
Factors affecting the migration of a
large embedded system

An automotive case study

Master’s thesis in Computer science and engineering

Linnea Johansson & Wanting Xu

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023

Master’s thesis 2023

Factors affecting the migration of a
large embedded system

An automotive case study

Linnea Johansson & Wanting Xu

Department of Computer Science and Engineering
Division of Interaction Design and Software Engineering

Chalmers University of Technology
University of Gothenburg

Gothenburg, Sweden 2023

Factors Affecting the Migration of a Large Embedded System
An automotive case study
Linnea Johansson & Wanting Xu

© Linnea Johansson & Wanting Xu, 2023.

Supervisor: Regina Hebig, University of Rostock
Supervisor: Philipp Leitner, Department of Computer Science and Engineering
Advisor: Dhasarathy Phasarathy, Volvo Trucks
Examiner: Jennifer Horkoff, Department of Computer Science and Engineering

Master’s Thesis 2023
Department of Computer Science and Engineering
Division of Interaction Design and Software Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: DALL-E creation with prompt software architecture of a truck

Typeset in LATEX
Printed by Chalmers Reproservice
Gothenburg, Sweden 2023

iv

Factors Affecting the Migration of a Large Embedded System
An automotive case study
Linnea Johansson & Wanting Xu
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Migrating a small project can be a hard thing to do. Migrating the code at a
large company is even more challenging. In this thesis, the focus is on trying to
find common elements in how a large automotive company migrates their embedded
code.

We interviewed ten people from various teams to find common topics that make it
harder or easier to migrate. We also developed an architecture recovery tool called
GRASS to look at metrics such as fan-in and fan-out of the source code made of
C code. During the latter part of spring, we held a focus group with the people
interviewed.

By combining these data, we found that it is harder to migrate code if a team has de-
pendencies on many other teams, or if there are hard dependencies on the supplier’s
code. GRASS was able to identify these aspects, but the interviewees thought that
GRASS needed improvements in order to be useful to them in the migrating pro-
cess. Additionally, the hardware aspect of an embedded system can make it harder
if the hardware is limited in capacity, or if there are real-time requirements that
make latencies in the system unacceptable. Lastly, we found that some teams had
small parts that they were able to automate, and these automation scripts might be
useful to others.

Keywords: software, migration, automotive, AUTOSAR, embedded.

v

Acknowledgements
We are extremely grateful to both our supervisors Regina Hebig and Philipp Leitner
for always being there for us and for all the guidance you have provided. You both
have shaped this thesis and helped out immensely.

Special thanks to Dhasarathy Parthasarathy and Cecilia Ekelin from Volvo Trucks
for all the valuable help and input. Thanks should also go to all the developers,
architects, and the manager at Volvo who gave of their time. Without you, this
thesis would not have been possible.

Lastly, we would like to extend our thanks to our examiner Jennifer Horkoff for
leading us in the right direction. We also want to thank our family and friends who
have provided moral support and table tennis distraction during the spring. Our
last honorable mention goes to Jinji the cat, who has held our spirits high.

Linnea Johansson & Wanting Xu, Gothenburg, June 2023

vii

List of Acronyms

Below is the list of acronyms that have been used throughout this thesis, listed in
alphabetical order:

AUTOSAR AUTomotive Open System ARchitecture
E/E Electrical and Electronic
ECU Electronic Control Unit
LDC Logic Design Component
LOC Lines Of Code
OEM Original Equipment Manufacturer
RTE Real-Time Environment
SOA Service-Oriented Architecture
SWC Software Component
VFB Virtual Functional Bus

ix

Contents

List of Acronyms ix

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Statement of the Problem . 2
1.2 Research Questions . 3
1.3 Contributions . 3

2 Background 5
2.1 Motor Vehicle Structure . 5

2.1.1 AUTOSAR Architecture . 6
2.1.1.1 Classic AUTOSAR 7
2.1.1.2 Adaptive AUTOSAR 7

2.1.2 Volvo Trucks Current Structure 8
2.1.3 Volvo Trucks Future Structure 9
2.1.4 Current Status . 10

2.2 Related Work . 10
2.2.1 Software Migration . 11
2.2.2 Refactoring . 11
2.2.3 Architecture Recovery . 12
2.2.4 Service-Oriented Architecture 12
2.2.5 AUTOSAR . 13
2.2.6 Summary . 14

3 Methodology 15
3.1 Interviews . 16

3.1.1 Data Collection . 16
3.1.2 Interview Design and Questions 17
3.1.3 Data Analysis . 17

3.2 Focus Group . 19
3.2.1 Discussion Points . 20

3.3 Code Analysis with GRASS . 21

xi

Contents

3.3.1 Reasons for using GRASS . 22
3.3.2 Technical Details of GRASS 22

3.3.2.1 data_scraper . 22
3.3.2.2 Graphs and Metrics 22

4 Results 25
4.1 RQ1 . 25

4.1.1 Interview Results . 25
4.1.2 Focus Group Results . 29
4.1.3 Summary . 31

4.2 RQ2 . 32
4.2.1 Interview Results . 32
4.2.2 Code Results . 33
4.2.3 Focus Group Results . 34
4.2.4 Summary . 36

4.3 RQ3 . 37
4.3.1 Interview Results . 37
4.3.2 Focus Group Results . 40
4.3.3 Summary . 40

4.4 RQ4 . 41
4.4.1 Interview Results . 41
4.4.2 Focus Group Results . 43
4.4.3 Summary . 44

5 Discussion 45
5.1 RQ1 . 45
5.2 RQ2 . 46
5.3 RQ3 . 47
5.4 RQ4 . 48
5.5 Implications for Developers and Architects 48
5.6 Threats to Validity . 49

5.6.1 Construct Validity . 49
5.6.2 Internal Validity . 50
5.6.3 External Validity . 50
5.6.4 Reliability . 51

6 Conclusion and Future Work 53
6.1 Conclusion . 53
6.2 Future Work . 53

Bibliography 55

xii

List of Figures

1.1 Different ECUs in a car [2]. These are examples of common ECUs
that are placed in a car, with different functionalities. The ECUs are
connected and communicate with each other, normally through CAN. 1

2.1 Example hardware architecture [5]. There are ECUs in different do-
mains, connected by CAN. 6

2.2 Architecture of classic AUTOSAR. The bottom layer contains the
physical hardware, the layers then increase in abstraction going up. . 7

2.3 Architecture of adaptive AUTOSAR [10]. The adaptive AUTOSAR
has a platform foundation where an operating system can be used. It
also has a runtime environment and services. 8

2.4 The trend of E/E architecture [12]. The distributed hardware archi-
tecture of today does not support heavy calculations. The architec-
ture that will be used in the near future can be seen as a middle step
toward the Zone architecture that will have a lot of computational
potential. 9

3.1 Method process during the thesis. There were nine interviews done
in the first round, eight people (excluding us) joined the focus group,
and we later had one additional interview. There were around 2000
components analyzed using GRASS. 15

3.2 Example graph based on the LDC ECU3/Controller2 in table 3.4.
This graph visualizes two incoming and two outgoing signals for node
556. The nodes are colored by ECU, the red color indicates that it
comes from a supplier. 23

3.3 Illustration graph of dependencies between ECUs. Each node is an
LDC. The nodes are grouped by ECU. 24

4.1 Illustration of graphs with kamada-kawai and random layout respec-
tively. Kamada-kawai is an algorithm for creating graphs. 33

xiii

List of Figures

xiv

List of Tables

3.1 List of interviewees. 16
3.2 Mapping of the research questions, interview questions, and a moti-

vation. 18
3.3 List of focus group attendees. 20
3.4 Metrics calculated from the graph in figure 3.2. The node, or LDC,

with ID 556 has two incoming and two outgoing signals. The ’red’
indicates that the LDC is from a supplier. 23

4.1 Example of dependencies that were calculated. Some LDCs had hun-
dreds of dependencies, others barely any. 34

4.2 Example of file sizes that were calculated. There were big variations
in the sizes of files. 34

xv

List of Tables

xvi

1
Introduction

Technology is growing fast, and the business requirements for the automotive in-
dustry are dramatically changing. Customer needs force the automotive industry
to deliver new functionality while working on improving the safety of the vehicles.
Therefore, vehicle companies have to develop fast to keep up with the market.

In traditional vehicle development, improvements have largely focused on hardware.
For example, adding a bus body to a truck chassis made an early type of bus [1].
The list goes on, but in recent years the focus has shifted to more software-based
improvements. With this, it has also become crucial to be able to update current
software in a vehicle quickly.

Figure 1.1: Different ECUs in a car [2]. These are examples of common ECUs
that are placed in a car, with different functionalities. The ECUs are connected and
communicate with each other, normally through CAN.

The vehicle industry has been going through a transformation in recent years. With
the rise of self-driving cars, infotainment systems in cars, automatic lane detec-
tion, and other improvements of functionalities in vehicles, it is essential for older

1

1. Introduction

companies in the business to not be left behind.

Embedded software for vehicles is written to be deployed on ECUs (Electronic Con-
trol Units), see figure 1.1, which works like a small computer. In the classic case,
there are a lot of ECUs distributed in the vehicle, that handle different parts of the
functionality such as the wipers, the brakes, and the lights. The ECUs can send
information to other ECUs through data buses. The speed of the information is
based on the physical distance between the ECUs, and therefore several ECUs can
be in a small cluster to talk to each other in the vehicle.

To reduce software complexity, a standard for automotive software was developed.
AUTOSAR was founded in 2002 and has since provided a software framework for
companies such as BMW, Ford, Mercedes, Toyota, Volkswagen, and Volvo. The first
version of AUTOSAR, the classic platform, was released in 2004 [3]. AUTOSAR
released the adaptive AUTOSAR platform in 2017 in order to meet the future needs
of the vehicle industry. Adaptive AUTOSAR allows companies to update the func-
tionalities of their products easily and quickly.

Volvo Trucks as a large automotive company is trying to make changes to move to
adaptive AUTOSAR to gain the benefits brought by it. Volvo has a long history of
producing vehicles and with the development of new technologies, the architecture
of vehicles is growing larger and more complicated. Because of the large, com-
plex architecture, they have to make incremental changes to migrate to the new
framework. For now, Volvo Trucks are moving toward having one central ECU and
moving some functionalities to the adaptive AUTOSAR platform. The details of
the migration differs between the teams, however most teams need to adjust their
software for the centralized structure. The change to the new AUTOSAR platform
is encouraged rather than something most teams have to do at the moment. The
purpose is mainly to improve the maintainability of the embedded architecture for
future use.

1.1 Statement of the Problem
Volvo Trucks is a big company that needs to make changes to build a more main-
tainable architecture. However, there are many problems in taking this big step.
The current system, A1, is built on classic AUTOSAR. A1 has been developed for
a long time with many features and the hardware and software are tightly coupled.
If there are changes on either the hardware or software, the other needs to change
as well. In A1, the components are distributed and interdependent. Volvo Trucks is
currently performing a migration of its software and hardware architecture from the
A1 structure to a new A2 structure. A2 is planned to have a centralized structure
and use adaptive AUTOSAR which enables service-oriented architecture.

The migration process is hard for a large organization because of several aspects,
mainly with finance and human resources. The teams in the organization take
on different responsibilities in the migration process. This paper aims to find out
what makes it hard for a large vehicle organization like Volvo Trucks to make a

2

1. Introduction

move to restructure its automotive embedded system. This research is looking for
indications of the problems they face in the migration process. The results are based
on interviews and a focus group with different teams at Volvo Trucks, as well as a
code analysis done with GRASS which is a static analysis tool developed at Volvo
Trucks.

1.2 Research Questions
RQ1 - Are there any common practices that the teams are using while designing
how to migrate the source code, and while performing the migration?

This research question aims to find out if any common approaches are used by
different teams in regard to migration. If the teams can work in similar ways, the
organizational changes could be more aligned. If several teams encounter the same
issues, this might be worth looking deeper into for Volvo.

RQ2 - Is it possible to use the GRASS tool to identify structures in the source code
that are considered to make migration hard by the interviewees?

GRASS is a static analysis tool built for this thesis. Research question 2 is meant
to explore if GRASS could help in visualizing issues in the code. It will also explore
if the tool is useful to developers or architects.

RQ3 - Which parts of the physical system (for example ECUs) can influence the
migration of the code?

For an automotive system, hardware and software are usually tightly coupled. When
there are changes that need to be performed on the hardware, then the software also
needs to be changed, and vice versa. This research question is meant to see how
hardware and software are coupled to get an idea of how to decouple them.

RQ4 - Do the developers and architects think that the whole or part of the migration
process can be automated?

Since restructuring a large automotive system is a big challenge and requires many
resources, research question 4 is meant to brainstorm some ideas for automation.
Automating the whole or part of the process could help a large organization such as
Volvo Trucks to move to a new structure.

1.3 Contributions
This thesis aims to contribute in different aspects. The main goal is to close a
research gap, the other goal is for Volvo Trucks and similar companies to gain
insights into what affects large software migrations.

Provide information about what happens when migration occurs in a
large vehicle company: It is not often a migration of this scale that occurs in a

3

1. Introduction

company as large as Volvo Trucks. This research will have the opportunity to see
what affects migration first-hand. This will be helpful for future migrations done by
Volvo Trucks, and companies of the same size and in similar areas.

