
DF

Inverse Driver Learning and Short Time
Prediction in Freeway Traffic Situations

Master’s thesis in Engineering Mathematics and Computational Science

ADITYA B. SRIDHARA

Department of Mathematical Science
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2019

MASTER’S THESIS 2019:EENX30

Inverse Driver Learning and Short Time Prediction in
Freeway Traffic Situations

Surrounding vehicle motion prediction using Inverse Reinforcement
Learning

Aditya B Sridhara

DF

Department of Mathematical Science
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden 2019

Inverse Driver Learning and Short Time Prediction in Freeway Traffic Situations
Aditya B. Sridhara

© ADITYA B SRIDHARA, 2019.

Supervisor: Martin Sanfridson, AB Volvo
Examiner: Balázs Adam Kulcsár, Chalmers University of Technology

Master’s Thesis 2019:EENX30
Department of Mathematical Science
Division of Mathematics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 70 465 8729

Typeset in LATEX, template by David Frisk
Printed by Chalmers Reproservice
Gothenburg, Sweden 2019

iv

Inverse Driver Learning and Short Time Prediction in Freeway Traffic Situations
Aditya B. Sridhara
Department of Mathematical Science
Chalmers University of Technology

Abstract

Traffic prediction around the vehicle during highway driving is a hard task to solve as
the driver’s decision are complicated. It is necessary to build a procedure to predict
driving decisions, such as lane change, overtaking and many other scenarios around
the vehicle. Further, building an accurate prediction model is a requisite to improve
the design and validation of Automated Driving Systems (ADS).

To solve the prediction task, the project aims to build a Deep Inverse Reinforcement
Learning (DIRL) model to analyze and learn diverse driving behaviour during lane
change scenarios. DIRL learns this behaviour by undergoing apprenticeship training
from an expert. It learns the reward structure of drivers decision during lane change
scenarios from such varied expert driving behaviour, and by utilizing these reward it
predicts driving decision.

DIRL model is built upon a sequential time series model and General Adversarial Im-
itation Learning (GAIL). GAIL assists in learning the rewards and future trajectories
are predicted using the sequential model. The model is optimized using reinforce-
ment learning techniques by performing policy gradients on the rewards, that are ob-
tained from the GAIL. The model is trained on expert naturalistic driving data recorded
on German highways called HighD. The model predicts lateral, longitudinal position
and velocity of surrounding vehicles. The accuracy of these predictions is evaluated by
comparing these trajectories with expert data.

Keywords: Trajectory prediction, deep learning, Seq2Seq, GAN, inverse reinforcement
learning, MDP.

v

Acknowledgements

I thank Volvo Truck Technology especially the Vehicle Automation team for providing
interesting opportunity and infrastructure to conduct this thesis. I like to express my
deepest gratitude to supervisor Martin Sanfridson and examiner Balázs Adam Kulcsár,
for providing continuous guidance throughout the course of the thesis.

Aditya B. Sridhara , Gothenburg, April 2019

vii

Contents

List of Abbreviations xi

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Thesis Objective . 2
1.2 Research questions . 3
1.3 Scope and Limitations . 3
1.4 Outline . 3

2 Theory 5
2.1 Deep learning . 5

2.1.1 Recurrent Neural Network . 5
2.1.2 Sequence to Sequence . 8
2.1.3 Generative Adversarial Network . 9

2.2 Inverse Reinforcement Learning . 11
2.2.1 Reinforcement Learning . 11
2.2.2 Policy Gradient . 14
2.2.3 Inverse Reinforcement Learning methods 14

3 Methods 19
3.1 Problem formulation . 19
3.2 Data . 19
3.3 Data processing . 23
3.4 Deep Inverse Reinforcement Learning Model 33

3.4.1 DIRL Model . 33
3.4.2 Model training . 35

3.5 Software library . 37

4 Results and Discussion 39
4.1 Longitudinal features . 39
4.2 Lateral features . 41
4.3 Discussion . 43

5 Conclusion and Future Work 45
5.1 Conclusion . 45

ix

Contents

5.2 Future Work . 46

x

List of Abbreviation

ADS Automated Driving Systems. v, 1, 2, 19, 45
ANN Arti�cial Neural Network. 5

BPTT Back-propagation Through Time. 6

DIRL Deep Inverse Reinforcement Learning. v, 5, 39–42, 44, 45

GAIL Generative Adversarial Imitation Learning. 17
GAN Generative Adversarial Network. 5, 45, 46

IL Imitation Learning. 11
IRL Inverse Reinforcement Learning. 11

LSTM Long Short Term Memory. xiii, 6–8

MaxEnt IRL Maximum Entropy Inverse Reinforcement Learning. 16
MDP Markov Decision Process. 11

NLP Natural Language Processing. 33

RL Reinforcement Learning. 11, 13, 14
RMSE Root Mean Squared Error. 40, 42
RNN Recurrent Neural Network. 5, 6

Seq2Seq Sequence to Sequence Network. 8, 9
SGD Stochastic Gradient Descent. 9, 10

TBPTT Truncated Back-propagation Through Time. 6

xi

List of Abbreviation

xii

List of Figures

1.1 Highway driving scenarios, vehicle 1 (ego vehicle) making a lane change,
ADAS of vehicle 1 has to predict the behaviour of vehicle 2 (surrounding
vehicle) to make safe lane change. 2

2.1 Single neuron of recurrent neural network [1]. 6
2.2 Unrolling of a recurrent neural network through time for training [1] . . . 6
2.3 Schematic unit of Long Short Term Memory (LSTM) consisting of four

components and three gates to control the �ow of information. Where
rectangles ¾ and tanh refers to sigmoid and hyperbolic tangent activa-
tion respectively and £ is Hardamard product and Å is addition are vector
operation in the cell [1][2] . 7

2.4 Seq2Seq model architecture . 8
2.5 Graphical representation of GAN . 10
2.6 Reinforcement Learning [3] . 12

3.1 Data recorded using drone hovering above the highway that can capture
the traf�c within the 420 m highway segment [4]. 20

3.2 Road segment visualization for HighD datset. The red box are computer
vision algorithm processed bounding box representing the vehicles on
the highway. The black triangle on the bounding box denotes the driv-
ing direction. Each vehicle has unique yellow label consisting the type of
vehicle car or truck(C or T), vehicle velocity and vehicleId [4]. 21

3.3 Road coordinate system. The vehicle in the upper lane move from right
to left. The vehicles in this lane have x values decreasing as the vehicle
moves from right to left and velocity of vehicle is negative in reference to
the coordinates. It is converse in the lower lane. 23

3.4 Illustration of _tracks feature considering ego vehicle 4 and 10 in upper
and lower lane respectively . 24

3.5 The lane change trajectories are shifted to the centre frame, with ego ve-
hicle's 2 and 4, lane change maneuver starting at 210m 28

3.6 The �gure illustrates the �ip transformation on the data set. The ego ve-
hicle 2 have their lane change maneuvers mirrored along the centre of the
road. This results in vehicle trajectories in upper lane having the same
moving direction as in the lower lane . 29

3.7 The expert trajectories, with ego vehicle in the lane 3 and 6, are mirrored
along the lane marking in each of the lanes such that their lane maneuver
starts from 2 and 5 respectively. It results in positive y values with time t . 30

xiii

List of Figures

3.8 Expert trajectories in the lower lane are shifted to upper lane maintaining
the same direction as in the lower lane . 31

3.9 The �gure illustrates the the complete data transformation's undertaken
by the expert data . 32

3.10 DIRL network architecture . 34

4.1 The plots of longitudinal position and velocity of 4.5s predicted trajectory 41
4.2 Plots of lateral position and velocity of 4.5s predicted trajectory 42

xiv

List of Tables

3.1 Signi�cant attributes of HighD dataset . 21
3.2 Table shows the description of each recorded video in term of CSV �le.

