
TigerShrimp: An Understandable
Tracing JIT Compiler

Master’s thesis in Computer Science and Engineering

Jakob Erlandsson

Simon Kärrman

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Master’s thesis 2021

TigerShrimp: An Understandable
Tracing JIT Compiler

Jakob Erlandsson
Simon Kärrman

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

TigerShrimp: An Understandable Tracing JIT Compiler

Jakob Erlandsson
Simon Kärrman

© Jakob Erlandsson, 2021. © Simon Kärrman, 2021.

Supervisor: Magnus Myreen, CSE
Examiner: Wolfgang Ahrendt, CSE

Master’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

iv

TigerShrimp: An Understandable Tracing JIT Compiler

Jakob Erlandsson
Simon Kärrman
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Tracing Just-in-Time (JIT) compilers have been used for compiling programs that
regular compilers struggle with. The difference is clearest in dynamically typed
languages such as JavaScript and Python where very little is know about a program’s
behavior before run-time. During run-time, tracing JIT compilers look for loops in
the code and only compile the most commonly taken path through these loops.
Since compilation is a time consuming process, the idea is to only compile code that
is run frequently enough for it to make up the time it takes to compile it. This
works on the assumption that a program spends most of its execution time inside a
few loops.

Commercial tracing JIT compilers are very complex systems integrating many func-
tionalities into a highly efficient program. As such, the general ideas behind tracing
JIT compilers can be quite difficult to understand from reading about these com-
pilers. This project explores the possibility of creating a smaller scale tracing JIT
compiler with the main objective of making it understandable. As far as we know,
this is the first tracing JIT compiler with this stated objective.

Our tracing JIT compiler is designed for understandability meaning much effort
was put into separating the different parts that make up a tracing JIT compiler
into distinct modules, giving a clear overview of the responsibilities of the different
parts and how they interact. Another aspect of understandability is the run-time
visualizing toolkit developed alongside the tracing JIT compiler, this allows for
insight into otherwise unseen functionality of the compiler.

Performance of the compiler is not the main objective of this project, despite this, we
show results highlighting the potential of tracing JIT compilers where our compiler
in some cases outperform the OpenJDK JVM.

Keywords: Compiler, JIT, tracing JIT compiler, programming languages, run-time
visualization, designed for understandability.

v

Acknowledgements
We would like to thank Magnus Myreen for his support and feedback as supervisor
for this project.

Jakob Erlandsson & Simon Kärrman, Gothenburg, June 2021

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Contributions . 3
1.2 Limitations . 3

2 Background 5
2.1 Interpreting . 5

2.1.1 Abstract Syntax Tree Interpreter 5
2.1.2 Pure Byte-Code Interpreter 6
2.1.3 Threaded Code Interpreter . 6

2.2 Profiling of Hot Traces . 6
2.3 Native Code Assembly . 7
2.4 Dynamic Native Code Execution . 7
2.5 Java Virtual Machine . 8

2.5.1 Operand Stack & Variable Store 8
2.5.2 The Java Class File . 9

2.5.2.1 Constant Pool . 9
2.5.2.2 Method Info . 9
2.5.2.3 Attribute Info . 10

2.5.3 Java Byte-Code . 11
2.6 Binary Debuggers . 11

3 Developing a Tracing JIT Compiler for JVM 13
3.1 A Tracing JIT Compiler . 13
3.2 Interpreter . 15

3.2.1 Java Class File Parser . 15
3.2.2 Byte-Code Interpreter . 17

3.3 Profiler . 18
3.4 Recorder . 18
3.5 Compiler . 19
3.6 Assembler . 20
3.7 Executing an Assembled Trace . 20
3.8 Mixed Execution . 21
3.9 Trace Stitching . 22

4 Visualizing Run-Time Behavior 25

ix

Contents

4.1 Implementation . 25
4.2 Example . 26

5 Experiments 39
5.1 Extracting Real Execution Time . 39
5.2 Tests . 41

5.2.1 Simple Looping Programs . 41
5.2.2 Tracing JIT Compilation Pitfalls 42
5.2.3 Exploding Memory Usage Due to Code Duplication 44
5.2.4 Interpreter Fallback . 46

6 Discussion 47
6.1 Understandability . 47

6.1.1 Designed for Understandability 47
6.1.2 Comparisons to Related Work 48

6.2 Results . 49
6.3 Future Work . 50

6.3.1 Optimizing the Compiler . 50
6.3.1.1 Single Static Assignment Form 50
6.3.1.2 Register Allocation 50
6.3.1.3 Constant Propagation 50

6.3.2 Trace Tree Optimization . 51
6.3.3 Showing Source Code in Visualizer 51
6.3.4 Scientific Evaluation of Understandability 51

6.4 Conclusion . 52

Bibliography 53

A Appendix 1 I

B Appendix 2 III

x

List of Figures

1.1 Small example program that in different ways benefits from interpre-
tation and compilation. 1

1.2 A single trace through a code sequence. 2

2.1 Conversion of x86-64 assembler into bits, represented here as hex-
adecimal codes. 7

2.2 Structure of the Java class file. 9
2.3 Structure of the method info entry in the Java class file. 10
2.4 Structure of the code_attribute. 10

3.1 Control flow of run-time loop. Numbers in parenthesis references line
number in Figure 3.2. Note: PC stands for program counter. 13

3.2 Run time loop written in C++ code. 15
3.3 Structure of our parsed program. 17
3.4 Structure of the interpreter’s internal representation of a value. 17
3.5 Example of a byte-code instruction which does the exact same thing

for many types. 18
3.6 Internal representation of a native instruction. 20
3.7 Data structure making it possible to call an address in memory as a

regular C function. 21
3.8 Information needed from within the trace that gets passed as an ar-

gument when a trace is called. 21
3.9 Trace stitching using function calls. 23
3.10 Tail-call optimized trace stitching. 23
3.11 Trace exit handling function. 23

4.1 Chain of operations from the visualizer program. 25
4.2 Example Java code which is run with the visualizer. 26
4.3 JVM byte-code of example in Figure 4.2. Note: Line numbers repre-

sent position in the byte-sequence and is therefore not purely sequential. 26
4.4 Visualizer showing interpretation of byte-code instruction. 27
4.5 Visualizer showing a possible hot loop header. 28
4.6 Visualizer before recording of hot trace starts. 29
4.7 Visualizer during trace recording. 30
4.8 Visualizer showing compiled trace. 31
4.9 Visualizer before executing native trace. 32
4.10 Visualizer showing side exit which might become hot. 33

xi

List of Figures

4.11 Visualizer before recording hot side exit. 34
4.12 Visualizer after compiling side exit trace. 35
4.13 Visualizer showing second side exit which also might become hot. . . 36
4.14 Visualizer before recording second hot side exit. 36
4.15 Visualizer after compiling second side exit. 37
4.16 Visualizer showing the interpreter taking back control after a trace

has finished executing. 38

5.1 Mean execution time in milliseconds of a few test cases, lower is better.
The black lines on each bar represents the standard deviation for
that test. Note that the y-axis uses a logarithmic scale meaning each
”step” represents a tenfold increase in execution time. Exact values
and more information can be found in Table 5.1. 40

5.2 Test case: TwoHotSideExits. 41
5.3 Test case: SingleLoop. 41
5.4 Test case: IsPrime. 42
5.5 Test case: Factorial. 42
5.6 Test case: ChineseRemainder. 43
5.7 Test case: ManyVariables. 44
5.8 Test case: ManyVariablesMulTrace. 44
5.9 How the Java byte-code is structured. 45
5.10 How the generated code is structured. 45
5.11 Test case: LongFibonacci. 46
5.12 Test case: FloatFibonacci. 46
5.13 Test case: DoubleFibonacci. 46

6.1 Control flow of Dynamo. From Bala et al. [1]. Reproduced with
permission. 49

6.2 Example of constant propagation. 51
6.3 Example of constant propagation enabled by tracing. 51

A.1 Example of raw LLDB output. I

B.1 Test case: EvenMoreLoops. IV

xii

1
Introduction

Programming languages are used by programmers to get a computer to solve differ-
ent tasks for them. However, computers cannot directly make sense of anything in
a high-level programming language and as such, certain tools are required to bridge
this gap between the programmers and the computer.

Bridging tools that can be used are, for example, interpreters and compilers.
Interpreters are programs that interpret the code more or less as the programmer
wrote it and evaluate it within the interpreter program. In contrast, compilers
are programs that take the source code and translate it into code that can be run
directly on the computer’s processor. Such code is referred to as native code. For
many programming languages, examples being C and C++, the entire source code
is compiled before the program is actually run. This is referred to as Ahead-of-Time
(AOT) compilation.

The code in Figure 1.1 illustrates an example where both interpretation and
compilation have their benefits and shortcomings. Compiling this code will lead to
the loop executing much faster than it would using interpretation; however, the two
lines before the loop starts will also be compiled even though they only run once and
thus there is not much benefit from compiling them. This would be more noticeable
if the code before the loop was much longer. As such, one can see that this code
could benefit from first interpreting the code that is only executed once and then
only compiling the loop.