Provide what problems the teams are facing: A migration of this size takes
time and money to plan and perform. There might be different opinions among the
employees on whether the migration should be performed in this way, or even at all.
For Volvo Trucks, this research has value in that it explores which issues are arising
with the software migration that they are currently undergoing. This research will
bring a bigger picture to Volvo Trucks, shedding light on teams’ progress and issues
with the migration.

4

2
Background

This chapter introduces the background and theory needed to understand the thesis.
It covers the structure of motor vehicles, both from a hardware and a software
perspective. It also explains Volvo Trucks’ current and future software structure.
Furthermore, related works are discussed.

2.1 Motor Vehicle Structure
There are different motor vehicles, but most of them are built in roughly the same
way. Cars, trucks, buses, and construction equipment all use a motor to drive
themselves forward. Combustion engines, electric motors, and hybrid variants are
the most common ones. Newer vehicles also usually have some kind of infotainment
system, and these parts need to communicate with each other. In a vehicle, this
means that both the hardware needs to be connected, and the software needs to be
implemented inside these hardware components.

Electronic Control Units (ECUs) are embedded systems in automotive electronics
that control one or more features in a motor vehicle. ECUs take control by reading
and sending signals to connected devices. An automotive system requires a real-time
environment, which means some response time should be guaranteed within a spec-
ified time. The communication system that is commonly used between ECUs and
devices is called Controller Area Network (CAN) bus. CAN bus is a communication
protocol for real-time systems [4]. It allows different parts of the vehicle to talk to
each other without a host computer. The nodes on the bus can send and receive
signals. The signals can be transmitted serially onto the bus and can be received
by all the nodes. Alternatives to the CAN bus are the LIN bus and ethernet, which
can complement the CAN bus.

Figure 2.1 shows an example of a hardware architecture in a vehicle. There are
different Master Control Units, or main units, that have different responsibilities,
and they are normally connected by a CAN bus. It can be useful to have redundant
data buses at times, in this image this is visualized between Powertrain Domain and
Chassis and Safety Domain, both of which are safety-relevant. Each main unit has
its subcluster, in some cases with lower-speed CAN buses within. The reason for
the lower speed within the submodules in the Cabin case is that these modules are
normally physically closer to each other, and do not have a critical need for faster

5

2. Background

communication.

Figure 2.1: Example hardware architecture [5]. There are ECUs in different do-
mains, connected by CAN.

2.1.1 AUTOSAR Architecture
There are various software systems in a vehicle that control and manage different
functions. AUTOSAR is a standard created by a worldwide consortium of vehicle
manufacturers. It provides a platform to create and establish a standardized software
architecture for automotive ECUs.

AUTOSAR introduces the concept of Software Component (SWC) to describe the
basic unit of software that needs the AUTOSAR Real-Time Environment (RTE) for
execution. A SWC is an independent unit of functionality that can be deployed.
A SWC contains a set of c files which are called software modules, they realize the
functionality of the SWC [6]. To break down the functionalities into independent
SWCs, Volvo Trucks designed Logical Design Components (LDCs) based on high-
level descriptive functionalities. LDCs are abstract representations of the SWCs.
The communication between LDCs is represented as signals. In the current struc-
ture, SWCs contain controllers and handlers. Ideally, the controllers should only
deal with logic and send the decisions to handlers. Meanwhile, the handlers should
handle the devices based on decisions made by a controller. However, they are not
necessarily that strictly separated in the real world.

As vehicles are highly complex and consist of many different hardware and software
parts, it is common to outsource some specific parts to suppliers. These suppliers
are normally called Original Equipment Manufacturers (OEMs). The parts that
OEMs supply to a vehicle company can be seen as black boxes, you can not look
inside them and understand all parts.

6

2. Background

2.1.1.1 Classic AUTOSAR

The classic AUTOSAR platform was first released in 2005 [7]. It is structured around
a layered architecture, see figure 2.2. Classic AUTOSAR builds on microcontrollers,
which are a type of ECU, at the lowest level. On top of this, there are three main
software layers: application layer, runtime environment, and basic software [8]. The
basic software is in turn divided into the services layer, ECU abstraction layer, and
Microcontroller abstraction layer. The classic AUTOSAR focuses on component-
oriented software structures, with SWCs as independent units. Development with
classic AUTOSAR is done in C.

In classic AUTOSAR, the Virtual Functional Bus (VFB) is an essential concept.
The VFB is implemented in the runtime environment layer and handles the com-
munication both within and between ECUs. It decouples applications from the in-
frastructure and supports hardware-independent development [8]. This means that
an application does not need any detailed knowledge of lower-level technologies.

Figure 2.2: Architecture of classic AUTOSAR. The bottom layer contains the
physical hardware, the layers then increase in abstraction going up.

2.1.1.2 Adaptive AUTOSAR

AUTOSAR is continually updating its framework. To keep up with technological
advancements, they released a new version of AUTOSAR, the adaptive AUTOSAR.
Adaptive AUTOSAR was released in 2016 and is continually being updated [9]. The
new version of AUTOSAR is built to be a better fit for new problems in the vehicle
industry such as autonomous driving, vehicle connectivity, and Car as a Service.

The key principles for adaptive AUTOSAR are that C++ is the preferred language,
Service-oriented architecture should be used, and that it has inherent parallelism.

7

2. Background

While classic AUTOSAR has a static nature, adaptive AUTOSAR offers dynamic
assignments of cores. Adaptive AUTOSAR also makes more use of ethernet which
has a high bandwidth [10].

Figure 2.3: Architecture of adaptive AUTOSAR [10]. The adaptive AUTOSAR
has a platform foundation where an operating system can be used. It also has a
runtime environment and services.

Figure 2.3 shows the architecture for the adaptive AUTOSAR. There is a runtime
environment, however, it is smaller compared to the classic version. Adaptive AU-
TOSAR has room for an operating system, and the idea is that it can contain
dockerized applications. The usage of the different AUTOSAR versions will likely
be a hybrid of them working together [10]. In the cases where real-time requirements
are high, for example, emergency brakes, classic AUTOSAR will likely be used. For
more software-heavy applications, such as autonomous driving, the adaptive AU-
TOSAR will have its place.

2.1.2 Volvo Trucks Current Structure
Following AUTOSAR’s standards has made the code base at Volvo Trucks as con-
sisting of several monolithic entities. In the current A1 system, the code has been
written with a component-oriented or function-oriented mindset, according to AU-
TOSAR standards. The code has a layered structure that is designed as a two-layer
structure. The design principle is to separate the core logic, which is called the
controller, and the handler, which is responsible for handling the physical device.

8

2. Background

For example, the controller decides the movement of the wiper and sends the deci-
sion to the handler. The handler handles the wiper based on the message from the
controller. However, controllers and handlers are not strictly separated in practice.
This leads to a kind of spaghetti code structure.

The monolithic entities with high couplings lead to updates taking a long time to
implement in the software. In order to make simple changes, shotgun surgery is
normally needed [11]. This makes it hard for developers to efficiently update the
software and could lead to less maintainable code.

2.1.3 Volvo Trucks Future Structure
The code written according to AUTOSAR standard has resulted in large executable
monolith entities. In order to move away from this structure, Volvo Trucks are with
the move to an updated A2 system with adaptive AUTOSAR, moving toward a
Service Oriented Architecture (SOA). An SOA mindset helps break functionalities
down into services and move away from monolithic structures.

Volvo Trucks are changing the software and hardware topologies is another of the
main differences that is underway. The idea is to centralize the logic in one central
ECU. This central ECU should have a lot of calculating capabilities, and be able
to handle a lot of the logic. A big advantage to this centralized design is that it
in the future will enable software updates through the cloud. The move to this
centralized structure which should utilize adaptive AUTOSAR is internally called
A2 refactoring.

Figure 2.4: The trend of E/E architecture [12]. The distributed hardware archi-
tecture of today does not support heavy calculations. The architecture that will be
used in the near future can be seen as a middle step toward the Zone architecture
that will have a lot of computational potential.

9

2. Background

The move to a different software structure is a kind of software migration. For the
end user, the truck driver, this migration should not be directly noticeable. The
functionalities of the truck should stay the same: if you want to push on the gas,
you go forward, if you brake with your foot, the truck brakes, etc. However, this
kind of large restructuring will have a big effect on software developers. A service-
oriented approach will make the source code easier to maintain, and it will make it
easier to implement new features. A vision in the vehicle industry is to be able to
roll out software updates over the cloud in a short time.

The changes that Volvo Trucks are undergoing are part of a megatrend in the ve-
hicle industry [12]. Figure 2.4 shows how the general trend in the industry looks.
As of today, the ECUs are distributed over the vehicles, and connected over the
CAN bus. The centralized architecture that Volvo Trucks are moving toward is the
"architecture of tomorrow". This architecture will have more computational power
to enable more software-heavy features, such as autonomous driving. The idea is
that it is a step, and in the future will lead to a Zone architecture.

2.1.4 Current Status

Architects and managers at Volvo Trucks have been thinking about and planning
this migration for years. These kinds of discussions can be endless, as the budget and
time plan needs to be decided as accurately as possible. As in most large companies,
many things need to be done, and the prioritization can be different for different
teams within the company. Therefore, some teams have started the migration, while
others have not yet begun to plan for it.

For developers at Volvo Trucks, the plan for the migration might not be as clear as
it is to architects and managers. Even for architects, it might be hard to see the
big picture, especially as there are not many good tools for architecture recovery
for embedded systems. Communicating a migration such as this can be difficult,
and could lead to uncertainties within teams of developers. The developers and
architects need to be on the same level, and have a vision for the big picture.

This case study aims to study the gap between developers and architects. We try
to see how the plan for the migration is progressing by interviewing developers and
architects from different teams. In order to do this, we also use architecture recovery
to bring the big picture of the system to the developers and architects.

2.2 Related Work

Here we discuss some related works that have been done in the areas of AUTOSAR,
software refactoring and migration, architecture recovery, and service-oriented ar-
chitecture.

10

2. Background

2.2.1 Software Migration
Salman et al. provided a three-stage methodology for migrating a complex real-
time industrial software system [13]. They reviewed some of the existing migration
methods. In the paper, their main research question is How to migrate a com-
plex real-time software from a single-core to a multi-core architecture
with maximum software reuse and minimal re-engineering effort?. The
paper provided a methodology for migrating and a review of tools that facilitate
the migration process. They found that the software architecture transformation is
the main phase in the migration process. A lot of emphasis is put on architecture
recovery and evaluating the mechanism of multi-core solutions.

A paper was released about the migration from existing automotive software to AU-
TOSAR in 2008. In this paper, Kum et al. explained how to construct AUTOSAR
applications for already developed software for ECUs [14]. The authors motivated
the reasons for moving to AUTOSAR with the rising complexity of automotive soft-
ware. The paper goes through the concept of AUTOSAR, how to migrate, and
provides a case study in the form of the migration of interior light. They concluded
that the legacy code should be rearranged according to AUTOSAR structure.

There have been studies regarding software migrations of companies in the past.
However, no study has been made with the migration of classic to adaptive AU-
TOSAR in mind. This is likely since not many companies have made this migration
so far.

2.2.2 Refactoring
Refactoring is the act of changing the source code without changing the functionality.
Common examples of refactoring are removing duplicate code, renaming methods
and variables, and extracting methods to reduce complexities in the code. Refac-
toring is normally done to increase maintainability, readability, and extensibility.

There has been previous research about how to design as well as how to perform
refactoring. Jain and Saha discussed the importance of maintaining large complex
software [15]. In the result section of the paper, they concluded that one of the
most common reasons to refactor code is to make code more maintainable. They
also discussed different tools that could be used, as well as the risks and benefits
of refactoring. An interesting finding in their paper was some found barriers to
not using different tools to help to refactor. The barriers ranged from Little or
No Knowledge About Availability of Tools to Company support and Languages like
Python and CSS have limited support for refactoring tools.

Vogelsang et al. presented an empirical analysis of feature dependencies in a paper
[16]. It showed that the features were highly interdependent in modern vehicles, thus
dependency-based refactoring could be an approach to automotive systems. The
components that contain many dependencies are implicit communal components in
automotive systems. They were considered to be related to technical debt in the
paper. Therefore, the paper also proposed an approach to extract dependencies

11

2. Background

between components based on the data flow to justify their impacts. The results
indicate that refactoring on communal components contributed more than other
components.

Eliasson et al. performed two case studies on Volvo Car Group and Volvo Group
Truck Technology [17]. The research goal was to find out the requirements and
challenges of software in the automotive domain. Based on their studies, the paper
suggested having two different architectures of the same system. One should be the
high-level descriptive architecture and another was the functional architecture which
defined the actual plan for daily work. However, they found high-level architecture
teams in the two cases had little communication with the rest of the development
teams. Thus, the usage of high-level architecture was limited. The paper shows new
ways of working were required to adapt to the rapidly growing software system both
on the technical and organizational levels.

Refactoring is usually one step that is used in a migration process. Making and
keeping the source code maintainable is vital in order to keep the software easy to
work with and updated. The reasons for refactoring, which components might be
most useful to refactor on, and the challenges of software in the automotive domain
have been explored. However, there has been little research on what refactoring
approach is used during the migration of software.