The XX in the �lename represents the number of the recording ranging
from 01 to 60 . 21

3.3 RecodingMeta �le description . 22
3.4 tracksMeta �le description . 23
3.5 Table describing the features of the tracks data 24
3.6 Expert Data features for the DIRL model . 31

4.1 Mean and standard deviation of the complete 4.5s predicted trajectories
for the longitudinal features . 39

4.2 Evaluation of the RMSE of the predicted trajectories for the longitudinal
features. RMSE is evaluated for 3 time intervals for the 4.5 s trajectory . . . 41

4.3 Mean and variance of the sampled predicted trajectories for lateral features 42
4.4 Evaluation of the RMSE of the predicted trajectories for the lateral fea-

tures. RMSE is evaluated for 3 time intervals for the 4.5 s trajectory 43
4.5 Mean and variance of the sampled predicted trajectories for lateral features 43

xv

List of Tables

xvi

1
Introduction

Demands for goods and services increase around the world, the main catalyst to ser-
vice this demands are road transport systems. It may be freight transport or passenger
transport[5]. In one of the study it is suggested that transport system is one of the in-
dicators for economic growth and created around 12 million jobs [6]. It is seen that the
road transport in the world has been increasing steadily, one of the reasons lie in the
disruptive technology like autonomous driving that is changing the transport industry
radically by reducing the transport cost making goods cheaper .

Taking into account of the increasing road transport, it necessary to have an
ef�cient and safe transport system. Though its seen that EU roads are one of the safest,
accidents on these roads haven't abated as envisioned by European commission [7].
The road transport accounts to, as of year 2017, around 135,000 people seriously in-
jured, and 25,300 people lost their lives.This is estimated to about 70 lives per day and
around 120 billion Euro loss per year for Europes's GDP. The European commission
road safety policy set reduce this road fatalities by halve by the year 2030 [7].

The measure taken by the European commission is to focus on the vehicle
safety that would consecutively increase the standards of road safety. It is found that
94 percentage of accidents can be attributed to human error or human judgment[8]. So
to enhance vehicle safety it is imperative to provide integral technical systems for as-
sistance to human drivers. These systems must include crash avoidance system, crash
mitigation and crash protection systems for a robust vehicular safety. ADS were built as
a precautionary measures in consideration for increased road safety. ADS are proven in
providing positive solution in reducing the road fatalities[9]. ADS comprises of systems
like Lane Keeping Support systems, Path Planning and Trajectory Predictions.

The major challenges to achieve higher autonomy in ADS is to estimate and
predict human intention of surrounding vehicles.The current master thesis project is
to provide plausible solution in this direction, to predict human intention around host
vehicle.

1

1. Introduction

1.1 Thesis Objective

A momentous task for the ADS is to predict the behaviour or intentions of surround-
ing vehicles. It is dif�cult to predict driving intentions of surrounding vehicles, which
may include overtaking, changing lane, exiting the highway or taking a turn. All such
diverse scenarios arising are numerous and it is dif�cult to develop a single prediction
framework that can encompass all such driving scenarios.

One such driving situation that is largely considered for the study in the cur-
rent thesis is lane change behaviours. Figure 1.1 shows a situation arising on highway
frequently, vehicle 1 called the ego vehicle makes a lane change, to exit the highway.
The ego vehicle has to judge the surrounding vehicle 2 motion as the the surrounding
vehicle may or may not allow the ego vehicle to pass through. It is imperative to predict
the surrounding vehicle motion to have a safe lane change maneuver for the vehicles
on the highway. The ego vehicle, a truck, has to consider whether to change lane or not
based the surrounding vehicle speed, whether it can change lane safely considering its
trailer's length. The thesis considers all the lane change behaviour arising all the type
of vehicles, car or truck, for either ego or surrounding vehicle.

Figure 1.1: Highway driving scenarios, vehicle 1 (ego vehicle) making a lane change,
ADAS of vehicle 1 has to predict the behaviour of vehicle 2 (surrounding vehicle) to
make safe lane change.

Prediction of surrounding vehicles during lane change is of importance when
there is a high density of the traf�c on the highway. Analyzing and predicting all the
driving behaviour of the ego and surrounding vehicle during lane change would in
turn help in negating crashing scenarios.

The aim of the thesis is to provide a suitable solution in predicting the trajec-
tory and motion of the surrounding vehicle by imitating driving behaviours. The end
goal is to build a robust model ef�cient to predict diverse human driving behaviours
by predicting vehicular motion, so that it aids in prescribing certain control strategies
to ADS.

2

1. Introduction

1.2 Research questions

The master thesis aims at addressing the following question

• How ef�ciently can Deep Inverse Reinforcement Learning algorithms can predict
vehicles behaviour?

• How are the features of the surrounding vehicle mapped to get the optimal re-
ward in inverse reinforcement learning ?

• Can the model predict the future driving behaviour even after the lane change
based on the output of the inverse reinforcement learning algorithm?

1.3 Scope and Limitations

The thesis is limited to working on the naturalistic driving data set called HighD [4].
The data contains trajectory of vehicle on straight German highway possessing a sim-
ple lane change maneuvers and void of any junction crossing, and lane merging sce-
narios. Thus our prediction model is built for the lane change maneuvers. As the con-
cept of inverse reinforcement learning is quite novel, to analyze the ef�ciency of this
prediction model clearly, this thesis is restricted to predicting driving intention for two
lane, two agent or vehicle lane changing scenarios.

1.4 Outline

The section below is a brief outline for the forthcoming chapters of thesis report.

1. Theory : In this section we delve upon theoretical concepts required to build
driver behaviour prediction or traf�c prediction model. The chapter is mainly
divided into two major sub topics namely deep learning methods an inverse re-
inforcement learning. The concepts concerned to this project are elucidated,
along with its underlying mathematical principles.

2. Methodology : The chapter initially describes the naturalistic driving data and
pre-processing techniques. The chapter presents a step wise formulation in build-
ing inverse reinforcement based traf�c prediction model for highway lane change
scenarios. It also elucidates the complete inverse reinforcement algorithm built
for vehicle trajectory prediction. Furthermore, the chapter contains a brief overview
of the software libraries utilized in the thesis.

3. Result : It presents the experimental results and the result analysis of the deep
inverse reinforcement prediction model.

3

1. Introduction

4. Conclusion and Future work - The experimental results are contextualized with
the objective of the thesis. The chapters also expands on the future course of
direction in which the model needs to be investigated.

4

2
Theory

In the following section, concepts required for DIRL formulation are explained
in detail. It comprises of a comprehensive review of the theory along with a de-
tail elaboration of its mathematical framework. The chapter is divided into two
topics, deep learning and inverse reinforcement learning methods respectively.

