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Automatic LiDAR-camera calibration
Extrinsic calibration for a LiDAR-camera pair using structure from motion and
stochastic optimization
THERESE DAHLBERG
VALTER STRÖMBERG
Department of Mechanics and Maritime Sciences
Chalmers University of Technology

Abstract
This thesis presents an approach to automatically and simultaneously perform ex-
trinsic calibration of a LiDAR and a camera. Nowadays, a multitude of sensors are
used in a majority of vehicles. Having correctly calibrated sensors is essential for
attaining accurate data to use in various sensor dependent applications. Today’s
LiDAR-camera calibration methods are often performed manually or require exter-
nally introduced calibration objects. However, the method proposed in this thesis
is only dependent on 3D LiDAR point clouds and camera images. The method
consists of two major parts. Firstly, the camera images were converted to 3D point
clouds using a structure from motion pipeline, ensuring that the data from both
sensors were comparable. Secondly, a genetic algorithm with an objective function
based upon a 3D voxel grid filter was used to iteratively compare the overlap of the
point clouds until convergence. The method proved to be successful in creating 3D
point clouds from camera images and accurately estimating the rotational param-
eters for both sensors. However, it was not as robust and accurate as anticipated
when estimating the sensor positions.

Keywords: LiDAR-camera calibration, stochastic optimization, genetic algorithm,
structure from motion, point clouds.
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1
Introduction

Nowadays, a multitude of sensors is used in autonomous vehicles to collect data
about the state of the vehicle and its surroundings. The sensor data has plenty of
purposes and is used in various applications and systems of the vehicle. Ranging
sensors are widely used in adaptive cruise control, cameras have become an extensive
aid in parking assistance and positioning sensors play a huge role in navigation. Even
more critical applications, such as active safety features, depend heavily on the use
of various sensors.

The most prominent sensors used today are: ranging sensors - such as LiDARs and
radars, imaging sensors - such as cameras, inertia sensors - such as IMUs, and po-
sitioning sensors - such as GNSS and GPS. Di�erent types of sensors have di�erent
purposes. However, they all have one important aspect in common; the requirement
of delivering accurate and reliable data for further data manipulation. For exam-
ple, if the ranging sensor in an active safety system indicates incorrect distances
to surrounding objects, serious complications could follow, such as activating the
emergency break in the wrong situation. Consequently, counteracting the purpose
of the active safety system.

To ensure that the sensors correctly record the surrounding data they need to be
calibrated. Properly calibrated sensors are the basis for all further data manipulation
and fusing, such as the examples mentioned above, but also object detection, image
segmentation, Simultaneous localization and mapping (SLAM) [1], adaptive cruise
control, various safety functions and more.

This thesis will focus on two types of sensors - cameras and LiDARs. Cameras and
LiDARs have become increasingly popular, especially in the automotive industry.
Nowadays, even other industries are starting to make use of cameras and LiDARs in
their products, for example, robotic lawn mowers and autonomous vacuum cleaners.
Even the boat industry is starting to implement adaptive cruise control and assisted
docking algorithms, both highly dependent on being aware of the surroundings.
Without a human to gather information, a camera and LiDAR can be seen as
replacements for the human eye.
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1. Introduction

1.1 Calibration

Sensor calibration can be divided into two categories,intrinsic and extrinsic calibra-
tion. Both methods are quite di�erent but equally crucial for reliably being able to
use the sensor data. Intrinsic calibration aims to determine the internal parameters
of a sensor. What these parameters are is di�erent depending on the sensor. For a
camera, it is related to how the image is altered in relation to reality, for example,
distortion or resolution. For a LiDAR, it is for instance the range it can detect or
the �eld of view (FoV). However, the shared property of intrinsic parameters is that
they are often used in the extrinsic calibration process. Intrinsic parameters are
often given by the manufacturer of the sensor, but can sometimes change over time.

Extrinsic calibration, on the other hand, intends to determine a sensor's pose or
the calibration parameters, i.e. how it is placed in relation to some other actor,
for example, its host vehicle. In Figure 1.1 an intuition of extrinsic calibration is
depicted, where the aim is to �nd the transformationT (rotation R and translation
t), that relates the sensor coordinate systemS, to the vehicle coordinate system
W. Knowing T, the sensor data can be transformed into the vehicle's coordinate
system W, and consequently turned into usable information for the vehicle. For
example, if a LiDAR gives a distance to a certain object, the measurement is given
in relation to the LiDAR itself, i.e. in the LiDAR's coordinate system S. However,
when transforming the LiDAR measurements into the vehicle coordinate system
W, the distance to the object is possibly changed, which can be explained by the
measurement now being in relation to the vehicle and not the LiDAR. In most cases,
it is only of interest to have information in relation to the vehicle coordinate system,
since it is the vehicle that has to avoid obstacles. Also, all integrated systems and
applications are most commonly based upon the vehicle's coordinate system.

Figure 1.1: Calibration is the process of �nding the TransformationT that maps
the sensor's coordinate systemS to the vehicle coordinate system.
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1. Introduction

Extrinsic calibration can be done manually, i.e. the distance and rotation of the
sensor from the origin of the vehicle are measured by hand. The calibration is
performed either during the manufacturing of the vehicle or afterward. However, it
is not an easy task due to the usually obscure and inconvenient sensor placements.
Extrinsic calibration can also be done automatically, i.e. using an algorithm to
calculate the sensor positions.

Automatic sensor calibration algorithms can be done either online, i.e the calibration
happens as the vehicle is operated, or o�ine, i.e the sensor data is collected as the
vehicle is operated but the calibration is done afterward. An advantage of online
calibration is that the sensors can be re-calibrated if their pose is altered due to
external in�uences. However, o�ine calibration enables the use of more powerful
computers, and thus more computationally heavy algorithms can be used. Another
di�erence is the time constraint imposed on the algorithm in online calibration,
while this is usually not an issue for algorithms that run o�ine.