2.2.3 Architecture Recovery
Architecture recovery is a technique that can be used in cases where the software
architecture of a system is unavailable. This is when architectural information is
extracted from the source code. Using architecture recovery can help understand
a system’s architecture, and can be especially helpful when dealing with legacy
systems, or with systems that do not have good documentation.

KTH and Scania collaborated in the 2010s during a project called the ESPRESSO
project. Together they created a tool to extract the architecture from a Scania-
specific C code base in 2014 [18]. Their paper talks about the weight of understand-
ing the code base as is and the difficulties in knowing the software architecture of an
embedded system. The paper outlines their approach to creating a graphical tool
for visualizing the architecture.

In order to get an overview of the software at Volvo, it was decided to develop a
program for architecture recovery for the Volvo-specific system.

2.2.4 Service-Oriented Architecture
Lee and Wang proposed a method for designing and analyzing automotive software
[19]. This paper talked about how the complexity of automotive systems increased
because more software functions were required. Centralized software generally de-
creases evolvability with many connections. Thus, the automotive industry needed
to adopt a service-oriented architecture. However, they integrated ECUs based on
features without software architecture, which might cause optimality problems. This

12

2. Background

paper discussed that the deployment of software components with software archi-
tecture instead of considering vehicular features as a priority would provide bene-
fits. Since quality attributes are the centre of software architecture, it’s beneficial
for software design and E/E design. Therefore, they proposed a component-based
architecture style to help design high-level software architecture for automotive sys-
tems and analyze evolvability, development effort, and dependability. They decided
on three types of connections and analyzed the system based on types of software
components and connections. However, this architectural style still had problems in
identifying real-time characteristics.

Most research related to SOA has been done on web-based applications. The most
notable research done on the vehicle industry proposed that a component-based
architectural style is a better fit than SOA. This research did not look at the move
from one to the other, but rather which is a better fit for the vehicle industry. Our
paper will look at the move from a component or function-oriented mindset toward
an SOA mindset.

2.2.5 AUTOSAR
AUTOSAR is a framework that has been around since 2002, and there has been
some research on how to implement AUTOSAR and the effects of implementing AU-
TOSAR. One of the most frequent writers on this subject is Dersten from Mälardalen
University.

Dersten et al. discussed the effect of moving to Classic AUTOSAR from a business
point of view in 2010 [20]. In their results, they argued that the move affects both
the system properties and the company functions. Examples they brought up are
improved flexibility, reliability, and maintainability as an effect of moving to signal-
based CAN on the system properties side. This move they argued would affect the
development process on the company functions side and improve efficiency on the
business side.

Dersten also researched guidelines for refactoring embedded systems in another pa-
per [21]. Many companies have started to introduce AUTOSAR to their automotive
systems without any functionality changes to their end users. The automotive sys-
tems are largely distributed and have many inter-connected ECUs, which leads to
high complexity. This paper tried to form a guideline for refactoring an embedded
system into the AUTOSAR framework to ease the refactoring. The paper proposed
some important activities for the guideline. Establishing technical requirements,
investigating if the existing system can be expanded or adjusted, and evaluating the
effects of non-functional parts, for example, the response time, were three of the
most important activities in the result.

Dersten et al. further discussed the information needed to decide on a system
refactoring in a paper published in 2012 [22]. Their paper focused on embedded
software and systems and gathered information from both System Architects and
Managers. They found that the most important information to make a decision
about refactoring was related to cost, profit, technical details, supplier information,

13

2. Background

and requirements.

Nghia Vo et al. conducted a case study about building automotive components
within the AUTOSAR environment in 2009 [23]. The study focused on the challenge
that the automotive industry was facing, which was the significance of software
and software-based functionalities increased rapidly. Their research showed that
software complexity was the major reason for the delay and cost overrun. Based on
this paper, AUTOSAR is an approach to address the complexity issue since it has
different abstraction levels of the overall system.

All of these studies have focused on companies using Classic AUTOSAR. There has
been work regarding this move since its introduction in 2006. The first version of
the adaptive AUTOSAR platform was released in 2017, with updates in the fol-
lowing years. There have been studies made regarding different aspects of adaptive
AUTOSAR, for example, the progress of the Adaptive AUTOSAR platform, com-
parisons to other platforms, and regarding the communication methodology [24]–
[26]. To the best of our knowledge, there have been no or few studies made regarding
the move from classic AUTOSAR toward the adaptive AUTOSAR platform.

2.2.6 Summary
Software refactoring and migration happen every so often. Looking at the method-
ology of either has already been done in different ways [13]–[15]. The research on
software migration in embedded systems is however not comprehensive. With the
need for more software-heavy vehicles, and a new adaptive AUTOSAR framework,
we see a need for research. The research gap we will fill is about the migration of a
large software system in an automotive setting, toward a centralized structure.

This study uses interviews and a focus group to gather qualitative data on what
happens during a migration of this scale. We combine the qualitative data with
quantitative data gathered via GRASS, a static analysis tool.

14

3
Methodology

To answer the research questions, this project used a case study approach. A case
study is an in-depth investigation, normally using qualitative research methods, of
a single phenomenon [27]. The phenomenon, in this case, is the software migration
currently undergoing at Volvo Trucks.

This chapter presents the methods that were used during the case study. It goes
through the interviews, the focus group, and the code analysis. For the interviews,
how the data collection was conducted, the interview design, and the data analysis
is gone through. In the focus group section, we go through the discussion points we
included, as well as the motivation. In the code analysis section, we go through how
we used the GRASS tool.

Figure 3.1: Method process during the thesis. There were nine interviews done
in the first round, eight people (excluding us) joined the focus group, and we later
had one additional interview. There were around 2000 components analyzed using
GRASS.

Figure 3.1 shows a rough outline of the whole process. We found interviewees and
developed GRASS in parallel. During the interviews, we found an idea for GRASS,
which was implemented. GRASS was used to analyze around 2000 components
from Volvo Trucks codebase. After the first nine interviews and code analysis were

15

3. Methodology

done, we planned the focus group. In the focus group, we included elements found
in interviews and the code. Based on the results of the focus group, there was a
suggestion to include more perspectives on the migration. An additional interview
with a manager was therefore planned. The results are based on these previous
steps.

3.1 Interviews
To gather qualitative data, we conducted interviews with different teams. The
interviews were mainly designed to answer RQ1, RQ3 and RQ4, but also touched
RQ2.

3.1.1 Data Collection
Participants in this study were recruited via internal contacts and recommendations
within Volvo Trucks. We initially aimed to recruit developers from up to five different
teams. The results of the first interviews with developers indicated that it might be
interesting to include architects in the study as well.

A requirement to participate as an interviewee was that they were involved in the
movement toward the new architecture, either working on or designing the architec-
ture or functionalities. In addition, the interviewee had to be able to give us time
to perform the interview. Participants had an interview that took place either at
the Volvo Trucks office or remotely in cases where a participant was sick or abroad.
The interview took up to one hour and each interviewee was invited to partake in a
focus group at the end of the study where different topics were discussed.

We had nine different interviewees during the first round of interviews, and one
additional interview during late spring. The interviewees, their position at the
company, and which team they belong to are listed in table 3.1. In total, we have
conducted ten interviews.

ID Position Team
A Developer Development Team 1
B Developer Development Team 2
C Developer Development Team 3
D Developer Development Team 4
E Architect Platform Architecture Team
F Architect Platform Architecture Team
G Project Manager Development Team 5
H Architect Development Team 6
I Architect Platform Architecture Team
J Group Manager Electrical Architecture Management Group

Table 3.1: List of interviewees.

16

3. Methodology

3.1.2 Interview Design and Questions
We interviewed ten people from different teams. The interviews were semi-structured.
Four open questions were the basis for each interview, and then the interviews delved
deeper into areas that were relevant for that specific team and person. Each inter-
view took around one hour.

In the interview questions, we call the software migration A2 refactoring. This is
because the migration toward the new system A2 is called refactoring internally at
Volvo Trucks.

The interviewees included developers, architects, and a project manager from the de-
velopment teams, as well as platform architects from the platform architecture team
and one manager from the architecture management group. In order to get answers
from different perspectives, we adjusted the questions for the development teams,
the platform architecture team, and the management team. For the development
teams, the main questions were as follows:

1. How do you approach refactoring for A2?

2. Have you encountered or do you think you will encounter any problems during
the refactoring process?

3. Is the hardware architecture influencing how you are planning the refactoring?

4. Do you believe parts of the refactoring process can be automated?

For the platform architecture team and the final interview with a manager, questions
3 & 4 stayed the same but question 1 & 2 changed as follows:

1. What kind of workflow for the architecture team and development teams could
help this refactoring process?

2. What problems do you think the development teams will encounter?

Table 3.2 shows how we map the interview questions to our research questions. The
table also includes our motivation for the interview question.

The other questions could differ based on the answers from the interviewees. All the
interviews were recorded and transcribed in order to conduct a reliable analysis.

3.1.3 Data Analysis
To understand what aspects are most important and see patterns, we used card sort-
ing to analyze our interview data. Card sorting is a method to organize information
in order to find the best matches [28]. This method is mainly used for UX research
but is also efficient for categorizing results from groups of interviews. Generally,
there are three different ways to run card sorting: open, closed, and hybrid. Closed
card sorting is when you have some pre-defined categories that you sort the cards
into. Open card sorting is when you instead do not have any pre-defined categories,

17

3. Methodology

Research question Interview question Motivation
Are there any com-
mon practices that the
teams are using while
designing how to mi-
grate the source code,
and while performing
the migration?

How do you approach
refactoring for the new
architecture?

This question was to examine how
different teams approach the new
architecture and try to find if any
general practices can be used for
most teams.

Is it possible to use the
GRASS tool to iden-
tify structures in the
source code that are
considered to make
migration hard by the
interviewees?

Have you encountered
or do you think you
will encounter any
problems during the
refactoring process?

This question was trying to un-
derstand how the teams consider
the problems while they take this
big move. We wanted to connect
their problems or uncertainties to
our code analysis in order to get
a better idea of the code analysis.

Which parts of the
physical system (for
example ECUs) can
influence the migra-
tion of the code?

Is the hardware ar-
chitecture influencing
how you are planning
the refactoring?

The idea was to explore the spe-
cific problems of changing an em-
bedded system. Architects have
to consider the hardware while
designing the software architec-
ture. However, the developers
might not know how the hardware
affects their migration efforts. So,
there is a gap between the archi-
tects and developers. This ques-
tion was trying to see how this af-
fects the migration.

Do the developers and
architects think that
the whole or part of
the migration process
can be automated?

Do you believe parts
of the refactoring
process can be auto-
mated?

This question was designed to
brainstorm if there could be some
automation that can help the mi-
gration in general.

Table 3.2: Mapping of the research questions, interview questions, and a motiva-
tion.

but make them up as you go. We used a hybrid version of card sorting to categorize
the answers and we did it digitally with a tool called Miro. We picked out some
categories that were related to our research questions to start with. The categories
we used at the start were the following:

• Approach

• Hardware influence

• Challenges

18

3. Methodology

• Automation

After the transcription of interviews, we categorised each interview by itself. We
then extracted interesting quotes into various cards from the interviews and put
them in the connected categories. After that, we had a better understanding of
the interview data. Then, based on what we noticed in the first round of card
sorting, we added categories that were mentioned by several different interviewees.
We coloured the cards by the interviewee and moved them into the new categories.
The categories for the second round were as follows:

• Approach

• Team communication & Team dependency

• Hardware influence

• Automation

• Requirements & Ownership

• AUTOSAR

• Benefits

• Challenges

After individually categorising the interview data, we combined them in an Insights
Extraction step. We clustered the data gathered, relating them to the research
questions.

3.2 Focus Group
A focus group is a small group selected from a wider population, whose purpose is to
inform opinions on a particular subject or area [29]. There were two main purposes
to hold this focus group. First, we wanted to discuss some different opinions from
interviews to validate our data. The second purpose was to inspire us with ideas in
order to drive our research.

The focus group was planned after all nine initial interviews had been conducted. All
the interviewees were invited to this focus group to discuss their different opinions
and the results of the interviews. The discussion was planned after the last interview
had been conducted. We planned to hold the discussion for two hours, where the
first hour had the most crucial topics for the research. The interviewees who had
the time were welcome to discuss for the second hour. We booked a conference
room so that participants who might not be in Gothenburg could attend since one
interviewee was based abroad.

During the focus group, we introduced the themes of the thesis, and the work we
had done so far, but the main focus was on the discussions. The two hours were

19

3. Methodology

recorded and transcribed for further analysis.

Table 3.3 shows the attendees of the focus group. During the focus group, Developer
C and Architect H did not come. Furthermore, Architect F and Project Manager G
left after the first discussion round. In addition to the interviewees, another member
of the Platform Architecture Team who had been helping us with contacting inter-
viewees and organizing the focus group, joined. The manager who was interviewed
after the focus group was invited to the focus group. Unfortunately, the manager,
one developer, and one architect could not attend due to conflicting meetings.

ID Position Team Attendance
A Developer Development Team 1 Joined
B Developer Development Team 2 Joined
C Developer Development Team 3 Did not join
D Developer Development Team 4 Joined
E Architect Platform Architecture Team Joined
F Architect Platform Architecture Team Joined first session
G Project Manager Development Team 5 Joined first session
H Architect Development Team 6 Did not join
I Architect Platform Architecture Team Joined
J Group Manager Electrical Architecture Management Did not join
K Organizer Platform Architecture Team Joined

Table 3.3: List of focus group attendees.