2.1 Deep learning

Deep learning is sub-�eld of machine learning that solves representation learning task
using successive smaller and simpler layered representation of data. Therefore it also
named as layered representation learning or hierarchical representation learning. This
layer representation helps the computer to understand complex concepts such as im-
ages and speech. The layered representation learning is generally modelled using Ar-
ti�cial Neural Network (ANN)[10]. ANN are computational graphs and work as func-
tional approximators f (x,µ), for input data x. The objective of the network is to cal-
culate the output y, by calibrating its parameter µ. For a thorough explanations and
understanding of ANN and its mathematical framework, readers are encouraged to go
through [10]. In the following subsection we elaborate on Recurrent Neural Network
(RNN), Seq2Seq and Generative Adversarial Network (GAN).

2.1.1 Recurrent Neural Network

The functional approximation done by simple ANN for sequential data is very ineffec-
tive as ANN assumes the data to be independent identically distributed and uncorre-
lated. RNN is a class of neural network that specializes in processing such sequential
data like speech, music, language and other time series data ef�ciently [11, 12]. RNN
is constructed by inserting feedback loop over each neuron. This enables the network
to share parameters across time and establish a recurrent mechanism [13]. The output
of RNN depends on the input fed to the network and the output at previous time step.

RNN takes in an input sequence vector x Æ(x1, . . . ,x t) and approximates this
sequential data to output ŷ Æ(ŷ1, . . . , ŷt) at each time step t . RNN has a layer of hidden
states h t that summarize the previous states of the input until the current time step.

5

2. Theory

Figure 2.1: Single neuron of recurrent neural network [1].

This layer forms the feedback loop that helps to share information from previous states
and forms the recurrent mechanism[13]. At each time step t , RNN simultaneously
updates the hidden state and produces an output, based on the current input x t and
the hidden state at previous time step h t ¡ 1. The hidden state of the cell are updated
according to equation 2.1 and the output of RNN is given by equation 2.2.

h t Æ f (Wi x t Å Wh h t ¡ 1 Å bh) (2.1)

ŷt Æ g(Woh t Å bo) (2.2)

where f (x) and g(x) are activation functions, Wi ,Wh ,Wo are the weight matrix of the
input, hidden and output layers respectively and bh ,bo are the biases.

Training of RNN is done with the algorithms called Back-propagation Through Time
(BPTT)[14] and updated version Truncated Back-propagation Through Time (TBPTT)
[15]. The algorithm trains the network through generalized back-propagation after it
unrolls the network in the given time T, as shown in Figure 2.2.

Figure 2.2: Unrolling of a recurrent neural network through time for training [1]

Long Short Term Memory Networks

Despite RNN being utilized to approximate sequential data, it has problem such as
vanishing gradient [16] and cannot learn long term dependencies in the data [17]. To
overcome these problems LSTM was proposed [18] and was upgraded by including
the weight condition of the LSTM [19]. LSTM is a type of where the hidden layer are
replaced by LSTM cell, that has a self loop so that gradient can pass through without
exploding. There are three gates namely input, forget and output that controls the �ow
of information to and within the memory cell. During training, LSTM learns to control

6

2. Theory

the gates which changes the weights of the memory cell. The basic structure of the
LSTM cell is shown in Figure 2.3.

Figure 2.3: Schematic unit of LSTM consisting of four components and three gates to
control the �ow of information. Where rectangles ¾and tanh refers to sigmoid and hy-
perbolic tangent activation respectively and £ is Hardamard product and Å is addition
are vector operation in the cell [1][2]

.

LSTM consist of four components that gives an output of cell state Ct and hidden state
h t at each time. The forget gate f t ,introduce by Schmidhuber et al [19] helps to decide
the elements of cell state to be passed. Forget gate outputs a vector of 0 or 1, when
combined with cell states it can decide the elements to be kept for the current time.
The output of the forget gates is given by Equation 2.3. The input gate i t decides the
elements that would be contributing to next cell as shown in Equation 2.4. The output
gate ot of the LSTM cell �lters the the elements of the current cell state evaluated by
Equation 2.5.

f t Æ¾(W f x t ÅU f h t ¡ 1 Å b f) (2.3)

i t Æ¾(Wi x t ÅU i h t ¡ 1 Å bi) (2.4)

ot Æ¾(Wox t ÅUoh t ¡ 1 Å bo) (2.5)

The cell state an the hidden state are updated and stored in the memory cell for next
time step given by the list of Equation 2.6, 2.7, 2.8.

Ĉt Æ tanh(Wcx t ÅUch t ¡ 1 Å bc) (2.6)

Ct Æ f t ¯ Ct ¡ 1 Å i t ¯ Ĉt (2.7)

h t Æ ot ¯ tanh(Ct) (2.8)

where

• W f ,Wi ,Wo,Wc are the input weights

• U f ,U i ,Uo,Uc are the recurrent weights

7

2. Theory

• b f ,bi ,bo,bc are the biases

• ¯ denotes element-wise multiplication

• ¾and tanh are the activation functions

2.1.2 Sequence to Sequence

LSTM is used for modelling sequential data ef�ciently but it takes in data of �xed input
length and generates an output of �xed length. Many real world application like ma-
chine translation, speech recognition and time series forecast, requires network to be
�exible so as to take input of variable length and produce an output of variable length.
Sequence to Sequence Network (Seq2Seq) [12] model is the neural network architec-
ture built using LSTM to overcome the shortcomings of simple LSTM network.

A Sequence to Sequence architecture has two components, an encoder and
decoder. The encoder takes input X Æ{x1 . . .x t } with variable length and converts into
a context vector v which is fed to the decoder. The decoder with use of this context
vector gives an output Y Æ{y1 . . . yT } of required variable length.The �gure shows a
basic architecture of the Seq2Seq model.

Figure 2.4: Seq2Seq model architecture

The encoder consist of two layer of neural network, embedding layer and LSTM
layer respectively to which sequential data X Æ{x1, , ,x t } is fed. Embedding layer of the
encoder generalizes this high dimensional data to low dimensional data by categoriz-
ing data into row of an embedding matrix with columns length as the total vocabulary
size. Then this embedded data is encoded into on �xed representation context vector
v using the LSTM layer.

The decoder consist of layer of LSTM layer with softmax output. It produces a
conditional probability of the output given the input sequence Equation 2.9 [12]. The
output of the decoder from the time t ¡ 1,yt ¡ 1 is fed as input to the decoder at current

8

2. Theory

time t to produce an output yt

P(ŷ1 . . . ŷt / x1 . . .x t) Æ
TY

t Æ1
P(ŷt / v, ŷ1, . . . , ŷt ¡ 1) (2.9)

where v Æ(x1 . . .x t) , ŷt is predicted output

P(ŷt / v, ŷ1, . . . , ŷt ¡ 1) Æ
exp(w Öf (ŷt , ŷt ¡ 1,x1:t)

P
exp(w Öf (ŷt , ŷt ¡ 1,x1:t)

(2.10)

Training

Output of the Seq2Seq model is a probability density on the total vocabulary length.
But the actual value of the output is evaluated using the Equation 2.11

yt Æargmax
y2Y

P(ŷt / v, ŷ1, . . . , ŷt ¡ 1) (2.11)

The loss at each time step t is calculated using the cross entropy with the true output
density. The loss is calculate using the Equation 2.12. The decoder and encoder are
updated using Stochastic Gradient Descent (SGD) [20]

r L µ Æ ¡
1

N

TX

t Æ1
P(yt)r µ log P(ŷt) (2.12)

2.1.3 Generative Adversarial Network

Generative Adversarial Network (GAN) is a differentiable generator network, where the
data is transformed from latent space using a differentiable function [10, 21]. It was
initially developed to generate realistic samples of data with the given distribution p(x)
[21]. GAN has been used in various �eld in image translation, sequence generation and
model free reinforcement learning task [22, 23, 24].