1.2 Aim

The aim of this thesis is to develop, test and validate a fully automatic calibration
algorithm for LiDAR-camera extrinsic co-calibration, thus eliminating the need for
manual interference. Co-calibration means that only one calibration algorithm is
used to simultaneously calibrate both camera and LiDAR. Given a rough estimation
of the calibration parameters, the algorithm should be able to �nd the relation
between an arbitrary number of cameras and LiDARs that has an overlapping FoV.

1.3 Related work

The subject of extrinsic sensor calibration is well studied and there are a great
variety of approaches to take inspiration from. The biggest complication when it
comes to LiDAR-camera calibration is to properly process and compare the data
collected by each of the sensor types. LiDAR data consists of clusters of points in
3D, point clouds, whereas camera data is depicted in 2D. This section will introduce
the most relevant sources of LiDAR-camera calibration along with some content on
relevant optimization algorithms.

1.3.1 LiDAR-camera calibration

The most prominent dilemma when working with cameras and LiDARs simultane-
ously is that they operate in di�erent dimensions, making it hard to compare the
raw data of the two sensor types. A solution to this problem is to either remove
one dimension from the LiDAR data or add one dimension to the camera data. It is
important in both cases to �nd shared information as it is the baseline for producing
a satisfactory calibration result. A common way to �nd shared information is to
extract interesting regions in the scene calledfeatures.

3



1. Introduction

3D to 2D conversion of LiDAR data

The technique of converting 3D point clouds to 2D starts by �nding the same features
in the point cloud and image. The point cloud is then projected down on the image
and thus removing one dimension. The features in the image and the projected
LiDAR data can now be compared in the same dimension. To make sure that the
data align as well as possible, the data is iterated through an optimization algorithm.
There exist di�erent methods for extracting equivalent features in both point clouds
and images.

Firstly, edge detectionis a method for �nding so-called edges, e.g. corners or natural
occurring lines resulting from shadows in an image. The edges are then converted
to lines and can be compared with the same occurring lines in the point cloud data.
By applying an optimization algorithm the best match of overlapping lines can be
found, which in turn can be used to �nd the extrinsic calibration parameters [2].

Secondly, [3] describes aline correspondencecalibration method, which utilizes the
concept of so-called in�nity lines to achieve a similar comparison as [2]. Lastly,
calibration objects or targets can be used as a �xed feature with known dimensions.
Calibration targets introduce known information in both the LiDAR and camera
data, thereby simplifying the optimization process [4].

2D to 3D reconstruction of camera data

The method of converting the 2D camera data to 3D requires more than one image of
the scene. The reason for this is that it is possible to extract the depth information
given two or more images of the same scene. Instereo vision, a stereo camera -
two parallel cameras mounted on a rigid frame - produce image pairs of the scene,
whereupon the depth can be extracted. The depth data is then used to create 3D
points depicting the scene. These points can then be compared with the LiDAR
3D points. A common approach in calibration using 2D to 3D reconstruction is
to introduce calibration targets to ensure that the LiDAR and camera have one
common known object in their vicinity. The calibration target is then used to
perfectly overlap the point clouds. From there the sensor poses can be extracted [5],
[6]. Optimization is then used to �nd the most accurate overlap of the compared
sensor data.

Another method is structure from motion (SfM) which does a 3D reconstruction of
camera images taken of the same scene. The approach is similar to stereo vision.
Images are used to construct a 3D point cloud of a scene by estimating depth
data from two or more images. It is, however, di�erent from stereo vision since
only one camera is needed to collect data. In [7] an SfM pipeline was used to
reconstruct camera data into 3D points for comparison with LiDAR data on the
�y. One advantage of SfM is that it can be done with only one camera and thus
the calibration is not dependent on including a stereo camera. It is also worth
noting that a densi�cation algorithm was used on the reconstructed point clouds to
increase the amount of information extracted from the images. An example of the
SfM pipeline is presented in [8], where the authors reconstructed the city of Rome
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1. Introduction

in 3D based on only images.

1.3.2 Biologically inspired optimization algorithms

Previous work, namely [9], shows that a calibration method for 2D LiDARs has
been successfully developed using a genetic algorithm (GA). This algorithm was
compared with the more common method of Iterative closest point (ICP) and was
shown to be superior in almost all cases. In [10], a fully automatic calibration
method using 3D LiDARs and biologically inspired algorithms was developed. It
produced satisfactory results using both Particle swarm optimization (PSO) and a
genetic algorithm. Also, the method should work in any environment and with any
number of sensors, and all sensors can be calibrated simultaneously. [10] will be
used as a baseline for this thesis.

1.4 Research questions and limitations

Since biologically inspired optimization has proven e�ective in previous work, mainly
[9] and [10], it is a suitable foundation for this thesis as well. Based upon this
reasoning the following research questions are investigated:

ˆ How can an SfM pipeline be used to convert camera images to 3D point clouds
of satisfactory standards when it comes to comparison with 3D LiDAR data?

ˆ How will an objective function that has been proven successful in LiDAR-
LiDAR calibration [10], perform if used in a LiDAR-camera co-calibration
built on the same optimization method?

ˆ How does the calibration algorithm perform with regards to robustness, specif-
ically disturbances, and how will it a�ect the quality of the estimated parame-
ters?

1.4.1 Limitations

This work will assume that all sensors produce noise-free data. Additionally, it
is assumed that vehicle data collected from IMU and GNSS sensors are available,
meaning that ground truth values for simplifying the testing are accessible. All
sensor data will be collected from simulations exclusively. It is also assumed that
all sensors used for calibration have the same number of degrees of freedom (DoF).
Moreover, the sensors are assumed to already be intrinsically calibrated and there
will be no need to re-calibrate during simulations and tests. Additionally, it is
assumed that the scenes used to collect data are rich in features and that objects
are in the range of both sensors. Furthermore, the simulated data will only be
tested during linear movement, i.e. no sharp turns or fast changes in direction will
be enforced on the sensors used.

