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Abstract
Research within computer science constantly aims to find ways to improve com-
puting performance in various ways. With the apparent death of Moore’s Law,
researchers are focused on exploiting other ways of improving performance, for
example, programming language optimizations. Fields such as web development,
databases and, machine learning are adopting new programming languages but GPU
programming is not seeing this adoption. This thesis aims to evaluate Rust as a com-
petitor to the status quo of programming languages for GPU programming, namely
C++. In order to achieve this, comparable CUDA kernels are built in both C++
and Rust which are then profiled and analyzed for insights that can indicate reasons
why one might outperform the other. The results show that execution time and en-
ergy consumption of C++ kernels are lower in nearly every experiment when having
line-by-line comparable code. However, slight adjustments to the implementation
of the Rust kernels close this gap to the point that they are performing at the same
level. This indicates that it is possible to implement high-performance GPGPU
programs in Rust, while still bringing some of its features such as memory safety
and modern programming utilities to the GPU programming community.

Keywords: HPC, Rust, C++, NVIDIA, CUDA, PTX, Rust-CUDA, NSight Com-
pute, performance.
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1
Introduction

As the digitization of society is ramping up, applications such as machine learning
and AI using high volumes of data for heavy, and sometimes real-time computa-
tions require more and more computational performance while minimizing energy
consumption. Now that we are looking at the potential end of Moore’s Law, com-
puter scientists are focused on other ways of improving computational performance,
such as hardware acceleration and programming language optimizations. As the
GPU, graphics processing unit, is one of the most common hardware architectures
for massively parallel problems due to its high core count, programming languages
and frameworks have emerged to aid with implementing highly performant pro-
grams. For a long time, C, C++, and FORTRAN have been the status quo in
HPC, high-performance computing. These languages provide a rich ecosystem, a
large community, fine-grained manual control, and first-rate performance. They are
also all in a continuous state of development, for example, the latest stable release
of C++ is dated to December of 2020. The languages were however created many
years ago, meaning that even though they are in active development they all have
old heritages that constrain the language development. As other fields of program-
ming adopt modern languages such as Python, JavaScript, Golang, and Rust, we
believe it is reasonable to be critical of these older languages and challenge the status
quo by evaluating other language candidates. In this thesis, we evaluate a potential
candidate for HPC programming, Rust. Rust is a highly performant language with
one of its core design principles being to match C in performance. Rust has a lot of
promising features, such as memory safety and zero-cost abstractions. This means
that it is easier to write code that has fewer bugs and memory errors since these
errors will be found and prevented during compiling.

Because of Rusts high execution speed, along with its modern features, it is well
suited for a comparison to challenge the programming languages in HPC’s status
quo. To this date, few studies exist comparing Rust with these languages, and even
fewer that make comparisons regarding performance differences when doing GPGPU
high-performance computing, thus there is a need for research in this area.
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1. Introduction

1.1 Goals and problem formulation

The goal of the thesis is to provide a scientific and accurate performance evaluation
of Rust as a language for GPU programming targeting NVIDIA hardware. The
novelty of the thesis is researching GPU programming considering execution time,
energy consumption and, limitations/capabilities in Rust.

More specifically, we want to research the following questions:

• What is the relative performance of highly parallelizable Rust GPU programs
compared to programs made with C++-CUDA?

• What are the capabilities/limitations in GPU programming using Rust com-
pared to C++-CUDA that brings significant differences regarding perfor-
mance?

By answering these questions, the thesis provides a comprehensive performance
evaluation of Rust for GPU programming. The comparison to C++-CUDA ground
the results in a benchmark against the status quo of GPU programming.

1.2 Delimitations

In order to scope the project to be reasonable and precise, some delimitations will
be imposed.

No CPU evaluation: Even though it would be interesting to evaluate both single
and multi-threaded programs ran on the CPU, this thesis will focus on evaluating
the performance of programs ran on the GPU.

No graphics: Programs involving graphics rendering are well suited for the GPU
and could definitely be a potential candidate for a program to profile. However, as
they are likely more challenging to implement compared to a more straight-forward
algorithm such as matrix multiplication, it will be out of scope for this thesis. There
is also no benefit for our research goals to profile a graphical rendering program com-
pared to something more simple.

NVIDIA GPUs: The code will only be guaranteed to run on NVIDIA GPUs with
CUDA support. With this limitation, we are likely to have more consistent results
and a less complex environment for implementation and profiling compared to if we
were to include other GPU vendors.
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1. Introduction

1.3 Previous work
There is some previous work comparing Rust to C++ regarding performance. In
the paper "Rust Language for Supercomputing Applications" [1] the authors By-
chkov and Nikolskiy benchmark C++ and Rust in a few domains, such as matrix
multiplication, linear algebra libraries, shared memory parallelism, and MPI. The
authors found that the Rust code had similar performance compared to C++ while
keeping the memory safety guarantees that come with the Rust language. However,
the paper lacked a comparison for GPU programming, something that the authors
also noted and suggested as further work.

Holk et al. [2] demonstrate in "GPU Programming in Rust: Implementing High-Level
Abstractions in a Systems-Level Language" that it is possible to write GPU kernels
in Rust through LLVM that can be used with the Rust OpenCL bindings. These
kernels gained the advantages of the Rust language such as the memory safety and
zero-cost abstractions while still retaining a performance that was comparable to
manually programmed OpenCL kernels. The downside to their method is however
that the GPU memory hierarchy such as shared memory is unavailable.

3



1. Introduction
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2
Background

2.1 GPGPU programming
GPGPU is an acronym for general-purpose computing on graphics processing units,
which is the concept of using a GPU for non-graphics related computing. The idea
is to exploit the large number of cores available on the GPU, to execute massively
parallel programs.

Algorithms that GPUs excel at are the ones that can be run at a massively parallel
scale. Implementing massively parallel programs to run on a GPU in an optimal
manner is no trivial task. There is plenty of research to be found on particular
problems, such as in A Survey on Parallel Computing and its Applications in Data-
Parallel Problems Using GPU Architectures by Cristóbal A. Navarro et al., 2014
[3] where implementations of select physical computational problems were designed
with optimal parallel programming models in mind.

2.1.1 NVIDIA CUDA
For most modern NVIDIA GPUs created after 2006, the computing platform CUDA
is available. NVIDIA describes CUDA as

...a general purpose parallel computing platform and programming model
that leverages the parallel compute engine in NVIDIA GPUs to solve
many complex computational problems in a more efficient way than on
a CPU [4].

CUDA supports the languages C, C++, and FORTRAN, but also various directives-
based approaches and APIs. CUDA allows the programmer to divide their programs
into both fine-grained and course-grained parallelism through hierarchies of thread
groups, barrier synchronization, and shared memory.

CUDA’s programming model is created around having code divided between the
CPU (host) and the GPU (device) [5]. The CPU is responsible for the control-flow
of the application, while the parts running on the GPU can be run in parallel on
multiple threads without needing intervention by the CPU. The parallelism tech-
nique used is called SPMD (single program, multiple data) which means that each
thread runs the same program in isolation, but with potentially different input data.

5



2. Background

Traditional CUDA is normally represented in C/C++ files with the .cu file exten-
sion. NVCC (Nvidia Cuda Compiler) can compile these files into an executable
binary.

2.1.2 PTX

PTX is a virtual machine and instruction set architecture (ISA) that enables NVIDIA
GPUs for data-parallel computing [6]. Programs written in CUDA are compiled
down to PTX instructions, which are then translated into binary code by the
NVIDIA driver to be executed by the GPU. By design, it is efficient on NVIDIA
GPUs and supports their many features, both across single-GPU and many-GPU
systems.

2.1.3 Kernels and their launch parameters

CUDA allows the definition of kernel functions. A kernel, when called, is executed N
number of times by N threads on the GPU whereas a regular function is only called
once, on the CPU. As an example, in C++, a CUDA kernel is defined as in Listing
2.1 with the keyword __global__ [4].