1 void foo () {
2 int i = 0;
3 int j = 0;
4 while (i + j < 100000) {
5 i += 1;
6 j += 2;
7 }
8 }

Figure 1.1: Small example program that in different ways benefits from interpre-
tation and compilation.

Just-in-Time (JIT) compilers differ from conventional AOT compilers in that
they do the compilation while running the program rather than before. In addition
to this, they only compile the functions or blocks of the code which are the most
performance critical, meaning the ones that are executed the most. These compilers
have gained popularity lately, in part due to their inclusion into most of the main-

1

1. Introduction

stream web engines [2, 3]. Their usefulness in web applications lies in their ability to
start interpreting immediately and optimizing parts of the code over time through
compilation, leading to fast start up times and eventually optimized programs. Ad-
ditionally, they can take advantage of the dynamic properties of languages which
are determined at run-time. This is something AOT compilers cannot do since they
can only make use of a program’s static information, which for dynamic languages
is not much.

Tracing JIT compilers have all the same benefits as a regular JIT compiler but
base their optimizations on traces rather than blocks or functions. A trace is a
sequence of statements taking exactly one path through the code. Shown in Fig-
ure 1.2 is an example where the red dotted line indicates a single trace through
a block of code. The motivation behind this approach follows from two general
observations [4]:

1. A program spends most of the time in just a few hot loops in the code.
2. Within these loops, where the code can branch to take several paths through

the loops, one of these paths, or traces, is much more commonly taken than
the other ones.

Note that a trace consists of all instructions starting at a loop header and ending
at the end of the loop. Therefore, a trace can span multiple functions as a loop can
contain function calls.

Figure 1.2: A single trace through a code sequence.

Where an AOT compiler only needs to produce native code from source code,
which in itself is a rather complex procedure, a tracing JIT compiler additionally
needs an interpreter for source code, a way to execute native code and a way to
switch between interpreting, compiling and executing native code. One complexity
introduced by this approach is that an interpreter for source code and an interpreter
for native code (also known as a Central Processing Unit or CPU) operate in very
different settings and abstraction levels. Despite this they need to have a way to
communicate information between each other to make this mixed evaluation method
function. This makes tracing JIT compilers more complicated to understand and
maintain.

2

1. Introduction

This thesis reports on our project which set out to explore the possibility of
creating an easily understandable tracing JIT compiler by showing how the im-
plementation can be written to maximize understandability and by visualizing the
run-time behavior of the compiler. We define some criteria for understandability:

• A clear definition of the responsibilities of the different parts that together
form a tracing JIT compiler and how they interact with each other.

• A high degree of separation of concern between these different parts.
• A strong resemblance between the theoretical description, and our implemen-

tation, of a tracing JIT compiler.
At the time of this writing, we have not been able to find any evidence of an attempt
to create a tracing JIT compiler with this main objective.

1.1 Contributions
This thesis shows that it is feasible to develop a tracing JIT compiler designed for
understandability, focusing on a clean and simple implementation. We have also de-
veloped a run-time visualization tool that shows the behavior of our compiler while
evaluating a program which exposes some otherwise hidden functionality from the
viewer. We highlight understandability both in implementation and in extracting
run-time information to more clearly show how the compiler switches from inter-
preting code to compiling and directly executing native code.

1.2 Limitations
The work presented in this thesis project is subject to the following limitations:

• To reduce the scope and focus to mainly the tracing JIT compiler, we consider
a byte-code language as input rather than a high-level programming language.

• While tracing JIT compilation of a dynamic language would be interesting as
this is where most of the commercial tracing JIT compilers operate, we opted
to target Java because its byte-code has clear and well documented semantics.

• We only support a subset of the functionality of Java where only public static
methods written in a single file are included. This limitation makes the thesis
more focused on developing the tracing JIT compiler rather than on the specific
language it implements.

• Similarly, we do not support traces containing function calls.
• When compiling traces, we will only consider generating native machine code

targeting the x86-64 architecture.

3

1. Introduction

4

2
Background

Implementation of a tracing JIT compiler requires familiarity with a number of
concepts:

• Implementing a programming language: this can involve interpretation (2.1)
and/or compilation of the source code as well as combining the two (2.4);

• Machine languages and virtual machines: for this project, this involves the
Java Virtual Machine (JVM) (2.5) and x86-64 (2.3);

• Profiling (2.2) and debugging (2.6): methods for extracting and visualizing
run-time behavior.

This chapter introduces these concepts.

2.1 Interpreting
An interpreter is a program that directly evaluates source code without first com-
piling it into native code. Interpreting can be done during several stages of code
transformation and there are more than one approach for interpreting at any given
stage. In this section we go through some of these approaches.

2.1.1 Abstract Syntax Tree Interpreter
An early step in the evaluation of source code is to parse the code and construct
an abstract syntax tree (AST) which is a grammatical representation of the source
code with no information about how to execute it [5]. This structured syntax can
then directly be interpreted. Transformation into AST is done regardless of whether
the code is to be compiled in any form or interpreted.

This approach leads to very fast startup times since we only have to parse the code
to see that it is syntactically correct before the interpreter starts evaluating. Fur-
thermore AST interpreters are easy to understand and simple to build and maintain.
Because of this, they are often used as a first step when implementing an interpreter
or compiler for a language [6]. They do have their drawbacks though. Since they
do not contain any information about how to execute the source code, they have to
do a lot of unnecessary work on nodes that do not contain any useful information.
Take this example from the SquirrelFish announcement:

”For example, for the block { x++; }, the interpreter would first visit
the block node {...}, which did nothing, and then visit its first child,
the increment node x++, which incremented x.” [5]

5

2. Background

This means that for any practical purpose, one would want to continue devel-
oping their interpreter past this point for increased effectiveness. Compiling the
source code into an intermediate byte-code language gets rid of many of these non-
functional operations and leaves the interpreter to only evaluate what actually mat-
ters to the final result.

2.1.2 Pure Byte-Code Interpreter
A byte-code language is a lower level representation of a high-level language but
still not machine readable. This language can be directly interpreted or further
compiled. A byte-code interpreter relies on that an AST is converted into a sequence
of byte-codes where every byte-code has a clear and predefined function. A byte-code
instruction consists of a few bytes where the first byte has a corresponding mnemonic
describing the functionality of this instruction. The following bytes are parameters
to the instruction. With this the main functionality of a byte-code interpreter is very
simple. Each byte-code is implemented in an addressable form, e.g, a switch/case
structure. The interpreter looks at the byte-code at the current position of the
program counter and moves the control to the code implemented for that byte-code.
This is done in a loop that loops forever so every byte-code implementation need to
return control to the interpreter loop at the end of its implementation [7].

Every byte-code is, as the name might suggest, represented in memory by exactly
one byte and thus it can take 256 values. Even though 256 different operations is
quite many, it still is a limitation on how specific one can make every operation.
Because of this, the operations defined in a byte-code language needs to be quite
general.

2.1.3 Threaded Code Interpreter
Where as a byte-code interpreter constantly needs to read from memory which byte-
code instruction is to be executed next, a threaded code interpreter instead jumps
directly to the next implementation, saving a memory lookup for the address of the
next one, until the program terminates. This saves some overhead at every byte-
code instruction and most importantly skips one memory access instruction and one
jump instruction which are both fairly expensive [7].

For further optimization, one can analyze the byte-code sequence to see if the
same sub-sequence of codes are often executed after each other. In this case one can
extract the resulting functionality of executing these after each other and simply
execute the result instead, saving on even more overhead [7].

The main goal of a threaded code interpreter is to be fast. With this it instead
lacks some understandability and simplicity when it comes to implementation com-
pared to a pure byte-code interpreter.

2.2 Profiling of Hot Traces
There are techniques for finding (with a high degree of confidence) the actual most
common trace through a loop [8, 9] and there are applications that, during run-

6

2. Background

time, use these techniques to increase performance [10]. However, for tracing JIT
compilers it is usually the case that the process of finding these correct traces is
more costly than the benefit of finding them. Instead an assumption is often made
that the first path taken is a common one and thus only this is compiled at the
start [11, 4, 12].

Since multiple paths through the loop can exist, we still need to handle the cases
where the evaluation does not follow the path that was compiled. These cases will
be referred to as side exits from the trace.

2.3 Native Code Assembly
On the left hand side of Figure 2.1 is what we usually refer to as "machine code".
However even this is an abstraction made to make it more readable. Code that a
processor can read directly looks more like on the right hand side of Figure 2.1, which
is simply a string of bytes, here in hexadecimal form for compactness. The process
of converting machine code to its corresponding bytes is what we call assembling.

Figure 2.1: Conversion of x86-64 assembler into bits, represented here as hexadec-
imal codes.

2.4 Dynamic Native Code Execution
Dynamic native code execution refers to running a piece of native code that has
been generated and saved in memory rather than on disc, meaning we can execute
it from within the run-time environment of a program.

The main issue here is to make sure that the state of the interpreter gets trans-
ferred correctly, both before and after a trace has been executed. The state consists
of the program counter, the variables in the local store and the values on the stack.
All of these need to be placed so that the native code can make use of them and
needs to be returned correctly when the trace ends, either normally or via a side
exit.

