DEPARTMENT OF TECHNOLOGY MANAGEMENT AND ECONOMICS DIVISION OF ENVIRONMENTAL SYSTEM ANALYSIS CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2022 www.chalmers.se Report No. E2022:061 REPORT NO. E2022:061 Department of Technology Management and Economics Division of Environmental System Analysis CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden 2022 Prospective life-cycle assessment of an argyrodite type solid-state battery SOFIE HJORTSBERG ZACKARIAS HEYDORN © SOFIE HJORTSBERG, 2022. © ZACKARIAS HEYDORN, 2022. Report no. E2022:061 Department of Technology Management and Economics Chalmers University of Technology SE-412 96 Göteborg Sweden Telephone + 46 (0)31-772 1000 Cover: A visualization of the principal difference between a conventional liquid electrolyte battery and a solid-state battery. Illustration by William Joel, courtesy of The Verge and Vox Media. Gothenburg, Sweden 2022 https://en.wikipedia.org/wiki/Electric_charge https://en.wikipedia.org/wiki/Electron https://en.wikipedia.org/wiki/Electrochemical_reaction ● ● ● ● ● ● ● ● https://www.aetnaplastics.com/site_media/media/attachments/aetna_product_aetnaproduct/25/PTFE%20Specifications.pdf https://www.aetnaplastics.com/site_media/media/attachments/aetna_product_aetnaproduct/25/PTFE%20Specifications.pdf https://www.albemarle.com/products/lithium-methoxide-typ-10-solution-in-methanol-typ-22-m https://doi.org/10.1021/acsenergylett.1c00445 https://doi.org/10.1021/acsenergylett.1c00445 https://doi.org/10.1021/acsenergylett.1c00445 https://db.ecoinvent.org/reports/08_Chemicals.pdf https://doi.org/10.1002/smll.202103617 https://doi.org/10.1002/smll.202103617 https://doi.org/10.1002/smll.202103617 https://doi.org/10.1016/j.resconrec.2022.106164 https://doi.org/10.1016/j.resconrec.2022.106164 https://doi.org/10.1111/jiec.12690 https://doi.org/10.1007/s11367-020-01781-1 https://doi.org/10.1016/j.powtec.2018.01.009 https://doi.org/10.1002/14356007.a19_527 https://doi.org/10.1002/14356007.a19_527 https://doi.org/10.1002/14356007.a19_527 https://doi.org/10.1016/j.jpowsour.2021.229919 https://doi.org/10.1016/j.jpowsour.2021.229919 https://d.docs.live.net/def3acfc28b28003/ https://doi.org/10.1039/D2EE00842D https://www.britannica.com/science/silver https://doi.org/10.1016/S1874-5695(06)80017-5 https://www.sigmaaldrich.com/SE/en/technical-documents/technical-article/materials-science-and-engineering/batteries-supercapacitors-and-fuel-cells/carbon-nanofibers https://www.sigmaaldrich.com/SE/en/technical-documents/technical-article/materials-science-and-engineering/batteries-supercapacitors-and-fuel-cells/carbon-nanofibers https://doi.org/10.3390/su11195456 https://doi.org/10.3390/su11195456 https://doi.org/10.3390/su11195456 https://doi.org/10.1021/es048114o https://doi.org/10.1021/es048114o https://doi.org/10.3390/en13164131 