Only an o�ine calibration algorithm will be in focus in this thesis, removing time
constraints and computational complexity from the implementation. Lastly, the
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1. Introduction

calibration parameters will only be determined in relation to each other and not the
vehicle.
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2
Theory

In this chapter, the relevant theory is presented. First, each of the sensors used -
LiDAR and camera - are introduced, followed by methods for converting 2D camera
images to 3D points. Lastly, the optimization method used, a genetic algorithm,
and all its related elements are presented.

2.1 LiDAR properties

LiDAR stands for Light Detection And Ranging. By emitting and detecting light at
a speci�c wavelength only, LiDARs measure distances by timing the return of the
re�ected light rays. Therefore, LiDARs only capture speci�c points, meaning that
the more points captured the higher resolution of the collected data. The clusters
of points generated by LiDARs are often referred to as point clouds. A single laser
will produce a point cloud in 2D, showing the distance to objects from the sensor
but not their height. If multiple lasers at di�erent angles are used, the point cloud
will be in 3D.

Rotating LiDARs have lasers mounted on a revolving frame. The rotational element
is used to collect data from a360° �eld of view. One important aspect to take into
consideration when it comes to rotating LiDARs is that a time distortion will be
introduced in the data if the LiDAR is moving while capturing data.

Solid state LiDARs, on the other hand, use a single laser beam to illuminate the
surroundings. An array of receivers mounted both horizontally and vertically, detect
the re�ected beams. The removal of rotating parts has the advantage of being
cheaper to manufacture but also to be more robust [11]. However, solid state LiDARs
cannot capture a 360° �eld of view like the rotating LiDAR.

2.2 Camera properties

There are plenty of di�erent types of cameras but all of them share the same basic
characteristics. To illustrate and introduce some important concepts, a simpli�ca-
tion of a pinhole camera is shown in Figure 2.1. A camera captures light rays from
the vicinity to create a 2D image. The rays come from di�erent angles but will
eventually meet at one point - the projection centreO of the camera. The light

7



2. Theory

beam perpendicular to the image plane and with a zero-degree angle to the projec-
tion centre will pass through the principal pointp of the image plane. The distance
between the image plane and the projection centre is called the focal lengthf and
is often measured in pixels. The focal length can be found through the following
equation

f =
w

2 tan( fov
2 )

; (2.1)

wherefov is the �eld of view and w is the width of the image in pixels.

The camera properties are expressed in the intrinsic matrixK , shown in equation
(2.2). K is important in a lot of applications where cameras are used and is usually
estimated by intrinsic calibration.

K =

2

6
4

f  p x

0 f p y

0 0 1

3

7
5 (2.2)

px and py are thex and y coordinate of the principle point and is a skew coe�cient
which often is0.

Figure 2.1: Basic illustration of camera mechanics.x is the point in the image
plane whereX projects to. X is a point in the world and is represented by Cartesian
coordinates. x on the other hand, is described with image coordinates. The image
coordinate system often has its origin in the middle of the image plane.

2.3 SIFT

Scale-invariant feature transform, or SIFT for short, is an algorithm to extract im-
age features [12]. SIFT features are invariant to some basic image manipulations,
such as scale, rotation and illumination, which makes it a robust method for feature
extracting. In addition to key feature points, e.g. corners, certain shapes, or other
distinct features in an image, SIFT also provides some useful quantitative informa-
tion about the extracted features. The steps in SIFT are here described brie�y. The
�rst step is to apply a di�erence of Gaussians on the image, followed by extracting
local extrema to create a scale-space. Next, gradients are computed around each
found extrema. The orientations of the gradients are then downsampled and put
into a histogram. The most prominent direction and the corresponding scale are
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2. Theory

chosen as the descriptor of a particular key feature point. The next step after hav-
ing extracted SIFT features is often to match the features, which can be done by
comparing descriptors.

2.4 RANSAC

Random sample consensus (RANSAC), �rst presented in [13], is an algorithm that
performs binary characterization (inliers and outliers) on data points to �t the best
possible model. RANSAC consists of three main steps. The �rst is to randomly
sample the number of necessary data points needed to �t the model. The next step
is to �t the sampled points to the model and lastly, depending on how accurate the
resulting match is, assign a score. A data point is considered an inlier if it lies within
a certain prede�ned threshold. Otherwise, it is considered an outlier. These steps
are iterated until the best model has most likely been found. RANSAC is often used
in line-�tting problems.

2.5 Epipolar geometry

The material presented in this section is accessed from [14, Ch. 12] and [15, Ch. 7],
and concern the subject of epipolar geometry. Two cameras in 3D space give rise
to certain geometrical constraints. If the projection centres of the two cameras are
at O and O0 respectively, the geometry shown in Figure 2.2 is valid. IfX is a point
in 3D-space, it will together with the two camera projection centresO and O0 form
the epipolar plane. Epipolar geometry provides the basic tools for computing the
projection of X onto the second image plane (i 2 in Figure 2.2) from the projection
of X in the �rst image plane i 1, called x0 and x respectively.

Figure 2.2: Visualization of epipolar geometry.O and O0are the projection centres
of the �rst and second cameras respectively.

The viewing ray from the camera projection centreO, i.e. the vector X � O, will

9



2. Theory

pass all possible scene points that projects ontox. In Figure 2.2, X 1, X 2 and X 3

are examples of this. The vectorX � O projects on the second image plane (right
image plane in Figure 2.2) as theepipolar line, l0, marked in red. Since the points
X 1, X 2 and X 3 all lie on X � O their projections in the second image have to lie
somewhere onl0, thus limiting the search space from the entire image to the epipolar
line exclusively.

The projection ofO onto i 2 is known as theepipolee0, and it also lies on the epipolar
line, l0. In fact, for all points on i 1, their formed epipolar line will pass through the
epipole oni 2 (and vice versa). Moreover, the condition that all possible points -
which can correspond to some point in the other image plane - have to lie on the
epipolar line is called theepipolar constraint. A parameterization describing the
epipolar line can be formulated as

dRx + t � l (2.3)

whered is a scalar,R a rotation and t a translation.