One approach to keeping the interpreter state synchronized while running na-
tive code is to use an external data structure to communicate the values and state
between the interpreter and the native code. The reference to this data structure
can then be reached from within the native trace and thus all of its values can as
well. The trace updates the values in the external data structure so it is up to the
interpreter to update the state according to these values [12]. Another approach
is by letting the native trace have direct access to the interpreter state by passing
a reference to it, leaving the native code responsible of updating the state before
exiting [13].

7

2. Background

Regardless of which approach is used to updating the values in the interpreter
state, some more information needs to be communicated from running the trace.
We must identify which exit was used to make the interpreter start at the correct
location in the code. Furthermore, when a side exit is used, we need to check if this
exit point has become hot and start recording if it has.

2.5 Java Virtual Machine

The Java Virtual Machine (JVM) is an representation of a hardware computer in
software. It has an executable instruction set and can manipulate a stack and a
variable store which keeps track of values needed to perform the necessary calcula-
tions. Several languages, but most notably Java, are compiled into this intermediate
representation before either being compiled further into native machine-code or in-
terpreted by a specialized program. The byte-code instructions are a part of the
class file produced by a Java compiler. Apart from the actual code, this class file
contains a constant pool with information about methods, variables and constants
as well as other, at times, useful information.

2.5.1 Operand Stack & Variable Store

The JVM is a stack based virtual machine. This means that it does not have any
virtual registers or similar where run-time values can be directly modified. Instead
all operations are done on values located on the operand stack. The operand stack
is a last in first out stack and is specific for every instance of an evaluated method.
This means that the only operations that can be done on the stack is essentially push
and pop so the only directly accessible value on stack is the one that was pushed
last. For example, if one wants to evaluate the expression 2+5 in the JVM, 2 is first
pushed onto the stack followed by 5. Then the addition operation will take the two
topmost operands on the stack and replace them with the result of the operation.

To keep track of the run-time values of a method’s local variables a variable store
is used and JVM provides operations to move values from the top of the stack to
the variable store and vice versa. The local variable store has an array-like structure
where values are accessed via indexing. All the entries in the variable store occupies
32 bits so in order to store 64 bit value like a Long or Double, one has to use two
entries in the store. This means that if a 64 bit value is placed at index i is the next
available entry at index i + 2.

The stack is empty at the beginning of evaluating a method and the arguments
to the method are placed in the variable store starting at index 0. When calling
a method, the arguments are placed onto the callers stack. The JVM then moves
these values from the callers stack into the variable store of the callee method. When
the method returns, the arguments are replaced by the return value of the called
method.

8

2. Background

ClassFile {
u4 magic;
u2 minor_version;
u2 major_version;
u2 constant_pool_count;
cp_info constant_pool[constant_pool_count-1];
u2 access_flags;
u2 this_class;
u2 super_class;
u2 interfaces_count;
u2 interfaces[interfaces_count];
u2 fields_count;
field_info fields[fields_count];
u2 methods_count;
method_info methods[methods_count];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

Figure 2.2: Structure of the Java class file.

2.5.2 The Java Class File
The class file is a series of bytes, Figure 2.2 describes the basic structure of it. Here
u denotes how many bytes needs to be read to retrieve the given information. The
entries cp_info, field_info, method_info and attribute_info have their own separate
structures that are read in a similar way. For our purposes, we only need to read
the constant pool, the methods and some of the attributes in order to create a
functioning interpreter. The actual byte-codes are located in one of the attributes
called code_attribute which in turn is part of the method_info.

2.5.2.1 Constant Pool

Each entry in the constant pool has a tag describing what kind of entry it is as
well as some extra bytes. The number of extra bytes and what they contain differs
depending on the tag.

2.5.2.2 Method Info

The access flag, referenced in Figure 2.3, describes if the method is public, private,
static, etc. Name index and descriptor index refers to entries in the constant pool.
The name index gives us the name of the method and the descriptor index gives
us the return type as well as the types of the method’s arguments. The method
descriptor string is of the form (T1T2)T3 where T1 and T2 are argument types and T3
is the return type. Each method must have exactly one return type and zero or more
argument types. To extract the actual byte-codes that represent the functionality
of the method one needs to parse the attribute_info entry and more precisely the

9

2. Background

method_info {
u2 access_flags;
u2 name_index;
u2 descriptor_index;
u2 attributes_count;
attribute_info attributes[attributes_count];

}

Figure 2.3: Structure of the method info entry in the Java class file.

code_attribute which is described in 2.5.2.3.

2.5.2.3 Attribute Info

An attribute entry is similar to a constant pool entry in that it has a tag describing
what type of attribute it is. There are many different attributes that are more or less
important depending on how much of the Java language one wants to support. For
example, there are entries only used for debugging purposes and others for handling
imported modules. The only one we need in order to parse the program is the code
attribute.

Code_attribute {
u2 attribute_name_index;
u4 attribute_length;
u2 max_stack;
u2 max_locals;
u4 code_length;
u1 code[code_length];
u2 exception_table_length;
{ u2 start_pc;

u2 end_pc;
u2 handler_pc;
u2 catch_type;

} exception_table[exception_table_length];
u2 attributes_count;
attribute_info attributes[attributes_count];

}

Figure 2.4: Structure of the code_attribute.

From the structure, shown in Figure 2.4, we extract some information. The code
list, which format is described in more detail in 2.5.3, as well as the max_stack and
max_locals values.

10

2. Background

2.5.3 Java Byte-Code
Here, one byte represents either an instruction mnemonic or a parameter to an
instruction. Each instruction has a specific number or parameters, usually zero,
one or two but some special instructions have many more. The functionality of
these instructions can be divided into different categories such as constant, load
and arithmetic instructions. They have more or less descriptive names and further
descriptions of their intended functionality can be found in documentation [14].
Most of the instructions operate only on the stack, variable store and/or the program
counter and are as such, very easy and straight forward to implement. Where it
gets a little more tricky is when we need to handle references, method calls as well
as some long and double valued constants. In this case we also need to access some
locations in the constant pool.

2.6 Binary Debuggers
A debugger is a program, like the name might suggest, that is often used to eliminate
bugs in programs. The way a debugger does this is to show the developer the run-
time behavior of their program and in that way help to understand why a bug occurs.
Debuggers support a wide range of operations, among these are the three most basic
operations: Starting a program within the debugger, pausing the program execution
when predefined conditions are met, and showing the program’s state. The state in
this sense can refer to, for example, types and values of variables defined within the
program and also underlying state of the system such as what values are located in
actual registers of the computer and the contents of the stack and memory [15].

The way a debugger can show the state of variables in a program is not a straight
forward task. This is because a debugger is most often provided a program exe-
cutable in binary form where most of the context of variables have been removed by
the compiler during compilation. So the task of the debugger is to reconstruct the
original program with variables and statements from its internal state. To make this
possible the compiler will, if asked, generate debug information during compilation.
This information is structured in a way which makes it possible for the debugger
to reconstruct the original program at run-time. This information contains, for ex-
ample, names and types of variables as well as in which module and file it was first
defined. It also contains information about methods and also decisions made by the
compiler, for example, how it decided to store a structure in memory [15].

There are three major C++ debuggers targeting different platforms. Microsoft’s
Visual Studio debugger mainly targets Windows [16], GNU’s GDB which is the de
facto standard for Unix systems [17] and LLBD which comes pre-installed on MacOS
systems [18].

11

2. Background

12

3
Developing a Tracing JIT

Compiler for JVM

This chapter will provide a high-level description of a tracing JIT compiler as well
as an in-depth explanation of the different steps required to implement a tracing
JIT compiler.

3.1 A Tracing JIT Compiler
A tracing JIT compiler consists of several parts handling the different stages of
evaluation. The different stages are interpretation, profiling of hot loops, recording
of traces, compilation of traces and execution of native code. In our tracing JIT
compiler, there is a central run-time loop that dispatches the modules handling these
stages.

Figure 3.2 shows the central run-time loop in the code and Figure 3.1 shows the
general control flow of it.

Figure 3.1: Control flow of run-time loop. Numbers in parenthesis references line
number in Figure 3.2. Note: PC stands for program counter.

13

3. Developing a Tracing JIT Compiler for JVM

A tracing JIT compiler starts by interpreting a sequence of byte-code instructions.
During interpretation, it keeps track of every time the program enters each loop in
the interpreted byte-code instructions and increments a counter associated to that
specific loop. Once a loop has been entered a predetermined number of times, it is
considered hot and recording starts.

Recording produces a trace that describes exactly one path through the code but
it is not necessarily the case that this path will be taken every time the code is
run. To this end, we must ensure that we can interrupt the execution of a trace if
an alternate path is taken and give back control to the interpreter which starts up
again at the point of exit.

During recording, each instruction and the state of the interpreter is saved at
every iteration of the run-time loop. This is done for every instruction until the
program counter returns to the loop header at the start of the trace. These instruc-
tions can then be compiled and saved in run-time memory so that the next time the
program counter reaches the loop header, the interpreter gives up control and the
compiled code will run instead.