1 __global__ void copy_array (float *a, float *c)
2 {
3 int i = threadIdx .x;
4 c[i] = a[i];
5 }

Listing 2.1: Example of a CUDA kernel in C++

To keep track of threads and their memory space, an abstract hierarchy is formed and
each thread is assigned to a block, which holds a maximum of 1024 threads. Each
block is then assigned to a grid illustrated in Figure 2.2. This gives the threads
a potential three-dimensional structure. By utilizing the thread, block, and grid
positions, a unique ID for each thread can be calculated. In the case of a flat
structure with only one block, the ID is the x position of the thread. For a 2D
structure where blocks are organized in a row, the ID is calculated as x + y ∗ Dx

where Dx is the block’s x position in the grid. The ID of a thread in a 3D structure
is calculated as x + y ∗ Dx + z ∗ Dx ∗ Dy [4].

6



2. Background

Figure 2.1: Illustration of a 4x4 CUDA grid

Before a kernel is launched, the kernel code and the data required for the computa-
tions must be copied over from the host (CPU) to the device (GPU). After the kernel
has finished its execution, the results calculated in the device memory are copied to
the host. This is done manually by the programmer at the selected program stage
by using built-in CUDA functions such as cudaMemcpy(...).

Figure 2.2: Host to Device relationship during kernel execution

2.2 C++ & Rust
C++ is a language that was created in 1979 by the programmer Bjarne Stroustrup
[7]. While Stroustrup was working with one of the first languages to support object-
oriented programming, he felt that the paradigm was useful but the language was
too slow. This prompted him to begin working on C++, or "C with Classes" as
it was called back then. C++ is a compiled, strongly-typed language that has

7



2. Background

support for many different paradigm choices such as procedural and object-oriented
programming [8]. It is a language that gives the programmer a lot of control of the
execution, meaning that it requires a skilled programmer to do things correctly, but
when done correctly it is one of the fastest languages currently existing.

Rust is a relatively new language and is seeing rapid updates to its capabilities.
First created in 2010 by Graydon Hoare while working at Mozilla, Hoare wanted
a language with more concurrency and increased memory safety [9]. The language
grew quickly and in 2015 the first stable release of Rust was released. Its syntax
is similar to that of C++. The language itself has a high focus on providing high-
performing code while also being reliable regarding memory safety [10]. It does this
by having no runtime or garbage collector while also using an ownership model that
the compiler uses to find memory errors at compile-time.

Even though the Rust compiler enforces memory safe code, it sometimes is necessary
to work with systems that are inherently memory unsafe. To enable this it is possible
to turn off the compile-time enforcement of safe code with what is called unsafe
Rust [11]. Unsafe Rust allows the programmer to work with raw pointers, enabling
the programmer more freedom at the cost of potential memory related bugs.

Rust has three different release channels called nightly, beta and stable [12]. The
nightly release channel creates one release each night which has the following form
nightly-2022-03-15 and can be seen as a rolling release. Releases to the stable channel
are made each 6:th week, while the beta releases contain the features that are going
to go into the next stable release.

2.3 GPGPU programming in Rust

As Rust is a relatively new language, GPU programming has yet to mature with
official support from vendors such as NVIDIA. The surrounding community is work-
ing hard on providing open-source packages (crates) to the ecosystem and we see
several interesting projects mature for GPU programming in Rust with some of
the most prominent and active ones being rust-gpu by Embark Studios [13] and
arrayfire-rust by ArrayFire [14]. rust-gpu allows writing GPU kernels for
OpenGL and SPIR-V, the open-source graphics API by Khronos Group, and aims to
provide a fully community-driven open-source GPU programming package [13, 15].
As it uses OpenGL, it mainly focuses on shaders for computer graphics but does
allow for compute shaders. arrayfire-rust is a wrapper for CUDA, OpenCL and
CPU HPC programming in Rust. ArrayFire is a well-established software library
that exists for multiple programming languages which provide hundreds of functions
for parallelism, GPU programming, machine learning, and more. With all these fea-
tures, it is by no means light-weight and it requires installation of software larger
than 1GB in size [16].

8
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2. Background

2.3.1 The Rust CUDA Project
One of the more recent libraries that enables writing CUDA kernels in Rust is
the Rust-CUDA [17]. It aims to make Rust a top candidate for fast computations
using the CUDA Toolkit. It was created in order to improve the previously existing
alternatives that were all using the LLVM PTX backend to generate the NVIDIA
kernels. The authors of Rust-CUDA saw multiple problems with using this backend,
one of which was that many of the common Rust operations would not currently
be supported by the backend because of missing features or bugs [17, 18]. This
would in turn make the generated PTX invalid, even for smaller programs. This
uncertainty means that it is too unstable to be used in production. Another reason
the authors found was that because of linking issues with dynamically linked library
(dylib) files, one could not run the backend on windows machines without using a
specialized way of building LLVM [18].

Instead, the authors have created a library inside Rust-CUDA called rustc_codegen_nvvm
that compiles the kernels written in Rust into a format called NVVM IR. NVVM
IR is a compiler intermediate representation that represents GPU kernels, in this
case CUDA kernels, and is based on LLVM IR [19]. More specifically, NVVM IR
is a subset of LLVM IR, meaning that a program represented in NVVM IR will
always be a valid LLVM program, but the same statement is not true when it comes
to LLVM IR and NVVM. Feeding NVVM IR into the NVIDIA NVVM compiler
generates PTX code that can be run on the GPU.

The project works by targeting the CUDA Driver API. This is because it gives more
fine-grained control over parts of the execution compared to using the Runtime API
[18]. One downside of this is that some CUDA libraries, such as cuRAND, will not
work since it is dependent on the usage of the CUDA Runtime API [20].

The requirement for the project is a CUDA version of 11.2 or higher [21]. It also
uses LLVM 7.x, meaning minor versions between 7.0 and 7.4. The reason for this
is that NVVM IR is based on LLVM 7.0.1 [19]. It also requires the developers to
use the nightly version nightly-2021-12-04 of Rust when building the GPU kernels
through rustc_codegen_nvvm [21]. All of the other libraries used to create the host
code has no such requirement. Another requirement is that the kernels written in
Rust-CUDA are required to be unsafe.

Some features in Rust are particularly useful for writing code that targets CUDA,
two of which are RAII and Results [22]. RAII, which stands for Resource Acquisition
is Initialization, is a feature that exists in Rust used to ensure that no memory leaks
occur [23]. Variables in Rust have ownership over their own resources on the heap,
when one of the variables goes out of scope its destructor is automatically called,
freeing the resources it is owning without having to manually free memory. This
in contrast to for example C++ where one needs to call both free(variable)
and cudaFree(gpu_variable) to free up the resources, which if forgotten leads to
memory leaks. Result is a Rust data type that makes it easy to create error handling
where errors can easily be propagated up the call stack [24]. The compiler forces
the programmer to explicitly handle the Results that occur in the code, meaning
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that it is hard for unexpected errors to kill the execution. This data type is used
heavily in Rust-CUDA to ensure proper and reliable error handling to avoid segfaults
and make the code more robust [22].

As mentioned, Rust-CUDA is used as the main GPU programming tool for evaluating
Rust in this thesis. It was selected based on its native Rust implementation without
acting as a wrapper, such as arrayfire-rust. It also compiles the kernels directly
to PTX code which allows for comparison with PTX compiled from C++ code.
Further, it is CUDA only which fits the scope of this thesis. The version used in
this thesis is 0.3.

2.4 Profiling
Profiling is analogous to benchmarking and captures data during the execution of
a program. The data includes metrics such as execution time, memory usage, core
usage, and energy consumption. Running a profiler does impact the performance of
the profiled program as it is essentially running a separate program simultaneously
which contributes to the load on the hardware. This needs to be taken into account
when selecting a profiler and when evaluating the results.