https://doi.org/10.3390/en13164131 https://www.chalmers.se/en/projects/Pages/Life-cycle-assessment-of-future-battery-chemistries-Q-high.aspx https://www.chalmers.se/en/projects/Pages/Life-cycle-assessment-of-future-battery-chemistries-Q-high.aspx https://www.chemeurope.com/en/encyclopedia/Phosphorus_pentasulfide.html?msclkid=49265cffa91611ec890bf38cac40ceea https://www.chemeurope.com/en/encyclopedia/Phosphorus_pentasulfide.html?msclkid=49265cffa91611ec890bf38cac40ceea https://doi.org/10.1002/smll.202101693 https://doi.org/10.1002/smll.202101693 https://doi.org/10.1002/smll.202101693 https://doi.org/10.1007/s11367-021-01976-0 https://doi.org/10.1007/s11367-021-01976-0 https://doi.org/10.1007/s11367-021-01976-0 https://patents.google.com/patent/WO2016119481A1/en https://www.crmalliance.eu/germanium https://doi.org/10.1016/j.procir.2017.11.005 https://doi.org/10.1016/j.jpowsour.2017.01.036 https://doi.org/10.1016/j.jpowsour.2017.01.036 https://ecoinvent.org/the-ecoinvent-database/system-models/ https://ecoinvent.org/the-ecoinvent-database/system-models/ https://doi.org/10.33063/diva2-1452023 https://doi.org/10.1111/jiec.12072 https://doi.org/10.1111/jiec.12072 https://doi.org/10.1002/14356007.a10_567.pub2 https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf https://eucar.be/wp-content/uploads/2019/08/20190710-EG-BEV-FCEV-Battery-requirements-FINAL.pdf https://doi.org/10.1002/aenm.201702657 https://doi.org/10.1002/aenm.201702657 https://www.flexicon.com/Materials-Handled/Carbonblack.html#:~:text=In%20appearance%2C%20carbon%20black%20may%20be%20an%20intensely,1.8-2.1%20g%2Fcm%203%20and%20a%20high%20surface-area-to-volume%20ratio. https://www.flexicon.com/Materials-Handled/Carbonblack.html#:~:text=In%20appearance%2C%20carbon%20black%20may%20be%20an%20intensely,1.8-2.1%20g%2Fcm%203%20and%20a%20high%20surface-area-to-volume%20ratio. https://www.flexicon.com/Materials-Handled/Carbonblack.html#:~:text=In%20appearance%2C%20carbon%20black%20may%20be%20an%20intensely,1.8-2.1%20g%2Fcm%203%20and%20a%20high%20surface-area-to-volume%20ratio. https://doi.org/10.1016/j.jpowsour.2020.228135 https://doi.org/10.1016/j.jpowsour.2020.228135 https://doi.org/10.1016/j.jpowsour.2020.228135 https://doi.org/10.1007/s11367-015-0897-4 https://doi.org/10.1007/s11367-015-0897-4 https://doi.org/10.1162/108819803323059415 https://doi.org/10.1111/jiec.12183 https://doi.org/10.1007/978-3-030-31581-8_15 https://doi.org/10.1007/978-3-030-31581-8_15 https://doi.org/10.1007/s11367-018-1478-0 https://doi.org/10.1007/s11367-018-1478-0 https://doi.org/10.2172/1731043 https://doi.org/10.1002/adfm.202106608 https://doi.org/10.1002/adfm.202106608 https://doi.org/10.1002/adfm.202106608 https://doi.org/10.1016/j.ensm.2019.05.033 https://doi.org/10.1016/j.ensm.2019.05.033 