and the lower half of the
triangle will be same (separated by the
highlighted diagonal). Therefore comparison
of subsets performed in a n x n matrix for the
possible combinations for one diagonal is
given by,

Where n is the number of test cases.

5.2 Derivation of Schemes

The four box matrix described in Figure 3 is
redrawn in Figure 6 by replacing pass and fail
by 1 and -1 respectively. The value 1 is
assigned to the cell A that indicates the
scenario where both test cases are passing.

Figure 5: The structure of matrix for test case pair-
wise comparison for similar/ dissimilar behavior for
one test run.

5.2 Derivation of Schemes

The four box matrix described in Figure 3 is
redrawn in Figure 6 by replacing pass and fail
by 1 and -1 respectively. The value 1 is
assigned to the cell A that indicates the
scenario where both test cases are passing.
The values in the other cells B,C and D are
marked by -1. Analyzing Figure 6 three out
of all possible combinations are identified in
which test case behavior is measured. Each
combination of cells is referred to as Scheme.
There are three schemes as highlighted in
Figure 6 that are used to perform calculations
on test case data.

Figure 6: Test case i and j in a pair wise matrix each
with pass denoted by 1 and fail by -1 and possible
combinations of schemes derivation.

Dissimilar: The scheme is called Dissimilar,
since the subset of test cases is analyzed for
dissimilar behavior across N sessions. Each
cell of matrix is marked by 1 if both test
cases have same value or by -1 if they have
dissimilar values Figure 7.

Ti,j 1 -1

1 1
A

-1
B

-1 -1
C

1
D

Figure 7: Dissimilar Scheme: Test case i and j in a pair
wise matrix each subset with same values of test cases
are denoted by 1 and dissimilar by -1.

Dissimilar scheme is defined by the value of
test case subset by the following:

Rule:
If value of two test case is in disagreement
i.e. -1 and 1 mark -1
- '-1' Here means reverse behavior
If value of two test case is in agreement i.e. 1
and 1 mark 1
- '1' Here means similar behavior

Similar: Similar scheme is the inverse of
dissimilar so if the total value for dissimilar is
subtracted from 1, result is for the similar
scheme as depicted in Figure 8.

Ti,j 1 -1

1 -1
A

1
B

-1 1
C

-1
D

Figure 8: Similar Scheme: Test case i and j in a pair
wise matrix each subset with same values of test cases
are denoted by -1 and dissimilar by 1.

Rule:
If value of two test case is in agreement i.e. 1
and 1 mark -1
-1 Here means similar behavior
If value of two test case in disagreement i.e.
-1 and 1 mark 1
1 Here means dissimilar Behavior

Co-Fail: The Scheme highlights the
behavior of test cases in a subset that fail
together. Figure 9 depicts the values in the
cell A,B, C and D of matrix, where -1 in D
indicates that both test case fail together.

Rule:
If value of two test case is in Agreement i.e. 1
and 1 mark 1
If value of two test case in disagreement i.e.
-1 and 1 mark 1
If value of two test case in disagreement i.e.
-1 and -1 mark -1
- Here '-1' is the Co-Fail behavior of test
cases.

Ti,j 1 -1

1 1
A

1
B

-1 1
C

-1
D

Figure 9: Co-Fail Scheme: Test case i and j in a pair
wise matrix each subset with same values of test cases
are denoted by 1, dissimilar by 1 and Co-Fail by -1.

In order to understand the behavior of the
subset in the matrix the cell value of each
combination is compared across all selected
test runs (sessions) for the times it appears as
-1. The percentage of count of behavior (-1)
for a single subset across N session is
calculated by the following:

In the Figure 5 the vertical column
highlighted by a lighter color represents the
column vector for the test case in the matrix.
The value of dissimilar behavior that is
calculated for each subset using the equation
above can be added in the order of subsets
presented in the column vector for each test
case. The sum of the values of subsets in the
order of column vector and further
calculating the percentage of dissimilar
behavior gives the uniqueness value of the
test case.

Here i is the number of subsets in the vector
for a test case and n is the number of session.

5.3 Pre-processing

The schemes devised in the last section only
incorporate data in the form of 1 and -1. In
the data presented, 0 indicates missing
information as discussed earlier in section 3.
However the presence of missing information
in the form of 0’s has to be handled to add
value to the final calculations. The schemes
presented so far do not deal with the missing
information. Missing information cannot be
ignored since it is important form of
information. Section 3.1 gives the reason for
the missing information. There can be three
alternatives to the missing information.

1. Non-faulty: Consider the reason for
missing information for a test case as a
non- failure. For instance “Non-
faulty” variation is more valid for a
situation where a break occurred in the

normal execution of regression test due to
the instability of the environment.

2. Most-recent-info: Missing
information for a test case can be
replaced with the value (pass or fail)
for most recent run before the
information appeared as a zero. For
Instance if there is a newly added test
case against functionality.