When it comes to profiling GPU programs there are a few different tools available.
CUDA programs developed for NVIDIA GPUs can be profiled with NVIDIA Nsight
Compute [25]. This profiler works on all NVIDIA GPUs that support CUDA. With
it, one can profile different performance metrics of the GPU and also get a visual
representation of API calls, kernel launches, and memory movement. The Nsight
profiling tool is the latest generation of profiling tools from NVIDIA and developers
are recommended to migrate from the older NVIDIA Visual Profiler and NVProf
tools [26, 27].

In Figure 2.3 the details page of Nsight can be seen. Here information revolving for
example execution time, cache misses, instruction counts, and the roof-line model
can be found. It can also auto-detect issues in the code and displays a warning
accompanied by a text explaining the problem.

The source page seen in Figure 2.4 displays detailed information regarding the ex-
ecution of the kernel. For example, it shows the instructions executed, the number
of live registers, and all of the warp stalls along with where they occurred. Using
this page gives insights into the code execution in an efficient way.

Unfortunately, all of the metrics from the older tools are not possible to capture
through the Nsight tool. Examples of this are metrics regarding power usage, GPU
temperature, and GPU fan speed, which were possible to profile with the NVProf
tool by using the system profiling option.

10



2. Background

Figure 2.3: The details page inside of NVIDIA Nsight
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Figure 2.4: The source page inside of NVIDIA Nsight
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Method

In order to evaluate the performance of Rust relative to C++ for GPU programming,
selected programs were implemented in both languages and then profiled to capture
metrics that allow for direct comparison. Through further analysis of collected data,
key insights were revealed describing some reasons why these performance differences
occur. These insights were revealed by looking at the comprehensive data captured
by and viewed directly in Nsight Compute. Then, modifications were done to the
code in order to pinpoint and prove certain insights.

3.1 Programs & Implementation
For this thesis, matrix multiplication and array copying were selected as programs
to implement for experimentation. These were implemented in both Rust and C++
with the aim of both implementations to be as comparable as possible, which is
important since we want the profiled metrics to depend on language/library differ-
ences only. In order to achieve this, the programs use similar data structures and
data types correlated line-by-line where applicable. Overhead in terms of code not
related to the core functionality is minimized. Further, the programs selected are
differentiated in that they should, for example, be either compute-bound or memory-
bound. By having programs that can be categorized differently, the results can be
more insightful.

3.1.1 Implementation strategy
The approach for implementing comparable programs in the two languages was
straightforward. Each program was first implemented in C++ in simple and clear
code, minimizing overhead when possible. From this implementation, each program
was recreated in Rust line-by-line. When this was not possible, for example when a
different data type was required, efforts were made to make the required adjustments
as similar as possible to the original C++ code. To facilitate this, the Rust-CUDA
documentation was used to convert C++ CUDA API calls to their corresponding
Rust function.

One larger difference when implementing the programs in Rust is that we need to
split the host and device code into two separate crates, where the host crate imports
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and compiles the device crate during its compilation. In the C++ implementations,
both host and device code resides in the same .cu source file, effectively requiring
less code/structure. This difference is however purely structural and should have no
effect on the runtime performance.

3.1.2 Classifications

Computational problems can be classified differently, for example, they can be either
compute-bound or memory-bound. The execution time of a compute-bound problem
is primarily limited by the throughput of the hardware, whilst a memory-bound
problem is limited by the memory bandwidth of the hardware.

3.1.3 Matrix multiplication

Matrix multiplication is a classic computational problem well suited for the high level
of parallelism offered by GPUs. The reason for this is that each value in the resulting
matrix can be computed without depending on previous computations. Each output
element is calculated by multiplying elements in each respective column and row of
the input matrices as illustrated in Figure 3.1. Matrix multiplication is classified as
a compute-bound problem as data accesses are kept low in relation to the arithmetic
operations required for computations.
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Figure 3.1: Illustration of a 3x3 matrix multiplication

Two different implementations of matrix multiplication are used for the experiments
in this thesis. One version uses tiling, which makes use of shared memory. The other
version is much simpler and uses no shared memory. By using these two different
versions, we can analyze how Rust and Rust-CUDA perform when utilizing shared
memory.

3.1.3.1 Tiling for matrix multiplication

Tiling is a technique used to reduce the number of global memory accesses, which
is desired as these accesses are slow compared to the block-level memory called
shared memory. This ultimately boosts the efficiency of the kernel since it is a
higher-performing type of memory regarding access speed. In tiling for matrix mul-
tiplication, the idea is to have each thread in a block be responsible for loading a
certain amount of input elements from the input matrices into the shared memory.
The number of elements loaded from each matrix is dependent on the matrix size
and launch parameters of the kernel in terms of grid and block size. Once the ele-
ments are loaded into shared memory, they become available to all threads within a
block. Without tiling, each thread would have to access every element required for
its computation from global memory, which would be significantly slower.
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3.1.4 Array copy
Array copy is a simple program with its task being to replicate data from one
array to another. Each input element is simply duplicated to the output array, as
illustrated in Figure 3.2. In its most basic form, this program does not need to
perform any arithmetic computations and is thereby considered a memory-bound
problem. As each copy operation can be done in isolation without depending on
other copy operations being completed, this problem is well suited for parallelism
and execution on a GPU.

Figure 3.2: Illustration of array copy

3.2 Performance metrics
Performance is an abstract concept that could mean a lot of things. In the context
of HPC, it usually refers to both execution time and energy consumption. To make it
even more concrete, the most important metrics that we want to base our evaluation
on are:

Execution time The most basic and absolute metric for evaluating performance is
execution time which is the time required to finish the execution of a program and
is measured in seconds. This can also, over several executions, allow us to gauge if
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the execution time is repeatable and predictable.

Energy consumption Another metric is the energy consumption required to finish
the execution of a specific program which is measured in watt-hours or joules. Thus,
this will require the wattage over time for the execution of a program. Further,
the average, peak, and minimum wattage during the execution will be recorded.
The energy consumed to execute a program is more relevant than ever. In certain
applications such as embedded, where we have a limited amount of power, a lower
energy consumption can be critical.

Executed Instructions The number of different low-level instructions executed by
the GPU during the execution of a program can indicate or highlight key differences
between C++ and Rust. While not directly linked to performance in the way
execution time or energy consumption is, it can still be an important metric for
finding differences between implementations.

3.3 Profiling
In order to capture performance data that can be used to compare the different
implementations, a selection of profiling tools is used. Where applicable, profilers
agnostic to the programming language are used so that the results are more com-
parable, as different tools will provide a varying degree of accuracy in the collected
data.

The main profiling tool used in this work is NVIDIA Nsight Compute which is used to
capture the vast majority of all results. Because of its limitation regarding capturing
data about power consumption as mentioned in Section 2.4, the NVProf tool is also
used to capture this metric. During profiling these tools are run separately, meaning
that the results are captured from different executions of the same compiled binary
so as to not interfere with each other.

Compiling and profiling the different programs were made with bash scripts, ensuring
that compilation is done in the same way every time. It also enables the possibility
to run and profile the same binary multiple times in an automated fashion to average
out any outliers during the profiling. The compilation of C++ programs was made
through nvcc with default optimization flags (the default optimization level for
kernel code is 3 [28]). The Rust compilation was made through the package manager
Cargo with the command: cargo build –release. The –release flag sets the
optimization level to 3, which is the highest one available [29]

The generated binaries are then profiled first by NVIDIA Nsight, through the ncu
–set full <binary> command, for the main profiling. By using the -set full
option, the profiler collects the full set of profiling metrics [30]. System profiling
is then made with NVProf through the command nvprof –system-profiling on
<binary>, which generates data that can be used for calculating the energy con-
sumption. In both these commands <binary> means the path to the generated
binary. Flags related to the output locations of the results have been omitted for
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clarity.