GAN consists of two networks called Generator G and Discriminator , D respectively.
The generator produces synthetic data samples similar to distribution of training data.
The discriminator's objective is to examine these sample from the generator and dis-
tinguish them whether they are real or fake. Intuitively the generator can be considered
as the counterfeiter trying to fool the discriminator by making fake money. Then the
discriminator is considered as the police trying to distinguish whether currency is real
or counterfeit [25].

Generator G is a neural network having a differentiable function G(z;µG) w.r.t to input
noise z and with parameter µG. It samples the data from prior latent space with dis-
tribution pz(z) and tries to minimize its cost function L G(µG). Similarly discriminator
is a neural network, that has a differentiable function D(x;µD) w.r.t to input and the
observed samples x with network parameter µd . The output of the discriminator is

9

2. Theory

Figure 2.5: Graphical representation of GAN

scalar value representing the probability whether the data x comes from the original
distribution p(x) or not, with cost function as L D(µD).

GAN is considered as two agents G and D playing a min-max game having a
total payoff with value function V(µG,µD). Solving the minimax game is equivalent to
optimizing the generator parameter given by

µG¤
Æargmin

µG
max

µD
V(µG,µD) (2.13)

The value function is nothing but the V(µG,µD) ÆL G(µG) Æ ¡L D(µD). The mathemati-
cal formulation of the cost function is given as the binary cross entropy de�ned by the
Equation 2.14 [21]

V(µG,µD) ÆEx» Pr log D(x) Å Ez» Pg log[1 ¡ D(G(z))] (2.14)

where x is the input data with distribution Pr , z are the samples from prior distribu-
tion P(z) generally a Gaussian, and Pg distribution form the output of generator. The
loss function of discriminator is maximized and the loss function for the generator is
minimized such that Pg converges to Pr , ie Pr = Pg . In this min max game the dis-
criminator minimize the cross entropy while the generator tries to maximize this cross
entropy [25].

Training

Training the network is done in two steps but iteratively with alternatively gradient
descent, where in discriminator is trained �rst and then generator trained next. Two
batches of samples are drawn from Pr and from latent variable x̃ distribution G(z) »
Pg , which are fed to the generator G. The output of the generator fed to the discrimina-
tor, yielding a probability Pr . The discriminator loss are calculated and updated using
the SGD [20, 26],

r µDVD (µG,µD) Æ ¡
1

N

NX

nÆ1

£
r µD log D(xn) Å r µD log(1 ¡ D(x̃n))

¤
(2.15)

10

2. Theory

Once the discriminator is updated which tries to minimize the cross entropy, new sam-
ples x̃ are drawn from Pg and the generators gradients are updates by Equation 2.42

r µGVG(µG,µD) Æ rµgL G(µG) Æ
1

N

NX

nÆ1
r µG log(1 ¡ D(x̃n)) (2.16)

2.2 Inverse Reinforcement Learning

Inverse Reinforcement Learning (IRL) is a subclass of techniques of Imitation Learning
(IL), where in the the agent learns the optimal behaviour from the set of demonstra-
tion of experts. These are methods developed initially to program autonomous robots
to perform highly complex task like pick and place [27, 28], robot path planning [29],
helicopter maneuvering [30] which had very successful outcomes. The distinction be-
tween IRL and imitation learning is that while IRL objective is to only infer the reward
function from the expert where as IL goal is to mimic the expert behaviour. IRL is
closely related to supervised learning where in prediction task are converted into se-
quential decision task [31, 32]

Early stages of development of IRL were done by Kalman 1960, where in he recovered
the objective function for deterministic linear system with quadratic cost [33]. The use
of Markov Decision Process (MDP) frame work to recover the rewards was �rst done
by Russell et al [34], wherein the agent task is modeled as sequence of decision making
process, which then can be solved using reinforcement learning techniques [35]. Since
then the IRL has gain traction and advantages in using the MDP framework to model
the environment as it can be solved using Reinforcement learning techniques. The
concept of IRL requires a basic understanding of reinforcement learning techniques
for MDP. The following section is a reference to concepts in reinforcement learning
and IRL

2.2.1 Reinforcement Learning

Reinforcement Learning (RL) is described as a learning framework, where an agent or
learner interacts with the environment to achieve a goal. Unlike a supervised learning
where the learning is passive, RL is active as it learns from the reward signal received by
the environment continuously. Reward signal is the closed loop feed back received to
the agent from interaction between the agents and the environment that occur in dis-
crete time. The goal or the learning behaviour can be represented in form of feed back
signal in-between agent and the environment, where one signal represent the choice
of the agent (actions), next signal represent the signal based on which the choices are
made (states) and the reward signal based on the agent goal(reward) as shown in Fig-
ure 2.6

Environment constitutes a situation or scenario in which the agent acts and learns to
achieve a speci�c goal. States st are some representation of a complete or all possible

11

2. Theory

Figure 2.6: Reinforcement Learning [3]

environment state S that agent receives at each time t , st 2 S.Based on the states the
agent takes a control decision, these are called actions at 2 A (st), where A (st) set of
action that agent can take at particular state st .

Rewards r t , is a scalar value, it is the incentive the agent receives at a particular state
after choosing an action A (st). The agent's goal is to maximize these expected reward
Rt , a function de�ned as a sum of rewards it may receive next from time t Å 1 until the
length of the that episode T .

Rt Ær t Å1 Å r t Å2 Å¢¢¢År T Æ
TX

kÆ0
r t ÅkÅ1 (2.17)

In other words it quanti�es how well the agents have performed the task from the cur-
rent state at time t to the end state T over the each episode [3]. If we consider a con-
tinuous control task, that doesn't have a terminal state or do not have an end goal i.e
T Æ 1 the Equation 2.17 does not converge. A discount factor ° 2 [0,1] is introduced
to rectify this problem [36, 37], then the Equation 2.17 can be re written as

Rt Ær t Å1 Å ° r t Å2 Å ° 2r t Å3 ¢¢¢ Æ
1X

kÆ0
° k r t ÅkÅ1 (2.18)

If the agent has ° Æ0 discount factor, it's goal is to choose an action to maximize im-
mediate rewards, on the other hand if the discount factor ° ! 1 it chooses actions at

so as to consider long term rewards.

Markov Decsion Process

The Markov Decision Processes (MDP) is a mathematical formalism suitable for mod-
elling and solving decision making or real world control problems. MDP is de�ned [3]
as a tuple hS,A ,P ,R ,° i , where

• S is set of all possible states of environment, satisfying the Markov property

P(st Å1jst) ÆP(st Å1js1,s2, . . . ,st) (2.19)

12

2. Theory

• A is set of actions taken by agent in the state st

• P : S £ A £ S ! [0,1] is the state transition probability,

P (s0js,a) ÆP(st Å1jst ,at), where s0is the successive state, and s,a are current state
and action respectively

• R : S £ A ! R is the reward function

R (s,a) ÆE[r t Å1jst ,at]

• ° is the discount factor 2 [0,1]

Policy

Policy, ¼is the characteristic behaviour of the agent. A stochastic policy is de�ned as
probability of choosing an action from the current state, more formally agents policy
is the distribution of action over given states as shown in Equation 2.20. The goal of RL
is �nd the optimal policy ¼¤ that acquires the maximum expected rewards.