3. Failure-frequency: For the missing
information a value is assigned by
calculating the frequency of failures
given by the average of total passes
and fails. The “Failure Frequency” is
given by frequency formula:

The process of transforming the missing
information to a more suitable form of
information is called Pre-Processing. It is a
Pre-Requisite for applying the above
suggested schemes containing 0 as missing
information.

Dynamic Scheme: Failure frequency given
as a third alternative for handling the missing
information results in data not in the form of
0’s and 1’s. The data consists of values other
than 1 and -1 i.e. 0.7, 0.8,-0.33. The simple
comparison of -1 and 1 is not possible now.
To measure the uniqueness of a data with
varying frequencies another method is
required that can facilitate the calculations.
Since for each subset of test cases we have
two variables in the form Tci and Tcj. The
method that is suitable to perform
calculations on such variant data is Spearman
correlation coefficient. Spearman correlation
coefficient makes no assumptions on the
distribution of data and therefore can be used
here to calculate uniqueness of test cases with

different frequencies. The method is purely
statistical and already present to be used for
calculations. There are few steps to the
formula:

- Rank the data for two variable
- Calculate the distance of a subset
- Take the square of the distance
- Apply the following formula

The formula above gives the value of a subset
(i,j), the average of vector for each test case
is calculated similar to other schemes.
Spearman Correlation coefficient is only
applied on data that results from the
application of failure frequency alternative
for pre-processing. Since the value of
frequencies calculated varies due to changing
status of test cases in test runs the scheme is
referred to as “Dynamic” form of uniqueness.

Average Fault Detection Reduction
(AFDR):

Average Fault Detection Reduction (AFDR)
is different from the other schemes since no
pair wise comparison of test cases or pre-
processing step is required and can be applied
on any kind of data. The uniqueness of a test
case is measured by taking the percentage of
a test case failure 'a' across N sessions.
Therefore it is denoted by,

The scheme assumes the priori knowledge of
the defects from a test run [6] and evaluates
regression testing techniques on the basis of
finding the maximum number of faults.
AFDR is evaluated on the basis of detected

faults in a test suite found by a technique
across the n number of test runs. The
technique that has a higher average value
across all sessions is prioritized. AFDR is
given by,

n here is the number of sessions for which the
regression test technique is evaluated using
AFDR.

5.4 Categorical Overview of Evaluation
Schemes

The categorical structure of the schemes is
presented in Figure 10, to overcome the
limitations of a particular scheme that may
not be applicable in another data situation.
The incentive is to give building blocks for
the evaluation of the regression testing by
measuring the uniqueness of the testcase in
all varying situations.

The test runs that are most recent in time are
most important for these schemes to be
applied on. The schemes that measure the
uniqueness of test cases are divided in two
types: one that is based on analyzing the
behavior of test cases in a pair is referred as
“Static” and other that applies statistical
method (Spearman Correlation Coefficient) is
called “Dynamic”.

The “Static” scheme is further categorized in
two types based on the dta situation
presented. For instance if data contain
information on pass and fail status of test
cases, “Co-fail Probability” scheme can be
applied. For the situation where information
is missing indicated by a 0. One of the three
variations of “Realistic Co-fail” can be
applied. Three forms of variation for
“Realistic Co-fail” are given as Non-Faulty,

Most-Recent-Info and Failure-Frequency.
The failure-frequency is a pre-requisite for
calculating Dynamic type of uniqueness,
since it contains values other than 1 ans -1.

Figure 10: Overview of the Evaluation Schemes in
given as the Building Blocks

6. Results and Analysis

6.1 Example Set Data

The calculations for the schemes suggested in
the last section are first evaluated on some
dummy data in the form of 1, -1 and 0. The
intention is to evaluate the accuracy of
calculation with a smaller set of example
data. Here an example of 5 test cases is taken
with 5 sessions (Figure 11). For our first set
of calculations we start off with Dissimilar
Scheme.

Dissimilar Scheme:

Session tc1 tc2 tc3 tc4 tc5
Session 1 1 1 1 -1 -1
Session 2 -1 1 1 1 1
Session 3 -1 -1 1 1 1
Session 4 1 1 1 1 1
Session 5 1 1 1 1 1

Figure 11: Sample data for Dissimilar Scheme 1 and
-1.

The first step is to make combinations by
using the formula below:

Comparison step is followed by the
comparison of test cases with in each subset
resulting from the combination. Column S1,
S2 to S5 show the number of sessions that
each subset is compared for, which in itself is
a two dimensional matrix. The test cases
having reverse behavior are marked by -1 and
with similar behavior as 1 in Figure 12. The
percentage of dissimilar behavior is
calculated across all (five sessions).

