
Bare-Metal Implementation of a Real-Time
Distributed Control System Using CAN

Master’s thesis in Embedded Electronic System Design

Anton Olsson
Robert Sjöberg

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2022

Master’s thesis 2022

Bare-Metal Implementation of a Real-Time
Distributed Control System Using CAN

Anton Olsson
Robert Sjöberg

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2022

Bare-Metal Implementation of a Real-Time Distributed Control System Using CAN
Anton Olsson, Robert Sjöberg

© Anton Olsson, Robert Sjöberg, 2022.

Supervisor: Jan Jonsson, Department of Computer Science and Engineering
Company advisor: Lars-Berno Fredriksson, Kvaser AB
Examiner: Per Larsson-Edefors, Department of Computer Science and Engineering

Master’s Thesis 2022
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Picture of Kvaser’s devKit car

Typeset in LATEX
Gothenburg, Sweden 2022

iv

Bare-Metal Implementation of a Real-Time Distributed Control System Using CAN
Anton Olsson, Robert Sjöberg
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Distributed control systems consisting of several nodes connected via CAN bus
are commonplace in many industrial and automotive settings. These systems of-
ten require real-time capabilities and generally utilize a real-time operating system
(RTOS) in the nodes to achieve this. This thesis work explored the feasibility of
developing a bare-metal implementation based on a previous RTOS implementation.
Additionally, we explored any real-time performance advantages of the bare-metal
implementation and if there were any compatibility issues in combining bare-metal
nodes with RTOS nodes.
The thesis work was conducted on a model car with several nodes with specific
functions connected via a CAN bus. A node tasked with braking was converted
from using an RTOS to a bare-metal implementation. The brake node was tested
through a reproducible simulated test run using two different scheduling approaches.
It was found that a bare-metal implementation using interrupts produced a more
predictable jitter. Faster execution times were also observed due to faster driver im-
plementation. Finally, no issues in combining nodes with different implementations
were found. In conclusion, a bare-metal implementation could be beneficial in some
applications with low complexity that require a small performance improvement or
less jitter.

Keywords: Controller Area Network, Bare-metal, Real-time operating system

v

Acknowledgements
We would like to thank Kvaser AB for providing the opportunity for us to perform
our thesis work at their office. Many thanks to our advisors Lars-Berno Fredriksson,
for his advice and guidance, and André Idoffsson, for his technical knowledge and
hardware support.
We would also like to thank our supervisor at the department of computer science
and engineering, Jan Jonsson, for his commitment, support, and invaluable feedback
on the report. We also wish to thank our examiner, Per Larsson-Edefors, for his
swift feedback.
Finally, we would like to thank all employees at Kvaser for their helpful discussions
and pleasant fika breaks.

Anton Olsson, Robert Sjöberg, Gothenburg, June 2022

vii

Contents

1 Introduction 1
1.1 Aim . 1
1.2 Limitations . 2
1.3 Thesis outline . 2

2 Technical background 3
2.1 DevKit Car . 3

2.1.1 Brake node . 6
2.1.2 Brake control system . 6

2.2 Controller area network . 7
2.3 CAN Kingdom . 8

2.3.1 Protocol structure . 8
2.3.2 Operation modes . 8
2.3.3 Glossary . 9

2.4 Operating system . 10
2.4.1 Real-time operating systems 10
2.4.2 RT-Kernel . 11
2.4.3 Bare-metal . 12

2.5 Scheduling . 12
2.6 I2C . 12
2.7 Pulse-Width Modulation . 13
2.8 Direct memory access . 13

3 Methods 15
3.1 Device drivers . 15
3.2 Test methods . 15

3.2.1 Time measurements . 17
3.2.2 Overhead measurements for RT-Kernel and bare-metal 18
3.2.3 Jitter measurements . 18
3.2.4 Device driver verification . 18

4 Implementation 19
4.1 Driver implementation . 19
4.2 CAN Kingdom . 19
4.3 Task management . 20

4.3.1 Polling-based scheduler . 21

ix

Contents

4.3.2 Interrupt-based scheduler . 22

5 Results 23
5.1 Execution time . 23
5.2 Jitter measurements . 25
5.3 System integration . 25

6 Discussion 27
6.1 Device drivers . 27
6.2 Task implementation . 27
6.3 Scheduling . 27
6.4 RT-Kernel . 28
6.5 Ethical considerations . 29

7 Conclusion 31

Bibliography 33

x

1
Introduction

Control systems are necessary for a wide range of applications in the industry and
in commercial products. Often these control systems are distributed over a number
of embedded devices that need real-time communication to ensure correct function-
ality. This requires robust communication protocols that can handle strict real-time
requirements, especially for safety critical systems in, for example, the automotive
industry.
Controller area network (CAN) is a communication protocol widely used in the
industry [1]. It is well suited for real-time communication between nodes in embed-
ded systems due to its low overhead and timeliness [2]. Typically, these nodes run
an operating system (OS) to simplify handling e.g. communication, multitasking,
and I/O. Many features of an OS are however non-essential for simple nodes and
removing these may provide real-time performance gains.
A tailor-made solution without an OS, referred to as a bare-metal solution in this
thesis, can be used to optimize system performance. This could yield faster commu-
nication which is important in many applications with hard real-time requirements.
An example of such applications is a control system that relies on fast sensor feed-
back for accurate control of, e.g. ABS in a car.
The problem addressed in this thesis report was conceived at Kvaser [3]. Kvaser
supplies advanced CAN solutions for use in a wide range of applications and has
more than 30 years of CAN development experience. Kvaser has a model car, called
devKit, containing a distributed embedded control system (DECS) which is the
environment for this thesis work. The nodes of this control system are currently
using the real-time OS (RTOS) RT-Kernel.