The epipolar line ofx could alternatively be represented by the line equation

l> x = 0: (2.4)

To �nd the equation of this line, two points on the line must be chosen and inserted
in the line equation, i.e. 8

<

:
l> (Rx + t ) = 0

l> t = 0
: (2.5)

Equation (2.5) can be rewritten as
8
<

:
l � (Rx + t ) = 0

l � t = 0
; (2.6)

indicating that l needs to be perpendicular to both points since if the dot product
of two vectors is zero they are perpendicular. Taking the cross product of the two
chosen points, a third vector perpendicular to the two points is created as

l = t � (Rx + t ) = t � t| {z }
=0

+ t � (Rx); (2.7)

and thus the sought afterl is found. Additionally, since t � e0, equation (2.7) can
be formulated as

l = e0 � (Rx) =
h
e0

i

�
Rx: (2.8)

where
h
e0

i

�
is the cross product matrix operator ofe0:

h
e0

i

�
=

2

6
4

0 � e0
3 e0

2
e0

3 0 � e0
1

� e0
2 e0

1 0

3

7
5 (2.9)
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2. Theory

The epipolar constraint can now be written as

x0>
h
e0

i

�
Rx = 0; (2.10)

if x0 is the corresponding projection ofx in i 2. What
h
e0

i

�
R actually does is

mapping any point x in the �rst image to the corresponding epipolar line in the
second image. The matrix[e0]� R is called the fundamental matrix and is further
explained in Section 2.6.

2.6 Essential and fundamental matrix

The essential matrixE, introduced by [16], just as the fundamental matrix,F , are
widely used in camera geometry. It is withE or F that the epipolar lines can be
found, as described in Section 2.5. BothE and F ful�ll the epipolar constraint as
x0>Ex or x0>F x, compare with equation (2.10).

The essential matrix depends only on the extrinsic camera parameters, meaning that
to �nd E, the intrinsic matrix K of both cameras must be known. If the intrinsic
parameters of the cameras are unknown, it is not possible to perform normalization
of the image coordinates, which is a requirement for usingE. E is de�ned by

E = [ t ]� R (2.11)

or alternatively
E = [ e0]� R (2.12)

to coincide with the notation used in Section 2.5.

F on the other hand, can be seen as a generalization ofE since it does not require
the intrinsic parameters to be known. F is dependent on both the intrinsic and
extrinsic parameters of the cameras, which means that the image points will be in
pixel coordinates. It is also pixels that are related to epipolar lines in the epipolar
constraint. F is related to E through equation (2.13)

E = K 0>FK; (2.13)

and the epipoles are the left and right null spaces of both F and E.

Both E and F are rank de�cient and have a determinant of zero. However, unlike
the essential matrix which has �ve degrees of freedom, the fundamental matrix has
seven. To �nd F and E it is common to use the N-point algorithm described in
Section 2.7.1.

2.7 Structure from motion

Structure from motion (SfM) is a technique used to reconstruct 3D point clouds
from a set of 2D image correspondences along with recovering the 3D camera poses,
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2. Theory

also known as Euclidean reconstruction. One important property of SfM is that the
method can only reconstruct 3D views up to a scale, meaning that only the ratio
and direction of the reconstructed points are given. If the scale parameter is to be
decided, further information about the environment is needed. A simple example is
shown in Figure 2.3. The information presented in the following section is retrieved
from [14, Ch. 11].

Figure 2.3: A simple structure from motion example. The blue moon object
projects to di�erent places in the image plane depending on the camera pose the
moment the image is taken. This information can be used to �nd the camera
movement and a set of 3D points of the object.

The �rst step of performing SfM is to �nd corresponding key feature points between
images, which can be done by using any feature extracting method, e.g. SIFT, as
mentioned in Section 2.3. The key feature points are then matched and the outliers
are often found and rejected by using RANSAC, described in Section 2.4. Knowing
a set of matching key feature points in two images, the relative pose between the
cameras can be established by forming the following camera matrixP

P = K
h
R t

i
: (2.14)

K is the intrinsic matrix, R a rotation and t a translation to the other camera.
More speci�cally, P relate 3D points to 2D image points as

x = PX ; (2.15)

a property used to establish the relative relationship between two cameras. Assum-
ing two cameras inR3, the respective camera matrices,P and P0, can be represented
by

P =
h
I 0

i
(2.16)

and
P0 =

h
R t

i
; (2.17)
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since the pose between the cameras is relative. Using equation (2.3), a pointx in
the �rst image, is projected onto the second image by

x0 = dRx + t ; (2.18)

whered is a scalar. Furthermore, equation (2.18) indicates thatx0 has to lie some-
where on the epipolar line of the second image, as described in Section 2.5.

Now, if both sides of equation (2.18) are multiplied with the cross product matrix
operator of t

h
t
i

�
=

2

6
4

0 � t3 t2

t3 0 � t1

� t2 t1 0

3

7
5 ; (2.19)

the following equation is formed
h
t
i

�
x0 = d

h
t
i

�
Rx +

h
t
i

�
t

| {z }
=0

: (2.20)

Multiplying both sides with x0> gives

0 = x0>
h
t
i

�
x0 = dx0>(

h
t
i

�
R)x; (2.21)

which follows from
h
t
i

�
being a skew-symmetric matrix and therefore the left hand

side of the equation above cancels out to zero. What is left on the right-hand side
of the equation is now the epipolar constraint, see equation (2.10) for reference,

x0> (
h
t
i

�
R)

| {z }
= F

x = 0 (2.22)

with d omitted since it is only a scalar. From the above derivations it is clear that
to �nd P and P0, F or alternatively E, has to be known.