3.2.1 Discussion Points
The different discussion points were influenced by both the research questions and
the results of the interviews. We had questions about the graphs and metrics cre-
ated with GRASS, and questions regarding approaches, organizational aspects, the
benefits and challenges, automation, and time for the participants to ask questions.

To validate whether the graphs and metrics could be useful, we showed data and
images and discussed what they show and how they can be used. On the theme of
GRASS, the following questions were discussed:

• Can we say something about how hard or easy these files would be to migrate
based on size (lines of code)?

• Can we say something about how hard or easy these files would be to migrate
based on their dependencies?

• Are these graphs useful to you, if so, how?

• Are these metrics (size and dependencies) useful to you, if so, how?

• What else might be useful?

20

3. Methodology

On the themes of the approaches to migration and/or refactoring, the following
questions were asked:

• What approach did you take in the process, and why?

• Could every team have the same approach?

• Other ideas for approaches?

During the interviews, we found that there might be organizational changes that
could make the migration easier. To validate this idea we discussed the following
points on the organizational scale:

• Are there any organizational changes that might make the process better for
you?

• What are the responsibilities of developers and architects respectively?

• Are there ways to make this better?

There were some different ideas for automation during the interviews. These ques-
tions were discussed regarding automation:

• Have you applied any automation in the process, if so, how?

• Do you think more automation is viable?

• Is it generalizable?

We also wanted to see if we could find a consensus on what challenges and benefits
developers and architects see. These questions were discussed in this area:

• What benefits do you see with A2?

• What challenges do you see with A2?

In order to catch any questions that participants wanted to discuss, we included
time in the end for open discussion on any topic.

3.3 Code Analysis with GRASS
During the summer of 2022, a tool called GRASS (stands for GRAnd Survey of
Software) started being developed. GRASS was first meant to be a static analysis
tool, with counts for different aspects of C code, such as the number of if-, for-
statements, and the total number of functions in a file. During the autumn of 2022,
GRASS was extended by us during an internship course to include the number of
in- and out-signals in the code and some graphs that visualize these. The tool
was further developed during the thesis work in spring to provide more insightful
graphs. Based on the interviews, a metric related to the size of the files was added
to GRASS.

21

3. Methodology

3.3.1 Reasons for using GRASS
During the internship course done during autumn 2022, we conducted a few informal
interviews where some interviewees mentioned couplings between components as an
issue. Based on these interviews, we learned that dependencies were one potential
metric that could be interesting to look into. The interviewees told us that Volvo
Trucks does not have a good tool to visualize the whole software architecture and
check the signal flow between components. That is the main reason for the exten-
sion of GRASS, to visualize the dependencies between components through graphs.
These graphs were used to calculate metrics on the architectural level, to see if they
could indicate the complexity of the migration and how to decouple the structure.

3.3.2 Technical Details of GRASS
The static analysis tool was built with Python, around the Volvo Trucks system.
Below are the details of how GRASS was used in the thesis.

3.3.2.1 data_scraper

A function in GRASS called data_scraper was developed to capture the design
information of the ECUs. This function collects data from a program called SE-
tool. SE-tool is a software for documentation where developers working at Volvo
insert data about signals. The data is from the hardware perspective and contains
the LDCs based on ECUs and the signals between the LDCs. This data is extracted
through an API call and contains information on which signals go in and out of
specific LDCs.

Based on the data from data_scraper, we created graphs to provide better visual-
ization of the structure. The graphs contain information about LDCs and signals
as well as the connections between LDCs.

3.3.2.2 Graphs and Metrics

GRASS can construct graphs based on LDCs or signals. LDCs are represented as
nodes and signals represent edges. The graphs are constructed using NetworkX’s
MultiDiGraph [30]. These graphs can contain several directed edges between nodes.
The graph containing all LDCs and signals shows how interdependent and compli-
cated the system is. The graphs reveal the dependencies between LDCs and between
ECUs.

We created a few different graphs based on the data. One based on LDCs, to
visualize the smallest part. These graphs contain information on how many signals
are received and sent out by an individual LDC. Early in the process, we tried to
create graphs that track the flow of signals. This proved to be impossible, as signal
names are unique, and there is no way to follow the information. We also created
graphs for dependencies within individual ECUs. The final graphs we created were
based on the whole system. In these graphs, we coloured the nodes by ECUs, and

22

3. Methodology

we grouped the nodes by colour. This graph visualizes the dependencies between
ECUs.

Based on these graphs, we calculate some metrics. Fan-in and fan-out are calculated
by counting the number of edges that are incoming and outgoing from an LDC
respectively.

Another calculation is the signals communicated inside the ECU or outside the ECU.
The reasoning behind this calculation is that different teams take responsibility for
different ECUs and it might make migrating harder when there is a lot of data com-
munication between ECUs, especially when these ECUs are controlled by different
teams. It could be even harder for teams responsible for the ECUs deeply connected
to ECUs coded by suppliers.

Figure 3.2: Example graph based on the LDC ECU3/Controller2 in table 3.4.
This graph visualizes two incoming and two outgoing signals for node 556. The
nodes are colored by ECU, the red color indicates that it comes from a supplier.

ID LDC Fan-out Fan-in Fan-out red Fan-in red
556 ECU3/Controller2 2 2 0 1

Table 3.4: Metrics calculated from the graph in figure 3.2. The node, or LDC,
with ID 556 has two incoming and two outgoing signals. The ’red’ indicates that
the LDC is from a supplier.

Examples of the metrics calculated can be seen in table 3.4. As not to leak any
confidential information, the data presented in the example tables and graphs from
GRASS is faked. The ECU3/Controller2 is calculated from the graph in figure 3.2.
Fan-in is calculated by adding the different signals going into that LDC, and fan-
out is by adding the signals going out. This specific example had one signal from
an ECU that we do not have the code for since it comes from a supplier, which is
signalled by the red colour.

23

3. Methodology

Figure 3.3: Illustration graph of dependencies between ECUs. Each node is an
LDC. The nodes are grouped by ECU.

Figure 3.3 shows an illustration of dependencies between ECUs. Each colour rep-
resents a different ECU, the red colour indicates supplier ECUs that contain code
that is not written at Volvo Trucks. This graph illustrates the dependencies between
different ECUs, and fan-in and fan-out were calculated on this level as well.

24

4
Results

In this section, we go through the results in relation to the research questions. We
relate what participants said in the interviews and the focus group to the research
questions. For research question 2 we were inspired by pre-study and interviews to
develop GRASS.

When we discuss the embedded systems, A1 is the old system, and A2 is the new
one. We kept the quotes as close to the transcribed version as possible. The names of
components and details are removed, to ensure not leaking confidential information.
Some quotes repeated the same word, in these cases, we removed the duplicate words
to ease the reading experience.

4.1 RQ1

Are there any common practices that the teams are using while designing how
to migrate the source code, and while performing the migration?

4.1.1 Interview Results
This question was mainly informed by the developers. Some of the architects had
ideas of how this could be done as well. Unfortunately, the interviewees were not
affirmative in that there could be any common practice. There were various ap-
proaches when the teams perform this migration. Most interviewees thought that
having a common approach for all teams was hard. The reason was that they
were facing different problems and that they had not been aligning their work be-
tween teams. Another reason was that the final version of A2 was not settled, the
requirements were still changing. The interviewees were not sure about what hard-
ware communication network they would use in the end, and which parts should
be moved to adaptive AUTOSAR. The system they were going toward included
moving some functionalities to the centralized ECU, but there were still discussions
about the rest of the parts. Therefore it is hard to provide an approach that can be
applied by the teams. Additionally, they had time constraints and a lack of human
resources.

Diverse progress of migration activities

25

4. Results

Developer A told us that they are still in the concept stage and that they are
rewriting parts from scratch. Product Owner G on the other hand wants to reuse
as many parts as possible. Developer D is moving their application between ECUs.
Developer C is not performing the migration for the sake of the migration but is
focusing on refactoring to create a good code structure in general. Developer C’s
team is also planning on writing their applications from scratch. The teams were in
different stages of the migration.

"We are not moving any part from A1 to A2. But we are doing a fresh
start" - Developer A

"So I take the application, it’s a huge monolith, run in a [ECU1] now,
it’s a ECU, [ECU1], and then I take everything, and I try to put it in
the [Central ECU]. " - Developer D

Varying approach to using AUTOSAR

The approach to using adaptive AUTOSAR was varying between the teams. The
interviewees could see the benefits of moving to adaptive but saw some issues in
the implementation. Developer C chose to write a wrapper so that a function could
run in either classic or adaptive AUTOSAR. The communication within an ECU
plays a factor in how architect G is planning the use of adaptive. In the migration
process, both classic and adaptive AUTOSAR were used, thus the architects had to
consider the communication between the two platforms, which would be performed
within an ECU.

"So the wrapper can be made for function running in classic AUTOSAR,
and some sort of the wrapper, when you can have a wrapper to make
the same function run in adaptive" - Developer C

"If we have the decision maker in the classic core, then we plan to im-
plement another component in the adaptive core. Just to communicate
to any other adaptive SWCs. And talk to Linux." - Architect G

When discussing the progress of the teams, the architects from the platform archi-
tecture team did not know exactly how the individual teams were approaching the
migration. Architect I told us he does not have direct contact with a lot of the
teams, and Architect E thought that some teams might not even know what the
migration is about.

"I can not tell how they are approaching it unfortunately. It is so differ-
ent. Some doesn’t even know what it is about" - Architect E

Unclear requirements from architects

Some architects and developers felt that the communication between them some-
times caused misunderstandings. This could be a result of unclear requirements
from architects.

Architect F told us the lower-level requirements might be expressed differently by

26

4. Results

different architects. F pointed out that this could cause confusion and misinterpre-
tations within the development teams. Architect I felt the same and talked about
how the translation of high-level requirements to team level was not very clear. They
thought there is a gap between architects and developers which seemed to be the
same feeling as that of Developer A.

"One major gap that we think is that it looks like it’s well defined on
the high architecture level, but when it comes to the lower level on the
execution part, there are still a lot of gaps between. " Developer A

Ideas of improving communication

Developers in certain teams might be too busy with maintaining the current prod-
uct. Architect F thought that it could affect the communication between architects
and developers if the developers did not understand the high-level requirements. Ar-
chitect I thought it would be easier for developers to understand how to perform the
migration if the architects could provide some kind of support or example instead
of requirements.

"Because the most, I guess the most reasonable thing to do is to provide
some of the support for refactoring as library and supporting code or
something like that." - Architect I

Time constraints

Several interviewees told us that time is a limiting factor in the migration process.
Both developers and architects seemed to think that this is a big issue. Many other
things are happening at large companies while they change systems and architec-
tures. The mission for each team is different, which means that the teams cannot
spend the same amount of time on the architecture migration.

"People are busy working on their own stuff. They don’t really have
time. And it’s not that high a priority" - Developer D

During the later interview with the manager, we learned that he also saw the lack
of time and resources as a problem, like other interviewees. However, as a manager,
he felt that the problem was more about the management. He told us that time is
always a problem, but they have to figure out how to go in a direction within the
limited time and resources. As a company, they have to keep delivering new features
to meet customers’ needs since they do not want to lose market shares.

"There’s always a pressure from up then, we need to deliver these new
trucks, these new features it must become fancier and nicer." - Group
Manager J

"We cannot deliver any new features for a year or two. And then we will
lose market shares because the other brands they start, they deliver all
the time." - Group Manager J

Need to align work

27

4. Results

Some interviewees thought that all teams need to start the migration to align the
work. Developer A told us that it would help to find out what dependencies the
teams have. She also said if at least all the teams can start this migration so that
they can align their work.

"I think everyone has to start to work toward A2, each and every applica-
tion team, or each and every development team will have to start to work
toward A2, and only then we will get a fair idea of what dependency do
we have on who" - Developer A

Architect E felt that it is hard for the teams to perform the migration if they cannot
align their work. Architect F also said that it was hard to have a general model for
all the teams without planning it with all of the individual teams. If the teams were
aligned, they could share their experiences and make quicker progress. It would also
help architects develop guidelines and templates for teams to use.

"So it’s hard for a central team to come up with a more detailed model.
You need to do that together with teams." - Architect F

Challenges to aligning work

The teams are facing different problems, so it is difficult for them to align their work.
The interviewees talked about how the teams prioritised different things. Developer
A told us the teams, therefore, planned the migration at different points in time.
Most teams have many dependencies on both suppliers and other teams, so they
needed to get information from them to continue their work. Both developers and
architects thought that they have trouble aligning their work.

"My team is just one part, but the other team. Although that’s totally
different, so we are not aligned." - Developer C

Need to change the mindset

Another organizational point that was discussed, was the mindset of developers at
Volvo. Architect E told us that some people might simply be more comfortable
with maintaining things rather than developing new skills and migrating to a new
platform. Architect I thought that a lot of people at Volvo are disconnected from
the code. They pointed out that Volvo is not a software company, Architect E also
called Volvo a "maintenance company". The architects shared the same feeling that
people inside the company need to change their mindset.