Data was captured on varying problem sizes for each problem. For the tiled matrix
multiplications, two main variables were used: the matrix width and the block
width. The matrix width is the width of the two input matrices and the output
matrix. Block width means the width of each block inside the CUDA compilation.
To ensure that data was collected for both small and large problem sizes, the matrix
widths chosen in this thesis were 32, 128, 512, and 2048. Each size is four times as
large as the previous one giving a uniform spread of sizes. Attempting to profile a
size of 8192 was unfortunately too slow, which is the reason the maximum is 2048.
Similarly, the block widths chosen were 4, 8, 16, and 32. Since the maximum thread
count allowed in a CUDA block is 1024, a larger block width than 32 would not make
sense since it is the maximum, any larger value would not execute successfully. This
applies to the untiled matrix multiplication as well, with the main difference that
the block width is not variable. The reason for this is that since we are not using
any shared memory in this kernel, varying the block width does not have as much of
an impact on performance, as it does with the tiled matrix multiplication. Instead,
a good default of 16 is used.

The only variable used for the array copy kernel was the length of the array to copy.
As before, to profile both small and larger problem sizes, the array lengths were
chosen to be 1024, 32768, 1048576, and 33554432 (each length is 32 times as large
as the previous one).

3.4 Hardware

The profiling and collection of results were done through multiple computers at
different levels of computing power to ensure that the results were not hardware-
specific. The specifications of these machines can be found in Tables 3.1 and 3.2.

Operating system Ubuntu 20.04.3 LTS
CPU Intel Core i5 9600K 3.7 GHz 9MB
GPU ASUS GeForce GTX 1660 Ti TUF Gaming X3 OC 6GB
RAM Corsair 16GB (2x8GB) DDR4 2666Mhz CL16 Vengeance

NVIDIA Driver version 510.39.01
CUDA version 11.6

Table 3.1: Description of Machine 1
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Operating system Ubuntu 20.04.3 LTS
CPU Intel Core i7 8700K 3.7 GHz 12MB
GPU MSI GeForce RTX 2080 Ti 11GB DUKE OC
RAM Corsair 32GB (2x16GB) DDR4 2666Mhz CL16 Vengeance

NVIDIA Driver version 510.60.02
CUDA version 11.6

Table 3.2: Description of Machine 2

19



3. Method

20



4
Results

This chapter presents selections of collected data and the experiments with code that
revealed insights as to why performance differs. The CUDA kernels implemented in
both C++ and Rust can be found in Appendix A. For the full source code please look
at https://github.com/vifraa/Evaluation-of-Rust-for-GPGPU-high-performance-computing.

All results collected are averaged over twenty executions for each experiment unless
stated otherwise. The results shown in the chapter are profiled on Machine 1 (de-
scribed in Table 3.1). Profiled data for the same experiments on Machine 2 can be
found in Appendix B.2.

4.1 Performance metrics of implemented programs

This section presents collected metrics for the experiments regarding the line-by-
line translate code. More detailed graphs regarding power usage can be found in
Appendix B.

4.1.1 Execution time

Execution time is a staple benchmark in HPC and is a common metric for evaluating
the performance of a program.

Figure 4.1 and Table 4.1 display the differences in execution time for the tiled matrix
multiplication experiments.
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Figure 4.1: Difference in execution time for Rust and C++ for tiled matrix mul-
tiplication with different matrix and block widths.

Matrix Size Average Speedup
32x32 1.21
128x128 1.11
512x512 1.04
2048x2048 1.13
All combined 1.12

Table 4.1: Average speedup of C++ over Rust for all experiments within a given
matrix size for tiled matrix multiplication.

It is clear from Figure 4.1 that C++ outperforms Rust in all experiments for this
kernel in terms of execution time. In Table 4.1, the speedups for C++ over Rust are
reported per matrix size over all experiments. We see that the average speedup of
C++ over Rust for all experiments of the matrix multiplication kernel is 1.15.

The captured results for matrix multiplication without tiling show larger perfor-
mance differences as can be seen in Figure 4.2 and Table 4.2. The main difference
between these versions is the tiling which uses shared memory. This might indicate
that there is a larger performance difference while accessing global memory than
with shared memory.
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Figure 4.2: Difference in execution time for Rust and C++ for untiled matrix
multiplication with different matrix widths.

Matrix Size Average Speedup
32x32 3.33
128x128 2.52
512x512 1.37
2048x2048 2.24
All combined 2.37

Table 4.2: Average speedup of C++ over Rust for all experiments within a given
matrix size for untiled matrix multiplication.

Metrics collected during profiling of the array copy kernel can be seen in Figure 4.3
and Table 4.3. Here we see next to no performance difference. A large difference that
differentiates the copy kernel compared to the matrix multiplication is as mentioned
in Section 3.1.4 that copy is a memory-bound program compared to the compute-
bound matrix multiplication.

Figure 4.3: Difference in execution time for array copy.
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Array size Average Speedup
1024 1.008
32768 0.997
1048576 1.004
33554432 1.0
All combined 1.002

Table 4.3: Average speedup of C++ over Rust for all experiments of the array
copy kernel.

4.1.2 Energy consumption

Energy consumption is another staple benchmark in HPC. It is often closely related
to execution time, as time is used in the calculation of energy consumption.

As can be seen in Figures 4.4, 4.5, and 4.6, the energy consumption results look very
similar to the execution time results in the previous chapter. Since there is such a
close relationship between the execution time, this is to be expected.

Figure 4.4: Difference in average energy consumption for Rust and C++ for tiled
matrix multiplication with different block widths.
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Figure 4.5: Difference in average energy consumption for Rust and C++ for untiled
matrix multiplication with different different matrix sizes. Y-axis in logarithmic
scale.

The consumption difference for the copy kernel is minimal as can be seen in Figure
4.6.

Figure 4.6: Difference in average energy consumption for array copy. Y-axis in
logarithmic scale.

4.1.3 Executed instructions
Nvidia Nsight Compute provides data of the instructions run by the GPU during
the execution of a kernel. This data gives insight into how the C++/Rust imple-
mentations differ in the executions at the lowest level.

In Tables 4.4, 4.5, and 4.6 we can see a subset of the executed instructions for
the tiled matrix multiplication, untiled matrix multiplication, and the copy kernels.
Instructions with a relatively low instruction count are omitted from the table for
the matrix multiplication tables.
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Instruction Name Rust Executed Instructions C++ Executed Instructions
LDS 335 544 320 335 544 320
FFMA 268 435 456 268 435 456
IMAD 42 860 544 68 157 440
ISETP 109 182 976 84 279 296
MOV 34 078 720 67 633 152
LEA 92 667 904 786 432
Total 1,177,944,064 1,027,735,552

Table 4.4: Selected instructions and their number of executions for implementa-
tions of tiled matrix multiplication in C++ and Rust for matrix width of 2048 and
block width of 16.

Instruction Name Rust Executed Instructions C++ Executed Instructions
ISETP 1 107 427 382 17 956 864
IMAD 639 238 144 269 352 960
IADD3 637 927 424 67 371 008
BRA 570 425 344 17 694 720
LDG 536 870 912 536 870 912
FFMA 268 435 456 268 435 456
Total 3 762 421 760 1 179 910 144

Table 4.5: Executed instructions for implementations of untiled matrix multipli-
cation in C++ and Rust for matrices with size 2048.

Instruction Name Rust Executed Instructions C++ Executed Instructions
IMAD 98 304 98 304
S2R 65 536 65 536
ULDC 65 536 0
SHF 32 768 0
ISETP 98 304 32 768
EXIT 65 536 65 536
STG 32 768 32 768
MOV 0 65 536
LDG 32 768 32 768
Total 524 288 393 216

Table 4.6: Executed instructions for implementations of array copy in C++ and
Rust for arrays with size 1048576.