1.1 Aim
This thesis project aims to design and implement a bare-metal solution for brake con-
trol nodes and compare its performance to that of brake control nodes implemented
with RT-Kernel. The bare-metal implementation needs to be able to provide the
same guarantee that all deadlines will be met, as an implementation in RT-Kernel;
without the overhead of an OS. It could be expected that a bare-metal solution
would result in faster task completion.
A further aim is to investigate if the potential real-time performance gain of the
brake nodes can be translated into better real-time performance for the full system.

1

1. Introduction

To be able to test this, however, integration is required between our bare-metal
brake node and the remaining system nodes. This integration needs to be evaluated
as any encountered integration di�culties could make the bare-metal solution less
useful.

To summarize, the main project goals are the following:

ˆ Create a bare-metal implementation of the brake node

ˆ Integrate the bare-metal brake node with the remaining nodes in the devKit-
car

ˆ Measure di�erences in real-time performance between bare-metal and RTOS
implementation

ˆ Evaluate system issues with combining nodes with and without RTOS

1.2 Limitations

The limitations of this project are as follows: �rstly, we will not create a for-
mal proof of code accuracy and not perform code analysis for worstcase execution
time (WCET), as this is outside the scope. Secondly, the control system setup and
parameters will not be optimized, since the purpose of this thesis work is to evaluate
the e�ects of the RTOS compared to a bare-metal solution, not to optimize a control
system.

1.3 Thesis outline

The rest of this thesis is organized as follows: In chapter 2 the system and the various
protocols and concepts it uses are covered along with background on OSes with a
focus on RTOSes. In chapter 3 we discuss the testing and design methodology
used in this thesis work. The implementation details of the bare-metal solution
are described in chapter 4. In chapter 5, the results are presented which are then
discussed in chapter 6. Finally, in chapter 7 we present our conclusions.

2

2
Technical background

This chapter provides the underlying theory to the concepts presented in this thesis.
First, a detailed description of the target platform for this thesis is given. Then
follows a presentation of the CAN protocol and how it is used in the system. Af-
ter this follows some theory on operating systems and scheduling. Finally, a brief
presentation of some of the concepts in use in the system is given.

2.1 DevKit Car

Kvaser's devKit car, pictured in Fig. 2.1, is the platform for this thesis work. It is a
1/5 scale model remote-controlled car with a distributed embedded control system
(DECS) consisting of several sensor and actuator nodes (see Fig. 2.2) connected by a
CAN bus. The CAN system in the car utilizes the meta protocol CAN Kingdom [4]
(see section 2.3).

In total there are seven nodes in the car as well as two nodes in the remote control
unit (see Fig. 2.3). The car and remote are connected to the same CAN bus via a
point-to-point radio link called Air Bridge [5]. Each of the nine nodes in the system
contains one ARM microcontroller (MCU) STM32F302RE [6] running the RTOS
RT-Kernel [7].

Each node is responsible for a speci�c function. There is one node at each wheel
for controlling the brakes. There is also one node for controlling the steering servo,
one node for controlling the motor, and one master node responsible for setting up
communication. In the remote control, each of the two nodes transmits the states
of one joystick and one set of switches.

A special focus of this master thesis project is on the braking nodes. The car has
been �tted with anti-locking brakes developed at Kvaser. These nodes measure and
transmit the current wheel speed and use that together with the data from the other
brake nodes to control the brakes. In the current control system setup only the rear
wheels are used for braking. The front wheel nodes are solely used to measure the
speed of the car.

3

	Introduction
	Aim
	Limitations
	Thesis outline

	Technical background
	DevKit Car
	Brake node
	Brake control system

	Controller area network
	CAN Kingdom
	Protocol structure
	Operation modes
	Glossary

	Operating system
	Real-time operating systems
	RT-Kernel
	Bare-metal

	Scheduling
	I2C
	Pulse-Width Modulation
	Direct memory access

	Methods
	Device drivers
	Test methods
	Time measurements
	Overhead measurements for RT-Kernel and bare-metal
	Jitter measurements
	Device driver verification

	Implementation
	Driver implementation
	CAN Kingdom
	Task management
	Polling-based scheduler
	Interrupt-based scheduler

	Results
	Execution time
	Jitter measurements
	System integration

	Discussion
	Device drivers
	Task implementation
	Scheduling
	RT-Kernel
	Ethical considerations

	Conclusion
	Bibliography