https://doi.org/10.1016/j.ensm.2019.05.033 https://doi.org/10.1039/D2TA02339C https://doi.org/10.1007/s11367-016-1246-y https://www.iea.org/reports/global-ev-outlook-2021 https://www.iea.org/reports/global-ev-outlook-2021 https://www.iea.org/countries/sweden https://www.ineos.com/globalassets/ineos-group/businesses/ineos-olefins-and-polymers-usa/products/technical-information--patents/ineos-engineering-properties-of-pp.pdf#:~:text=Polypropylene%20General%20Properties%20English%20Units%20SI%20Units%20CAS,%E2%80%93%2056.1%20Lbs%20%2Fft3%200.904%20%E2%80%93%200.908%20g%2Fcm3 https://www.iso.org/standard/37456.html https://www.ipcc.ch/report/ar6/wg3/downloads/report/IPCC_AR6_WGIII_SPM.pdf https://doi.org/10.1016/j.jenvman.2020.111918 https://doi.org/10.1016/j.jenvman.2020.111918 https://doi.org/10.1016/j.jpowsour.2013.10.005 https://doi.org/10.1016/j.jpowsour.2013.10.005 https://doi.org/10.1016/j.jpowsour.2013.10.005 https://doi.org/10.1021/acssuschemeng.1c01554 ‐ https://doi.org/10.1002/0471238961.1209200811011309.a01.pub2 https://doi.org/10.1002/0471238961.1209200811011309.a01.pub2 https://doi.org/10.1002/0471238961.1209200811011309.a01.pub2 https://doi.org/10.1016/j.jclepro.2018.08.168 https://doi.org/10.1111/j.1530-9290.2008.00052.x https://doi.org/10.1111/j.1530-9290.2008.00052.x https://doi.org/10.1002/aenm.202002689 https://doi.org/10.1002/aenm.202002689 https://doi.org/10.1016/j.jclepro.2014.12.003 https://doi.org/10.1038/s41560-020-0575-z https://doi.org/10.1002/batt.202100288 https://doi.org/10.1002/batt.202100288 https://doi.org/10.1016/j.mattod.2021.03.013 https://doi.org/10.1016/j.mattod.2021.03.013 https://doi.org/10.1016/j.mattod.2021.03.013 https://doi.org/10.1016/j.jclepro.2020.124528 https://www.lorric.com/en/WhyLORRIC/Material/material-chemical-resistance-chart-PVDF https://www.energy.gov/articles/energy-storage-key-reliable-clean-electricity-supply https://doi.org/10.1088/1361-6463/abd353 https://doi.org/10.1088/1361-6463/abd353 https://doi.org/10.1088/1361-6463/abd353 https://doi.org/10.1016/j.jpowsour.2018.04.055 https://doi.org/10.1016/j.jpowsour.2018.04.055 https://doi.org/10.1016/j.jpowsour.2018.04.055 https://doi.org/10.1016/j.partic.2021.04.002 https://doi.org/10.1016/j.partic.2021.04.002 https://doi.org/10.1109/TVT.2019.2943052 https://www.msesupplies.com/products/nmc-811-cathode-powder-500g-lithium-nickel-manganese-cobalt-oxide-powder?variant=16116292714554 https://www.msesupplies.com/products/nmc-811-cathode-powder-500g-lithium-nickel-manganese-cobalt-oxide-powder?variant=16116292714554 https://www.mtixtl.com/AluminumLaminatedFilmforPolymerBatteryCase100mmWx210mmL50pcs.aspx https://www.mtixtl.com/AluminumLaminatedFilmforPolymerBatteryCase100mmWx210mmL50pcs.aspx https://doi.org/10.1002/aenm.202000804 https://doi.org/10.1002/aenm.202000804 