Comp S 1 S 2 S 3 S 4 S 5 %
1,2 1 -1 1 1 1 0,2
1,3 1 -1 -1 1 1 0,4
1,4 -1 -1 -1 1 1 0,6
1,5 -1 -1 -1 1 1 0,6
2,3 1 1 -1 1 1 0,2
2,4 -1 1 -1 1 1 0,4
2,5 -1 1 -1 1 1 0,4
3,4 -1 1 1 1 1 0,2
3,5 -1 1 1 1 1 0,2
4,5 1 1 1 1 1 0

Figure 12: Comparison of n x n matrix populating
each cell with its pair-wise dissimilar behavior.

Finally the uniqueness of each test case is
calculated by taking the average of the
column vector for each test case as shown in
Figure 13.

Figure 13: Taking the average of Column Vector of
test cases to give measure of uniqueness.

The uniqueness measure calculated in Figure
13 shows that test case 3 is most unique and
test case 1 is least unique. If we compare the
values of uniqueness with the example data
in Figure 11, the results of uniqueness are in
accordance to it since the dissimilar behavior
of test case 1 is evident in Figure 11. Test
case 3 does not display any dissimilar
behavior still a uniqueness measure is given
by a value of 0.0020. The value of
uniqueness measure is calculated on the basis
of test cases interaction in test pool with other
test cases. Test case 3 displays dissimilar
value when uniqueness measure is calculated,
that is there due to its interaction with other
test cases in the form of column vector.
Taking the average value of column vector
against a test case incorporates the interaction
of test cases in the test pool.

Co-Fail Scheme

Co-Fail Scheme percentage calculations for
dissimilar behavior are shown in Figure 14.
Test case 1, 2, 4, and five Co-Fail with each
other as seen in the Example data. The
calculated value for uniqueness measure
(Figure 15) after taking the average of vector
for each test case verifies the situation in the
example data. Test case 3 does not co-fail
with any of the other test cases therefore the
value for uniqueness measure is 0.

Combi
nation S1 S2 S3 S4 S5 %
1,2 1 1 -1 1 1 0,2
1,3 1 1 1 1 1 0,4
1,4 1 1 1 1 1 0,6
1,5 1 1 1 1 1 0,6
2,3 1 1 1 1 1 0,2
2,4 1 1 1 1 1 0,4
2,5 1 1 1 1 1 0,4
3,4 1 1 1 1 1 0,2
3,5 1 1 1 1 1 0,2
4,5 -1 1 1 1 1 0

Figure 14: Percentage of Co-Fail behavior for each
pair of comparison.

Test
case 1

Test
case 2

Test
case 3

Test
case 4

Test
case 5

1,2 1,2 1,3 1,4 1,5

1,3 2,3 2,3 2,4 2,5

1,4 2,4 3,4 3,4 3,5

1,5 2,5 3,5 4,5 4,5

Uniqueness 0,25 0,25 0 0,25 0,25

Figure 15: Uniqueness Measure for Co-Fail for test
case 1, 2, 4 and 5.

Pre-processing Calculations

0 with 1 (Non- Faulty)

The data where information is missing by the
indication of 0 (Figure 16), a pre-processing
step (discussed in section 5.3) is performed
shown in Figure 17 to replace 0 with 1 (Non-
Faulty). Further calculations can be done by
measuring uniqueness with dissimilar
behavior or Co-fail behavior (Figure 18 in
Appendix 3) and Figure 19.

Figure 16: 0’s in the Example Data Set

Figure 17: 0’s replaced with 1’s in the Example Data
Set

Figure 19: Uniqueness Measure of Dissimilar
Behavior in Non-Faulty.

0 with -1 (Most-Recent-Info)

In this example the 0’s are replaced with -1
or 1 whichever is the status of test case in the
most recent test run similar to as shown in
Figure 17. The calculations are performed
similar to using dissimilar behavior as shown
in Figure 18 (Appendix 3) and 19.

Failure Frequency with Dynamic Spear
man Co-relation Coefficient

The third form of handling missing
information proposed in this study is the
average of pass and fail status of test cases
using frequency formula given in section 5.3
and replace 0 with that number. As shown in
Figure 20 (appendix 3), the failure frequency
is calculated for test case 1 (column tc 1) for
sessions 6 and 7 with resulting value -0.2.
The frequency is again updated for sessions 9
and 10 since another 1 appears in session 8.
The data is now in the form of fractional or
decimal numbers. Dynamic Scheme is used
here to perform calculations to find the
uniqueness of test cases. The calculations are
based on three steps of spearman correlation
coefficient such as ranking, distance, Square
of distance and finally the application of
formula (Figure 22 Appendix 3). After the
value of Rho is known for a subset of test
cases in comparison within n sessions, the
average of vector value is calculated for each
test case (Figure 23).