In the event of an early exit, we treat the next instruction as a loop header
regardless of what it actually is. This is because if a trace takes an alternate path a
high number of times, then we have several hot traces through one loop and we will
benefit from compiling all of them. We must construct these traces so that when a
side exit is taken into a different trace, we do not give back control to the interpreter
before running the next trace but handle this inside the trace itself. This saves time
due to reduced overhead.

14

3. Developing a Tracing JIT Compiler for JVM

1 void RunTime :: run(Program * program) {
2 initProgramState (program);
3 // Having an empty state stack means the evaluated program has
4 // reached the return statement in its main method and thus has
5 // finished and we can terminate .
6 while (! program -> states .empty ()) {
7 State *state = program -> states .top ();
8 ProgramCounter pc = state ->pc;
9 if (traceRecorder . isRecording () &&

10 traceRecorder . recordingDone (pc)) {
11 Recording recording = traceRecorder . getRecording ();
12 Trace trace = compiler . compileAndInstall (
13 program -> methods [pc. methodIndex]. maxLocals , recording);
14 traceHandler . insertTrace (recording .startPc , trace);
15 }
16 if (traceHandler . hasTrace (pc)) {
17 ProgramCounter exitPc = traceHandler . runTrace (state);
18 profiler . countSideExitFor (exitPc);
19 if (profiler .isHot(exitPc)) {
20 ProgramCounter loopHeaderPc = pc;
21 traceRecorder . initSideExitRecording (loopHeaderPc , exitPc);
22 }
23 state ->pc = exitPc ;
24 }
25 else {
26 ByteCodeInstruction inst = interpreter . prepareNext (program);
27 profiler . countVisitFor (pc);
28 if (profiler .isHot(pc)) {
29 traceRecorder . initRecording (pc);
30 }
31 if (traceRecorder . isRecording ()) {
32 traceRecorder . record (pc , inst);
33 }
34 interpreter . evalInstruction (program , inst);
35 }
36 }
37 }

Figure 3.2: Run time loop written in C++ code.

3.2 Interpreter
In this section we will go through the steps we took to constructing an interpreter
capable of evaluating JVM byte-code produced by a Java compiler.

3.2.1 Java Class File Parser
Most of the fields in the Java class file are unnecessary for our purposes, either way
we must parse them to keep track of where in the file we are, but we do not need to
save them. Some fields require a bit more analysis than others.

15

3. Developing a Tracing JIT Compiler for JVM

Constant Pool

The entries in the constant pool represent different parts of the source code but in
the class file they are all structured the same way. As such, we read the entries as
specified and save the information in a super class called CPInfo. We save these in
this more general form since the order of these entries are important to preserve.
This because when entries in the constant pool are referenced in the actual code it
is only by the index of the entry.

When we need to access something from the constant pool during interpretation,
we will know from the context which type of CPInfo is supposed to referenced to.
Exceptions to this is the CONSTANT_Long_info and CONSTANT_Double_info
entries as the byte-codes instruction does not give any hint as to which one to
use and their data is extracted the same way. This means in order to figure out
what type the value is supposed to have, we must look at the corresponding tag
of the entry to figure it out. The same holds for CONSTANT_Integer_info and
CONSTANT_Float_info.

One thing to note about the constant pool is that every constant except for two
special ones takes up exactly one entry in the constant pool, even if some of them
are lists or string constants. These two are the long and double constants that take
up two entries which is something to pay special attention to. As Lindholm et. al.
put it:

”In retrospect, making 8-byte constants take two constant pool entries
was a poor choice.” [14]

Another odd thing about the constant pool is that the first entry is at index number
1 which is unlike most programming conventions and thus can lead to confusion if
not considered.

Attributes

The JVM specification states that in order to correctly interpret a JVM program
there are six special attributes needed to be able to handle. However, for the purpose
of this thesis project the only attribute needed is the Code_attribute, which is shown
in Figure 2.4.

Program structure

We transform the contents of the parsed class file into the form in which we define a
program. Figure 3.3 shows two data structures, Program and Method, they contain
all the information that is needed in order to correctly evaluate the input program.
Type is an enumeration that represents the types that are currently supported, which
is Int, Float, Long and Double. The states stack represents the run-time state of
the interpreter. The top item on this stack contains the program counter, operand
stack and variable store for the method currently being interpreted. When a method
is called in the program being interpreted, a new state is placed on top of the states
stack, when a method returns, the state on top of the states stack is reomved.

16

3. Developing a Tracing JIT Compiler for JVM

1 struct Method {
2 int nameIndex ;
3 Type retType ;
4 std :: vector <Type > argTypes ;
5 int maxStack ;
6 int maxLocals ;
7 std :: vector <uint8_t > code;
8 };
9

10 struct Program {
11 std ::map <int , CPInfo *> constantPool ;
12 std ::map <int , Method > methods ;
13 std :: stack <State*> states ;
14 };

Figure 3.3: Structure of our parsed program.

3.2.2 Byte-Code Interpreter
Our interpreter is implemented in such a way that it takes a state as a parameter
and modifies its stack and variable store according to what the next instruction in
the state is. Rather than allowing the interpreter itself to be the run-time loop,
we instead let the main run-time loop utilize the interpreter when compiled traces
are not available. This makes us more able to provide a clear description of the
functionality of our program, which is shown in Figure 3.2.

The operand stack and variable store can contain variables of any number of
different types at the same time and in no particular order. As such, we need a
way to represent any value with a single type. We created the Value struct seen
in Figure 3.4 so that every type does not require its own stack and variable store.
The union keyword means that the struct can assume exactly one of the types
described and will always reserve enough memory for the largest type. This practice
of encapsulating values in more general types is commonly referred to as boxing [13].

1 struct Value {
2 Type type;
3 union Data {
4 int intValue ;
5 long longValue ;
6 float floatValue ;
7 double doubleValue ;
8 } val;
9 };

Figure 3.4: Structure of the interpreter’s internal representation of a value.

Because of this abstraction many of the type-specific byte-code instructions can
be done in the exact same way using this struct, Figure 3.5 is an example of this
where ”ILOAD_0” is the instruction that takes the int value from address 0 in the

17

3. Developing a Tracing JIT Compiler for JVM

variable store and puts it on top of the operand stack,”FLOAD_0” is the same but
for a Float value and so on.

1 case ILOAD_0 :
2 case LLOAD_0 :
3 case FLOAD_0 :
4 case DLOAD_0 : {
5 program ->load (0);
6 break;
7 }

Figure 3.5: Example of a byte-code instruction which does the exact same thing
for many types.

Expressions are evaluated left to right and as such we need to pay attention to
the order in which we push and pop values to the stack. Take as an example the
expression 6/3, the equivalent Java byte code is:
ICONST 6
ICONST 3
IDIV

When the IDIV instruction is evaluated, the stack contains a 3 and a 6, in that order.
We can only access the topmost element of a stack so the first value popped will
represent the right hand side of the division expression. This order of evaluation
is the same for all binary operations, but as some are reflexive, for example the
addition function, it does not always matter.

3.3 Profiler
In order to find hot loop headers, we assume that every branch instruction that
moves the interpreter’s position in the code backwards has a loop header as its
target. The interpreter’s position in the code is described by both the index of the
method currently being interpreted and the program counter within that method.
Therefore we need a method index in addition to the program counter to distinguish
the program counter’s position in the code.

The program counter at the first instruction in each method is zero. Because of
this, a method call would look like a branch back to the start of a loop header if
we only looked at the program counter, therefore only branches backwards which
do not affect the method index are counted. The profiler keeps track of the number
of jumps to each loop header and once this number is higher than a predetermined
threshold (in our case 2) that loop is considered hot and will be recorded.

3.4 Recorder
In essence, recording of a trace involves saving each byte-code instruction and the
program counter at each instruction until the start of the trace is reached again.

18

3. Developing a Tracing JIT Compiler for JVM

However there are some additional things we can do at this stage to help simplify
the compilation later on.

During recording, we pay special attention to jump instruction. The parameter to
jump instructions is relative to the position of the instruction, as such it is negative
for backward jumps and positive for forward jumps. A trace takes exactly one path
through the code and conditional jumps move the program counter to two possible
locations: either directly after the jump instruction, we call this the fall-through
option, or to some instruction further ahead. One of these jumps is always out of
the trace and to simplify compilation we want the fall-through option to always
continue in the trace. This means that we might have to invert the direction of
some conditional jump instructions when recording.

On the other hand, when it comes to unconditional jump instructions, we inter-
pret backward jumps as jumps to the start of the trace while unconditional forward
jumps within a trace have no semantic meaning as we can simply read the instruc-
tion it jumps to as the next recorded instruction. Because of this, we omit these
forward branch instructions during recording and compilation.

We need a way to distinguish between the different jump targets, both to keep
track of different side exits and in order to correctly place labels in the compiled
code. As such, we calculate the target of each jump instruction depending on its
offset. Together with the recorded trace, we provide the compiler with a list of these
jump targets.