¼(st) ÆP(at jst) (2.20)

Value functions

State value function ,V ¼(s), is de�ned as the expected return of the state s, and then
following the policy ¼. It signi�es "how good" the current state is [3].

V ¼(s) ÆE¼[Rt jst] ÆE¼[
1X

kÆ0
° k r t ÅkÅ1jst] (2.21)

Action value function , Q¼(s,a), is similar to the state value function, but considers the
action taken in the current state. It is de�ned as the expected return from the state s ,
taking the action a, and then following the the policy ¼ [3].

Q¼(s,a) ÆE¼[Rt jst ,at] ÆE¼[
1X

kÆ0
° k r t ÅkÅ1jst ,at] (2.22)

Optimal Value function

The optimal value function are the expected values following the optimal policy ¼¤ ,
wherein the policy ¼¤ has the maximum excepted rewards [3]. The optimal value func-
tion V ¤ (st),Q¤ (st ,at) are given as

V ¤ (st) Æ max
¼

V¼(st) (2.23)

Q¤ (st ,at) Æ max
¼

Q¼(st ,at) (2.24)

¼¤ (at jst) Æ argmax
a

Q¼(st ,at) (2.25)

13

2. Theory

2.2.2 Policy Gradient

The policy gradient are optimizing methods for RL, that uses gradient ascent on the
policy parameter to obtain an optimal policy which subsequently maximizes reward.
Policy gradient methods are suited for agents having continuous action spaces or stochas-
tic policy. We use a functional approximator to estimate the policy, that has a parame-
ter µ, then the policy can be de�ned in terms of the parameters as ¼µ(a/ s). The quality
of the the policy is quanti�ed in terms of the objective function J . It yields the ex-
pected reward for the current policy. It is mathematically de�ned for continuous action
space as

J (µ) ÆE¿» ¼µ(¿)[r (¿))] Æ
Z

¼µ(¿)r (¿)d¿ (2.26)

where ¿ is the trajectories of the agent, and it can be decomposed into product of the
conditional probabilities

¼µ(¿) Æ¼µ(s0,a0,s1,a1, . . .sT ,aT) ÆP(s1)
TY

t Æ1
¼µ(st)P(st Å1jst ,at) (2.27)

we perform the gradient ascent on the objective function to optimize µ such that it
yields the highest expected rewards

r µJ (µ) Æ
Z

r ¼µ(¿)r (¿)d¿ (2.28)

we know that

r µ¼µ(¿) Æ¼µ(¿)
r µ¼µ(¿)

¼µ(¿)
Æ¼µ(¿)r µ log ¼µ(¿) (2.29)

Therefore, substituting the values of Equation 2.29 to Equation 2.28, we obtain the pol-
icy gradient as

r µJ (µ) Æ
Z

¼µ(¿)r µ log ¼µ(¿)r (¿)d¿ÆE¿» ¼µ(¿)
£
r µ log ¼µ(¿)r (¿)

¤
(2.30)

2.2.3 Inverse Reinforcement Learning methods

RL is a technique to learn a behaviour based on rewards. Robustness of the learning
algorithm and the objective of the task of RL is succinctly de�ned upon the rewards.
In the real world task rewards can't be speci�ed to the learning task manually [30]. In
such cases and most apparent cases we only know the trajectories of the experts and
intend to learn these behaviour. IRL is de�ned "apprenticeship learning to acquire
skilled behaviour and to ascertain the reward function of the expert" [34]. If reward
structure is learnt, the problem is reduced to �nding the policy that can be solved by
RL algorithms.

14

2. Theory

The IRL considers that expert trajectories are output of the MDP. The notation
of MDP are mentioned in the earlier section and to derive solutions for IRL problem the
author maintains the same notation for consistency. Russell et al [34] established that
it is possible to select the best reward function that has the optimal policy. The reward
function for the optimal policy can be selected using Equation 2.31, which satis�es
the condition 2.33. For a �nite state MDP this equation can be solved using linear
programming [34].

an ´ ¼(s) 2 argmax
a2A

X

s0
P (s

0
)V ¼(s

0
) (2.31)

V ¼Æ(I ¡ ° Pan)¡ 1R (2.32)

for

(Pan ¡ Pa)(I ¡ ° Pan)¡ 1R ¸ 0 (2.33)

Where ¼(s) ´ an is the unique optimal policy, a ´ A \ an for action set A Æa1,a2, . . . ,ak

Feature Expectation Matching

The concept of feature expectation matching was introduced by Abbeel et al [30] and
subsequently implemented by Ziebart et al [38]. It can solve even in�nite state space
IRL problems, where we assumes the reward function as a linear function of features [34].

r (s) Æw > f (s) (2.34)

f (s) is the feature vector of the state S and the w is the weight vector. The feature
represent the state space of the agent at a given time. The feature vector depends on
the agent and the task considered. The value function for the policy ¼

E[
1X

t Æ0
° t r (st)j¼] ÆE[

1X

t Æ0
° t w > f (st)j¼] Æw > E[

1X

t Æ0
° t f (st)j¼] (2.35)

For a given expert, trajectories/demonstration ¿, feature expectation ¹ (¼) is de�ned on
the policy ¼as

¹ (¼) ÆE[
1X

t Æ0
° t f (st)j¼] (2.36)

Therefore, the expected value is the linear combination of feature expectation

E[Rj¼] Æw > ¹ (¼) (2.37)

The feature matching algorithm maximizes the reward function by matching
the feature expectation with the experts feature visitation.

Feature expectation matching is not a robust algorithm as it can map many
policies to a single reward function and it can be ambiguous when the demonstration
is sub optimal [39].

15

2. Theory

Maximum Entropy Inverse Reinforcement Learning

Maximum Entropy Inverse Reinforcement Learning (MaxEnt IRL), is advanced method
to solve IRL problem leveraging the principles of maximum entropy [40]. The algo-
rithm selects a distribution that maximize the entropy that matches the feature expec-
tation of the expert [41, 38]. In MaxEnt IRL the reward is a linear mapping of sum of
the feature counts,

R(¿) Æw > f (¿) Æ
X

sj 2¿
w > f (sj) (2.38)

• where, f (¿) =
P

sj 2¿ f (sj) is the feature counts of the trajectory

• f (sj) 2 Rk feature at each state j

• w is the parameterized weights

The agent/learner, learns the policy distribution ¼(¿) that maximizes the fea-
ture expectation of the expert, having the constraints

E¼» L [f (¿)] ÆE¼» E[f (¿)], f or
X

¿
¼(¿) Æ1, 8 ¿,¼(¿) Æ1 (2.39)

where

• E¼» L [f (¿)] expected feature count on the learners policy

• E¼» E[f (¿)] expected feature count on the expert policy

The probability density that satis�es Equation 2.39 is Equation 2.40. According to this
the optimal trajectories have the highest likelihood and the sub-optimal path gener-
ated by the expert decreases with exponential probability.

¼(¿jw) Æ
exp(w > f (¿))

Z (w)

Y

st Å1,st ,at 2¿
P(st Å1jst ,at) (2.40)

Z (w) Æ
P

¿exp(w > f (¿)) is the partition function. The parameter w is obtained by
maximizing the likelihood L (w) under the maximum entropy density for the observed
data.

w ¤ Æargmax
w

L (w) Æargmax
w

X

¿i

log ¼(¿jw) (2.41)

w is updated using the gradient descent on the objective function L (w), which is the
difference between the expert's features counts and the learners expected feature counts,
given by Equation 2.42.

r w L (w) Æf̃ ¡
X

¿i

log ¼(¿jw) f (¿) Æf̃ ¡
X

sj

D sj f (sj) (2.42)

16

2. Theory

D sj is state visitation count. Calculating D sj is time consuming using quadratic pro-
gramming. Though it is demanding to calculate equation 2.42, it can be calculated
using deep neural network [42]. The major drawback of MaxEnt IRL is that it requires a
state transition probabilities. In many real world scenarios like robot action, helicopter
maneuvers and car lane change it is dif�cult to obtain these probabilities.