https://doi.org/10.1002/aenm.202000804 https://doi.org/10.1002/14356007.a25_507.pub2 https://doi.org/10.1002/14356007.a25_507.pub2 https://doi.org/10.1007/s11367-014-0788-0 https://doi.org/10.1002/ange.202201249 https://doi.org/10.1002/ange.202201249 https://www.openlca.org/openlca/ https://doi.org/10.1016/B978-0-08-096701-1.00058-6 https://doi.org/10.1016/B978-0-08-096701-1.00058-6 https://doi.org/10.1016/B978-0-08-096701-1.00058-6 https://doi.org/10.1088/2515-7655/ab95f4 https://doi.org/10.1088/2515-7655/ab95f4 https://doi.org/10.1016/j.rser.2016.08.039 https://doi.org/10.1016/j.rser.2016.08.039 https://doi.org/10.1016/j.jclepro.2016.06.164 https://www.rivm.nl/en/life-cycle-assessment-lca/recipe https://www.rivm.nl/en/life-cycle-assessment-lca/recipe https://doi.org/10.1002/aenm.202100771 https://doi.org/10.1002/aenm.202100771 https://doi.org/10.1038/srep02261 https://doi.org/10.1038/srep02261 https://doi.org/10.1038/srep02261 https://doi.org/10.1016/j.jclepro.2015.01.013 https://doi.org/10.1016/B978-0-12-398538-5.00022-6 https://doi.org/10.1016/B978-0-12-398538-5.00022-6 https://doi.org/10.1016/j.jpowsour.2018.02.062 https://doi.org/10.1016/j.jpowsour.2018.02.062 https://doi.org/10.1016/j.jpowsour.2018.02.062 https://doi.org/10.1088/978-0-7503-3535-5 https://doi.org/10.1021/acs.chemrev.8b00252 https://doi.org/10.1021/acs.chemrev.8b00252 https://doi.org/10.1021/acs.chemrev.8b00252 https://doi.org/10.1021/acs.est.5b03239 https://doi.org/10.1039/D0CP02181D https://doi.org/10.1039/D0CP02181D https://www.ssnano.com/inc/sdetail/silver_nanoparticles_nanopowder___ag__99_9__50_60_nm_/266 https://www.ssnano.com/inc/sdetail/silver_nanoparticles_nanopowder___ag__99_9__50_60_nm_/266 https://doi.org/10.1002/adsu.202000241 https://doi.org/10.1021/acsenergylett.0c01977 https://doi.org/10.1021/acsenergylett.0c01977 https://doi.org/10.1038/s41565-020-0657-x https://doi.org/10.1038/s41565-020-0657-x https://doi.org/10.1038/s41565-020-0657-x https://doi.org/10.1002/aenm.202000802 https://doi.org/10.1002/aenm.202000802 https://doi.org/10.1016/j.resconrec.2019.104676 https://doi.org/10.1016/j.resconrec.2019.104676 https://doi.org/10.1016/j.resconrec.2019.104676 https://doi.org/10.1016/j.apenergy.2016.02.064 https://doi.org/10.1016/j.apenergy.2016.02.064 https://doi.org/10.1016/j.apenergy.2016.02.064 https://doi.org/10.3390/su12031192 https://doi.org/10.1016/j.jpowsour.2020.228803 https://doi.org/10.1016/j.jpowsour.2020.228803 https://doi.org/10.1111/jiec.12444 https://doi.org/10.1111/jiec.12444 https://doi.org/10.1111/jiec.12444 https://doi.org/10.1016/B978-0-323-90472-8.00003-2 https://doi.org/10.1016/B978-0-323-90472-8.00003-2 https://doi.org/10.1016/B978-0-323-90472-8.00003-2 https://doi.org/10.1016/j.chempr.2018.11.013 https://doi.org/10.1016/j.chempr.2018.11.013 https://doi.org/10.1016/j.eurpolymj.2020.109963 