Figure 23: Calculation for Uniqueness Measure for
Dynamic Scheme

AFDR

Average Fault Detection Reduction (AFDR)
requires less computation as compared to
other schemes presented so far. The
Uniqueness is measured by taking the
average of test case failure across n number
of sessions (Figure 24).

Sessions tc1 tc2 tc3 tc4 Tc5
Session 1 1 1 1 -1 -1
Session 2 -1 1 1 1 1
Session 3 -1 1 1 1 1
Session 4 -1 1 1 1 1
Session 5 1 1 -1 -1 1
Session 6 1 -1 -1 1 1
Session 7 -1 -1 -1 1 1
Session 8 1 1 -1 1 1
Session 9 1 -1 1 1 1
Session 10 1 1 -1 1 1
a/N
Uniqueness 0,4 0,3 0,5 0,2 0,1

Figure 24: Calculation for Uniqueness Measure in
AFDR for individual Test cases.

For each session selected regression testing
techniques are evaluated by the number of
known faults it finds. The average of
uniqueness measure is taken for all test cases
detected as faults by the selected techniques
for n sessions. The final results are shown in
Figure 25 in Appendix 3.

Weighting Schemes with AFDR

Time is an important factor since the
information of a test run is directly related to
the specific instance of time it was executed

during a product development. The test runs
back in time are not that valuable as the
recent ones. Recent test runs give the current
status of a defects found in software. The
information found for defects relating to
farther back in time is not as valuable. To
incorporate the details of time factor
weighting schemes are multiplied with the
AFDR values. Calculation for two weighting
schemes: Exponential Moving Average
(EMA) and Modified Moving Average
(MMA) are given in Figure 27 and 28 (details
Appendix 2). It appears from Figure 28 that
MMA gives better results in comparison to
Figure 26 when the recent test runs are
prioritized in time.

Figure 26: Graph of AFDR with Technique A and
Technique B.

Figure 27: Graph of AFDR with Technique A and
Technique B using EMA.

Figure 28: Graph of AFDR with Technique A and
Technique B using MMA .

6.2 Choice of Scheme for Finding
Uniqueness

The calculations performed so far by
applying different schemes based on varying
situation of data facilitates to refine the
abstract categorical classification in Figure
10 into a more detailed one given in Figure
29. AFDR appears on the top since it can be
performed on any kind of data. In case the
information is not missing and intention is to
do pair wise comparison for finding
uniqueness, the choice can be either co fail or
dissimilar scheme. Conversely for missing
information one of pre-processing step is
performed. pre-processing based on failure
frequency that results into decimal data,
uniqueness of test case is calculated by
applying dynamic scheme. pre-processing
step based on non-failure or most-recent-info
gives the choice of either applying co-fail or
dissimilar behavior. Similar scheme can be
applied as well but not shown in this study
since it is reverse of dissimilar. Collectively
(excluding similar) eight different schemes
can be derived by following the decision tree
as shown in Figure 29.

6.3 Empirical Evaluation

In section 6.2 based on Figure 29 eight
schemes for calculating the uniqueness

measure are highlighted. Two main
telecommunication projects A and B are
selected to evaluate the suggested schemes in
section 3.3 on the previous regression test
executions. The overall estimated size of
product A and B is about 1,250 and 110
thousands Line of Code.

Figure 29: Choice of Scheme for Calculating
Uniqueness Measure (enlarged Appendix 3)

As explained in section 3 of Appendix 2, a
product is constituted from projects
developed in version branches. To evaluate
the schemes suggested in the preceding
section two version branches were selected
within two products. Each branch's
development progress varies with time as
shown in Figure 30 below.

In order to analyze the behavior of test cases
if we consider them in multiple version
branches then the results will not be valid
since each of the branch progress is different
in time as is the nature of implemented
functionality. Here the branch versions

selected for the empirical evaluations are
referred as A1 and B1.

Out of most recent test runs 50 are selected
for A1 and A2 with 25 test cases to perform
the calculations. Evaluation of eight schemes
on two different regression test techniques
with most recent test runs of 20, 25 and 50
are shown in the Figure 31 (Appendix 3).

Figure 30: Comparison of Progress of version
branches at an instance. Each branch progress varies
with time

Since the main aim of this study is not
concerned with the design of regression test
selection techniques, two test suites are
selected based on even and odd number of
test cases and then taking the average of their
uniqueness measure. The test suites are
referred as TA and TB for even and odd
respectively.

The value of uniqueness measure is observed
to vary with the number of sessions. Overall
the value of uniqueness measure depends
upon the existing behavior measured across n
sessions. For instance scheme 4 in Figure 31
(Appendix 3) dissimilar 0 to latest uniqueness
measure decreases with added number of test
runs. In case of Spearman the value of
uniqueness increases comparatively in 50
sessions than in 25 sessions. Uniqueness
Measure varies with the data representation
in the across test runs and the extent to which
behavior is quantified in computations.