2.7.1 N-point algorithms

The task of �nding F or E is done by using some N-point algorithm, whereN is
the minimal points needed to solve an equation system. Expanding equation (2.22)

with x i =
h
x i yi zi

i >
and x0

i =
h
x0

i y0
i z0

i

i >
gives

x0>
i F x i = F11x0

i x i + F12x0
i yi + F13x0

i zi +

F21y0
i x i + F22y0

i yi + F23y0
i zi +

F31z0
i x i + F32z0

i yi + F33z0
i zi

(2.23)

which can be written on matrix form for N entries as

2

6
6
6
6
4

x0
1x1 x0

1y1 x0
1z1 : : : z0

1z1

x0
2x2 x0

2y2 x0
2z2 : : : z0

2z2
...

...
...

. . .
...

x0
nxn x0

nyn x0
nzn : : : z0

nzn

3

7
7
7
7
5

| {z }
A

2

6
6
6
6
6
6
6
4

F11

F12

F13
...

F33

3

7
7
7
7
7
7
7
5

=

2

6
6
6
6
6
6
6
4

0
0
0
...
0

3

7
7
7
7
7
7
7
5

(2.24)
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Generally, the number of points needed to solve the system of equations forF and E
has to be at least the same as the number of unknown parameters in each respective
matrix. However, even if the fundamental matrix has nine entries, it only takes eight
di�erent matched points, i.e. N � 8. The eight degrees of freedom derive from the
camera poses only being determined up to a scale factor, i.e. only the direction and
ratio between the reconstructed points and camera poses can be found. To solve
for E, only �ve points have to be used, since the intrinsic parameters are already
known and thus do not need to be estimated.

By using Single Value Decomposition (SVD) the system of equations in equation
(2.24) can be solved. Equation (2.25) describes the SVD ofA and the entries ofF
can be found in the last column ofV.

A = USV> (2.25)

Having found F (or E), the next step is to retrieve the camera matrices. Sincee0

and t are equivalent,P0 can also be described as:

P0 =
h
R e0

i
: (2.26)

The next to last step is to calculatee0, which is done by solving for the null space
of F , and then R can �nally be found by using equations (2.12) and (2.13). When
P and P0 are known the 3D points can be recovered with triangulation as described
in Section 2.7.2.

2.7.2 Triangulation

Triangulation is a method used to �nd a 3D point given a set of images of the same
object [17]. To use this method, the camera matricesP and P0 for the cameras
involved must be known, see Section 2.7. In its simplest form, triangulation can
be described by calculating where the projection rays of the image pointsx and x'
intersect. Figure 2.4 shows an illustration of triangulation. Equation (2.27) - (2.30)
shows an example of how to mathematically solve for the sought after 3D position.
This simple form of triangulation is only applicable when the images have epipolar
geometry.
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2. Theory

Figure 2.4: By projecting two points x and x0 from two cameras it is possible to
�nd the corresponding 3D point X by calculating their intersection point.

Expanding equation (2.15) in Section 2.7 for bothx and x0 yields

x = PX =

2

6
4

p1X
p2X
p3X

3

7
5

x0 = P0X =

2

6
4

p0
1X

p0
2X

p0
3X

3

7
5 ;

(2.27)

wherep1-p3 are the row vectors ofP. The goal is to �nd the point X that satis�es
equation (2.27). The �rst step to solve forX is to take the cross product of the
image point x on both sides of equation (2.27), and since the vectorsx and PX are
of the same direction the cross-product is equal to zero, i.e.

x �

2

6
4

p1X
p2X
p3X

3

7
5 =

2

6
4

x2p3PX � p2X
� x1p3X + p1X
x1p2X � x2p1X

3

7
5 = 0: (2.28)

Since the last row is a linear combination of the �rst two, it can be left out. With
the last row removed and after a simpli�cation, the �nal equation can be written as:

"
x1p3 � p1

x2p3 � p2

#

X = 0: (2.29)

The same steps can be done tox0, resulting in the �nal relationship shown in equation
(2.30) from which X can be solved.

2

6
6
6
4

x1p3 � p1

x2p3 � p2

x0
1p0

3 � p0
1

x0
2p0

3 � p0
2

3

7
7
7
5

X = 0 (2.30)
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Cheirality

When it comes to camera geometry, all points found on the epipolar lines are not
necessarily projected from in front of the cameras. In [18] it is stated that for a
point X to be in front of the cameras it has to ful�ll the following condition

r3(X � O) > 0: (2.31)

Where r3 is the third row of the rows and columns inP that represents the camera
rotation matrix, R. Cheirality is an important aspect to take into consideration, for
example in SfM, since points found projecting from behind the camera are obviously
outliers and should not be taken into consideration.

2.8 Z-score

The Z-scoreor the standard scoreis used to measure how many standard deviations
away a certain measurement is from the mean. The Z-score is useful for identifying
outliers in a large data set. In a normal distribution,99:7% of the values lies within
the � 3� interval, meaning that a Z-score greater than three is highly implausible,
and can therefore be considered an outlier. The Z-score is calculated as follows

Z =
x � �

�
(2.32)

wherex is the measurement,� is the mean of the collected measurements and� is
the standard deviation.

2.9 Genetic algorithm

A genetic algorithm or GA is an optimization algorithm inspired by evolution and
natural selection. The theory in this section is based on [19, Ch. 3]. The GA can
be summarized in three distinctive steps - initialization, evaluation, and evolution,
where the latter two are repeated until termination. All steps will be further ex-
plained in this section.