Looking at the total amount of instructions executed for the three programs we see
that the Rust kernels are executing significantly more than their C++ counterpart.
As seen in Table 4.4, the tiled matrix multiplication have almost 150 million more
total instructions. This kernel is quite a large one, and it might be hard to pinpoint
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exactly where these instructions come from, however looking at the array copy ker-
nel which is one of the simplest kernels possible, we see that even there the Rust
version executes about 33% more instructions compared to the C++ version as seen
in Table 4.6. Interesting enough, the worst performing Rust kernel is the matrix
multiplication without tiling. In Table 4.5, we see that it executes around 2.5 billion
more instructions, which is 3.2 times as many as the C++ kernel.

4.2 Differences affecting performance
With a baseline of the performance for line-by-line comparable kernels as seen in
the previous section, it is important to understand why the performance differs the
way that it do. This section explains and discuss the findings that impacted the
performance.

4.2.1 Bounds checking
Since the matrix multiplication without tiling has a much simpler kernel, it showed
differences in the generated PTX code clearer. One thing that stood out was that
for each memory access to the global memory, in this case to the two input arrays,
a bounds-check was added that was not present in the C++ version. If the access
would be at a memory address outside of the targeted array, a trap instruction would
be executed which essentially aborts all execution and produces an interrupt signal
to the host. An example of this can be seen in Listing 4.2 on lines 7 to 9. This seems
to be a feature of Rust to ensure that writes are not made to unintended memory
locations, but unfortunately it has large performance downsides. By manually re-
moving these bounds-checks from the PTX and re-profiling the kernel for a single
32x32 experiment, the Rust kernel went from being much slower compared to the
C++ version to instead perform at the same level. It was also observed that this
removed the large majority of all branch instructions that were run during the kernel
execution which previously was a large difference. The reason that these appears
seems to be that the regular indexing operation (a[index]) in Rust automatically
add bounds checks. However, by changing these index operations to instead use
the function a.get_unchecked(index), these can effectively be removed since this
function does not do the bounds checks. The get_unchecked() function requires
the code to be placed in a code block marked as unsafe which all Rust-CUDA kernels
already are.

By profiling the kernels with this change a greater performance was observed from
the Rust kernels as can be seen in Figures 4.7, 4.8, and 4.9. With these changes, Rust
now performs better or at the same level as the C++ counterpart in all of the cases.
Comparing the relative execution times, seen in Tables 4.8, 4.9, and 4.10, a similar
performance regarding the execution time can be seen for the different languages,
except for the 32x32 matrix multiplications where C++ now performs worse than
Rust. This can be seen as a huge difference, especially for the tiled 32x32 matrix
multiplication, however it is worth noting that these kernels have an execution time
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that is in the 3-5 microsecond range. Because of this, a small constant overhead
in one implementation can cause a quite large percentage difference that is extra
visible in the smaller matrix sizes, however won’t be noticeable as the problem size
increases, as can be seen in our experiments.

The energy consumption results follow the same pattern as with the execution time,
and their graphs are therefore omitted from this section. They can however be found
in Appendix B.1.1.

In Table 4.7, the total executed instructions can be seen for the matrix multiplication
without tiling with a matrix width of 2048. Previously it was the worst-performing
kernel, with removed bounds checks it is now executing 84% fewer instructions than
the C++ version. This means that by removing the bounds check, the kernel is
executing about 2.7 billion instructions less than it did with the bounds checks.

Rust Total Instructions C++ Total Instructions
993,394,688 1,179,910,144

Table 4.7: Total executed instructions for untiled matrix multiplication with ma-
trix of size 2048 without bounds checking.

Figure 4.7: Difference in execution time for Rust and C++ for tiled matrix mul-
tiplication with different matrix and block widths without bounds checks when ac-
cessing global memory.
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Matrix Size Average Speedup
32x32 0.84
128x128 0.97
512x512 1.0
2048x2048 1.0
All combined 0.95

Table 4.8: Average speedup of C++ over Rust for all experiments within a given
matrix size for tiled matrix multiplication with removed bounds checks.

Figure 4.8: Difference in execution time for Rust and C++ for untiled matrix
multiplication with different matrix widths without bounds checks when accessing
global memory. Y-axis in logarithmic scale.

Matrix Size Average Speedup
32x32 0.96
128x128 1.0
512x512 1.0
2048x2048 1.02
All combined 0.99

Table 4.9: Average speedup of C++ over Rust for all experiments within a given
matrix size for untiled matrix multiplication with removed bounds checks.

As can be seen in Figure 4.9 and Table 4.10, barely any change regarding the execu-
tion time can be seen compared to the previous version seen in Figure 4.3 and Table
4.3. One possible reason for this is that since the array copy is a memory-bound
computational problem, the bottleneck in this case is the memory bandwidth of the
GPU. Because of this, the extra computations required during the bounds checks
do not have the same effect as on the other compute-bound kernels.
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Figure 4.9: Difference in execution time for array copy with no bounds checks
when accessing global memory. Y-axis in logarithmic scale.

Array size Average Speedup
1024 1.003
32768 1.003
1048576 1.001
33554432 1.0
All combined 1.002

Table 4.10: Average speedup of C++ over Rust for all experiments of the array
copy kernel with removed bounds checks.

4.2.2 Loop unrolling

Another interesting difference was found by comparing the PTX for the matrix
multiplication without tiling was the generated loop unrolling. In Listings 4.1 and
4.2, parts of the PTX can be seen which depict the differences. The biggest difference
between these is that the C++ version unrolls four loop iterations, the Rust version
on the other hand unrolls all of the loop iterations directly. In the example in Listing
4.2 only a subset of the total unroll was added since it would otherwise be too large
to display. This means that the source file for the Rust version is much larger, but
also that multiple branching statements per kernel invocation are saved since it does
not need to calculate the predicate and branch that the C++ version needs (seen
on lines 21 and 22 in Listing 4.1).
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1 $L__BB0_4 :
2 ld. global .f32 %f12 , [% rd31 ];
3 ld. global .f32 %f13 , [% rd30 + -8];
4 fma.rn.f32 %f14 , %f13 , %f12 , %f29;
5 add.s64 %rd22 , %rd31 , %rd5;
6 ld. global .f32 %f15 , [% rd22 ];
7 ld. global .f32 %f16 , [% rd30 + -4];
8 fma.rn.f32 %f17 , %f16 , %f15 , %f14;
9 add.s64 %rd23 , %rd22 , %rd5;

10 ld. global .f32 %f18 , [% rd23 ];
11 ld. global .f32 %f19 , [% rd30 ];
12 fma.rn.f32 %f20 , %f19 , %f18 , %f17;
13 add.s64 %rd24 , %rd23 , %rd5;
14 add.s64 %rd31 , %rd24 , %rd5;
15 ld. global .f32 %f21 , [% rd24 ];
16 ld. global .f32 %f22 , [% rd30 +4];
17 fma.rn.f32 %f29 , %f22 , %f21 , %f20;
18 add.s32 %r29 , %r29 , 4;
19 add.s64 %rd30 , %rd30 , 16;
20 add.s32 %r28 , %r28 , -4;
21 setp.ne.s32 %p6 , %r28 , 0;
22 @%p6 bra $L__BB0_4 ;

Listing 4.1: Loop unrolling C++

1 ...
2 ...
3 ...
4 ld. global .nc.f32 %f78 , [% rd4 +2944];
5 ld. global .nc.f32 %f79 , [% rd3 +92];
6 fma.rn.f32 %f24 , %f79 , %f78 , %f23;
7 add.s64 %rd62 , %rd2 , 24;
8 setp.ge.u64 %p50 , %rd62 , %rd8;
9 @%p50 bra $L__BB0_64 ;