"People. Mindset. It’s all mindset. We need to change the mindset." -
Architect H

Decision against adapting the organization

Some interviewees told us that an idea could be to split the organization in two.
The idea had roots in that it could enable some developers to focus solely on the
migration and the new product, and others could focus on the current product.
Developer C mentioned that they had heard about another vehicle company that

28

4. Results

had made a similar split. C felt that such a split could potentially speed up the
development process since developers would be able to focus on one thing rather
than several.

"if you want to speed up, yeah, a split organization, put the right people
in that one, give all the resources that they can use and yeah make it
happen" - Developer C

Architect F told us that this had been on the table, but managers had quickly
decided against it because of budget issues. Architect E told us that they had
proposed to rewrite the whole system from scratch, but that suggestion had not
been chosen in the end.

"That’s why I think, some of us here, have proposed that we should start
from scratch, from the beginning." - Architect E

4.1.2 Focus Group Results
The developers talked about their approach in the focus group. Some of them
applied similar ways to migrate their software toward A2, some used very different
approaches.

Lack of best practices

The developers thought it was hard to say which approach would be the best since
each team only tried one approach and had to trust their guts. They also discussed
that there could be a common practice that works for all the teams but they needed
to try that out to know if that would work. One possible practice that was discussed
was to move the existing stuff to A2 instead of refactoring or rewriting.

"It’s hard to say what would be if it would be better in another way.
I only try this way. It’s just so you need to rely on your engineering
intuition." - Developer D

However, during the later interview with the manager, the manager didn’t support
writing wrappers around the existing code. He thought that would mean using
the same old thing, but he expected developers to make other changes, such as
refactoring the code.

"But I think most people try to reuse or rest reshuffle what they have.
But I feel also that is a bit deceptive. That means that you just put
new clothes on something was old that we wanted to change from the
beginning. So the old thing is still there, and then we don’t get the
benefit that we wanted. In the first place." - Group Manager J

Changing plan

One architect said it was not completely decided how the new architecture, A2,
would look like. This uncertainty makes it hard to talk about a common practice at

29

4. Results

this stage. Both architects and developers were not sure about how to solve some
specific problems with the new platform, so no one knew what the final version
would be. There was a discussion during the focus group about what the A2 entails.
Some attendees thought A2 at least meant to have a more centralized structure.
Others pointed out the new AUTOSAR version as the minimum. It was revealed
that there is a backup plan, which is to continue with the A1 platform. In that case,
the migration is postponed until further notice. This information came as a surprise
to the developers in the focus group.

"It’s not known today what the term A2 stands for." - Architect E

"At least have a [Centralized ECU]" - Developer D

Challenges to aligning work

During the focus group, we learned about more challenges to the alignment of work.
The timeline also makes it difficult to ask the teams to follow one specific workflow.
This is because the teams are taking other requirements for the current architecture
too.

"Yeah, their timeline didn’t really match what we had and. It’s sort of
forced a lot of people into one direction and like then all of a sudden you
need to maintain those if you, if you, you know, three workflows, I don’t
know needs. I think it’s quite hard I guess" - Developer D

Another topic brought up in the focus group was the naming conventions. During
the presentation of metrics in the focus group, Architect E pointed out that the
naming of a file was unclear to them. The naming of this component was discussed
at some length. They also discussed whether it is common to perform certain actions,
a discussion that was prompted by another name of a file.

"I think the naming is strange, like you shouldn’t have [name of file] in
the [controller1]." - Architect E

When discussing the dependencies, the names of components were also a discus-
sion point. It was also a surprise to an architect that a component had a certain
dependency.

"I’m surprised that you have fan-in to that one actually, but that’s an-
other one" - Architect E

Need to change the mindset

In the focus group, the need for changes in mindset that was found in the interviews
was confirmed. It was discussed that it is more comfortable to continue using what
you already know. There was an idea that it might be beneficial to have the devel-
opers who are interested in the migration working with it. The move from classic
to adaptive AUTOSAR was also discussed in this aspect, it is considered safe to
continue working with classic AUTOSAR.

30

4. Results

"Okay with A2, then you can have those that are interested to actually
do some change." - Organizer K

Service-oriented thinking

It was also pointed out by Architect E that the new service-oriented thinking is new
to Volvo. Developer D agreed and pointed out that people did not seem to want to
absorb the new ways of thinking and working. During our previous interview, archi-
tect E also pointed out that Volvo Trucks does not focus very much on continuous
learning. This could prove a challenge when moving toward the new architecture
with new technologies.

"Challenge No.1, what is object service oriented for a control engineer?
How can you control engineering in a service-oriented world? Is not
known to anyone. It’s an unknown world, challenge No.2." - Architect
E

The manager also told us that the mindset is important in the migration process.
He thought that they had to change their mindset to think more service-oriented so
that they can talk about the software changes toward SOA easily.

"Going from a flow-oriented function-oriented to some kind more object-
oriented, service-oriented kind of thinking where we. Where we focus on
the information rather than on the action." - Group Manager J

4.1.3 Summary

From the interviews, we learned that there were different approaches for the teams.
Some focus on reusing as much as possible, and some are rewriting the code from
scratch. The use of adaptive AUTOSAR is also varying, some are not even con-
sidering moving to adaptive. The architects have some suggestions for how the
development teams could approach the migration. Another idea was to minimize
the gap in communication between developers and architects, and for architects to
provide more support for developers. Some challenges that were found during the
interviews were the lack of time to work on the migration, the problem of aligning
the work across teams and the mindset at Volvo. One idea to perhaps solve some
problems was to split the organization in two so that developers could focus on
either maintaining the A1 or working on the A2.

During the focus group, we learned that the plan for A2 is not set in stone. The lack
of alignment across teams was also discussed. An idea from the focus group was that
it is considered safer to keep the software in its current state rather than refactor
or migrate it. The new service-oriented thinking was an example of a change of
mindset that need to happen.

31

4. Results

4.2 RQ2

Is it possible to use the GRASS tool to identify structures in the source code
that are considered to make migration hard by the interviewees?

We used and improved the GRASS tool based on interview ideas. The results of
GRASS were then discussed in the focus group to answer RQ2. The answer to this
research question was that it is possible, but the results from GRASS now were not
that inspiring to the developers. During the focus group, they discussed some ideas
of GRASS which might make GRASS more helpful in practice.

4.2.1 Interview Results
One thing we learned from informal interviews during the autumn, which was con-
firmed during the interviews for the thesis, was that dependencies were a point of
interest. Both architects and developers talked about how dependencies affect their
plan for this migration. Another thing mentioned in the interviews was the size of
Software Components(SWCs).

Dependencies

The problem of dependencies was mentioned in several interviews. Both that it can
be hard when having many dependencies, and also that a single hard dependency
can be difficult. Developer A mentioned there was a specific interface that two of the
interviewees were waiting for, which was produced by a supplier. Since the teams did
not have this interface, they had to wait until it is done which they expected would
take at least a few weeks. This was the strongest example of a hard dependency we
found. On the other hand, many smaller dependencies between teams also affected
the plans of migration for most teams.

"Because we don’t have that [supplier interface] for the signals we need
already, we cannot move further." - Developer A

An architect told us that there has been no architecture work that covers the whole
system. When no one has a clear view of the current system, it can lead to issues.
Architect H also mentioned that the dependencies were changing since the architec-
tural plan had not reached a final version. This made it even harder for the teams
to handle the dependencies.

"It’s not fully clear because I have never seen any architecture work that
covers the whole system." - Architect E

"But then the dependencies are the only problems. Dependencies are
static even today." - Architect H

Size of SWCs

Another thing mentioned by Developer D we found could be interesting was the

32

4. Results

size of the files. Developer D thought that the size of software components had an
impact on how they handled this migration. Some software components just contain
a large c file to realize the functionalities, which can make it hard to decipher.

"Nothing says, the size of a component is sort of undefined, and some-
times it can be really large, which would be a blob basically. "
"I think the size of a software component sort of pushes you into the blob
thing. Autosar is a C-based framework. It’s also very kind of blob-y and
shotgun surgery in a kind of sense. Not everyone likes to sort of separate
stuff into modules and they just do one large C file."
- Developer D

4.2.2 Code Results
We developed GRASS to show the couplings of the components and count the LOC.
GRASS provides graphs to visualize the dependencies in the whole architecture, and
we used some metrics to get clearer indications. The tool also calculates the lines
of code.

Graphs

Using the graph function of GRASS, we created graphs representing the connections
between LDCs. In figure 4.1 we can see two different versions of example graphs,
containing the same information. These graphs provide a better visualization of the
system.

Figure 4.1: Illustration of graphs with kamada-kawai and random layout respec-
tively. Kamada-kawai is an algorithm for creating graphs.

Coupling / dependencies

The code analysis provided some interesting results. In the graphs and metrics,
see figure 4.1 and table 3.4 we can see that there are many components with a
lot of dependencies. The components with high coupling might make it harder for
developers to perform a migration of the software. Table 4.1 shows some examples of
the metrics we used to see the dependencies between the components. Fan-in means
the signals were received by the components and Fan-out means the signals were
sent to other components. The supplier components are not under development
inside Volvo, therefore we calculated these dependencies separately. There were

33

4. Results

large differences in different SWCs, the ones with the most dependencies had a few
hundred, while others have zero or a few. The graphs that showed the dependencies
of the whole system circulated Volvo Trucks and were used by architects to show
the complexity of the system.

LDC Fan-out Fan-in Fan-out to supplier Fan-in from supplier
ECU3/Service 300 10 200 5
ECU3/Handler 1 0 0 0

ECU2/Controller 200 200 100 100

Table 4.1: Example of dependencies that were calculated. Some LDCs had hun-
dreds of dependencies, others barely any.

Size of SWCs

We also measured the sizes of SWCs by calculating the LOC of the files inside SWCs
using GRASS. This metric provides a sense of how large the files are. Many of the
larger files were generated files, which had been created using SIMULINK, TAR-
GETLINK, or MATLAB. These generated files were mainly going to be regenerated
during the migration. We also found files with only a few LOCs. Table 4.2 gives
some examples of the LOC analysis of the files. The files with the most LOC had
thousands of LOC, while the smallest had around 30 LOC.

Directory File Lines of code
dir1 file1.c 11000
dir2 file2.c 10000
dir3 file3.c 123
dir4 file4.c 30

Table 4.2: Example of file sizes that were calculated. There were big variations in
the sizes of files.

4.2.3 Focus Group Results
We showed some results from the code analysis in the focus group and discussed if
the results of GRASS could be helpful for the migration process.

Dependencies

The attendees all agreed that the dependencies were one of the biggest issues, but
most of them did not feel that the metrics and graphs could help them perform the
migration. Some people thought the results could give a sense of how high coupling
their components have. Someone said that the metrics and graphs could give a
feeling of the complexity and a little information about whom you should talk to,
but it is hard to indicate what you should do based on the numbers.

"If you have a lot of dependencies on others and you don’t even know
how they, how do they want to do it like in the next generation platform.

34

4. Results

But you need to ask them and you need to ask around like I don’t know,
100 different teams." - Developer D

The main problem discussed was that even though they felt that they got the aware-
ness of the coupling of the architecture from GRASS, they still did not have the
resources to fix that. It was also discussed that even though the complexity might
look bad based on the graph, no one would know how a good architecture would
look in terms of dependencies.

Usage of GRASS

One attendee felt that if there are no good examples to compare the results with,
they cannot get a feeling of how they should handle this. Organizer K came up
with the idea that the graphs and metrics could be used over time to monitor the
complexity of changes.

"I mean, it looks bad, but what would good look like?" - Organizer K

"You could use them over time though. If you have this and then you
do something then you can compare" - Organizer K

An architect noted that it is interesting that there can be different interpretations
of the complexity of the system based on the graphs. This indicates that the choice
of algorithm to place the nodes affect on the person who looks at the graph. Figure
4.1 shows how the same data can result in different graphs which can be interpreted
in various ways.

"I think it’s interesting that depending on how you draw them you prob-
ably make a different interpretation of the complexity of the system,
because you have quite a few variations. [...] It’s a different view when
you have them ECU-wise I guess allocational, but then it doesn’t look
that bad anymore. Maybe you make a different interpretation of the
state of the situation." - Architect F

Ideas for GRASS

Some attendees discussed that it could be more interesting if there were other met-
rics combined. It was agreed upon that the most time-consuming thing for the
development teams is communication with other teams.

"One thing that is key for all this fan in and fan out is that if there is,
there are engineers that work with those entities, then normally need to
collaborate with humans in the other ones, and that is what consumes
time in our development organization." - Architect E

They also said that it may be more useful if GRASS could organize the dependencies
based on teams instead of ECUs. However, the functionalities owned by the teams
are not fixed, so it is hard to trace the dependencies while they are still changing.
The teams might change responsibilities and work on other parts of the system.
There is also nowhere to collect data on which team works on what at any point,

35

4. Results

that is reliable for a longer time.

"You had a group in there with ECUs, but maybe you should group it
per team." - Organizer K

Discussion of sizes

Regarding the size of the files, the attendees took a look at the examples we showed,
and most of them thought the lines of code did not tell the real problem. One of
the larger example files we brought up was a generated file, and it was concluded
that it’s acceptable to have a file that large since it was not written by humans. The
attendees thought that the real problem is more linked to the separation of concern
or functionalities, which is not implied by the lines of code. One attendee brought
up that the size of the files could indicate how much time the developers need to
take to understand the file. It was agreed upon that this could affect the difficulty
of refactoring, but is not as relevant in the migration process at Volvo.