Furthermore, some of the byte-code instructions, for example, ISTORE which
usually takes a parameter, also have some specific parameter-less variants for the
lowest addresses in order to reduce the size of the class file. These are for example
ISTORE_0 and ISTORE_1. While recording, we convert all the parameter-less
versions of these byte-code instructions into parameterized ones to reduce code du-
plication in our compiler’s source code.

Lastly, in the event that we start recording instructions that are outside of the
loop, we must immediately stop recording as we might never return to the loop
header. This can happen if the recording starts on the exact same iteration on
which the looping would end. This is solved by restarting the recording if a new hot
loop is encountered before the first recording finishes.

3.5 Compiler
Our compiler takes a series of byte-code instructions and translates them into a series
of native x86-64 instructions. Our representation of a native instruction, shown in
Figure 3.6, consists of a mnemonic and two operands. For some mnemonics, one or
both of these operands are not set as that mnemonic has zero or one operands. Our
operands are similar to the Value structure, described in Section 3.2.2, in that they
consist of a type and a field of data. These types are register (general purpose and
xmm), memory location, immediate value or label.

The recorded byte-code instructions are compiled in a single pass from top to
bottom. Since what we are compiling is a stack-based byte-code language, the
compiler needs an internal stack in order to keep track of the values used in certain
instructions. As a result of this, we do not generate native code for every byte-code

19

3. Developing a Tracing JIT Compiler for JVM

1 struct Instruction {
2 x86 :: Mnemonic inst;
3 Op op1;
4 Op op2;
5 };

Figure 3.6: Internal representation of a native instruction.

instruction by itself. For example, the ICONST instruction simply places a value on
top of the compiler’s stack to be used at a later point, where as an instruction like
ILOAD actually generates a MOV instruction to place a value in a usable register.

The recorded trace contains a number of branch instructions. All of these, except
the one that branches back to the start of the trace, are branches that will end the
execution of this trace. We call these exit points, how we handle exiting a trace is
described in detail in Sections 3.8 and 3.9. The compiler needs to generate code for
each of these exit points to communicate to the rest of the program which exit was
used.

3.6 Assembler
The task of the assembler is to take the native instructions produced by the compiler
and create a corresponding string of bytes to send to the processor. For the purpose
of efficiency, modern processor architectures can have different byte representations
corresponding to the same mnemonic depending on what its operands are. For ex-
ample, in the two instructions MOV RAX, RBX and MOV RAX, 10, the MOV mnemonic
will be encoded to 0x89 and 0xc7 respectively. Because of this, the task of building
an assembler from scratch is beyond the scope of a project this size so we opted
to use the C++ library called ”AsmJIT” instead [19]. AsmJIT provides us with
tools to create the byte string corresponding to the native instructions that we give
it while still being flexible enough to let us handle memory allocation and native
execution ourselves.

3.7 Executing an Assembled Trace
Provided a list of bytes there are some steps to be taken in order to be able to
execute it as native code.

We check whether we need to allocate more memory to store the trace. Whenever
we need to allocate more memory we can only do it in contiguous chunks of memory
of predetermined size, so called pages. Therefore we need to look at how many bytes
the trace consists of in order to know how many pages are needed to accommodate
the entire trace. We also need to make sure that these memory pages are both
writable and executable which is simple enough in C++.

Since we need to allocate whole pages and a page is large relative to the size of
most traces (on most modern architectures, a page is 4096 bytes) it is likely that
we can fit more than one trace onto a single page. We accomplish this memory

20

3. Developing a Tracing JIT Compiler for JVM

handling by using a cursor to keep track of the last written position in memory and
compare it to where the page ends in order to figure out if the trace will fit on the
page.

Once the memory allocation is figured out, we can start writing our trace into
sequential memory. We store the memory address where the trace starts into the
startAddr pointer seen in Figure 3.7. After the trace is written, we can use the
function pointer execute to call the trace as normal C++ function in which case
the native code will be executed until exiting the trace.

1 typedef long (* pfunc)(void*, void *);
2

3 union TracePointer {
4 pfunc execute ;
5 uint8_t * startAddr ;
6 };

Figure 3.7: Data structure making it possible to call an address in memory as a
regular C function.

3.8 Mixed Execution
Evaluating a program with a tracing JIT compiler requires us to interpret byte-
code instructions as well as executing native code and switching between these two
modes. Since we are evaluating the same program with both these methods, we need
to make the variables in the variable store accessible and modifiable from within the
trace.

Making the variables in the variable store accessible to the native trace involves
creating a list of the values and passing this list as an argument to the trace. The
index of each value in this list is its corresponding key in the variable store. Since we
know the types of all variables during compile time, we can create the appropriate
native instructions to correctly interpret the values of the variables. From within
the trace we can now access each value as they are all placed sequentially in memory
before the trace is called.

In addition to the list of local variable values, a native trace also needs access all
other compiled traces available, the reason for this is explained in Section 3.9. All
the external information needed by the trace is contained in the data structure in
Figure 3.8, which is passed as an argument to the native trace.

1 struct ExitInformation {
2 Value :: Data* variables ;
3 uint8_t ** traces ;
4 };

Figure 3.8: Information needed from within the trace that gets passed as an
argument when a trace is called.

21

3. Developing a Tracing JIT Compiler for JVM

When exiting the trace, the values that we read before entering the trace are
written back to the variable store at their correct location which we get from their
index in the list. In addition to this, we also need to change the program counter
so that the interpreter starts reading from the correct location in the byte-code
instruction sequence. Since a trace can have multiple exit points, we assign each
exit point an id, this id is the return value of the trace. We can then use this
id to look up where the interpreter is supposed to continue by referencing a map
constructed during compilation.

3.9 Trace Stitching
Different parts of the code get compiled during evaluation, if one of these parts
starts where another one ends, we can execute both of them as if they were one
continuous trace. This saves some time as switching between the interpreter and
executing native code comes with quite a lot of overhead. One situation where a
trace stars where another one ends is when a side exit from a trace is taken enough
times to be considered hot.

When a side exit gets hot, it will be recorded and compiled like any other trace.
Since we only compile the side exit and do not recompile the original trace, the two
traces are now separate and as such we need a way to run the side exit trace without
having the interpreter take back control in between.

If there is a compiled trace starting at the interpreters current position, the
interpreter will call this trace as a function. When a trace reaches an exit, the
trace will call the helper function handleTraceExit seen in Figure 3.11 providing a
unique exit ID depending on which exit was reached. If there is a compiled trace at
this exit ID, this trace will be called by the helper function. If not, the exit ID will
be returned to the interpreter.

The handleTraceExit function is called each time any trace reaches any exit,
as such, the chain of function calls originating from the interpreter can become
very long. The return value is that of the last called function and this value is not
affected by the chain of function calls and as such it is very inefficient, both in terms
of memory and time consumption, to carry this return value back through the chain
of calls. Figure 3.9 illustrates this chain.

To reduce the computational overhead produced by calling this many functions,
we apply tail calls to and from the handleTraceExit function. To this end, the
function in Figure 3.11 is never actually called but instead the control flow is explic-
itly moved to the start of this function each time a trace reaches an exit. Similarly,
this function doesn’t call traces as functions but instead jumps to the address where
the trace starts. Using this approach, only the last function in the chain returns
and since the only function call made was from the interpreter, the return address
is in the interpreter as expected. This approach is illustrated in Figure 3.10.

During trace compilation, it is easy to replace a call instruction by a jump in-
struction to achieve the behavior shown in Figure 3.10. Most C++ compilers are
able to perform this optimization but to ensure that the handleTraceExit function
always uses tail-calls, we decided to write an equivalent function to the one shown
in 3.11 in inline assembly.

22

3. Developing a Tracing JIT Compiler for JVM

Figure 3.9: Trace stitching using
function calls.

Figure 3.10: Tail-call optimized
trace stitching.

1 int handleTraceExit (ExitInformation * info , int exitId) {
2 if (info -> traces [exitId] != 0) {
3 TracePointer tracePointer ;
4 tracePointer . startAddr = info -> traces [exitId];
5 return tracePointer . execute ((void *)info ,
6 (void *)(& handleTraceExit));
7 } else {
8 return exitId ;
9 }

10 }

Figure 3.11: Trace exit handling function.

23

3. Developing a Tracing JIT Compiler for JVM

24

4
Visualizing Run-Time Behavior

To illustrate the workings of the tracing just-in-time compiler, we have developed a
visualization toolkit that makes it possible to see what the tracing JIT compiler is
doing. We developed the visualizer to be separate from the compiler, both to keep
the compiler as simple as possible, and for the compiler to work entirely regardless
of whether or not the visualizer is running. As such, we designed the visualizer as a
program which in turn runs the compiler on some source code.

4.1 Implementation

An overview of how the visualizer operates is shown in Figure 4.1. The visualizer
takes some source program as input and runs the compiler on that source while
extracting information from the compiler’s run-time. We achieve this by using a
binary debugger for C++, specifically LLDB, which allows us to set break points
at certain points of the run-time loop seen in Figure 3.2. We can expose the values
of variables in all different components as well as the processor’s registers. The
raw output of LLDB, while structured and informative, is not very readable, see
Figure A.1.

Figure 4.1: Chain of operations from the visualizer program.