10 add.s64 %rd63 , %rd1 , 768;
11 setp.ge.u64 %p51 , %rd63 , %rd10;
12 @%p51 bra $L__BB0_66 ;
13
14 ld. global .nc.f32 %f80 , [% rd4 +3072];
15 ld. global .nc.f32 %f81 , [% rd3 +96];
16 fma.rn.f32 %f25 , %f81 , %f80 , %f24;
17 add.s64 %rd64 , %rd2 , 25;
18 setp.ge.u64 %p52 , %rd64 , %rd8;
19 @%p52 bra $L__BB0_64 ;
20 add.s64 %rd65 , %rd1 , 800;
21 setp.ge.u64 %p53 , %rd65 , %rd10;
22 @%p53 bra $L__BB0_66 ;
23
24 ld. global .nc.f32 %f82 , [% rd4 +3200];
25 ld. global .nc.f32 %f83 , [% rd3 +100];
26 fma.rn.f32 %f26 , %f83 , %f82 , %f25;
27 add.s64 %rd66 , %rd2 , 26;
28 setp.ge.u64 %p54 , %rd66 , %rd8;
29 @%p54 bra $L__BB0_64 ;
30 add.s64 %rd67 , %rd1 , 832;
31 setp.ge.u64 %p55 , %rd67 , %rd10;
32 @%p55 bra $L__BB0_66 ;
33
34 ld. global .nc.f32 %f84 , [% rd4 +3328];
35 ld. global .nc.f32 %f85 , [% rd3 +104];
36 fma.rn.f32 %f27 , %f85 , %f84 , %f26;
37 add.s64 %rd68 , %rd2 , 27;
38 setp.ge.u64 %p56 , %rd68 , %rd8;
39 @%p56 bra $L__BB0_64 ;
40 add.s64 %rd69 , %rd1 , 864;
41 setp.ge.u64 %p57 , %rd69 , %rd10;
42 @%p57 bra $L__BB0_66 ;
43 ...
44 ...
45 ...

Listing 4.2: Loop unrolling Rust

4.2.3 Type conversion
As Rust is a strongly typed language, certain data types must be used for certain
operations. If two dependent operations operate with different data types, a con-
version from one data type to another is required. As an example, looking at the
code for the copy kernel in Appendix A, Listing A.5, the .add() function on the raw
pointer c requires a usize as argument, but the used Rust-CUDA thread functions
return values with the data type u32. This requires the use of the as usize opera-
tion, which ultimately results in additional instructions to be executed in the kernel.
In the PTX code this operation results in the use of the instruction cvt.u64.u32
which converts from u32 to u64 in this case since the program compiles for a 64-bit
system. The cvt.u64.u32 operation is made through a zero extension (zext) oper-
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ation [31] which may not be the heaviest operation, but as explained still adds to
the total instruction count.

When modifying the array copy kernel by using multiple as usize conversions in-
stead of a single one, as seen in Listing A.7, we see an increase in instructions
executed. Table 4.11 shows the difference where we see that both the ISETP and
IMAD instructions have increased drastically.

Instruction Single as usize Multiple as usize
ISETP 98,304 131,072
IMAD 98,304 131,072
ULDC 65,536 65,536
S2R 65,536 65,536

EXIT 65,536 65,536
STG 32,768 32,768
SHF 32,768 32,768
LDG 32,768 32,768
BRA 32,768 32,768

Table 4.11: Difference of instruction count for the array copy kernel when using a
single and multiple as usize conversions.
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As we could see in the previous chapter, translating line-by-line from a C++ CUDA
kernel to Rust does not bring the performance to a good enough level to compete
with C++. The biggest culprit was the bounds checks that standard Rust indexing
adds when fetching from global memory. The feature itself is beneficial as it ensures
that data cannot be fetched from memory addresses that are outside the memory
scope of the program. Hence, it is a feature that ensures that the program works
as intended regarding the memory it is supposed to use, which goes hand in hand
with the memory safety that the Rust language wants to achieve. When it comes
to HPC, this is a luxury that is too costly to be used in production, as we have
seen during the different experiments. To be able to have high performance while
still keeping the benefits of the bounds check, different performance optimizations
might be a good option, where the default during development includes the bounds
checks, meaning notice early if there is an illegal memory access. When code should
be transitioned into production, the option to change to a higher level of performance
optimization which removes these checks would be a nice-to-have feature. However,
it is highly unlikely that this will become a feature in the Rust language since it
goes against one of the core principles of the language, memory safety. This makes
it vital for programmers who want to create high-performing GPGPU programs
in Rust to know that these bounds checks exist, and how to avoid them. While
seeming like an easy thing, it might become a problem in larger codebases where
multiple contributors work, since it requires proper on-boarding of new employees
and regular screening of the code to avoid mistakes like these to appear.

This is also an indication that writing high-performance Rust GPGPU kernels with-
out them being marked as unsafe will never be feasible. The reasoning for this
is that as we saw in Section 4.1, we don’t achieve good enough performance while
having bounds checks, but to remove them we have to use a function that requires
unsafe Rust. Since it is highly unlikely that the Rust language will remove these
bounds checks in any way, the kernels will have to keep using unsafe. This does
not mean in any way that unsafe Rust is more unsafe than regular C++ code, it
only means that the goal of memory safety won’t be achievable for these kernels.

Since Rust-CUDA has a requirement of using the nightly-2021-12-04 it means that
it is stuck on a daily version that quickly will become out of date. This means
that different security patches and bug fixes might be missed, which is not optimal.
This requirement only exists for the codegen, but it might be hard for developers

33



5. Discussion

to enforce this specific version on only one part of the program, causing the entire
program to run on the version. Hopefully, this requirement will be dropped in the
future as the maturity of Rust-CUDA increases.

Something interesting with Rust-CUDA is that it operates on generated PTX, mean-
ing that it is possible to use existing C++ CUDA kernels compiled down to PTX
together with Rust host code. Rewriting existing codebases is therefore possible by
a step-by-step approach, reusing the existing device code while converting the host
code to Rust. This is important since it lowers the entry barriers for companies to
start using Rust-CUDA which will benefit the community and the development of
the library.

The results shown in Chapter 4 are all captured on machine 1 (see Table 3.1),
however, the same experiments were conducted on the more high-end machine 2
(see Table 3.2) in order to validate the results and find potential differences. It was
clear from the results that the kernels had the same relative performance on the
two machines, both in terms of execution time and energy consumption. This is not
surprising as the machines used the same drivers on graphics cards from the same
generation. Using a more modern or outdated graphics card could potentially lead
to different results due to potentially different interpretations of PTX code which
could potentially indicate that the Rust implementations using Rust-CUDA are more
suitable for modern GPUs. The results captured on machine 2 can be found in
Appendix B.2.

As with most research, some limitations that influence the quality of the results are
present in this work. The Rust-CUDA that all the Rust programs are implemented
with is, although actively in development and being one of the more prominent GPU
programming frameworks for Rust, is still in its early days and has not yet matured
the way GPU programming in C++/native CUDA has. There might be missing
or erroneous optimizations that negatively impact the performance of applications,
which can potentially be solved in future updates.

The kernels compared in this work were carefully implemented to be comparable, but
due to the nature of dealing with two different programming languages, this is not
a trivial task. There are differences in the kernels imposed by syntax and compiler
constraints that ultimately lead to different PTX code and performance. This is
not negative per se, as the performance differences are what is being researched.
However, it can’t be ruled out with 100% certainty that differences exists because
of programmer error.

As each experiment is non-deterministic in nature, the results vary from execution
to execution. Deviations can occur due to other processes running on the machine
influencing the performance. By running the experiments in isolation and by aver-
aging the results of each experiment over twenty runs, these effects are mitigated.
The number twenty was chosen as it was found that the outliers in the results were
diminished effectively while still keeping a reasonable time to run the experiments.