For the TA and TB evaluated with eight
different schemes the technique that gives the

higher value of uniqueness measure is valued
the most.

7. Discussion

In Figure 31 (Appendix 3) calculations are
performed on eight schemes with different
data situations. The first situation of data is
without missing information given by 1 and 2
under schemes in Figure 31. The value of
dissimilar behavior is higher than Co fail
behavior. The values from calculation may
vary and much dependent upon the
representation of specific behavior of the data
used. For instance, if the data had higher
display of co-fail behavior than dissimilar
behavior the results would have been
different. From Scheme 3 to 6 the
calculations are performed using the pre-
processing step. Pre-processing by non-
failure (replacing by 1) does not give high
value for dissimilar and co fail behavior. On
the other hand most recent info pre-
processing where the test case is considered
to fail in most recent test run effects the
calculations in Scheme 4 and 6. In Scheme 7
and 8 two different ways of computations are
employed one is by applying spearman
correlation and other by comparing the
number of faults found.

In all eight schemes the calculations were
performed with 20, 25 and 50 test runs. At
times with increased number of test runs the
computations gave lower value of uniqueness
for test cases and therefore the resulting test
suite. In case of Scheme 8 the uniqueness
value seems to get better with the increasing
number of test runs but this is also dependent
on variation in data. Therefore, for the
evaluation of regression technique an average
of calculations with varying numbers of test
runs can be considered as in column
“Average TA” and “Average TB” in Figure
31 (Appendix 3).

The variation in data and difference in the
mechanism of test suite selection by
employing diverse regression test techniques
does not provide a generalize way of
knowing which schemes always gives better
result for a particular regression test
technique. Experimentation and evaluation
of specific regression test techniques is
required with the presented schemes to
establish that a specific technique gives better
evaluation with a particular regression test
technique.

The application of the schemes devised is
more about providing different methods to
measure the uniqueness of a test case with
varying situations of data. Situation depends
on the kind of events that occur during the
execution of regression test i.e. break in the
execution session or skipping a particular test
case for execution. In order to weight the
significance of a single test case all factors
affecting its value are considered. In this
study the quality attributes of the test cases
are not mapped at test case level therefore the
computations for finding the uniqueness of a
test case are solely based on the calculations
presented by different schemes. The schemes
or methods for calculation can act as the
building blocks for the construction of a
framework that provide a uniqueness
measure for test cases with various form of
information presented from executions of test
runs.

Uniqueness measure of a test case is the
measurement instrument for finding whether
a test case should be included in a test suite
for regression test or not. In a test pool of
test cases uniqueness measure can serve as an
indication of behavior for grouping them
together. Once the uniqueness measure of
each test case is known it is easier to
segregate effective regression testing
techniques that select test cases with similar
behavior. Here since the details of the
quality attributes were not incorporated at test

case level the evaluation of regression testing
technique is simply by taking the average of
the uniqueness measure of test cases in test
suite. Even after the incorporation of quality
attributes the main calculations for measuring
uniqueness of a test case would remain same
as presented in the given schemes. Quality
attribute information can be introduced as a
pre-processing step linked through the
database containing information on each test
case or can be linked to the final value of
uniqueness measure found by applying a
scheme. The linking of quality attributes to a
test case can be a candidate topic for future
study.

Statistical method adopted for calculations
are already present in academia and
literature. For instance, spearman correlation
is used to find the relation between two
variables. Since the comparison of test cases
is in pairs we get two different variables to
perform calculations on. Also different
number of test runs constitutes multiple row
data for each set of variable and finally a
single value for correlation is given. The
method suffices the goal of finding
uniqueness for data with fractional values or
other than 1 and -1.
Time is an important factor when regression
testing is conducted. The defects resultant of
change in the software gives the current
status of software functionality. The number
of defects found in the recent time is
important than the previous ones. Therefore
the test runs from the most recent regression
runs are more valued since they give the
developers and testers the insight into the
further efforts required for an acceptable
quality standardized software. In the
Schemes presented the data is selected from
the most recent regression test runs and then
a value for uniqueness measure is calculated
across test runs. Time based information
gives updated calculations so that if a test
case becomes less important with time the
details are incorporated in the calculations.

In the schemes presented so far the least
efforts and resources are involved in
performing calculations using Average Fault
Detection Reduction (AFDR). AFDR is the
simplest kind of calculations than the pair-
wise comparison and can be performed easily
in all varying situations of data. This is why
AFDR is kept in a separate branch in the
categorical classification of uniqueness
measure schemes. Main ideas from the
discussion are summarized below:

Handling Different Situations with Data
without Generalization: Different
Regression test selection techniques may give
different results with the presented schemes.
Framework: The Schemes can be used as
the building blocks for finding the uniqueness
of test cases in different situations of data.
Measurement Instrument: Finding the
uniqueness of a test case in the test pool is the
main tool to measure a test case.