https://doi.org/10.1002/adma.201804815 https://doi.org/10.1039/D0EE02714F https://doi.org/10.1039/D0EE02714F https://doi.org/10.1039/D0EE02714F https://patents.google.com/patent/CN101412659A/en https://doi.org/10.1021/acsami.0c17302 https://doi.org/10.1016/j.nanoen.2021.105858 https://doi.org/10.1007/s11367-022-02023-2 https://doi.org/10.1007/s11367-022-02023-2 https://doi.org/10.1002/adma.201901131 https://doi.org/10.1002/adma.201901131 https://doi.org/10.1002/adma.201901131 https://doi.org/10.1016/j.jpowsour.2020.229321 https://doi.org/10.1016/j.jpowsour.2020.229321 https://doi.org/10.1016/j.jpowsour.2020.229321 http://dx.doi.org/10.1021/acsenergylett.8b01997 https://lucid.app/documents/edit/94c82f94-94d9-488c-a9fd-c0721df4752c/0?callback=close&name=docs&callback_type=back&v=885&s=592 * * *   * ** ** * **       * * * * * *  * * * * * Cells required = FU capacity Pouch cell capacity V = volume m = mass d = density         Vcatholyte = 0.021 * 5.3 * 8.8 cm = 0.979 cm3 Vcatholyte = V1 + V2 +V3 + V4 = (85/105) * mcatholyte / dcatholyte V1= VLZO/NMC = (85/105)*mcatholyte/3.4 g/cm3 V2= VSSE = (15/105)*mcatholyte/1.64 g/cm3 V3= VCNF = (3/105)* mcatholyte/1.5 g/cm3 V4= VPTFE = (1.5/105)*mcatholyte/2.16 g/cm3 mLZO/NMC = 2.26 g mSEE =0.399 g mCNF =0.0798 g mPTFE =0.0399 g         VSSE = 0.006 * 5.7 * 9.2 cm = 0.315 cm3 mLi6PS5Cl = (1.64 g/cm3 * 0.315 cm3) * 99/100 = 0.51085 g mbinder = 0.511 g / 99 = 0.00516 g mSEE = 0.511 + 0.00516 g = 0.516 g           VAg-C = 0.002 * 5.5 * 9 cm = 0.099 cm3 VAg = 0.099 cm3 * 0.08 = 0.00792 cm3 mAg = 0.00792 cm3 * 10.5 g/cm3 = 0.0832 g mCB = 0.0832 g * 3 = 0.249 g mPVDF = (0.0832 + 0.249 g) / 99 = 0.00336 g mNMP = (0.00336/7)*93 = 0.0446 g mAg-C = 0.0832 + 0.249 + 0.00336 g = 0.336 g VSUS foil = 0.002 * 5.5 * 9 = 0.099 cm3 mSUS foil = 0.099 cm3 * 7.9 g/cm3 = 0.78 g VAl foil = 0.0012 * 5.3 x 8.8 cm = 0.056 cm3 mAl foil = 0.056 cm3 * 2.7 g/cm3 = 0.15 g     VPouch bag = 0.024 * 6.7 * 11.2 cm = 1.80 cm3 * * * * * ** * ** 20 (LiCH3O (10%) +CH3OH) + 1 Zr(OC3H7)4 + 200 (CH3)2CHOH -> X Li2O–ZrO2 + extra solvent X = 1 mol Li2O–ZrO2 1 mol * 153 g/mol = 153 g Li2O–ZrO2 LiCH3O (10%) + CH3OH: 20*32.6/ (20*32.6 + 1*328 + 200*60.1) = 0.0502 g Zr(OC3H7)4: 1*328/ (20*32.6 + 1*328 + 200*60.1) = 0.0252 g (CH3)2CHOH: 200*60.1/ (20*32.6 + 1*328 + 200*60.1) = 0.925 g CH3OH => LiCH3O + CH3OH + H2 15 kg Li + 900 kg CH3OH => X kg LiCH3O + Y kg CH3OH + Z kg H2 15 kg Li = 15 000 g / 6.94 g/mol = 2160 mol X = 2160 mol LiCH3O x 38 g/mol = 82.1 kg LiCH3O Mol CH3OH = 900 000 g / 32 g/mol = 28 100 mol Excess CH3OH: 28 100 mol - 2160 mol = 25 900 mol Y = 25 900 mol * 32 g/ mol = 831 kg of methanol Mol H = 2160 mol * 1.01 g/mol = 2.18 kg 82.1/913kg = 0.0899 = 8.9% 1 mol Zr => 1 mol Zr(OC3H7)4 91.2 g Zr /328 g Zr(OC3H7)4 = 0.278 * * * * LZO: 0.5 mol* 153 