"Of course it takes more time to get the understanding of what the files
you were is doing and more lines of code you have." - Architect F

Someone mentioned maybe the size of the software components could perhaps be
more telling, to count the number of files inside the software components.

"Because here is the size of the file, but maybe the number of files is
because it is just one big file. Then you have to do any sort of load or if
you have multiple files at least you have some thinking. " - Organizer K

4.2.4 Summary
During the interviews, we learned that the dependencies are an issue for the devel-
opers. Another finding was that no architecture work covers the whole system. An
interesting idea from an interviewee was to look at the sizes of SWCs.

We used GRASS to provide an architecture recovery of the system. This resulted
in different graphs, metrics of the dependencies and the sizes of files. These results
were discussed in the focus group.

The dependencies were discussed at length in the focus group. That communication
between teams is one of the hardest parts was agreed upon. It was also agreed upon
that the GRASS graphs seem to indicate that the system looks complex, however,
no one knows what an example of a good system would look like. The metrics
of dependency and size might be an indication of complexity, but the focus group
had ideas that could further improve GRASS. Having the number of dependencies
on different teams was one idea that was discussed. Another idea was to have a
progression of the system, to see its evolution. The size metric could perhaps be
more telling if it dealt with the number of files in a SWC rather than the sizes of

36

4. Results

files.

4.3 RQ3

Which parts of the physical system (for example ECUs) can influence the
migration of the code?

There were several parts of the hardware that influence the migration according to
the interviews. One thing they mentioned a lot was the communication in hardware,
that there might be more delays while they migrate to the new architecture which
needed to be avoided. The developers also had trouble handling the latencies in the
process. Moreover, the interviewees told us that the performance of the hardware
also needed to be considered.

4.3.1 Interview Results
Some interviewees did not see any big influences on migration based on the physical
or hardware structure. This might be because they were not working with the code
close to the sensors, but rather the logic. They only needed to consider if the code
worked on the hardware.

"We don’t know how the hardware is connected." - Developer A

"I think the only thing to know is to test the hardware. To see the
capacity and then you refactor again, right." - Developer C

Two main issues were discussed most regarding the hardware during the interviews.
Both developers and architects thought the communication between hardware com-
ponents could impact how they design A2 and migrate to A2. Another issue was
the centralized structure, which requires the high performance of the new central
ECU. Based on the performance of the ECU, the teams needed to consider what
they could migrate to the central ECU.

Hardware communication

The communication between ECUs was mentioned several times by the intervie-
wees. The interviewees thought that when they migrated their software to A2, the
communication might add some delays if the communication between ECUs is not
planned well.

"But every time we write something on that CAN bus, all the other
ECUs that are connected to that CAN bus will wake up to see if the
message is for them. That’s a big issue." - Developer B

Some interviewees said it would be very different if they use another communication
network, but for now, it’s not fully clear what they will use.

37

4. Results

"Maybe they give us a separate ethernet line or something or a separate
CAN line, then that’s different. But I guess the first release will probably
be restructured hardware, the same software" - Developer B

"It’s big, it’s a big, big change if you go from CAN to ethernet for example
and IP-based communication." - Architect E

From the interview with Group Manager J, we also learnt that due to economic
reasons of hardware, the automotive industry got involved in these types of changes
later. The automotive industry has to make changes with both hardware and soft-
ware, no matter what changes they want to make. The quality of the hardware
needs to be good enough to support the development of software. Therefore, they
have to consider the cost of hardware, which has been expensive in the past years.

"We are more sensitive to cost. The hardware. It means that we want
as cheap hardware as possible in the track, meaning that we don’t have
so much computational power. We don’t have so much memory."
- Group Manager J

However, since the hardware components are cheaper now, they got a chance to
start this journey. He also told us they started to introduce Ethernet to Volvo, and
they wanted to move there more and more.

"A computer now had maybe 10 megabytes something, but then there
in the mid-90s it started exploding. It became cheaper, cheaper so, and
now it has become so cheap that it has also become somewhat affordable
to us. And that opens up for our industry also to engage in this. In
another way. So access to cheap computation, cheap memory and cheap
communication bandwidth network. Like Ethernet."
- GRoup Manager J

Latencies in the network

Architect E also told us that there are latencies in any network and that it is a
complex discussion regarding the hardware. One of the developers also talked about
the latency issues they had. They however did not think that the hardware should
have a huge influence on the software. The problem was more about how to handle
these latencies.

"The latency is 10 milliseconds, which is unacceptable of course if you
want to control like an emergency brake or whatever." - Developer D

"It is a quite complex discussion when it comes to latencies, bandwidth
and deterministic stuff."
- Architect E

Adaptive AUTOSAR introduces delays

The delays were not only because of the hardware communication. It became clear
that the interviewees thought that the use of adaptive AUTOSAR will introduce

38

4. Results

some delay. There was not a consensus in the interviews about how big a delay the
adaptive AUTOSAR will bring, but it seems significant.

"Such kind of real-time requirements will be taken care of on the classic
AUTOSAR end. And not on the adaptive, because due to some latency,
or some delay between the communication between different applications,
such kind of time critical and the real-time signals would be still in the
classic and the adaptive is most time-consuming and where relies on
most processing of the data, so such kind of information or such kind of
logic would lie in adaptive." - Developer A

"But every team that wants to move something there, still have com-
munication with the ECUs that are connected to the CAN bus system,
they will need that communication. Because the CAN can only connect
to the classic AUTOSAR on the [central ECU]." - Developer B

Capacity of the centralized structure

There were many functionalities placed on different ECUs, but they needed to be
migrated to the central ECU. Architect F mentioned in the interview that the capac-
ity of the new ECU may have some impacts on they perform the migration. They
told us that there were some concerns about the capacity of the central ECU. These
concerns were related to that many computer-heavy functionalities were supposed
to be placed in this new ECU. Architect F felt that all these functionalities might
not fit in the ECU.

"But since we’re not utilising the adaptive part but mostly the classic
part of [Central ECU], mostly one of the enablers with the A2 was in-
creased computational capacity."
- Architect F

"And if we don’t utilize the adaptive part of it, it might be overpopulated
already from the beginning."
- Architect F

Performance of the hardware

Developers B and D felt that the performance of the hardware could be an issue in
A2. The performance of the new centralized ECU is not the same as in the ECU
they have functionality in at the moment, and this has raised some potential issues
for them.

"We are having some trouble with the performance in the [Central ECU]"
- Developer B

"Yeah, because, earlier it was the backbones, we had two CAN back-
bones, where all the ECUs were connected. Now, due to this new topol-
ogy, everything is going to the main ECU, and then gatewaying back,
yeah that might be an issue in some cases."

39

4. Results

- Architect H

Developer B also mentioned the boot time of the central ECU is a bit long, which
could also cause issues.

"The [central ECU] has a really long boot time at this point. They say
it’s gonna be shorter but it’s still gonna be a few seconds it seems." -
Developer B

Meanwhile, Architect H said the new platform also shared the same time perfor-
mance issue. This was a problem they had to work out.

"For example, for the adaptive AUTOSAR to boot up, it takes some,
one minute for example." - Architect H

4.3.2 Focus Group Results
During the focus group, it was discussed that the move to adaptive AUTOSAR is a
factor in the latency area.

Hardware communication

Adaptive AUTOSAR reaches its full potential when ethernet communication is uti-
lized, however, it is not fully clear which hardware communication alternative will
be used in A2. It was discussed that one of the reasons that CAN might be used
for A2 is that it is what is known.

"A big bottleneck is the communication between adaptive and CAN." -
Developer B

"But that was because we know CAN and that’s why we continue with
CAN." - Architect E

Capacity of the centralized structure

We also found out that the central ECU in fact will have a lot of potency in the
cores. This means that some of the issues that were spoken about in the interviews
might not be applicable anymore.

"I can also just mention that the [central ECU] has a lot more potency
in the cores. So the [advanced functionality] could probably run there."
- Developer D

4.3.3 Summary
The communication system between hardware was discussed multiple times during
the interviews. Most interviewees thought the CAN bus would introduce more delays
when they migrate when migrating toward the new architecture. They thought it
would be better to use Ethernet but CAN bus is more well-known in the vehicle
industry and the company. However, the delays needed to be decreased to perform

40

4. Results

the migration successfully. The latencies were also considered a major issue. The
interviewees told us it was always a hard discussion when it came to latencies. This
was a problem related to the CAN bus. Therefore, most interviewees said that the
communication system might need to be changed anyway. Another thing they were
worried about was the performance of new ECUs. Especially when they needed
to move functions to the new ECU, there would be a lot of logic processed there.
Meanwhile, the adaptive AUTOSAR would also bring significant delays. Thus, the
architects and developers needed to consider more when they decided which parts
should be migrated to the central ECU. Both during the interviews and focus group
it was discussed and concluded that delays in the hardware and the performance of
the ECUs influence the migration.

4.4 RQ4

Do the developers and architects think that the whole or part of the migration
process can be automated?

There were some mixed results. The architects and developers had different insights
on automation. The architects focused a lot on the whole process since they looked
at an overview of the architecture, while the developers mainly considered smaller
parts when they were performing the migration. Developers were generally positive
about applying automation in the process, they thought that some parts can be
automated and that this could help their process. Architects on the other hand felt
that it is hard to automate the process. An architect told us that the final goal was
not clear, and therefore more information was needed to utilize any automation.

4.4.1 Interview Results
Based on the interviews, developers thought some parts of the migration process
can be automated. However, the architects did not know if the teams could ap-
ply automation for any part. Most interviewees agreed that there was little to no
possibility to automate the whole migration.

Architects view

Some architects were not so positive about the idea of automation. This was mostly
because they felt it was hard to automate the whole process and they did not have
that much knowledge about the smaller parts of the process for each team. An
architect also pointed out that no software entity is the other alike, and it is hard
to automate because of this. Architect E thought that no parts could be automated
since in order to automate, you need to know what the end goal is.

"To refactor something you need to know where to go, so then you need
to program where to go. And it has to be 100% certain, otherwise you
can never go." - Architect E

41

4. Results

Architect H on the other hand thought that both parts of the migration process,
and parts of the architects’ job, could be automated. Automating the traceability
between the code, the models, and the UML diagrams was one suggestion H brought
up. Architect F also thought that there could be some kind of automation regarding
the traceability of the system. Another suggestion Architect F had, was to generate
keywords describing the signals. F further thought that some kind of gap analysis
and design change recommendations could be automated

"then the traceability will be difficult between the code and the mod-
els and even the UML basically. So I think that can be automated" -
Architect H

"If you can identify the descriptions or maybe based on the signal input,
output, and generate keywords on what information is this, and map
that against the [new layered structure] or the [old layered structure]
principles, you could at least automate some kind of gap analysis, and
design change recommendation." -Architect F

Developers view

The developers were more positive in this aspect. Although they agreed that the
whole process would be hard or impossible to automate, some developers thought
that some smaller parts of it could be automated. Developer A had an idea that
could help several teams. This automation idea was in an early stage and had not
yet been implemented. Some of the developers had already automated parts of
their workflow. Developer B had for example automated the translation of signals.
The automation consisted of a script that makes the signals fit with the adaptive
AUTOSAR framework instead of the classic. The developers thought that these
small automations could be generalized to other teams, with minor modifications.
Developer C had not performed automation yet but was positive and thought that
writing wrappers and unit tests could be automated. There was a consensus however
in that no one thought that the whole process could be automated.

"If we can see a way in which this [interface] thing can be automated, it
will be very helpful for both the [adaptive] team, working, and also the
[classic] team." - Developer A

"But the syntax is completely different in adaptive and classic. So we did
automate that translation to not have to create 300 signals manually." -
Developer B

Developer B thought there should be some automation regarding traceability, rein-
forcing the idea that the architects also had. They thought that it would make the
whole process much easier.

"I think the whole creation of adaptive applications should be automated.
Because right now just creating a new project in adaptive is way trickier
than it should be." - Developer B

42

4. Results

Good CI/CD pipelines ease the work

Some interviewees told us there was a good continuous integration and continu-
ous delivery/continuous deployment (CI/CD) pipeline which helped them integrate
and deploy. The pipeline itself had some automations incorporated. However, the
pipeline could be further improved in some cases so that the developers could get
more assistance. Developer D thought that the merging could be automated.

"And already you have all the process from the deployment that is au-
tomated but that can be improved." - Developer C

"Of course, we have smaller steps in our flow that could be automated,
like merging, you could automate that. Since everything takes so long
when you push a change, you want to merge, you have to sit and wait
for the regression and the progression and all that stuff." - Developer D

4.4.2 Focus Group Results
In the focus group, most attendees thought it was not possible to automate the whole
process. However, they draw a general agreement that some parts can be automated
and can be applied by all the teams. Although these kinds of automation might only
help small parts of the migration, they would at least save time for the development
teams.

Automation of the whole process

Everyone in the focus group agreed that it’s very difficult to apply automation for
the whole migration process. Not only because they were not sure about the final
version of A2, but also because the adaptive AUTOSAR, which was the new platform
they were going to use, was not very good at handling the communication protocol
they were using. One of the attendees thought that even though some parts could
be automated somehow, it still required information which they could only input
manually.