We use unix pipes to make our visualizer program write to standard input of
the LLDB process and to redirect LLDB’s standard output back to the visualizer.
We want to know the values exposed by LLDB in every iteration of the run-time
loop, LLDB provides functionality for this in the form of stop hooks in which we
can define some commands that should be run every time LLDB stops at a break
point.

We chose to implement the visualizer in Python since most of the work it is doing
is handling strings which is very easily done in Python. Performance is not a big
factor in the visualizer as the debugging process is comparatively slow, so the other
benefits of Python make up for the lower performance in this case.

25

4. Visualizing Run-Time Behavior

4.2 Example
In this section, we will show the behavior of our tracing JIT compiler using our
visualizer. The method that is evaluated is shown in Figure 4.2 and Figure 4.3 shows
the byte-code instructions generated by compiling it. This method is interesting as it
illustrates the functionality of the different parts of our tracing JIT compiler. There
are three paths through the loop and they will all, at some point, be considered
hot. This means that there will be three separate phases of recording and compiling
during execution. An example in video form can be found on YouTube1.

1 public static void foo () {
2 int i = 0;
3 for (int j = 0; j < 100000; j++) {
4 if (j > 66666) {
5 i += 1;
6 } else if (j > 33333) {
7 i += 2;
8 } else {
9 i += 3;

10 }
11 }
12 }

Figure 4.2: Example Java code which is run with the visualizer.

public static void foo ();
Code:

0: ICONST_0
1: ISTORE_0
2: ICONST_0
3: ISTORE_1
4: ILOAD_1
5: LDC 100000
7: IF_ICMPGE 36

10: ILOAD_1
11: LDC 66666
13: IF_ICMPLE 9
16: IINC 0 1
19: GOTO 18
22: ILOAD_1
23: LDC 33333
25: IF_ICMPLE 9
28: IINC 0 2
31: GOTO 6
34: IINC 0 3
37: IINC 1 1
40: GOTO -36
43: RETURN

Figure 4.3: JVM byte-code of example in Figure 4.2. Note: Line numbers represent
position in the byte-sequence and is therefore not purely sequential.

1Video example: https://www.youtube.com/watch?v=v_Y4rq2IsPI

26

https://www.youtube.com/watch?v=v_Y4rq2IsPI

4. Visualizing Run-Time Behavior

Figure 4.4: Visualizer showing interpretation of byte-code instruction.

Figure 4.4 shows the visualizer while the tracing JIT compiler is performing pure
byte-code interpretation. At this time, the visualizer presents some data to the
viewer. First, the values contained in the general purpose registers, which in a
sense is the lowest level representation of data in the compiler process. Also, we see
the some byte-code instructions and an arrow indicating which instruction is to be
evaluated next. This is to give the viewer an overview of program during execution.
We also see the values placed in the local variable store as well as the top most values
of the operand stack. In the top-left corner, we can see which state our tracing JIT
compiler is currently in.

27

4. Visualizing Run-Time Behavior

Figure 4.5: Visualizer showing a possible hot loop header.

In Figure 4.5, we see that one line in the code has turned red and has a number
after it. This means that the profiler has identified a loop header and started
counting the number of iterations this loop has been run.

28

4. Visualizing Run-Time Behavior

Figure 4.6: Visualizer before recording of hot trace starts.

At the point shown in Figure 4.6 the loop header profiled in the previous step has
been identified as hot and therefore recording will start. This is shown both by the
blue text in the top-left corner and by the new column header below the registers.

29

4. Visualizing Run-Time Behavior

Figure 4.7: Visualizer during trace recording.

As the trace recorder records byte-codes, they turn purple in the visualizer to
show that they are part of a trace. This is shown in Figure 4.7. We can see in the
recorded instructions that some of them have changed, for example on line 4 where
ILOAD_1 becomes the parameterized version ILOAD 1. A more drastic change can
be seen on line 6 in the recording, where we recorded the instruction IF_ICMPLE
meaning to branch if one value is less than or equal to the other one, however the
result is the instruction IF_ICMPGT. The new branch instruction is the opposite of
the old one, the reasoning behind this is explained in Section 3.4. We can also clearly
see that a trace does not need to be one contiguous block of code.

30

4. Visualizing Run-Time Behavior

Figure 4.8: Visualizer showing compiled trace.

Figure 4.8 shows that the program counter is back at the start of the loop.
Therefore, the trace recording is finished and the trace is compiled. Now we can
see the entire recorded sequence of instructions and what the generated native code
looks like. Interesting to note is that the actual native code corresponding to the
recorded trace is only the lines between label_4 and JMP label_4, more specifically
between line 5 and 17, so much of the generated native code has to do with handling
entering and exiting traces.

On line 6 which says MOV RSI, [RDI + 8] we put the value of a variable in the
variable store into a register. As discussed in Section 3.8, we pass a list containing

31

4. Visualizing Run-Time Behavior

the values of the variables in the local variable store as an argument to the trace.
The register RDI contains a reference to this list and therefore we can index it to
retrieve the values.

Figure 4.9: Visualizer before executing native trace.

The recorded trace has now been compiled and placed into executable memory.
Now when the interpreter continues, it detect that there is a native trace starting
at its current position and will execute this trace. This is shown in Figure 4.9.

32

4. Visualizing Run-Time Behavior

Figure 4.10: Visualizer showing side exit which might become hot.

At this point, shown in Figure 4.10, we can see that we have exited the native
trace. We have no way of visualizing when native code is executed so we rely on the
fact that the variables in the local variable store have changed to see that we got the
expected outcome from running the trace. As we want to be able to recognize hot
side exits we can see that this exit is now being profiled by the profiler even though
is not a loop header.

33

4. Visualizing Run-Time Behavior

Figure 4.11: Visualizer before recording hot side exit.

This is now the third time the trace has exited into this one side exit. As such,
it is considered hot and we will start recording from where the exit starts. See
Figure 4.11.

34

4. Visualizing Run-Time Behavior

Figure 4.12: Visualizer after compiling side exit trace.

In Figure 4.12, we see that we have now recorded and compiled the side exit
trace. Note that we finish recording not when the program counter reaches the
point where recording started, but rather where the actual trace begins, which in
this case is the start of the loop. One can see that the instruction GOTO 6 is missing
from the recording, this is because unconditional forward jumps has no function in
a trace as discussed in Section 3.4.

35

4. Visualizing Run-Time Behavior

Figures 4.13, 4.14 and 4.15 show the same steps as Figures 4.10, 4.11 and 4.12
for a second hot side exit.

Figure 4.13: Visualizer showing second side exit which also might become hot.

Figure 4.14: Visualizer before recording second hot side exit.

36

4. Visualizing Run-Time Behavior

Figure 4.15: Visualizer after compiling second side exit.

37

4. Visualizing Run-Time Behavior

Figure 4.16: Visualizer showing the interpreter taking back control after a trace
has finished executing.

Figure 4.16 shows the visualizer after exiting the trace when the loop has finished.
We can see that the entire loop has been compiled while the code before and after
the loop, which was only run once, has not been compiled.

38

5
Experiments

In this chapter, we discuss the result of some experiments carried out to test the
performance of our tracing JIT compiler. In order to have something to compare
against, we evaluate the programs in three different ways: (1) pure byte-code in-
terpretation using our JVM interpreter, (2) our tracing JIT compiler and (3) using
OpenJDK 15 [20] as a base line. We use OpenJDK’s Java compiler to generate the
class files of the test programs and all timings are the average over 1000 test runs.

5.1 Extracting Real Execution Time

Compared to our compiler, OpenJDK’s JVM has a notoriously long start-up time.
This means that comparing the total running time of the Java process to our com-
pilers process while evaluating a program would be highly misleading. In order to
calculate the actual execution time of OpenJDK, we extract a log file generated
at run-time. This log contains the tasks performed by the JVM accompanied with
timestamps. We are interested in two timestamps: the first when initialization of the
JVM is complete and the actual test file is loaded, the second when the JVM starts
its shutdown process. We consider the difference between these two timestamps to
be the actual execution time of the program.

Note that there is no one correct way of extracting the execution time of the JVM
so this is simply a heuristic used to try to get a fair comparison.

Measuring the execution time of our compiler involves measuring the time spent
in the main loop in the code in Figure 3.2. This means we disregard the time spent
parsing the program and only consider the actual execution time. For the sake of
comparison, parsing a program the size of the test-cases takes around five to six
milliseconds.

39

5. Experiments

Figure 5.1: Mean execution time in milliseconds of a few test cases, lower is better.
The black lines on each bar represents the standard deviation for that test. Note
that the y-axis uses a logarithmic scale meaning each ”step” represents a tenfold
increase in execution time. Exact values and more information can be found in
Table 5.1.