2.9.1 Initialization

As in all optimization, there is a set of parameters to be optimized,x1; x2; :::; xn

wheren is the number of parameters. In a genetic algorithm, one of these sets i.e.
x1 : : : xn is called an individual. Each individual has a chromosome made out of
genes that describes the set of parameters. The value of a gene can be described
with equation (2.33). WhereC is a chromosome andgi is the gene that represents
the i :th parameter in x1 : : : xn .

x i = C(gi ) 8i 2 x1 : : : xn (2.33)

The values that the genes are allowed to take are restricted to a pre-de�ned range,
called the search space. It is within this range that the algorithm will search for
solutions. All the genes do not need to have the same search space.
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The algorithm process starts by initializing a population of individuals with a pop-
ulation sizeNs. A higher population size yields a higher computational complexity
but does not necessarily lead to better results. The optimal population size is depen-
dent on the application. Furthermore, to initialize all the individuals' chromosomes,
each gene is given a value by uniformly drawing a random value from the speci�c
gene's search space. The initialization is described in equation (2.34).

Ci (g) � U(lb(g); ub(g)) 8i 2 Ns (2.34)

ub and lb are the upper and lower bounds of the search space for a speci�c gene. It
is crucial to choose a proper search space. If set too small, the solution might fall
outside the search space, if too big, the algorithm might never converge.

2.9.2 Evaluation

The quality of each individual has to be evaluated during the optimization. The
evaluation occurs after the individuals have evolved. The evolution process will
be described in Section 2.9.3. The quality measurement is called�tness and is
calculated with a �tness function. When all individuals have been tested for �tness,
the value can be used to determine the strongest individual and thus which to favor
in the next evolution process.

2.9.3 Evolution

After the evaluation step, all individuals are evolved to create a new population for
the next generation. The evaluation process usually consists of the following steps.

Selection

Selection is the process of determining which individuals to be used when forming the
new generation. There are many methods to perform selection, but roulette-wheel
selection and tournament selection are the two most common. In roulette-wheel
selection, an individual is chosen proportional to their �tness. An individual with
higher �tness will have a higher chance of being selected. The method has gotten its
name from the similarities with a roulette wheel, as illustrated in Figure 2.5. The
probability Pi of choosing an individual is calculated as

Pi =
Fi

P N
J =1 Fj

; (2.35)

whereFi is the �tness of individual i .
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Figure 2.5: Roulette wheel selection can be interpreted as a spin of the wheel, where
the size of each section is determined by the �tness of the individuals participating
in the selection process.

Tournament selection, on the other hand, chooses individuals randomly to partic-
ipate in a tournament. The amount of individuals selected is determined by the
tournament size,j - a pre-de�ned parameter. From the selected individuals, a win-
ner is determined based on its �tness. However, to give individuals with less �tness
a chance, the winner is selected with the probability pattern described in equa-
tion (2.36). Pj is the probability to choose individual j where j = 1 represents
the individual with the highest �tness of the selected individuals and so on.pt is
the probability to choose the individual with the highest �tness. Figure 2.6 is a
visualization of tournament selection.

P1 = pt

P2 = pt (1 � pt )

P3 = pt (1 � pt )2

...

Pj = pt (1 � pt ) j � 1

(2.36)
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Figure 2.6: Tournament selection with tournament size 3. Note that, the best
individual does not always win.

Crossover

Crossover is a process that mimics the reproduction process in nature. The idea is
that two individuals' genes are mixed up in the hope that the best of each carries
over to the new individual. Crossover is a very e�ective method, but can easily
lead to local optima if not regulated. Therefore, crossover is only done to a portion
of the individuals, determined by the probability pc. To perform crossover, the
chromosome of the selected individuals is split at a random gene. The chromosomes
then swap genes at the splitting point, see Figure 2.7 where the line represents the
splitting point.

Figure 2.7: Visualisation of crossover. The line represents the crossover point
where the individuals swap genes. The result is two new individuals.

Mutation

The process of mutation makes sure that the individuals evolve and new solutions
are explored. Even though mutation does not always lead to better �tness it is
important for the purpose of exploration. Mutation works by randomly changing
some of the genes to another value in the valid search space. The probability that
a gene mutatespm is often set to m=n where m is the number of mutations per
individual and n is the number of genes in one individual. A constant mutation rate
is often used since it is hard to decide how the mutation rate should vary.

19



2. Theory

When a mutation occurs, the new value is drawn from a uniform distribution. The
width of the distribution is determined by the creep ratecrate , which regulates how
far from its former value a gene can mutate. If the new mutated value would lie
outside the search space, it is important to limit the value and instead set the new
mutation value to the search space limit. The mutation process is illustrated in
Figure 2.8.

Figure 2.8: Illustration of mutation. The red arrows represent the genes being
mutated. In this example the number of mutated genes are two.

Elitism

Even though the best individual is likely to be selected for the next generation, it
is not a certainty. Even if the best individual is included in the next generation, it
cannot be guaranteed that the individual will not undergo mutation.Elitism �xes
this problem by always including the best individual in the next generation without
any changes, ensuring that the best individual of each generation will not be lost.

Termination

The evaluation - evolution circle will continue until a termination criterion has been
ful�lled, which for instance can be a certain number of generations. Finally, the
individual with the highest �tness in the last generation is returned as the solution
of the optimization.
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Methods

This chapter introduces and explains all the methods used to arrive at the result.
The overarching task of the method was to �nd the poses of one camera and one
LiDAR mounted on the same car with overlapping FoV. The method can in short
terms be described by the following steps:

1. Collection of simulated sensor data.

2. Conversion of camera images to 3D point clouds to be able to accurately
combine and compare with the LiDAR data in a �tness model.

3. De�nition of a �tness model.

4. De�nition of an objective function to maximize for the highest �tness and thus
also the best sensor poses.

5. Optimization.

The �ow from beginning to end can also be seen in Figure 3.1.

Figure 3.1: Overview of the method.
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3.1 Simulation and collection of data

To simulate and collect useful data for the project, the CARLA simulator was used
[20]. CARLA is a simulator built upon Unreal Engine for vehicle simulation and has
a good interface for integrating di�erent sensors. There were two main reasons why
a simulator was needed and used, the �rst one being that it was fast and convenient
for producing di�erent scenarios and tests. Secondly, no real sensor data which
satis�ed our requirements were available.