"So it’s creating those in the tool just not be possible but only one good
thing for automation in I don’t know A2 is this really about the CAN
database question is a bit more automated now. It wasn’t very manual
before." - Developer D

"But it’s still someone still needs, even if you have a code generator for
that one, you still need someone to tell the code generator what they
just convert from and map it so it’s" - Architect E

Automation of some parts of migration

Most developers in the focus group believed some parts could be automated and
can be used by other teams. They thought even though these kinds of automation
only worked for small parts, they were still helpful. They could at least save time
for the development teams, though this depended on what types of problems the

43

4. Results

teams had.

"With some small tweaks. So because I guess each might look a little
bit different. But it’s also, I mean the automation is, it’s not like I’m
gonna use it every time it was to make one huge boring task quicker." -
Developer B

"But I think we should automate. If you see something that can be
automated. Of course you two like if it’s just a matter of writing a script
or if it’s a complete problem, tactics, that’s I think that’s more work. "
- Developer D

4.4.3 Summary
In general, some teams applied automation and this worked well. The developers
believed that automation could be used for the teams. The attendees also felt more
parts can be automated to save time. Nevertheless, the attendees thought it would
be impossible to automate the whole migration process due to multiple reasons.

44

5
Discussion

In the discussion, we discuss the results and reflect on the different data sources
that make up this thesis. We also discuss the limitations and validity threats.

5.1 RQ1

RQ
Are there any common practices that the teams are using while designing
how to migrate the source code, and while performing the migration?

ANSWER
We did not observe that the teams use common practices. It is hard to
suggest a common practice for the teams due to the changing plan and different
problems for the teams.

According to the results from the interviews and the focus group, the changing plan
of the new architecture was a major problem in the migration process. As a large
company, Volvo needs to keep delivering new products, thus they have to add new
functions while performing the migration. Meanwhile, the teams needed to handle
different problems. Therefore, the architects had to change the architecture for the
new functionalities and problems. Subsequently, there were more communication
needs between architects and developers. That also caused issues, as the teams
could not align their work while they had a lot of dependencies between the teams.

Since the existing architecture was complex, it was hard to have a fixed plan from
the beginning. The architects told us that no one could consider everything in such
a complex architecture and deliver a good design. Additionally, the technologies are
growing fast, thus it was not reasonable to have a fixed plan which would be reached
after a couple of years. Since the plan for the new architecture is changing, it was
hard to provide a common practice for the teams.

The developers need to develop new functionalities while maintaining the existing
products. So, they had strict time and resource constraints. The teams required
more time and human resources to perform the migration. The constraints differed
between the teams, thus they started the migration at different times.

45

5. Discussion

We learned from the interviews that all the teams need to start to migrate at ap-
proximately the same time so that they can align their work. It would then be easier
for the teams to share information and resources, so they can learn from each other.
Additionally, it would be easier for the teams to communicate if the dependencies
among the teams could be reduced.

As the market is developing, the mindset of the company also needs to be changed
to adopt the developments. The architects told us that as Volvo was trying to move
to SOA, it required the people here to think more service-oriented. In order to
make the migration happen faster, they also need to work on continuous learning.
The company cannot perform the migration successfully unless the people involved
change their mindset to accept the need for changes instead of maintaining the
existing architecture.

In general, it is difficult to provide a common practice in a large company such as
Volvo Trucks. Many things are happening when they decide to migrate. However,
the whole company should start the migration together in order to find some common
practices or guides that can be used for most teams.

5.2 RQ2

RQ
Is it possible to use the GRASS tool to identify structures in the source code
that are considered to make migration hard by the interviewees?

ANSWER
GRASS can identify couplings in the structures. The couplings indicate the
difficulty of migration.

We learned from the focus group that GRASS can identify structures in the source
code that indicates the difficulty of the migration. However, the discussions indicated
that GRASS might not be useful to the teams in their migration process. The focus
group came with suggestions on how to make GRASS better suited for use in their
work.

The first suggestion was to use GRASS to track the evolution of the software. This
could be useful in seeing the changes in complexity over time. An idea was to have
a current version of the graph in the lunch room, to visualize and perhaps motivate
developers toward working on the visible issues.

Another suggestion was to specifically look at the dependencies between teams.
During the focus group it was discussed one of the main time-consuming things for
the teams is the need to communicate with all teams that they have dependencies
to. It was discussed that the total number of dependencies only indicated that it
looks bad, but it was not clear what that meant. If GRASS instead could look at
dependencies between teams, it would be clearer which teams need to communicate

46

5. Discussion

with the largest amount of other teams. This could perhaps indicate which teams
most need to look over their dependencies and be a clear indication to some teams
that they should become more self-contained. However, the ownership of SWCs
changes regularly in the process. It is hard to decouple the SWCs due to the changing
ownership, therefore, the dependencies are an issue they need to consider while
performing the migration.

In conclusion, GRASS can indeed identify structures that were spoken about dur-
ing the interviews. The knowledge about these structures alone, however, was not
confirmed to be in itself useful to the development teams. Using GRASS in other
ways could create a tool that is useful to developers, architects, and managers.

5.3 RQ3

RQ
Which parts of the physical system (for example ECUs) can influence the
migration of the code?

ANSWER
The communication between ECUs, the performance of the new ECUs and
the physical location of the ECUs matter.

The hardware and software in a vehicle are hard coupled. This means that changes
in one usually mean changes in the other as well. To perform the migration at Volvo
Trucks, both the hardware and software architecture are redesigned.

The choice of classic or adaptive AUTOSAR depends on the hardware communica-
tion chosen, and the performance of the new ECUs. If ethernet is used as the hard-
ware communication, there are more benefits from adaptive AUTOSAR. However,
adaptive AUTOSAR requires more computational power, and so the performance
of the new ECUs affects this choice as well. The AUTOSAR version has further
implications for the software, such as which programming language will be used.
These factors affect how the teams plan their migration, as they have to rewrite
their code or write wrappers if the choice falls on adaptive AUTOSAR.

The latencies in the network, and of AUTOSAR, also affect the migration. The
teams are not clear on what the latencies will be, as testing is still being done. Some
teams, such as the ones handling emergency brakes, cannot have large amounts of la-
tencies concerning their function. The migration of these functions can subsequently
not be decided until the latencies in the network are discovered.

In conclusion, the hardware has major implications on how the software will be
migrated. Since the new systems’ hardware is not decided, it is hard for development
teams to design their software. The main areas that could help development teams
decide on the software migration approach are knowing the performance of the new
ECUs, the communication network and the latencies in the system.

47

5. Discussion

5.4 RQ4

RQ
Do the developers and architects think that the whole or part of the migration
process can be automated?

ANSWER
The developers are positive and think that parts can be automated. For
example, the conversion to a new signal format has already been automated
by a team, and they think that this automation can be used by others. They
all think that the whole process cannot be automated.

During the interviews, we learned that some teams have started automating some
tasks. These tasks were specific to the team and their migration, however, they
thought that other teams could use the automation scripts with minor adjustments.
One of the main problems with sharing the automation scripts was that the teams
had different progress regarding the migration. To efficiently share information on
the automation processes, the teams should, as in RQ1, be aligned. The alignment
of teams would enable more information sharing between teams.

Another idea that was introduced during the focus group was to provide some kind
of template and somewhere to share information about the teams’ migration. If
the end goal is clearly defined, it would be possible to guide the teams more, and
perhaps have a template on how to perform the migration. It could also be useful
to have a shared forum where for example the automation scripts are shared. This
could help teams who have not yet come as far in the migration process if they have
similar problems.

As the end goal is not clearly defined, the idea of automation for the whole process
is hard. In addition, the teams are working on widely different problems. These
two factors make the idea of having some kind of automation for the whole process
impossible. We think that in a company as large as Volvo, the value of automating
the whole process would be extremely valuable. However, it seems to us as if it is
in large companies that these things are most difficult.

5.5 Implications for Developers and Architects
The implications for developers and architects who perform similar migrations are
mainly the need for a clear plan and the importance of communication.

Create a clear plan

These results point to the need for architects to have a clear plan before the de-
velopers start the implementation. When the plan keeps changing, we can see that
developers have a hard time parsing the requirements. Understanding new require-
ments and adapting the plans takes a lot of time, and this could be avoided. Creating

48

5. Discussion

a clear plan is not an easy task by itself, but it seems as if the time needed to do
this could be worthwhile.

Improve the communication between architects and developers

In order to create a plan that fits the developers, we also see a need for more
communication between developers and architects. We learned that some teams
have frequent meetings with architects, and these teams had a better grasp of what
their requirements were. During the focus group, the discussions quickly turned to
the naming of files and the reasons for different approaches. This implies that there
is a gap in the communication between developers and architects, which could be
smaller if there were more communication between the two groups. If the developers
and architects had more communication, these issues would likely be brought up in
other forums.

The communication between development teams also has an impact. To align the
work, and be more efficient in the migration, more teams should be on the same
page. This would also enable more information sharing regarding the approaches
and automation.

5.6 Threats to Validity
Here we discuss some validity threats of the research. We use the classification
defined by Per Runeson and Martin Höst [31].

Construct validity: Can the method accurately answer the research
questions?

Internal validity: Are there other factors that might affect the re-
sults?

External validity: Can the results be generalized?

Reliability: Is the data dependent on the specific researchers?

5.6.1 Construct Validity
It is hard to look at approaches to migrations without being in a company in the
migration process. There are different ways to collect data within a given company.
A different approach could have been to send a survey to as many people as possible
to gather insights. We chose to have interviews in order to gather qualitative data,
and then have a focus group. The choice to not have a survey was that we did
not find a reliable way to send out the survey to relevant employees. Instead,
we received aid in finding interviewees who were indeed involved in the migration.
Moreover, interviews allowed us to dig deeper into the questions. Since the employee
who helped us find interviewees was heavily involved in the migration, the most

49

5. Discussion

representative interviewees should have been included. In doing an interview case
study with a focus group, we believe we had access to good qualitative data.

5.6.2 Internal Validity
There are a lot of developers and architects at Volvo Trucks. To find interviewees
during the spring, we relied heavily on a few employees who guided us in this aspect,
and we accepted everyone willing to participate in the study. It is possible that the
majority of volunteer interviewees were more engaged than the average employee
since they voluntarily chose to take part in the thesis. Unfortunately, it is hard
to avoid this bias. However, we believe that since we had recommendations from
contacts for whom to involve in the study, we had access to the people who were
most related to the migration process. These interviewees are a good representation
of the process of the migration, and they were able to speak of the experiences of
their teams.

Some of the code used at Volvo Trucks is supplied by OEMs, and this code was not
included in the data set. The source code included does therefore not include all
of the code used in a truck. Since this study looks at software migration within a
company, it is reasonable that we only look at the code being developed within the
company.

Other changes are occurring at Volvo Trucks than the ones that this thesis focuses on.
While they are making this migration toward a centralized hardware structure, they
are also making changes in the layers of their code. From a Controller/Handler logic
to a more sophisticated logic with several layers. This may be a confounding factor.
Subsequently, this could be affecting the opinions and thoughts of the developers
and architects working with the migration. We made sure to be clear about what
the discussion was about, whether layers, centralized structure, or AUTOSAR, to
minimize the risk of mixing the results.

The focus group took place 1-2 months after the interviews. It is possible that the
interviewees’ opinions had time to change during this time. Not all interviewees had
the possibility to attend the panel discussion, this might skew the results toward the
opinions of the interviewees who attended the session. We tried to minimize this
bias by planning the focus group two months ahead of time and choosing a time
when as many people as possible were able to attend.

We interviewed developers, architects, one project manager, and one manager. They
confirmed each other’s observations, and we believe that the conclusions we draw
are reasonable.

5.6.3 External Validity
This case study looked at one case, within one company. It is reasonable to deduce
that if the same kind of migration occurred in a similar vehicle company, the results
would be similar. However, it is hard to know how far the generalization holds. The
move toward a centralized structure is something many vehicle companies are likely

50

5. Discussion

to perform, and we believe this study provides insights for them into what might be
worth looking into.

5.6.4 Reliability
The results of the case study could be different if another set of interviewees, and
questions were used, or if the card sorting was done in another way. If another
researcher were to perform the same research, the results might not be identical to
ours. However, in the method, we declare the questions used, how the interviewees
were selected, and how the card sorting was done. In addition, the interviewees
were unknown to us beforehand, which means we reduced the risk of being biased
toward any specific interviewee. We believe that these explanations would constrain
the differences in results if the study would be replicated.

51

5. Discussion

52

6
Conclusion and Future Work

Here we come to conclusions based on the results and suggest some areas for future
work.

6.1 Conclusion
This thesis looked at the different perspectives of a large company in the light
of software migration. It was found that there are multiple different approaches by
development teams and that it is difficult to align the work. The GRASS tool can be
improved to be used in order to help developers and architects. Since the hardware
and software are tightly coupled, the hardware substantially affects the software
development. There are parts of the migration process that can be automated, and
a forum for sharing these could be useful.

Many things affect the migration process at a large company. Developers, architects
and managers all need to be onboard. The organizational aspects are at least as
important to a software migration as the technical side is. In summary, we conclude
that migrating from one system to another is a huge undertaking. Everyone involved
has to understand the complexity and be willing to make changes together. We
believe that having well-established communication between teams of developers
and architects makes such a process easier.

6.2 Future Work
Covering other companies’ migrations, looking further into the communication be-
tween developers and architects, investigating if there would be a ripple effect, and
looking into other factors, are areas we see could use further work.