Generative Adversarial Imitation Learning

MaxEnt IRL fails to work when the state transition dynamic isn't speci�ed. Though
many iteration and modi�cation to this approached have been undertaken [39, 43,
44, 45], but still all of these require a state transition dynamics. In other words these
are model based IRL approaches that requires a model of the state transitions. On
the other hand Generative Adversarial Imitation Learning (GAIL) is model free IRL ap-
proaches that do not require any state dynamics and can be scaled easily to the very
large environments [46]. GAIL is a type of IRL wherein it doesn't specify explicit reward
function it learns the behaviour of the experts form its policy directly. But the rewards
can be extracted from GAIL which can be used to train similar MDP models.

The proposed method evaluates the best policy by running the RL on the cost
function Cbased on the maximum casual IRL [39]. The objective of maximum casual
IRL is 2.43 and it can be optimized by RL algorithm 2.44

IRL(¼E) Æ max
c2C

³
min

¼
¡ H (¼) Å E¼[c(s,a)]

´
¡ E¼E [c(s,a)] (2.43)

RL(c) Æ argmin
¼

¡ H (¼) Å E¼[c(s,a)] (2.44)

where the H (¼) = E¼[¡ log ¼(ajs)], is the entropy of the policy ¼ and
E¼E [c(s,a)] ÆE¼[

P 1
t Æ0 ° t r (st)j¼] is the cost function

Occupancy measure is described as the distribution of state-action pairs which are
generated by the policy ¼given by Equation 2.45 [46].

½(s,a) Æ¼(s)
1X

t Æ0
° t P(st Å1/ st ,at) (2.45)

Then the IRL problem can be described based on the occupancy measure, it is the pro-
cedure to �nd the policy that matches the occupancy measure of expert's policy [46].
It can be shown that the objective of IRL can be reduced to dual of an occupancy mea-
sure match problem between the inner loop of causal IRL and the outer loop RL ascent
as in Equation 2.46.

RL.IRLÃ (¼E) Æargmin
¼

¡ H (¼) Å Ã ¤ (½¼¡ ½¼E) (2.46)

In this imitation learning setup ¡ H (¼) is called the policy regularizer and Ã ¤ is the
convex conjugate of the regularizer called the cost regularizer. The GAIL is derived

17

2. Theory

by choosing the optimal cost regularizer that reduces the Janson - Shanon divergence
(D JS) [46].

min
¼

Ã ¤ (½¼¡ ½¼E) ¡ ¸ H (¼) ÆD JS(½¼,½¼E) ¡ ¸ H (¼), 8 ¸ È 0 (2.47)

The proposed GAIL algorithm draws a connection between IRL and GAN net-
works, it utilizes the GAN training to �t the expert trajectories. The occupancy measure
of ¼is the data distribution of the generator and the occupancy measure of expert is
the true distribution that the discriminator must distinguish. The objective of GAIL is
to �nd the saddle point in the Equation 2.48

E¼[log(D(s,a))] Å E¼E [log(1 ¡ D(s,a))] ¡ ¸ H (¼) (2.48)

GAIL training is described in the Algorithm 1. Initially the weights of the dis-
criminator network are updates based on the generated trajectories. The weights of the
generator µG are updated using Trust Region Policy Optimization(TRPO) [47] based on
the policy ¼.

Algorithm 1 Generative Imitation Learning Algorithm
Input : Expert trajectories ¿E

Initialize parameters µ and w
for i = 1, 2, . . . do

¿i Ã sample trajectories from ¿E

w i Å1 Ã Update the the weight parameters from w i with gradients

E¿i [r w log D(s,a)] Å E¿E [r w log(1 ¡ D(s,a))]

µi Å1 Ã Update the policy parameter from µi using TRPO

E¿i [r µ¼µ(s)Q(s,a)] ¡ ¸ Hµ(¼µ)

Q(s,a) ÆE¿i [log D w Å1(s,a)js0,a0]

end

GAIL is well suited to imitate complex behaviour in large and high-dimensional
environments. Chelsea Finn et al [24] provides this mathematical equivalence between
the MaxEnt IRL to the GAN.

18

3
Methods

This chapter is a detailed elaboration of the methodology implemented to solve
driving behaviour prediction. Initially, the chapter formulates the Inverse driver
learning objectives in terms of deep inverse reinforcement learning framework.
Then chapter deals with the data employed to undertake this task and its pre-
processing techniques. Finally, the chapter deals with building the Deep Inverse
Reinforcement Models.

3.1 Problem formulation

The goal of the thesis project is to achieve a suitable prediction model of driver's inten-
tion, in case of lane change scenarios to help in improving ADAS systems. The predic-
tion models must be robust to predict varied situations. Consider a highway driving
scenario the ego vehicle needs to predict the surrounding vehicle intentions, whether
the vehicle would allow the ego vehicle to pass, does the vehicle reduce the speed and
many such characteristics features of the surrounding vehicle. Our aim is analyze var-
ious behavior of the surrounding vehicle during lane change scenarios for prediction.

The ego vehicle, the surrounding vehicle and their interacting behaviour dur-
ing lane change are considered experts agents. These expert agents behave optimally
during the lane change. The expert's behaviour are considered to be MDP, whose out-
put is a time series state trajectories, that are extracted form a reliable data resource.
These extracted trajectories are considered to be expert trajectories ¿E. The task is
to analyze all these trajectories ¿E of the surrounding vehicle in the data and build a
model to predict such driving patterns for future reference to the ADS. So IRL tech-
niques are employed to understand the reward structure of this expert trajectories ¿E.
Based on the reward the driving behaviour of the surrounding vehicle are predicted.

3.2 Data

The project requires an experts data so that the model can learn their diverse driv-
ing behaviour by performing IRL. There are various open access Naturalistic Driving
Dataset (NDD) especially for capturing driving behaviours in traf�c �ow [48, 49]. KITTI

19

3. Methods

is a NDD recorded using lasers and cameras mounted on the car, which is mostly used
for computer vision application [49, 50]. It is not suitable for our DIRL model as it lacks
highway traf�c scenarios. The most widely used NDD is Next Generation SIMulation
(NGSIM) especially for highway scenarios [48, 51, 52]. NGSIM contains recording of
United States highway traf�c, collected using digital video cameras mounted on high-
way. But NGSIM data poses serious challenges while analyzing, as the data is noisy
and requires �ltering. The major problem of NGSIM is that numerous data points for
the position, speed and acceleration are erroneous [53], these data points are impos-
sible to achieve for a vehicle in normal driving scenario. To avoid such problems we
consider the much more accurate NDD called HighD [4].

HighD stands for Highway Drone, it is a NDD recorded across German highway us-
ing drones. The data was taken at six different highway location around the Cologne
area. It was recorded using high resolutions camera mounted on the drone hovering
at a �xed position above the highway as in Figure 3.1. This way of recording helps to
provide an unbiased data set as the drivers isn't aware of the data being recorded, so
their behaviours are unin�uenced and it also provides an aerial perspective of traf�c
�ow. There are several advantages of recording using drones which includes accurate
measurement of naturalistic behaviour, data has good static and dynamic description
and has better privacy protection [4].