The ethical considerations for this thesis are minimal. As the work will be based on
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data fabricated and collected by the authors, no breach of privacy or other sensitive
information can be realized. Moreover, the practice of high-performance computing
consumes large amounts of energy with the powerful hardware utilized. Although
this project aims to improve energy efficiency of GPU computations, energy con-
sumption for calculations is something to consider in general from an environmental
point of view.
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Conclusion

Even though GPU programming in Rust is relatively new, this thesis has shown
that it is highly possible to create high-performing CUDA kernels written in Rust.
Benchmarking these kernels and comparing them to C++ CUDA kernels it was
found that when having line-by-line comparable code, Rust had much lower perfor-
mance, mainly because of automatically added bounds checks when accessing global
memory. By removing these, the Rust kernels started to perform at the same level
or sometimes even better than the C++ counterpart.

By tying back to the research questions of the thesis, we have found multiple ca-
pabilities and limitations in GPU programming using Rust that bring differences
regarding performance. The first and most impactful was the added bounds checks
to the generated PTX when using regular indexing operations. These had a large
negative impact on performance. By removing these we could achieve much better
performance. Rust also requires the usage of usize as parameters in some func-
tion calls, while the return type of some Rust-CUDA functions return u32. Having
multiple conversions between these types increases the number of instructions run.
Finally, we found that Rust performs more loop unrolling than the C++ coun-
terpart, reducing the number of instructions executed which in turn increases the
performance.

We see that the relative performance of Rust-CUDA programs compared to programs
made with C++-CUDA is quite competitive. As long as the programmer is aware of
the bounds checks and the steps to avoid them, the created programs will according
to our results perform at least at the same level as the C++ counterpart, but in a
few cases even better.

When it comes to the different available libraries for executing Rust GPU code, we
have found that there exists a few different projects available that work in different
ways. Rust-CUDA which was the focus of this thesis, executes CUDA kernels without
acting as a wrapper. arrayfire-rust and rust-gpu are other prominent libraries
available. Kernels written in rust-gpu compile down to SPIR-V and has a higher
focus on graphics programming in Rust and not on GPGPU. arrayfire-rust on
the other hand is a wrapper for ArrayFire, which enables CUDA, OpenCL, and CPU
HPC programming in Rust. No performance profiling was made for either of these
two libraries and could be a potential future work to compare with the performance
achieved with Rust-CUDA .
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Having worked with Rust-CUDA we feel that it is a great candidate for CUDA pro-
gramming and we are excited to see Rust grow in high-performance computing in
the future.
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A
Appendix A

In this appendix the kernel functions that was used during the benchmarking can
be found.

1 #[ kernel ]
2 #[ allow ( improper_ctypes_definitions , clippy :: missing_safety_doc )]
3 pub unsafe fn matMulCUDA (a: &[ f32], b: &[ f32], c: *mut f32) {
4 let a_shared_pointer = shared_array! [f32; BLOCK_WIDTH * BLOCK_WIDTH ];
5 let b_shared_pointer = shared_array! [f32; BLOCK_WIDTH * BLOCK_WIDTH ];
6
7 let thread_idx = thread :: thread_idx ();
8 let block_idx = thread :: block_idx ();
9

10 let row_idx = block_idx .y * BLOCK_WIDTH_U32 + thread_idx .y;
11 let col_idx = block_idx .x * BLOCK_WIDTH_U32 + thread_idx .x;
12
13
14 let mut computed_value : f32 = 0.0;
15
16 for m in 0..( MATRIX_WIDTH_U32 + BLOCK_WIDTH_U32 -1)/ BLOCK_WIDTH_U32 {
17 // copy to shared memory
18 if m * BLOCK_WIDTH_U32 + thread_idx .x < MATRIX_WIDTH_U32 && row_idx <

MATRIX_WIDTH_U32 {
19 let mut a_write = &mut * a_shared_pointer .add (( thread_idx .y*

BLOCK_WIDTH_U32 + thread_idx .x) as usize );
20 //* a_write = *a. get_unchecked (( row_idx * MATRIX_WIDTH_U32 + m*

BLOCK_WIDTH_U32 + thread_idx .x ) as usize );
21 * a_write = a[( row_idx * MATRIX_WIDTH_U32 + m* BLOCK_WIDTH_U32 + thread_idx .

x ) as usize ];
22 }
23 else{
24 let mut a_write = &mut * a_shared_pointer .add (( thread_idx .y*

BLOCK_WIDTH_U32 + thread_idx .x) as usize );
25 * a_write = 0.0;
26 }
27
28 if m* BLOCK_WIDTH_U32 + thread_idx .y < MATRIX_WIDTH_U32 && col_idx <

MATRIX_WIDTH_U32 {
29 let mut b_write = &mut * b_shared_pointer .add (( thread_idx .y*

BLOCK_WIDTH_U32 + thread_idx .x) as usize );
30 //* b_write = *b. get_unchecked (((m* BLOCK_WIDTH_U32 + thread_idx .y)*

MATRIX_WIDTH_U32 + col_idx ) as usize );
31 * b_write = b[((m* BLOCK_WIDTH_U32 + thread_idx .y)* MATRIX_WIDTH_U32 +

col_idx ) as usize ];
32 }
33 else{
34 let mut b_write = &mut * b_shared_pointer .add (( thread_idx .y*

BLOCK_WIDTH_U32 + thread_idx .x) as usize );
35 * b_write = 0.0;
36 }
37
38 // sync to make sure all data is available in shared memory before

computations
39 thread :: sync_threads ();
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40
41 for k in 0..( BLOCK_WIDTH_U32 ){
42 let mut a_read = &mut * a_shared_pointer .add (( thread_idx .y*

BLOCK_WIDTH_U32 + k) as usize );
43 let mut b_read = &mut * b_shared_pointer .add ((k* BLOCK_WIDTH_U32 +

thread_idx .x) as usize );
44 computed_value += * a_read * * b_read ;
45 }
46
47 // sync to ensure all threads finished using shared memory before we move
48 thread :: sync_threads ();
49 }
50
51 if row_idx < MATRIX_WIDTH_U32 && col_idx < MATRIX_WIDTH_U32 {
52 let elem = &mut *c.add (( row_idx * MATRIX_WIDTH_U32 + col_idx ) as usize );
53 *elem = computed_value ;
54 }
55 }

Listing A.1: Rust Tiled Matrix Multiplication CUDA Kernel

1 __global__ static void matMultCUDA ( const float * a, const float * b, float * c, int n)
{

2 __shared__ float a_shared [ BLOCK_WIDTH ][ BLOCK_WIDTH ];
3 __shared__ float b_shared [ BLOCK_WIDTH ][ BLOCK_WIDTH ];
4
5 int b_x = blockIdx .x;
6 int b_y = blockIdx .y;
7 int t_x = threadIdx .x;
8 int t_y = threadIdx .y;
9

10 int Row = b_y * BLOCK_WIDTH + t_y;
11 int Col = b_x * BLOCK_WIDTH + t_x;
12
13 float computed_value = 0;
14 for (int m = 0; m < (n+ BLOCK_WIDTH -1)/ BLOCK_WIDTH ; m++){
15
16 // copy to shared memory
17 if(m* BLOCK_WIDTH + t_x < n && Row < n)
18 a_shared [t_y ][ t_x] = a[Row * n + m* BLOCK_WIDTH + t_x ];
19 else
20 a_shared [t_y ][ t_x] = 0;
21
22 if(m* BLOCK_WIDTH + t_y < n && Col < n)
23 b_shared [t_y ][ t_x] = b[(m* BLOCK_WIDTH + t_y) * n + Col ];
24 else
25 b_shared [t_y ][ t_x] = 0;
26 __syncthreads (); // sync to make sure all data is available in shared memory

before computations
27 for (int k = 0; k < BLOCK_WIDTH ; ++k){
28 computed_value += a_shared [t_y ][k] * b_shared [k][ t_x ];
29 }
30 __syncthreads (); // sync to ensure all threads finished using shared memory

before we move
31 }
32 if(Row < n && Col < n)
33 c[Row * n + Col] = computed_value ;
34 }