We found that the developers and architects thought that the organizational as-
pects were as important or even more important than the technical aspects of the
migration. The choice of creating a split organization, and how much to prioritize
the migration in relation to maintaining the current product are examples of things
that could be further analyzed. An idea could be to study the differences between
organizations performing the same type of migration.

53

6. Conclusion and Future Work

The communication between developers and architects was in some cases lacking. A
lack of communication affects how the developers approach the migration and could
cause gaps in the architects’ understanding of how developers deal with different
issues. We think it would be interesting to dive deeper into this issue and study how
the communication between the groups affects the migration of software. Extending
the research to also look into how managers perceive changes and communicate with
architects could be another point of interest.

During the interview with the manager, he brought up the idea of a ripple effect
happening in the organization. He thought that if some developers started perform-
ing the migration, more developers would want to, and have to, join. We think it
would be interesting to test this hypothesis. This would require a longer-term study,
to see the effects of teams starting the migration over a longer time.

Another idea could be to look at other factors at Volvo. Not only is the migration
that Volvo Trucks is performing changing the software architecture and moving
toward SOA, but they are also changing its layered approach. The changes in layer
are connected to the changes in AUTOSAR. When using classic AUTOSAR, the
layers mainly consist of controller and handler. With adaptive AUTOSAR however,
the layers become more complex. Some interviewees brought up these changes during
the interviews, and we think it could be interesting and insightful to look at how
this aspect affects the migration. There was a talk during the focus group on how
to use the GRASS tool in relation to the layers. We believe that the GRASS tool
could be used to create graphs with different clusters for the layers, and thus could
be a tool in a study looking at the layers.

54

Bibliography

[1] A. H. Easton and G. C. Cromer. “Bus.” [Online]. (2023), [Online]. Avail-
able: https://www.britannica.com/technology/bus- vehicle (visited
on May 17, 2023).

[2] Silvaco. “Design IP for automotive SoCs: Trends and solutions.” [Online].
(2023), [Online]. Available: https://silvaco.com/blog/design-ip-for-
automotive-socs-trends-and-solutions/ (visited on Mar. 14, 2023).

[3] AUTOSAR. “History.” [Online]. (2023), [Online]. Available: https://www.
autosar.org/about/history/ (visited on Nov. 28, 2022).

[4] G. M. Smith. “What is CAN bus (controller area network) and how it compares
to other vehicle bus networks.” [Online]. (2021), [Online]. Available: https:
//dewesoft.com/blog/what-is-can-bus (visited on May 3, 2023).

[5] Continental. “E/E architecture: Tailor-made system architecture.” [Online].
(2023), [Online]. Available: https://www.continental-automotive.com/
en- gl/Construction- Mining/Technology- Trends/E- E- Architecture
(visited on Apr. 3, 2023).

[6] D. Parthasarathy, C. Ekelin, A. Karri, J. Sun, and P. Moraitis, “Measuring
design compliance using neural language models: An automotive case study,”
ser. PROMISE 2022, Singapore, Singapore: Association for Computing Ma-
chinery, 2022, pp. 12–21, isbn: 9781450398602. doi: 10 . 1145 / 3558489 .
3559067. [Online]. Available: https://doi.org/10.1145/3558489.3559067.

[7] AUTOSAR. “History.” [Online]. (2023), [Online]. Available: https://www.
autosar.org/about/history (visited on Apr. 26, 2023).

[8] AUTOSAR. “Classic platform.” [Online]. (2023), [Online]. Available: https:
//www.autosar.org/standards/classic-platform/ (visited on Apr. 26,
2023).

[9] S. Fürst and M. Bechter, “AUTOSAR for connected and autonomous vehicles:
The AUTOSAR adaptive platform,” in 2016 46th annual IEEE/IFIP interna-
tional conference on Dependable Systems and Networks Workshop (DSN-W),
IEEE, 2016, pp. 215–217.

[10] E. Hernandez. “What is adaptive AUTOSAR?” [Online]. (2020), [Online].
Available: https://www.lhpes.com/blog/what- is- adaptive- autosar
(visited on Apr. 26, 2023).

[11] R. Guru. “Shotgun surgery.” [Online]. (2023), [Online]. Available: https://
refactoring.guru/smells/shotgun-surgery (visited on Mar. 29, 2023).

55

https://www.britannica.com/technology/bus-vehicle
https://silvaco.com/blog/design-ip-for-automotive-socs-trends-and-solutions/
https://silvaco.com/blog/design-ip-for-automotive-socs-trends-and-solutions/
https://www.autosar.org/about/history/
https://www.autosar.org/about/history/
https://dewesoft.com/blog/what-is-can-bus
https://dewesoft.com/blog/what-is-can-bus
https://www.continental-automotive.com/en-gl/Construction-Mining/Technology-Trends/E-E-Architecture
https://www.continental-automotive.com/en-gl/Construction-Mining/Technology-Trends/E-E-Architecture
https://doi.org/10.1145/3558489.3559067
https://doi.org/10.1145/3558489.3559067
https://doi.org/10.1145/3558489.3559067
https://www.autosar.org/about/history
https://www.autosar.org/about/history
https://www.autosar.org/standards/classic-platform/
https://www.autosar.org/standards/classic-platform/
https://www.lhpes.com/blog/what-is-adaptive-autosar
https://refactoring.guru/smells/shotgun-surgery
https://refactoring.guru/smells/shotgun-surgery

Bibliography

[12] T. Tsumuraya. “The evolution of E/E architecture and software platform for
R-Car/RH850.” [Online]. (2021), [Online]. Available: https://www.renesas.
com/us/en/blogs/evolution-ee-architecture-and-software-platform-
r-carrh850 (visited on Apr. 3, 2023).

[13] S. M. Salman, A. V. Papadopoulos, S. Mubeen, and T. Nolte, “A systematic
migration methodology for complex real-time software systems,” in 2020 IEEE
23rd International Symposium on Real-Time Distributed Computing (ISORC),
2020, pp. 192–200. doi: 10.1109/ISORC49007.2020.00041.

[14] D. Kum, G.-M. Park, S. Lee, and W. Jung, “AUTOSAR migration from ex-
isting automotive software,” in 2008 International Conference on Control,
Automation and Systems, 2008, pp. 558–562. doi: 10.1109/ICCAS.2008.
4694565.

[15] S. Jain and A. Saha, “An empirical study on research and developmental
opportunities in refactoring practices.,” in SEKE, 2019, pp. 313–418.

[16] A. Vogelsang, “Feature dependencies in automotive software systems: Ex-
tent, awareness, and refactoring,” Journal of Systems and Software, vol. 160,
p. 110 458, 2020, issn: 0164-1212. doi: https : / / doi . org / 10 . 1016 / j .
jss.2019.110458. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0164121219302328.

[17] U. Eliasson, R. Heldal, P. Pelliccione, and J. Lantz, “Architecting in the auto-
motive domain: Descriptive vs prescriptive architecture,” in 2015 12th Work-
ing IEEE/IFIP Conference on Software Architecture, 2015, pp. 115–118. doi:
10.1109/WICSA.2015.18.

[18] X. Zhang, M. Persson, M. Nyberg, et al., “Experience on applying software
architecture recovery to automotive embedded systems,” in 2014 Software
Evolution Week - IEEE Conference on Software Maintenance, Reengineering,
and Reverse Engineering (CSMR-WCRE), 2014, pp. 379–382. doi: 10.1109/
CSMR-WCRE.2014.6747199.

[19] J. Lee and L. Wang, “A method for designing and analyzing automotive soft-
ware architecture: A case study for an autonomous electric vehicle,” in 2021
International Conference on Computer Engineering and Artificial Intelligence
(ICCEAI), 2021, pp. 20–26. doi: 10.1109/ICCEAI52939.2021.00004.

[20] S. Dersten, J. Froberg, J. Axelsson, and R. Land, “Analysis of the business
effects of software architecture refactoring in an automotive development or-
ganization,” in 2010 36th EUROMICRO Conference on Software Engineering
and Advanced Applications, IEEE, 2010, pp. 269–278.

[21] S. Dersten, “Towards a guideline for refactoring of embedded systems,” Ph.D.
dissertation, Mälardalen University, 2012. [Online]. Available: http://www.
es.mdh.se/publications/2441-.

[22] S. Dersten, J. Axelsson, and J. Fröberg, “An empirical study of refactoring
decisions in embedded software and systems,” Procedia Computer Science,
vol. 8, pp. 279–284, 2012.

[23] G. N. Vo, R. Lai, and M. Garg, “Building automotive software component
within the AUTOSAR environment - a case study,” in 2009 Ninth Interna-
tional Conference on Quality Software, 2009, pp. 191–200. doi: 10.1109/
QSIC.2009.34.

56

https://www.renesas.com/us/en/blogs/evolution-ee-architecture-and-software-platform-r-carrh850
https://www.renesas.com/us/en/blogs/evolution-ee-architecture-and-software-platform-r-carrh850
https://www.renesas.com/us/en/blogs/evolution-ee-architecture-and-software-platform-r-carrh850
https://doi.org/10.1109/ISORC49007.2020.00041
https://doi.org/10.1109/ICCAS.2008.4694565
https://doi.org/10.1109/ICCAS.2008.4694565
https://doi.org/https://doi.org/10.1016/j.jss.2019.110458
https://doi.org/https://doi.org/10.1016/j.jss.2019.110458
https://www.sciencedirect.com/science/article/pii/S0164121219302328
https://www.sciencedirect.com/science/article/pii/S0164121219302328
https://doi.org/10.1109/WICSA.2015.18
https://doi.org/10.1109/CSMR-WCRE.2014.6747199
https://doi.org/10.1109/CSMR-WCRE.2014.6747199
https://doi.org/10.1109/ICCEAI52939.2021.00004
http://www.es.mdh.se/publications/2441-
http://www.es.mdh.se/publications/2441-
https://doi.org/10.1109/QSIC.2009.34
https://doi.org/10.1109/QSIC.2009.34

Bibliography

[24] G. Reichart and R. Asmus, “Progress on the AUTOSAR adaptive platform for
intelligent vehicles,” in Automatisiertes Fahren 2020: Von der Fahrerassistenz
zum autonomen Fahren 6. Internationale ATZ-Fachtagung, Springer, 2021,
pp. 67–75.

[25] J. Henle, M. Stoffel, M. Schindewolf, A.-T. Nägele, and E. Sax, “Architec-
ture platforms for future vehicles: A comparison of ROS2 and adaptive AU-
TOSAR,” in 2022 IEEE 25th International Conference on Intelligent Trans-
portation Systems (ITSC), IEEE, 2022, pp. 3095–3102.

[26] A. Arestova, M. Martin, K.-S. J. Hielscher, and R. German, “A service-oriented
real-time communication scheme for AUTOSAR adaptive using opc ua and
time-sensitive networking,” Sensors, vol. 21, no. 7, p. 2337, 2021.

[27] J. R. Feagin, A. M. Orum, and G. Sjoberg, A case for the case study. UNC
Press Books, 2016.

[28] N. Babich. “Card sorting best practices for UX.” [Online]. (2019), [Online].
Available: https://xd.adobe.com/ideas/process/information-architecture/
card-sorting-best-practices/ (visited on Mar. 22, 2023).

[29] A. H. D. of the English Language. “Focus group.” [Online]. (2022), [Online].
Available: https://www.ahdictionary.com/word/search.html?q=focus+
group (visited on Apr. 26, 2023).

[30] NetworkX. “Networkx.” [Online]. (2023), [Online]. Available: https://networkx.
org (visited on Feb. 3, 2023).

[31] P. Runeson and M. Höst, “Guidelines for conducting and reporting case study
research in software engineering,” Empirical software engineering, vol. 14,
pp. 131–164, 2009.

57

https://xd.adobe.com/ideas/process/information-architecture/card-sorting-best-practices/
https://xd.adobe.com/ideas/process/information-architecture/card-sorting-best-practices/
https://www.ahdictionary.com/word/search.html?q=focus+group
https://www.ahdictionary.com/word/search.html?q=focus+group
https://networkx.org
https://networkx.org

Bibliography

58

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Statement of the Problem
	Research Questions
	Contributions

	Background
	Motor Vehicle Structure
	AUTOSAR Architecture
	Classic AUTOSAR
	Adaptive AUTOSAR

	Volvo Trucks Current Structure
	Volvo Trucks Future Structure
	Current Status

	Related Work
	Software Migration
	Refactoring
	Architecture Recovery
	Service-Oriented Architecture
	AUTOSAR
	Summary

	Methodology
	Interviews
	Data Collection
	Interview Design and Questions
	Data Analysis

	Focus Group
	Discussion Points

	Code Analysis with GRASS
	Reasons for using GRASS
	Technical Details of GRASS
	data_scraper
	Graphs and Metrics

	Results
	RQ1
	Interview Results
	Focus Group Results
	Summary

	RQ2
	Interview Results
	Code Results
	Focus Group Results
	Summary

	RQ3
	Interview Results
	Focus Group Results
	Summary

	RQ4
	Interview Results
	Focus Group Results
	Summary

	Discussion
	RQ1
	RQ2
	RQ3
	RQ4
	Implications for Developers and Architects
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity
	Reliability

	Conclusion and Future Work
	Conclusion
	Future Work

	Bibliography