Figure 3.1: Data recorded using drone hovering above the highway that can capture
the traf�c within the 420 m highway segment [4].

HighD data was recorded using 4k video camera having 25fps. At each recording loca-
tion, road segment of length 420 meter is considered and a total of 60 video recording
with an average duration of 17 minutes per video were recorded. The data can be visu-
alized using the codes provided by the authors of the dataset as shown in the Figure 3.2.
Some of the salient features of HighD dataset are mentioned in the Table 3.1

Data description

Video recording are mapped into data points using computer vision algorithm. Each
video recording is converted into 3 CSV �les containing the data of recorded location,

20

3. Methods

Figure 3.2: Road segment visualization for HighD datset. The red box are computer
vision algorithm processed bounding box representing the vehicles on the highway.
The black triangle on the bounding box denotes the driving direction. Each vehicle has
unique yellow label consisting the type of vehicle car or truck(C or T), vehicle velocity
and vehicleId [4].

HighD data Measurements

Total recording duration in hours 16.5
Lanes per direction 2-3

Total number of vehicles recorded 110,000
Recording distance per location in meters 400-420

Table 3.1: Signi�cant attributes of HighD dataset

vehicle description and lane trajectories. This high resolution data would be very use-
ful in extracting the experts behaviour easily. The Table 3.2 below shows the descrip-
tion of CSV �le contents.

File Name Data description

XX_recordingMeta.csv Meta information about the recording setup
XX_tracksMeta.csv Information of lanes and lane changes in the recorded video

XX_tracks.csv File containing vehicle trajectories

Table 3.2: Table shows the description of each recorded video in term of CSV �le. The
XX in the �lename represents the number of the recording ranging from 01 to 60

XX_recordingMeta

The �les contain the data of the recording setup for a given recording XX, as XX range
from 01 to 60. These �les are use full in processing the data. Table 3.3 shows the detail
of this �le.

21

3. Methods

Feature columns of recordingMeta Feature Description

id Id given to each recording
frameRate Frame rate of video camera = 25fps
locationid Id given to each of the six recorded location
speedLimit Speed limit of highway at that recording location
month Month in which the recording was undertaken
weekDay Weekday of the recording
startTime Starting time of the recording
duration Total time of the recording for a given locationid
totalDriverDistance Total driven distance of all tracked vehicles
totalDrivenTime Total driven time of all tracked vehicles
numVehicles Total number of vehicles,including car and

Truck recorded at that recording session
numCars Total number of cars recorded
numTrucks Total number of trucks recorded
upperLaneMarkings Upper lane markings of the road segment
loweLaneMarkings Lower lane markings of the road segment

Table 3.3: RecodingMeta �le description

XX_tracksMeta

The current �les for a given �le number XX has a brief summary of trajectories for all
the vehicle recorded on the road segment. tracksMeta �les are most useful when the
data needs to be �ltered based on the lanes, class(car or trucks) and lane change. The
Table 3.4 shows features of trackMeta data .

XX_tracks

Tracks data �le contain vital information of the vehicle trajectories. This �le represents
the state information of all the vehicles recorded containing information of position,
velocity, following vehicle id and many other state features in the traf�c. The state
information of vehicle is a time series starting form the initial frame to �nal frame of
the vehicle. This time series data of each vehicle is listed in ascending order based on
the vehicleId.

To understand the state features of this �le, we need to learn the frame of ref-
erence to which HighD was recorded. Figure 3.3 shows the road segment coordinate
system to which the vehicle states features are contextualized. The road segment is
seen from the top view from the drones perspective and the vehicle move from left to
right, or vice versa. The origin of the coordinate system is at the top left corner of the
road segment. The x values increase as it moves to right and the y values increases
when vehicles moves towards the bottom of the road.

XX_tracks contains the state features of the all recorded vehicles, the complete
details the features are mentioned in Table 3.5. Figure 3.4 shows the illustration for
these features when considering the ego vehicle, shown in yellow bounding box.

22

3. Methods

Feature columns of tracksMeta Feature description
id Id of the vehicle recorded,

in ascending order based on time of �rst seen in the video camera
width The width of the bounding box used to post-process the vehicle,

represents the length of the vehicle
height The length of the bounding box used to post-process the vehicle,

represents the width of the vehicle
intialFrame Video frame in which vehicle is �rst observed
�nalFrame Video frame in which vehicle is last captured
numFrames Total number of frames

in which vehicle is observed from start to �nal
class Type of vehicle (car or truck)
drivingDirection Driving direction of the vehicle from the point of drone.

Either 1 for the left direction (upper lanes) or
2 for the right direction (lower lanes).

traveledDistance total distance covered by the vehicle
minXvelocity Minimum velocity of the vehicle in the given driving direction
maxXVelocity Maximum velocity of the vehicle in the given driving direction
meanXVelocity the mean velocity of the vehicle
minDHW Minimal Distance Headway (DHW) to a preceding vehicle
minTHW Minimal Time Headway (THW) to a preceding vehicle
minTTC Minimal Time-to-Collision (TTC) to a preceding vehicle
numLaneChanges Total number of lane changes by the vehicle

Table 3.4: tracksMeta �le description

Figure 3.3: Road coordinate system. The vehicle in the upper lane move from right to
left. The vehicles in this lane have x values decreasing as the vehicle moves from right
to left and velocity of vehicle is negative in reference to the coordinates. It is converse
in the lower lane.

3.3 Data processing

Current section deals with data extracting and processing techniques for the HighD
data set that were essential in training DIRL models. The major steps in this process
are to extract all the vehicle trajectories of ego and surrounding vehicle for lane change
scenarios, in a two lane highway.

23

3. Methods

Figure 3.4: Illustration of _tracks feature considering ego vehicle 4 and 10 in upper and
lower lane respectively

State features of Vehicle in tracks Features description

frame Current frame
id Vehicle id
x Position of vehicle in x direction in the current frame
y Position of vehicle in y direction the current frame
width The width of the bounding box used to post-process the vehicle,

represents the length of the vehicle
height The length of the bounding box used to post-process the vehicle,

represents the width of the vehicle
xVelocity Longitudinal velocity of the vehicle, positive in the positive x direction
yVelocity Lateral velocity of the vehicle, positive in the positive direction
xAcceleration Longitudinal acceleration of the vehicle
yAcceleration Lateral acceleration of the vehicle
frontSightDistance Distance from the current position of the vehicle till

the end of the road segment in the driving direction
backSightDistance Distance from the current position of the vehicle till

the end of the road segment in the opposite driving direction
dhw Distance headway measure
thw Time headway
ttc Time to collision
precedingXVelocity velocity of the preceding vehicle in x direction
precedingId vehicle id of the preceding vehicle in same lane
followingId vehicle id of the vehicle following in the same lane
leftPrecedingId The id of the preceding vehicle on the adjacent lane

on the left in the direction of travel.
leftAlongsideId The id of the adjacent vehicle on the adjacent lane

on the left in the direction of travel.
leftFollowingId The id of the following vehicle on the adjacent lane

on the left in the direction of travel
rightPrecedingId The id of the preceding vehicle on the adjacent lane

on the right in the direction of travel.
rightAlsongsideId The id of the adjacent vehicle on the adjacent lane

on the left in the direction of travel.
right FollowingId The id of the following vehicle on the adjacent lane

on the left in the direction of travel
laneId Id of the lane in which the vehicle is moving as in Figure 3.3

Table 3.5: Table describing the features of the tracks data

Lane Change data extraction

HighD data are recorded on highways having 2 and 3 lanes per direction. Considering
our projects limitation we only extract lane change trajectories for two lane scenarios.
Two lane here refers to highway's having two lane in the upper lane and two lanes in
lower lane. Further in the report, lane is always mentioned in context to number of
lanes in a single driving direction on the highway.