g/mol = 76.6 g NMC 8:1:1 = 99.5 mol * 97.3 g/mol = 9680 g LZO: 76.6 g / 9760 g = 0.0078 g NMC 811: 9680 g / 9760 g = 0.99 g LZO (dry fraction) * (liquid mass/dry mass) = 0.0078 g * (0.9 * mlithiummetoxid + mpropanol) / (0.1 * mlithiummetoxid + mzirconiumtetraproxid) = 0.25 g 5 Li2S+ P2S5 + 2 LiCl => 2 Li6PS5Cl Li2S: 45.9 g / mol *5 mol = 229 g P2S5: 222 g/mol * 1 mol = 222 g LiCl: 42.4 g/mol * 2 mol = 84.8 g Li6PS5Cl: 268 g/mol * 2 mol = 537 g * * * * * Sulfur: 0.32 g/32.065 g/mol = 0.0099 mol Lithium hydride: 0.16 g/ (6.94 + 1.01) g/mol = 0.0201 mol 0.01 S + 0.02 LiH => 0.01 Li2S + 0.01 H2 45.9 g/mol * 0.01 mol = 0.459 g 2 Li + H2 => 2 LiH m(2 Li) = 2 * 6.94 = 13.9 g m(H2) = 1.01 * 2 = 2.02 g m(2 LiH) = (6.94+1.01) * 2 = 15.9 g 2 P + 5 S => P2S5 * * Estir = Np * ρ mix * N3 * d5 * t ηstir ρ * η * *ρ *ρ *ρ Estir = 15.1 J/kg = 0.00420 Wh/kg ρ * η ** * ρ * ρ * ** Estir = 65.030 J/kg = 0.018 Wh/kg LZO-coated NMC 811 Edist Qdis Edist= E * msolv Qdist= Cheat* msteam* msolv * * Edist= 61.5 Wh/kg coated NMC 811 Qdist= 7.98×105 J/kg coated NMC 811 ρ * η * *ρ *ρ *ρ Esonic = 56100 J/kg = 15.6 Wh/kg Coated NMC 811 Eheat = Cp*mmix*(Tr-T0) + A* ka/S *(Tr -To)*t ηheat * *   * η ρ ** * ρ * * ** Eheat = 528000 J/kg = 147 Wh/kg LZO coated NMC 811 ρ ** η * ** ρ * η * Estir =112000 J/kg = 31.1 Wh/kg catholyte sheet Edryfilm = E hlayer * ρ mix *(1-%solv) ρ * * Edryfilm= 294 Wh/kg catholyte sheet Edist= 330 Wh/kg catholyte sheet Qdist= 4.28 MJ/Kg catholyte sheet ρ * η * Emixing = 11200 J/kg = 3.11 Wh/kg electrolyte sheet ρ Edryfilm = 1200 Wh/kg electrolyte sheet Edist= 330 Wh/kg electrolyte sheet Qdist= 4280000 J/kg electrolyte sheet Egrind= E*msolids * * Egrind= 5.36 Wh/kg electrolyte powder ρ * η ** * ** Emixing = 4670 = 1.30 Wh/kg dry electrolyte powder Edist= 330 Wh/kg Electrolyte powder Qdist= 4.28 MJ/kg Electrolyte powder *   * η ρ ** * ** Eheat = 973000 J/kg electrolyte powder * ρ ** ***  * η ρ * * ** * *** Eheat = 81700 J/kg Eheat = Cp*mmix*(Tr-T0) ηheat *  *  η * * *  **  η * * * * * ** Eheat = 315000 J/ Kg = 87.5 Wh/kg phosphorus pentasulfide * ρ ** * η * * ** *ρ * * ρ *ρ * Estir= 11200 J/kg = 3.11 Wh/kg electrolyte sheet Edoctorblade = E / ℎ𝑙𝑎𝑦𝑒𝑟 ∗ ρ 𝑚𝑖𝑥 𝑆ℎ𝑎𝑟𝑒 𝑎𝑟𝑔𝑦𝑟𝑜𝑑𝑖𝑡𝑒 ρ * * Edoctorblade=1 200 Wh/kg electrolyte sheet * **   *** *** * *** η *** ρ **** * * ρ ** *** **** Eheat = 69100 J/kg = 19.2 Wh/kg electrolyte sheet ρ * ** η *** * ** *** Emix = 57800 J/kg dry sheet = 16.1 Wh/kg Ag-C separator layer EPrinting = E ρ mix * h *share of solids ρ * * EPrinting = 467000 J/kg = 129 Wh/kg Ag-C separator layer Edist= 13.2 Wh/kg Ag-C separator layer Qdist= 171000 J/kg Ag-C separator layer Annual dry room energy = W * A * fs * t DEPARTMENT OF TECHNOLOGY MANAGEMENT AND ECONOMICS DIVISION OF ENVIRONMENTAL SYSTEM ANALYSIS CHALMERS UNIVERSITY OF TECHNOLOGY Gothenburg, Sweden www.chalmers.se