Listing A.2: C++ Tiled Matrix Multiplication CUDA Kernel

1 #[ kernel ]
2 #[ allow ( improper_ctypes_definitions , clippy :: missing_safety_doc )]
3 pub unsafe fn matMulCUDA (a: &[ f32], b: &[ f32], c: *mut f32) {
4 let thread_idx = thread :: thread_idx ();
5 let block_idx = thread :: block_idx ();
6
7 let row = ( block_idx .y * BLOCK_WIDTH + thread_idx .y) as usize ;
8 let column = ( block_idx .x * BLOCK_WIDTH + thread_idx .x) as usize ;
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9
10 if row < MATRIX_WIDTH && column < MATRIX_WIDTH {
11 let mut p_value : f32 = 0.0;
12 for k in 0.. MATRIX_WIDTH {
13 // p_value += a. get_unchecked (row* MATRIX_WIDTH +k)*b. get_unchecked (k*

MATRIX_WIDTH + column );
14 p_value += a[row* MATRIX_WIDTH +k]*b[k* MATRIX_WIDTH + column ];
15 }
16
17 let write = &mut *c.add(row* MATRIX_WIDTH + column );
18 * write = p_value ;
19 }
20 }

Listing A.3: Rust Untiled Matrix Multiplication CUDA Kernel

1 __global__ static void matMultCUDA ( const float * a, const float * b, float * c, int n)
{

2 int Row = blockIdx .y* blockDim .y+ threadIdx .y;
3 int Col = blockIdx .x* blockDim .x+ threadIdx .x;
4
5 if (( Row < n) && Col < n){
6 float PValue = 0;
7 for (int k = 0; k < n; k++){
8 PValue += a[Row*n+k]*b[k*n+Col ];
9 }

10 c[Row*n+Col] = PValue ;
11 }
12 }

Listing A.4: C++ Untiled Matrix Multiplication CUDA Kernel

1 #[ kernel ]
2 #[ allow ( improper_ctypes_definitions , clippy :: missing_safety_doc )]
3 pub unsafe fn copy(a: &[ f32], c: *mut f32) {
4 let thread_idx = thread :: index () as usize ;
5 if thread_idx < a.len () {
6 let elem = &mut *c.add( thread_idx );
7 //*elem = *a. get_unchecked ( thread_idx );
8 *elem = a[ thread_idx ];
9 }

10 }

Listing A.5: Rust Array Copy CUDA Kernel

1 __global__ void copy_array ( float *a, float *c)
2 {
3 int thread_idx = blockDim .x * blockIdx .x + threadIdx .x;
4 if ( thread_idx < ARRAY_SIZE ){
5 c[ thread_idx ] = a[ thread_idx ];
6 }
7 }

Listing A.6: C++ Array Copy CUDA Kernel

1 // Code differences for the two version with different amount of usize .
2
3 // With 1 as usize
4 #[ kernel ]
5 #[ allow ( improper_ctypes_definitions , clippy :: missing_safety_doc )]
6 pub unsafe fn copy(a: &[ f32], c: *mut f32) {
7 let thread_idx = ( thread :: block_dim ().x * thread :: block_idx ().x + thread ::

thread_idx ().x) as usize ;
8 if thread_idx < ARRAY_SIZE {
9 let elem = &mut *c.add( thread_idx );

10 *elem = a[ thread_idx ];
11 }
12 }
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13
14 // With multiple as usize
15 #[ kernel ]
16 #[ allow ( improper_ctypes_definitions , clippy :: missing_safety_doc )]
17 pub unsafe fn copy(a: &[ f32], c: *mut f32) {
18 let grid_x = thread :: block_dim ().x as usize ;
19 let block_x = thread :: block_idx ().x as usize ;
20 let thread_x = thread :: thread_idx ().x as usize ;
21 let thread_idx : usize = grid_x * block_x + thread_x ;
22 if thread_idx < ARRAY_SIZE {
23 let elem = &mut *c.add( thread_idx );
24 *elem = a[ thread_idx ];
25 }
26 }

Listing A.7: Rust Array Copy CUDA Kernel differences with different amounts of
usize calls.
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In this appendix graphs for the benchmarked power usage, energy consumption and
execution time can be found for both of the machines used.

B.1 Machine 1

In Figures B.1, B.2 and B.3 graphs depicting the average, minimum and maximum
power usage for tiled matrix multiplication can be found. In Figures B.4, B.5 and
B.6 graphs depicting the average, minimum and maximum power usage for array
copy can be found.

Figure B.1: Difference in average power usage for Rust and C++ for tiled matrix
multiplication with different block widths.
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Figure B.2: Difference in minimum power usage for Rust and C++ for tiled matrix
multiplication with different block widths.

Figure B.3: Difference in maximum power usage for Rust and C++ for tiled matrix
multiplication with different block widths.
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Figure B.4: Difference in average power usage for Rust and C++ for array copy
with different array sizes.

Figure B.5: Difference in minimum power usage for Rust and C++ for array copy
with different array sizes.

Figure B.6: Difference in maximum power usage for Rust and C++ for array copy
with different array sizes.
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B.1.1 Energy consumption without bounds checks

Figure B.7: Tiled matrix multiplication energy consumption difference between
C++ and Rust without bounds checks.

Figure B.8: Untiled matrix multiplication energy consumption difference between
C++ and Rust without bounds checks. Y-axis in logarithmic scale
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Figure B.9: Copy kernel energy consumption difference between C++ and Rust
without bounds checks.

B.2 Machine 2

All the captured data from benchmarks ran on machine 2.

Figure B.10: Difference in execution time for Rust and C++ for tiled matrix
multiplication with different matrix and block widths, Machine 2.
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Figure B.11: Difference in execution time for untiled matmul, Machine 2. Y-axis
in logarithmic scale

Figure B.12: Difference in execution time for Rust and C++ for tiled matrix mul-
tiplication without bounds checks with different matrix and block widths, Machine
2.
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Figure B.13: Difference in execution time for Rust and C++ for untiled matrix
multiplication without bounds checks with different matrix widths, Machine 2. Y-
axis in logarithmic scale.

Figure B.14: Difference in execution time for array copy without bounds checks,
Machine 2.
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Figure B.15: Difference in average energy consumption for Rust and C++ for tiled
matrix multiplication with different block widths, Machine 2.

Figure B.16: Difference in average energy consumption for Rust and C++ for
untiled matrix multiplication with different matrix sizes, Machine 2. Y-axis in log-
arithmic scale.
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Figure B.17: Difference in average energy consumption for array copy, Machine 2.

Figure B.18: Difference in average power usage for Rust and C++ for tiled matrix
multiplication with different block widths, Machine 2.
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Figure B.19: Difference in minimum power usage for Rust and C++ for tiled
matrix multiplication with different block widths, Machine 2.

Figure B.20: Difference in maximum power usage for Rust and C++ for tiled
matrix multiplication with different block widths, Machine 2.
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Figure B.21: Difference in average power usage for Rust and C++ for array copy
with different array sizes, Machine 2.

Figure B.22: Difference in minimum power usage for Rust and C++ for array
copy with different array sizes, Machine 2.

Figure B.23: Difference in maximum power usage for Rust and C++ for array
copy with different array sizes, Machine 2.
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Figure B.24: Tiled matrix multiplication energy consumption difference between
C++ and Rust without bounds checks, Machine 2.

Figure B.25: Untiled matrix multiplication energy consumption difference between
C++ and Rust without bounds checks, Machine 2. Y-axis in logarithmic scale.
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Figure B.26: Copy kernel energy consumption difference between C++ and Rust
without bounds checks, Machine 2. Y-axis in logarithmic scale.
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