Test name SLOC Interpreter Tracing Java #Traces Traces size
TwoHotSideExits 15 2092.4ms 3.9ms 5.4ms 3 195B
EvenMoreLoops 53 0.8ms 2.6ms 0.7ms 15 1677B
SingleLoop 10 2422.6ms 2.3ms 5.1ms 1 73B
ChineseRemainder 34 0.6ms 0.9ms 0.8ms 1 149B
Factorial 11 0.2ms 0.5ms 0.8ms 1 65B
IsPrime 21 1061.6ms 3.0ms 5.4ms 2 193B
LongFibonacci 11 83.0ms 191.5ms 1.4ms 0 0B
FloatFibonacci 11 103.3ms 216.8ms 2.0ms 0 0B
DoubleFibonacci 11 119.5ms 226.3ms 2.1ms 0 0B
ManyVariables 30 231.1ms 1.3ms 1.2ms 1 449B
ManyVariablesMulTrace 40 249.6ms 3.6ms 1.4ms 4 1936B

Table 5.1: Exact measurements from tests carried out. SLOC stands for ”Source
lines of code” and is a measure for the actual number of executable lines of code in
a file.

40

5. Experiments

5.2 Tests

In this section, we provide a detailed explanation of the different test programs
which produced the results shown in Figure 5.1 and Table 5.1.

5.2.1 Simple Looping Programs

1 public class TwoHotSideExits {
2 public static void main(String [] args) {
3 int i = 0;
4 for (int j = 0; j < 300000; j++) {
5 if (j < 100000) {
6 i += 1;
7 } else if (j < 200000) {
8 i += 2;
9 } else {

10 i += 3;
11 }
12 }
13 System .out. println (i);
14 }
15 }

Figure 5.2: Test case: TwoHotSideExits.

1 public class SingleLoop {
2 public static void main(String [] args) {
3 int j = 1;
4 for (int i = 0; i < 500000; i++) {
5 int k = i + j;
6 j = k;
7 }
8 System .out. println (j);
9 }

10 }

Figure 5.3: Test case: SingleLoop.

The tests TwoHotSideExits, SingleLoop and IsPrime (seen in Figures 5.2, 5.3
and 5.4) are examples of where the power of tracing JIT compilation is clearly
shown. The feature these programs have in common is that they contain loops
that run for many iterations. As such, most of the iterations are spent executing
native code; this is also true for when the code branches and we get several traces
as in TwoHotSideExits. These examples also clearly show that pure byte-code
interpretation is not viable in the long run.

41

5. Experiments

1 public class IsPrime {
2 public static void main(String [] args) {
3 int potentialPrime = 104729;
4 int largestCheck = integerRoot (potentialPrime);
5 for (int i = 2; i < largestCheck ; i++) {
6 if (potentialPrime % i == 0) {
7 System .out. println (0);
8 return ;
9 }

10 }
11 System .out. println (1);
12 }
13

14 public static int integerRoot (int num) {
15 for (int i = 1; i < num; i++) {
16 if (num % i == i) {
17 return i;
18 }
19 }
20 return num;
21 }
22 }

Figure 5.4: Test case: IsPrime.

5.2.2 Tracing JIT Compilation Pitfalls

1 public class Factorial {
2 public static void main(String [] args) {
3 int f = factorial (12);
4 System .out. println (f);
5 }
6

7 public static int factorial (int n) {
8 int accumulator = 1;
9 for (int i = 2; i <= n; i++) accumulator *= i;

10 return accumulator ;
11 }
12 }

Figure 5.5: Test case: Factorial.

There are pitfalls for tracing JIT compilers where some loops are encountered just
enough times to be considered hot but not much more. In this case, a lot of time is
spent compiling code but no real benefit is gained from it as the generated native
code is run very little or not at all. Examples of this can be seen in the tests
EvenMoreLoops (located in Appendix B due to its size), ChineseRemainder and
Factorial seen in Figures B.1, 5.6 and 5.5.

EvenMoreLoops is a test case designed specifically to be a trap for this kind of
behavior as every loop is run enough times to be compiled into native code but then

42

5. Experiments

1 public class ChineseRemainder {
2 public static long mul_inv (int a, int b) {
3 int b0 = b, t, q;
4 int x0 = 0, x1 = 1;
5 if (b == 1) return 1;
6 while (a > 1) {
7 q = a / b;
8 t = b;
9 b = a % b;

10 a = t;
11 t = x0;
12 x0 = x1 - q * x0;
13 x1 = t;
14 }
15 if (x1 < 0) x1 += b0;
16 return x1;
17 }
18 public static int chinese_remainder (int n1 , int n2 , int n3 , int

a1 , int a2 , int a3) {
19 int p, i, prod = 1, sum = 0;
20 prod = n1 * n2 * n3;
21 p = prod / n1;
22 sum += a1 * mul_inv (p, n1) * p;
23 p = prod / n2;
24 sum += a2 * mul_inv (p, n2) * p;
25 p = prod / n3;
26 sum += a3 * mul_inv (p, n3) * p;
27 return ((sum % prod) + prod) % prod;
28 }
29

30 public static void main(String [] args) {
31 System .out. println (chinese_remainder (997 , 991, 983, 123, 14,

66));
32 }
33 }

Figure 5.6: Test case: ChineseRemainder.

never run again after that. However, the other two are examples of code that could
be found in a real setting. Both ChineseRemainder and Factorial contain loops
that are executed as native code but run for too few iterations to make up for the
compilation time.

43

5. Experiments

5.2.3 Exploding Memory Usage Due to Code Duplication

1 public class ManyVariables {
2 public static void main(String [] args) {
3 int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t;
4 a = b = c = d = e = f = g = h = i = j = k = l = m = n = o = p =

q = r = s = t = 0;
5 for (int index = 0; index < 5000; index ++) {
6 a += index; b += index; c += index; d += index;
7 e += index; f += index; g += index; h += index;
8 i += index; j += index; k += index; l += index;
9 m += index; n += index; o += index; p += index;

10 q += index; r += index; s += index; t += index;
11 }
12 System .out. println (
13 a + b + c + d + e + f + g + h + i + j + k + l + m + n + o +

p + q + r + s + t);
14 }
15 }

Figure 5.7: Test case: ManyVariables.

1 public class ManyVariablesMulTrace {
2 public static void main(String [] args) {
3 int a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t;
4 a = b = c = d = e = f = g = h = i = j = k = l = m = n = o = p =

q = r = s = t = 0;
5 int offset ;
6 for (int index = 0; index < 5000; index ++) {
7 if (index % 2 == 0) {
8 offset = 1;
9 } else if (index % 3 == 0) {

10 offset = 2;
11 } else if (index % 5 == 0) {
12 offset = 3;
13 } else {
14 offset = 4;
15 }
16 a += offset ; b += offset ; c += offset ; d += offset ;
17 e += offset ; f += offset ; g += offset ; h += offset ;
18 i += offset ; j += offset ; k += offset ; l += offset ;
19 m += offset ; n += offset ; o += offset ; p += offset ;
20 q += offset ; r += offset ; s += offset ; t += offset ;
21 }
22 System .out. println (
23 a + b + c + d + e + f + g + h + i + j + k + l + m + n + o +

p + q + r + s + t);
24 }
25 }

Figure 5.8: Test case: ManyVariablesMulTrace.

44

5. Experiments

Table 5.1 shows, apart from execution times, how many traces are compiled and
how much memory these allocate during run-time. The tests ManyVariables and
ManyVariableMulTrace contain many variables inside of a loop which produces
fairly large traces. ManyVariableMulTrace starts with a few if-statements which
only change the value to be added to all variables, a simplified illustration of this
program can be seen in Figure 5.9. Since each path through the loop is compiled
separately, the structure of the generated native code is as shown in Figure 5.10.
We notice a problem here where this type of program produces a lot of duplicated
code when tracing, this can also be seen in Table 5.1 where the size of the generated
code is calculated to be about four times larger for this test than for ManyVariables
even though the source programs are similar.

Figure 5.9: How the Java byte-code
is structured.

Figure 5.10: How the generated
code is structured.

45

5. Experiments

5.2.4 Interpreter Fallback
LongFibonacci, FloatFibonacci and DoubleFibonacci are presented to show two
things. First, at this point our compiler does not trace recursive functions. So for
these three test cases, we show that our compiler can fall back to interpretation
of the programs instead. Second, these tests show our interpreter’s capability to
handle different types. Similar to the recursive element in these tests, our byte-
code-to-native-code compiler currently doesn’t support types other than int.

1 public class LongFibonacci {
2 public static void main(String [] args) {
3 System .out. println (fibonacci (20));
4 }
5 public static long fibonacci (long n) {
6 if (n <= 2) return 1;
7 else return fibonacci (n - 1) + fibonacci (n - 2);
8 }
9 }

Figure 5.11: Test case: LongFibonacci.

1 public class FloatFibonacci {
2 public static void main(String [] args) {
3 System .out. println (fibonacci (20f));
4 }
5 public static float fibonacci (float n) {
6 if (n <= 2f) return 1f;
7 else return fibonacci (n - 1) + fibonacci (n - 2);
8 }
9 }

Figure 5.12: Test case: FloatFibonacci.

1 public class DoubleFibonacci {
2 public static void main(String [] args) {
3 System .out. println (fibonacci (20.0));
4 }
5 public static double fibonacci (double n) {
6 if (n <= 2.0) return 1.0;
7 else return fibonacci (n - 1) + fibonacci (n - 2);
8 }
9 }

Figure 5.13: Test case: DoubleFibonacci.