Adoption of Statistical Methods: Methods
applied for calculation already exist and are
used with variation according to the current
need in the organization

Time Variance: Calculations are dynamic
that incorporate the details of changing state
of software development with time, i.e. more
failure when application is under
development.

8. Conclusion

Uniqueness for a test case is a measure of its
relation or association with other test cases in
the test pool. Once this uniqueness measure
is established it ha been utilized to evaluate
the test suite found by a specific regression
technique. In this study an overview of
different schemes is given that can be used
for the evaluation of regression testing. The
two main categories of uniqueness are
identified as static co-fail and realistic co-fail.
In static co-fail the missing information for
test cases in the form of 0 is not handled and
therefore a variation of realistic co-fail is
applied. Finally a scheme is given AFDR
that does not measure the uniqueness of test
cases but evaluates the two regression testing
techniques on the average percentage of
defects found. Some weighting schemes
applied give a better view of the defects
found while prioritizing the most recent test
run in time than the old one.

The schemes suggested in this study can be
used as the building blocks for the evaluation
of regression testing techniques. The study
is evaluated empirically on the real situation
in software industry and therefore can be
considered as a potential candidate for the
implementation on large sized industry
projects in the future.

References

[1] IEEE, “IEEE Standard 610.12-1990, IEEE Standard Glossary of Software Engineering
Terminology,” 1990.

[2] Srikanth, H. Williams, L. Osborne, J. “System test case prioritization of new and regression
test cases”, Empirical Software Engineering, page 10, 2005.

[3] Harrold, M.J., Gupta, R., Soffa, M.L., “A methodology for controlling the size of a test
suite, ”Software Maintenance, 1990., Proceedings., pages 302 – 310, 2002.

[4] Elbaum, S., Malishevsky, A.G., Rothermel, G., “Test case prioritization: a family of
empirical studies”, Software Engineering, IEEE Transactions, pages 158-182, 2002.

[5] Fazlalizadeh, Y.; Khalilian, A.; Azgomi, M.A.; Parsa, S., “Prioritizing test cases for
resource constraint environments using historical test case performance data”, pages 190- 195,
2009.

[6] Yoo S., Harman M., “Regression Testing Minimization, Selection and Prioritization: A
Survey”, Software Testing, Verification and Reliability, John Wiley & Sons, Ltd., 2010.

[7] Mark Sherriff, Mike Lake, and Laurie Williams. “ Prioritization of Regression Tests using
Singular Value Decomposition with Empirical Change Records”. In Proceedings of the The 18th
IEEE International Symposium on Software Reliability (ISSRE '07). IEEE Computer Society,
Washington, DC, USA, 2007, pp 81-90.

http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=32
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=317
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=10351

Appendix 1: Regression Testing Process and Data

1. Overview of the Testing Process

Testing is conducted in three forms:

Smoke: It is performed first by developers and then by testers. The testers write the test case
against the code to test it. Few of the selected test cases are run in smoke and then all the written
test cases are added to Regression base test pool.

Daily: Only applies to one product.

Weekly: All test cases are run at the weekend with the jobs scheduled in the form of ready files
that contains a selection of the number of test cases. The ready files are executable to be run on
scheduler used for the organization.

Defect Fix and Rechecking

TR: A Trouble Report (TR) is written based on PMR (Customer Requirements), defect from the
testers or any found defect that results in the TR writing. TR is sent to development team, who
after reproducing the defect resolve the problem. The defect is then fixed and is tagged with
some defined labels to identify the reason at developments end. Pictorial depiction of Latest
Software Version (LSV) cycle just few weeks before the product is shipped to the customer is
given below.

Test case: Test case are written against the code developed by the developers

Test Groups: Test cases are grouped into test objects according to main functionality to cover as
many positive and negative testing scenarios.

Test execution session / test run: Each test run is maintained in a dedicated session and is stored
in MySql Database.

Pass/ Fail: Each test case is assigned pass (indicated by green) and fail (indicated by red)

Outcome of running test runs: The Test cases that fail are assigned a Priority level A, B, C.
The stability of a node can be seen by the test runs based on the failed test cases. Failing test case
could be because of environment factor or some crucial product defect. Test case failing does not
say anything about the quality of the defect. From the organization point of view all failed test
case are important because they have potential to find a defect.

2. Database Structure

There are various tables in the database used to store the information on the test runs. The most
important tables are Test Groups, Test Runs and StreamSession. The main fields of tables are
described below in table 1, 2 and 3.

The test cases are grouped in testobject. Each testobject contains various number of test cases
testing the functionality of a feature. It may constitute upon multiple features in a module. These
testobjects are contained in a ready file scheduled to be run on automatic Scheduler for the
regression test.