The LiDAR type used was solid state. Based on the presented theory in Section 2.1,
introducing calibration methods for solid state LiDARs will be of great importance
in the near future. The FoV of the LIDAR used was 90°. Since the only LiDAR
model included in the CARLA library was a rotating LiDAR, a solid state one had
to be emulated. It was possible to emulate solid state LiDAR characteristics in
CARLA by using depth cameras. The same approach was used in [10] with great
success. The range of the LiDAR was set to 50 meters. In addition to a LiDAR, a
camera was used in the simulation. The camera was an RGB pinhole camera with
a resolution of1920� 1080and an FoV of 90°. The camera had no distortion. The
sensors' ground truth position in relation to the vehicle coordinate system can be
seen in Table 3.1.

Table 3.1: Values of true calibration parameters for the LiDAR and the camera.

Sensor
Translation (m) Rotation ( °)

x y z ' �  

Camera 1 -1.6 2.8 0 0 -90
LiDAR 1.25 -1.6 2.8 0 0 -90

To evaluate the algorithm's robustness to disturbances while collecting data, we
decided to simulate �ve di�erent scenarios where we release some of the vehicle's
DoF to account for human imperfection and uneven ground. The di�erent scenarios
are listed in Table 3.2. During the simulation a random number was drawn from a
uniform distribution, then the vehicle's pose was altered accordingly. The distribu-
tion bounds were set to[� 2; 2]° since we considered it to be a fair approximation of
human error.

3.2 Process and combine data

After having collected the simulated data, the next step was to perform data fusion
of the collected point clouds and images. In this thesis, it was desirable to keep
the 3D properties of the LiDAR point cloud and therefore the camera data was
converted to 3D point clouds with an SfM pipeline. To make the collected data
comparable, some pre-processing was needed. The goal of this section is to explain
how the 2D images collected by the camera were converted to 3D points, enabling
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3D to 3D comparison of two point clouds. Figure 3.2 displays the steps presented
in this section.

Figure 3.2: The steps performed in order to be able to fairly compare the data
from the camera and LiDAR.

The camera images were converted to 3D point clouds by using SfM. Moreover, the
number of camera frames and the scale factor to use in the SfM pipeline had to be
chosen. The scale factor was needed to ensure that the SfM point cloud and the
LiDAR point cloud had the same size. In the case of the LiDAR data, only the
number of frames to use had to be decided.

Table 3.2: The di�erent car test case scenarios used in the simulations. The
rotational parameters are o�sets from their respective ground truth values. The
translation parameters (x,y,z) were not exposed to any external disturbances. Note
that the parameters are related to the car and not the sensors.

Scenario ' (°) � (°)  (°)

Base 0 0 0
Roll � 2 0 0
Pitch 0 � 2 0
Yaw 0 0 � 2

Combined � 2 � 2 � 2

3.2.1 Conversion of camera images to 3D point clouds

SfM, described in Section 2.7, was used to convert the camera images to 3D points,
see Figure 3.3 and Algorithm 1 for reference. After the 3D points had been recon-
structed, the points behind the camera are identi�ed and removed, by utilizing the
cheirality condition mentioned in Section 2.7.2. Finally, an outlier �lter is applied
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based on thez-score, presented in Section 2.8, of each point's distance to the esti-
mated camera position. A point is considered an outlier if it has a Z-score ofZ > 3
or Z < � 3, i.e. if a point lies beyond the� 3� interval of the normal distribution of
the reconstructed 3D points.

Figure 3.3: Flow chart displaying the most prominent steps of SfM

Algorithm 1: Structure from motion
Input: imageSet Set of k images from simulation.
Output: 3Dpoints , 3D point cloud constructed from the input image set
for I 2 imageSet do

if �rst iteration then
SIFTpoints1  Detect SIFT key feature points points and extract
descriptors for �rst image I 1

else
SIFTpoints k  Detect SIFT key feature points and descriptors for
current image,I k

matches  Match features for current and previous image,I k and I k� 1

E  Estimate the essential matrix with 5-point algorithm
relPose Estimate relative pose of camera fromE
points  Find corresponding points acrossall previous matches
3Dpoints  Triangulate(points)
3Dpoints  Remove points behind camera and outliers

end
SIFTpoints k� 1  SIFTpoints k

end

3.2.2 Scale estimation

Since SfM only reconstructs 3D points up to ratio and direction but not scale, a
scale factor needs to be estimated to be able to properly compare the LiDAR point
cloud with the one constructed by SfM.

As mentioned in Section 1.4 it is assumed that the vehicle is equipped with posi-
tioning sensors such as GPS/GNSS and IMU. The data collected by these sensors
was used to estimate the car pose in the simulation, and thereafter calculate an
estimation of the pose of the camera in world coordinates for each frame. Assuming
that the resulting camera poses from SfM are correct in direction and ratio, they
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can be used to calculate the scale factor between the point cloud generated by SfM
and the point cloud from the LiDAR sensor. The scale factor between framei and
i + 1 is calculated as:

s =
kt i +1 � t i k

kC i +1 � C i k
: (3.1)

Where C i is the position of the camera extracted from the camera matrixP from
SfM. t i is the position of the camera calculated from the car pose as

t i = t c;i + Rc;i v: (3.2)

t c;i is the position of the car,Rc;i is the rotation matrix of the car at frame i , and v
is the translation between the origin of the car and the camera. Theoretically, the
scale factor should not change between frames, but to ensure robustness the scale
factor is chosen as the median of all calculated scale factors.

3.3 Fitness model

A �tness model was needed for measuring how well two point clouds overlap. The
more overlap the better and thus a higher �tness score was given out. The �tness
score was important for de�ning the objective function of the optimization described
in Sections 3.4 and 3.5. The �tness model used was based on a voxel grid �lter, i.e.
a cubical grid �lter that downsamples a point cloud. Each voxel that contained at
least one 3D point was reduced to only having one 3D point in the center of the
voxel, as shown in Figure 3.4.