24

3. Methods

The data contains details of all the vehicle on the highway. In regards to project only
the vehicles trajectories necessary were extracted. The following section explains the
steps involved in extraction of lane change maneuvers, it also includes the data pro-
cessing techniques. There are 60 recordings taken at different location, wherein each
video recording is converted into 3 CSV �le as mentioned in the earlier section. The
projects make use of recordingMeta, tracksMeta to �lter the necessary trajectories form
the XX_tracks �le.

Step 1 - Two lane data

Initial task is to learn �le number XX, as XX ranges from 01 to 60 that posses the record-
ing for two lane highway's. For this lowerlaneMarking feature column in the
XX_recordingMeta �le are taken into consideration to list all the X X_tr acks �le hav-
ing two lanes. The Algorithm 2 lists a total of 13 �les containing two lane highways.
The algorithm iterates trough XX for on all recordingMeta �les and counts the num-
ber of lowerlanemarkings, if there are 3 lane marking then the algorithm stores the �le
number else iterates further until end.

Algorithm 2 Two lane �les
Input : HighD - XX_recordingMeta, XX_tracksMeta, XX_tracks
Output: Twolane_�lename

for XX Ã 01. . .60do
C Ã count lowerlaneMarkings in XX_recordingMeta
if C = 3 then

two_lane_�les = XX
else

continue
end

end

Step 2 - Extract the lane change data

After the �les containing two lane highway are extracted, the following task was to ex-
tract lane change maneuvers. But initially the two lane �les are divided into train and
test set. Initially all the vehicle in the two lane highway don't change lane, we select
only the vehicle that change lane. The vehicle that's change lane is referred as ego ve-
hicle and the following vehicle, after the ego vehicle changes lane is called surrounding
vehicle. A single following vehicle is called surrounding vehicle that is speci�c to scope
of this project.

The complete time series data of the ego vehicle are extracted, by going through
the numLanchages feature column of XX_tracksMeta. If the vehicleid has lane change
values as 1, we choose such vehicle id and extract their complete highway data from
XX_tracks �le. To select surrounding vehicle trajectories for each of the ego vehicle,

25

3. Methods

LaneId column is searched from the selected ego vehicles the place the laneId changes,
we look at the corresponding followingId column to know the surrounding vehicleid.
Using this vehicleid, track data for the surrounding vehicle are extracted. The extracted
surrounding vehicle tracks is appended column wise with corresponding ego vehicle.
If there is no such surrounding vehicle for the ego vehicle or the data is devoid of sur-
rounding vehicle, then the ego vehicle track data was eliminated. At this step the data
has all ego vehicle and the corresponding surrounding vehicle tracks/trajectory data.

Algorithm 3 Lane change data
Input : HighD - XX_recordingMeta, XX_tracksMeta, XX_tracks , two_lane_�lename
Output: Lane_change_trajectories

for XX Ã 01. . .60do
if XX = two_lane_�les then

for i · leng th (numLaneChange) do

lanechange= XX_tracksMeta(numlanechange(i))
if lanechange = 1 then

lanechange_vehicle_id = XX_tracksMeta(id(i))
ego_data= XX_tracks(id(lanechange_vehicle_id))

surrounding_vehicle _id = ego_data(followingId)
surround_data = XX_tracks(surrounding_vehicle _id)

Lane_change_trajectories= concat(ego_data,surround_data)
end

Lane_change_trajectories= append(Lane_change_trajectories)
end

else
continue

end
return Lane_change_trajectories

end

Step 3 - Filter data

The data extracted until now contains all the ego vehicle and corresponding surround-
ing vehicle trajectories. But these data may also include the trajectory data before and
after the lane change occurs that is irrelevant to the model training. The data has to
have only relevant information as training data the the lane change behaviour of the
ego vehicle and the surrounding vehicle.

The average time for lane change is 4-4.5s [54], but we have trajectories for the com-
plete road segment which is about 10s. The current project requires only relevant lane
change trajectories, hence the need for the reduction in size of lane change trajectories.
The data is reduced to about 7.5s trajectories, two sec is the history before lane change
and 4.5s is lane change maneuver. To extract only these trajectories algorithm goes

26

3. Methods

through the laneId feature of the ego vehicle data. This is because in HighD the laneId
changes when the vehicle's centre cross the lane marking that is when the bounding
box centre crosses the the centre lane marking.

Initially laneId of the ego vehicle is noted at the start frame. As and when the
laneID changes the value for given vehicle id, the corresponding frame is considered
as the pivoting frame or lane change frame. The trajectories are extracted for the given
vehicle by considering the feature before and after this lane change frame.

As mentioned earlier, the data is recorded at 25fps (0.04sec), therefore algo-
rithm takes into account 2.5s about 50 frames before the lane change frame as the ini-
tial frame and 125 frames after the lane change as the �nal frame. The data between
these initial and �nal frames are extracted. The ego vehicle's and the corresponding
surrounding vehicle's data considered only between these initial and �nal frame and
the rest are eliminated.

At the end of this step the expert data contains lane change scenarios of ego
and surrounding vehicle with 7.5 sec trajectories concated by column. The Algorithm 4
show the data reduction process.

Algorithm 4 Data Filtering
Input : Lane_change_trajectories
Output: Filtered_data

ego_vehicle_idÃ from Lane_change_trajectories
for i · leng th (ego_vehicle_id) do

temporary_data Ã Lane_change_trajectories for ego_vehicle_id(i)
lane_change_frame Ã frame in which vehicle changes laneid
initial_frame, �nal_frame = lane_change_frame-124, lane_change_frame+40
Filtered_data Ã temporary_data between initial_frame and �nal_frame
Filtered_data Ã append Filtered_data

end
return Filtered_data

Data Transformation

The expert data contains the behaviour all across the road segment which is non uni-
form in context of training the model. Feeding such data to DIRL model as an expert
would prove disastrous, since the prediction of future states may depend on the place
at which lane change occurs and there are are very few demonstration in highD data
to learn all such behaviours on the complete road segment. The goal of IRL is to learn
the lane change behaviour, irrelevant of the place of lane change of the ego vehicle.
To make the data set robust for training and testing the following transformation tech-
niques are employed.

1. Centering lane change maneuvers

27

	List of Abbreviations
	List of Figures
	List of Tables
	Introduction
	Thesis Objective
	Research questions
	Scope and Limitations
	Outline

	Theory
	Deep learning
	Recurrent Neural Network
	Sequence to Sequence
	Generative Adversarial Network

	Inverse Reinforcement Learning
	Reinforcement Learning
	Policy Gradient
	Inverse Reinforcement Learning methods

	Methods
	Problem formulation
	Data
	Data processing
	Deep Inverse Reinforcement Learning Model
	DIRL Model
	Model training

	Software library

	Results and Discussion
	Longitudinal features
	Lateral features
	Discussion

	Conclusion and Future Work
	Conclusion
	Future Work