TestGroups table contains test object specific details such as unique id, and test object. Two
different test cases can be given the same number two different test objects. For instance test
case 5 in testobject 1 and testobject 2 indicate different test cases. Therefore, a unique test case is
identified with a combination of test object, test case number and a test case slogan.

StreamSessions maintains the details on the session that are run as a part of testing activities.
The information of most interest to us is the pass and fail status of the test cases. The pass and
fail information in the streamline table is saved in the form of 0’s and 1’s. To retrieve the status
of the test cases for a specific number of runs the database can be queried with SQL.

TestRuns gives an overview on the runs of the testing activities. The details are maintained
under a session Id with a count of test cases passed and failed.

TestGroups

Field Description

toSeqNr autoincremented unique id for a testobject record

testobject testobject name, used in the streamline table (and others as well)

isRemoved true if testobject is 'deleted' (test objects are never deleted just hidden)

TestRuns table:

Field Description

ruSeqNr auto_increment | autoincremented unique id

Project project identifier, e.g. Project A,B.

dr drop identifier, e.g. daily/weekly

Pass number of passed testcases for this session

fail |number of failed testcases for this session

 Nap number of nap testcases for this session

Running true if the session is still running

sessionId session id for the whole testcase execution

StreamSession

Code maintenance for versioning at the Development:

Development approach that is followed is agile. Code is always changing; change mechanism is
detected and maintained using ClearCase IBM tool. The subversions trace back to the main
delivery branch and give an overview of the progress of application development. TRs written
by the testers against a defect are not mapped with the testcases. The information is not stored in
the database where one can find TR and related test case against it. There is a missing link in
ClearCase tool when it comes to the mapping of test cases and TRs written against them.

Field Description

tcSeqNr auto_increment | autoincremented unique id

tcNumber test case number, unique in combination with testgroups

tcSlogan test case slogan, as displayed on the testing website

tcTimestamp testcase execution timestamp

Project project identifier, e.g. Project A, B.

dr drop identifier, e.g. daily/weekly

testgroup test object name As seen on testing website

tcStatus status, e.g. pass, fail or nap (not applicable)

nap Not Applicable

tcSessionId session id for the whole testcase execution (all testcases in all testobjects)

tcFailCount number of times a testcase have failed in a row

tcRunNumber for testcase history, the highest number is the latest version of the testcase

tcDeleted Is the test case deleted? (we never really delete anything, just hide by using
this flag)

tcIsLatestRun True if this row holds the results from the latest testcase execution

errorCategory The error category

assignedTo The team assignment

ClearCase keeps the information on the TR written against code but within the database there is
no link between the test cases and the run for specific TR.

Cost of getting other information:

A dummy mapping can be done by tagging TR with test cases in Database to find effective test
suite while comparing different techniques for finding a test suite for regression testing. One
field can be added to the table containing test cases to tag relevant TR against them. It can useful
for decreasing the number of test cases for regression testing in the resultant test suite.

3. Setting Filter for information Retrieval

Within the product there are different projects. The data that is retrieved is from weekly
Regression runs. Since there are multiple branch projects within a product, data from a project
with in the same version branch is considered for consistency reasons. Since the changes
implemented in each branch can vary in functionality, data combination from across all branches
will make it inconsistent. As shown in Figure 1 if data for test cases is considered across the
branches it would not be appropriate since we want to study the pass and fail behavior of test
cases all together. For instance to analyze the behavior of test cases if we consider them across
branches then the results will not be valid since each of the branch progress is different in time as
is the nature of implemented functionality.

Figure 1: Comparison of Progress of version branches at an instance. Each branch progress
varies with time

Product A

Version Branches

Progress at one instance on
time line

Appendix 2: Average Fault Detection Reduction and Weighting
Schemes

Fault Detection Reduction

1. Calculate the Uniqueness of each test case across n sessions by counting the number of
failures. a/n

2. Select two different sets of test cases as a result of Technique X.
3. For each session in the original data see how many faults are present.
4. Assumption that each session i contain unique set of faults. Divide the total number of

Faults found by Technique (A) in session i with the total number of faults in session i.
The result is FDR(A) and FDR(B).

5. Repeat step 6 for n number of sessions and for each Technique X1 and X2.
6. Find the Average of FDR(A) and FDR(B).

Applying Weights

The information from the recent session is the most important. We assign weighting by time.
Simplest weighting linear can be used. By looking at the number of sessions spread out the
weights so that the later weight are higher and they all sum to 1.

Exponential Moving Average = S t = α * yt +(1-α) *S t-1

Where S t is the MVA for current observation,
α is the coefficient value calculated as α= 1/ (N),
N is the number of current session,
yt is the value of the observation (here FDR),
S t-1 is the MVA for last observation.