(a) A simple point cloud
before �ltering.

(b) Applying the �lter on
the point cloud.

(c) Point cloud after �lter-
ing.

Figure 3.4: Illustration of applying a voxel grid �lter to a simple point cloud.
Images are taken from [10] with permission from the authors.

The downsampling feature of the voxel grid �lter was utilized when de�ning the
�tness score as

f score = points before �ltering � points after �ltering : (3.3)

It follows from equation (3.3) that a greater overlap between point clouds results in
higher �tness score.
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3.4 Objective function

Since the calibration parameters were to be found by optimization, an objective
function was needed. The objective was to �nd the best possible overlap of the
LiDAR and SfM point clouds. Therefore, the objective function had to be de�ned
in a way that takes the overlap into consideration. The �tness model from Section
3.3 was used to de�ne the objective function as

maxf (point clouds; calibration parameters): (3.4)

The calibration parameters consisted of the pose of each sensor used, see Figure 3.5
for reference. The functionf was de�ned as the �tness scoref score in equation (3.3),
meaning the objective function maximizes the �tness score.

Figure 3.5: An array holding the calibration parameters of the sensors. The
subscript l or c indicates a LiDAR or camera sensor respectively.

An important part of choosing the objective function was to choose the size of the
voxels. The point cloud registered from the LiDAR was bounded by its lowest reso-
lution and thus the voxel size had to be decided with this taken into consideration.
Equation (3.5) states that at a distancer from the LiDAR, objects with a width
greater than or equal toreslow will be detected, which is the lowest resolution of the
LiDAR. � is the angular resolution of the LiDAR. The size of the voxels was set to
reslow , to correctly �lter the points far away.

reslow = 2�r
�

360
(3.5)

3.5 Optimization

The optimization problem was solved using a GA, which was described in Section
2.9. Each degree of freedom for each sensor was represented by a gene, illustrated
in Figure 3.5, adding up to twelve genes per chromosome and individual. The SfM
point cloud had to be re-scaled according to equation (3.1) before being used in the
�tness function. The objective function used was the one described in Section 3.4,
and after the GA had terminated the best individual of all generations was returned.
The termination was decided to occur after a certain number of generations. The
algorithm is described in Algorithm 2.

3.6 Sensor poses

After the optimization was terminated, the �ttest individual's genes were returned
as the sought-after sensor poses. The sensor poses were however only de�ned in
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relation to each other since no information about the car, or how it was related to
the sensors, was incorporated into the optimization. Thus, one sensor had to be
constrained to its ground truth values, thereby enabling the comparison between
the pose of the other sensor and its ground truth value.

Algorithm 2: GA optimization
Input: point_ cloud_ list  All point clouds
Output: overall_ best, Resulting best sensor poses.
Initialization: GenerateN tuples of chromosomes - each of lengthkn, where
k is the number of DoF for a sensor andn is the number of sensors used -
representing an individual in the population.

termination  FALSE
n_ gen 0 Create a counter holding the number of generations evolved.
while : termination do

for i 2 individuals do
for j in range(N ) do

transformed _ point_ clouds Transform point clouds according to
the pose encoded in the current individual,i .

f score  evaluate(transformed _ point_ clouds) /* Save score */
.

end
end
if n_ gen� max_ gen then

termination  TRUE /* max_gen is the number of generations
to run before termination */

else
while n_ iter < N do

j 1; j 2  Selection of two individuals from the evaluated population.
j 1; j 2  Crossover of the two chromosomes from the two individuals
selected.

j 1; j 2  Mutation of the newly crossed chromosomes.
Nnew  Add generated individuals.

end
end
N  Nnew

best_ individuals  Save best individual.
overall_ best max(best_ individuals )
n_ gen+ +

end
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4
Results

This chapter presents the results achieved from implementing the method. The
results are produced by simulating the �ve di�erent cases presented in Section 3.1.
The cases are compared to each other with respect to robustness, accuracy and
their overall performance. First, the results of using the SfM pipeline to reconstruct
camera images to 3D are presented. Thereafter, the results produced by applying the
GA to the di�erent cases will be presented along with the used tuning parameters.

4.1 Structure from motion pipeline

The SfM result was visually evaluated due to the lack of a proper statistical valida-
tion method. The point clouds generated with SfM were compared to an image of
the scene to evaluate if a satisfying representation of the scene had been achieved.
Another validation test for SfM was to compare the SfM point cloud and the Li-
DAR point cloud with respect to depth and scale. The relevant plots can be seen
in Figures 4.1 and 4.2.

Figure 4.1: SfM point cloud (blue) and LiDAR point cloud (red) in the same plot,
with correct overlap. It is visible that the proportions an depth of the SfM point
cloud matches the LiDAR point cloud. The SfM point clouds consisted of a fewer
number of points than the LiDAR point clouds.

29



4. Results

(a) LiDAR point cloud only.

(b) SfM point cloud and LiDAR point viewed from the side.

Figure 4.2: LiDAR point cloud in (a) and SfM and LiDAR point cloud from a side
view.

Each point cloud was generated from a set of ten images. The size of the image
set was chosen both with consideration of the size of the LiDAR point cloud and to
ensure that a large number of features were detected. Furthermore, only one LiDAR
frame was used to not increase the complexity of the problem.

The resulting point clouds generated from SfM as well as an image of the scene are
depicted in Figure 4.3. The base case was used as a baseline of what the SfM point
cloud should look like and was compared with all other cases. The roll case showed
many similarities to the base case, only a slight noise was the exception from the
base case. However, a signi�cant amount of noise was observed in the pitch case,
resulting in a not as well reconstructed scene. The yaw case had a slightly lower
level of noise than the pitch case. Subsequently, the combined case su�ered from
the bad characteristics of the pitch and yaw case, creating a noisy point cloud in
the process. Moreover, all point clouds had a tendency to duplicate objects. The
duplications were most prominent in the yaw, pitch and combined cases.
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