Modified Moving Average
Another weighting scheme Modified Moving Average (MMA) that is applied gives a better
overview of the trend of uniqueness measure according to the value in time as given below:

α= 1/(N)

Where α is the value of the coefficient applied and N the number of the current session.

Applying Severity

Multiply FDR in session i with the sum of the severities in found faults.
Rate the higher severity with higher integer value.

Faults found *Sum of severities of faults found / sum of total faults found.

Adding Cost

Cost can be added if the time for running a test case is known. Then for selected test suite by a
technique we can say that we have time to run this many test cases. i.e. a technique selects 80%
but due to time limit can only run 40 test cases.

- Data does not have variability, most of the data have similar pattern. Fault Detection Reduction
assumes that all faults in each session are unique. By identifying the number of faults found by
each technique during each session and taking an average over all sessions we can compare two
techniques. Fault Detection Reduction (FDR) is similar to Average Percentage of Fault
Detection (APFD) but in APFD the prior knowledge about the number of faults is known.

Appendix 3: Figures

Figure 18: Percentage of Dissimilar Behavior for Non-Faulty

Figure 20: Calculation for Failure-Frequency

Figure 22: Calculation for Distance, Distance Square and Rho for each Pair-Wise
Comparison.

Figure 25: Calculation of AFDR on two techniques with Weighting Schemes EMA and
MMA.

Figure 29: Choice of Scheme for Calculating Uniqueness Measure

Figure 31: Empirical Evaluation of Eight Schemes with two test suites TA and TB

S c h e m e s T e c h n i q u e A T e c h n i q u e B A v e r g a g e T A A v e r g a g e T B

5

2 0 S e s s i o n s 0 . 0 0 0 2 2 0 . 0 0 0 2 4 0 . 0 0 0 2 8 0 . 0 0 0 3 0

0 . 0 0 0 3 6 0 . 0 0 0 3 8

5 0 S e s s i o n s 0 . 0 0 0 2 7 0 . 0 0 0 2 9

2 C o - F a i l 6

0 . 0 0 0 0 4 0 . 0 0 0 0 3 0 . 0 0 0 2 2 0 . 0 0 0 2 3

2 5 S e s s i o n 0 . 0 0 0 3 5 0 . 0 0 0 3 8

5 0 S e s s i o n 0 . 0 0 0 2 7 0 . 0 0 0 2 8

3 . D i s s i m i l a r (0 t o 1) 7

2 0 S e s s i o n s 0 . 0 0 0 0 0 0 . 0 0 0 0 0 0 . 0 0 0 1 0 0 . 0 0 0 1 1

2 5 S e s s i o n s 0 . 0 0 0 1 4 0 . 0 0 0 1 5

5 0 S e s s i o n s 0 . 0 0 0 1 6 0 . 0 0 0 1 7

4 . D i s s i m i l a r (0 t o l a t e s t) 3

2 0 S e s s i o n s 0 . 0 0 2 6 2 0 . 0 0 2 7 7 0 . 0 0 2 1 1 0 . 0 0 2 2 9

2 5 S e s s i o n s 0 . 0 0 2 0 5 0 . 0 0 2 3 5

5 0 S e s s i o n s 0 . 0 0 1 6 5 0 . 0 0 1 7 5

5 . C o - f a i l (0 t o 1) 8

2 0 S e s s i o n s 0 . 0 0 0 0 4 0 . 0 0 0 0 3 0 . 0 0 0 0 5 0 . 0 0 0 0 4

2 5 S e s s i o n s 0 . 0 0 0 0 6 0 . 0 0 0 0 5

0 . 0 0 0 0 5 0 . 0 0 0 0 3

6 . C o - f a i l (0 t o l a t e s t) 4

2 0 S e s s i o n s 0 . 0 0 1 1 5 0 . 0 0 1 0 3 0 . 0 0 1 0 3 0 . 0 0 0 9 5

2 5 S e s s i o n s 0 . 0 0 1 2 1 0 . 0 0 1 1 0

5 0 S e s s i o n s 0 . 0 0 0 7 3 0 . 0 0 0 7 1

7 . S p e a r m a n (F a i l u r e F r e q u e n c y) 1

2 0 S e s s i o n s 0 . 4 6 6 3 5 0 . 4 8 3 8 2 0 . 4 8 6 1 3 0 . 4 9 1 2 8

2 5 S e s s i o n s 0 . 4 9 4 6 7 0 . 4 9 2 2 7

5 0 S e s s i o n s 0 . 4 9 7 3 6 0 . 4 9 7 7 5

8 . A F D R 2

2 5 S e s s i o n s 0 . 0 7 5 6 0 . 0 8 0 0 0 . 0 7 5 6 0 . 0 8 0 0

1 . D i s s i m i l a r

2 5 S e s s i o n s

2 0 S e s s i o n s

5 0 S e s s i o n

	Master of Science Thesis Software Engineering and Technology
	Mehvish Rashid