46

6
Discussion

In this chapter we reflect on whether we achieved our goal of developing an un-
derstandable tracing JIT compiler. The chapter also contains some thoughts on
possible future work.

6.1 Understandability
The goal of understandability is difficult to measure objectively. As a result, we need
some other way of reasoning about whether we achieved this goal. We will describe
the choices we have made that we think contribute to the understandability as well
as comparing this project to other tracing JIT compilers.

6.1.1 Designed for Understandability
When implementing our tracing JIT compiler, an important step was to identify
the core modules representing the different functionalities and implementing them
as independently as possible from each other. One effect of this is that we can easily
abstract the functionality of each module and have one central point which transfers
control of the program between these modules (the run-time loop in Figure 3.2). An-
other effect is that each module can be developed separately so that, e.g., improving
the compiler has no effect on how the interpreter or profiler operates. In theory, we
could even switch out the byte-code-to-native-code compiler to an entirely different
one, provided that its input- and output protocol stays the same.

We have made sure that the run-time loop in Figure 3.2, the diagram in Figure 3.1
and the description in Section 3.1 are equivalent, i.e., they describe the exact same
thing in different ways. This can be helpful as it describes the same concepts from
different perspectives so that one does not miss out on any information if one of the
perspectives does not fit the reader.

The visualizing tool we have developed, described in Chapter 4, can be used to
further ones understanding of what goes on at every step of the compiler’s run-time
loop. This tool removes some of the ”black box”-ness of the tracing JIT compiler as it
shows some of its otherwise hidden functionality. Most notably it shows which parts
of the code are being compiled and when, it can also show the current evaluation
step and display the results from, e.g., recording and compiling a trace.

Many of the concepts described here which we believe contribute to understand-
ability also apply to best practices in software engineering. Especially separation
of concern and modularity which are popular design patterns used in large scale

47

6. Discussion

projects to increase their maintainability and to provide more freedom when work-
ing on specific modules as less time can be spent changing other code not directly
connected to the module being worked on.

When investigating other tracing JIT compilers, we were unable to find examples
of a clear central point in the code similar to the one described in this section.
Nor were we able to find any tools for visualizing how the compiler operates during
evaluation of a program.

6.1.2 Comparisons to Related Work
This section discusses four examples of projects on the same theme as the one
described in this thesis: TraceMonkey, HotPathVM, Dynamo and Tamarin-Tracing.
The discussion will cover the unique goals and achievements of the different projects.

The tracing JIT compiler (TraceMonkey) formerly used in Mozilla’s JavaScript
engine (SpiderMonkey) is probably the most prominent usage of tracing JIT com-
pilers. The paper on TraceMonkey by Gal et al. [12] focuses on the tracing JIT
compiler’s ability to compile and run the dynamically typed language JavaScript.
Dynamically typed languages comes with a new problem, namely that each combi-
nation of types that variables take requires its own trace. This further complicates
the compiler as where our implementation can only have a single trace per loop,
TraceMonkey can have arbitrarily many depending on how many variables are used
and how many different types they assume. The paper is highly technical and fo-
cuses purely on performance and functionality. A comparison between TraceMonkey
and our understandable tracing JIT would not be entirely fair since SpiderMonkey
is a complete JavaScript engine rather than a stand-alone tracing JIT compiler so
naturally it is a larger and more interconnected system. In other words, understand-
ability was not a core aim of TraceMonkey.

HotPathVM is a tracing JIT compiler, extending the functionality of a Java
Virtual Machine for embedded devices [11]. As such, the focus of this compiler is to
make it as small and lightweight as possible. The sole objective of the HotPathVM
project was to increase performance while maintaining a small size, which introduces
another level of complexity to the project.

Dynamo seems to be the earliest example of trace-based optimizations [1]. In
contrast to other tracing JIT compilers, Dynamo interprets native machine code
instead of byte-code instructions, optimizing the trace of native instructions rather
than generating native code. In an attempt to describe how Dynamo operates, the
authors provide an architecture diagram of their system (See Figure 6.1). When
studying this figure, one can see some similarities between it and Figure 3.1. For ex-
ample the state description, ”lookup branch target in cache” from Dynamo describes
the same process as ”Is there a compiled trace starting at current PC?” from our
diagram. Figures like this contribute to helping the reader understand this complex
system, even though understandability is not an explicit goal of the paper.

Tamarin-Tracing is a tracing JIT compiler for Adobe’s ActionScript [13]. It is
similar to TraceMonkey but instead uses the Forth byte-code language as an inter-
mediate representation. The paper by Chang et al. provides a high level theoretical
descriptions of the workings of their tracing JIT compiler.

48

6. Discussion

Figure 6.1: Control flow of Dynamo. From Bala et al. [1]. Reproduced with
permission.

While Tamarin-Tracing has a clear description and Dynamo has an architecture
diagram, which both help the reader understand the core concepts of a tracing JIT
compiler, our thesis include both of these elements as well as a code example to make
it even more clear. To our knowledge at the time of this writing, this is the first
example of providing several different descriptions of the same tracing JIT compiler.

6.2 Results

Even though performance was not a stated goal of this project our compiler still
performed well in some test cases. It seems that when the code contains very hot
loops, i.e., loops with many iterations, our compiler actually seems to outperform
even OpenJDK. This is without performing any optimizations on the generated code
other than tracing JIT compilation.

Our interpreter is very slow. This is most notable in the tests where tracing JIT
compilation performs very well. Since the interpreter is still part of the tracing JIT
compiler, improving the performance of the interpreter would lead to better results.

Even though executing non-optimized native code is much faster than executing
byte-codes directly, there is still room for improvement for the native code genera-
tion.

49

6. Discussion

6.3 Future Work
Due to the time constraint of this thesis project, we chose to leave out some features,
in this section we will discuss some of these features and explain how they could be
implemented in a future version of this project.

6.3.1 Optimizing the Compiler
While compiling there’s room for optimization to be made. When compiling AOT,
one can spend quite a long time optimizing the code as the end result is more im-
portant than the running time of the compiler. This can create very high quality
and efficient native code. In contrast, when using a JIT compiler the time spent
compiling must be made up by the faster running code. As such, very time con-
suming optimizations might not be suitable as the extra efficiency of the end result
does not make up for the time it takes to perform these optimizations.

Pure byte-code interpretation is very slow and early tests show significant im-
provement in evaluation time when performing tracing JIT compilation without
any further optimizations. Even so, there are some optimization techniques that
may be worth considering implementing.

6.3.1.1 Single Static Assignment Form

To simplify many types of compiler optimization, one can transform the recorded
byte-code instructions into single static assignment (SSA) form. SSA form is an
intermediate representation of code in which each variable is assigned a value only
once. SSA form is useful for compilation as it makes the actual compilation faster
and it opens up more opportunities for optimizing the code generation leading to
even more efficient machine code [21].

6.3.1.2 Register Allocation

A simple and fast approach to register allocation is the Least Recently Used (LRU)
register allocation scheme. As the name suggests, this involves always spilling the
register that was least recently used whenever a value needs a register and one is
not available.

Another scheme which is a little bit more involved is called the linear scan algo-
rithm and involves liveness analysis. This algorithm calculates the span in which
each variable is used and so can determine which variables are most appropriate to
spill when new registers are required.

6.3.1.3 Constant Propagation

Figure 6.2 shows a simple example of constant propagation where lines one and two
can be simplified to the expression on line four saving execution time. This type
of constant propagation can be done entirely ahead of time but there are situations
where compiling traces enable other types of constant propagation. Figure 6.3 shows
an example of this where in a trace, x will be either two or four and as such the

50

6. Discussion

expression on line nine can be simplified. This simplification would not be possible
ahead of time as the if statement would be compiled in its entirety.

1 int x = 4;
2 int z = 12 / x;
3 // Simplified by constant

propagation to:
4 int z = 12 / 4;

Figure 6.2: Example of constant
propagation.

1 int y;
2 ... // Some code
3 int x;
4 if(y < 10){
5 x = 2;
6 } else {
7 x = 4;
8 }
9 y = y - x;

10 ... // more code

Figure 6.3: Example of constant
propagation enabled by tracing.

6.3.2 Trace Tree Optimization
The current approach to trace stitching is quite straight forward. However, con-
stantly performing look-ups where to jump next can become costly in the long run.
One solution to this problem is to instead modify previously compiled traces with
direct jumps to side exit traces, reducing the overhead introduced by looking up
jump destinations. This approach involves keeping track of where each instruction
is located in memory which requires more control over the assembled traces than we
currently have in our implementation.

Another approach is to at certain points take a trace together with its compiled
side exit traces (this can be referred to as a trace tree) and recompile it to a single
unit opening up for optimizing the separate traces together. This recompilation can
be done on a separate thread and thus not block the execution of the rest of the
program.

Implementing trace tree optimization would solve the problem with excessive
memory consumption of some programs discussed in Section 5.2.3.

6.3.3 Showing Source Code in Visualizer
While showing byte-code instructions in the visualizer provides some understanding
of the inner workings of the tracing JIT compiler, the connection to the source
Java code is sometimes hard to see. Therefore, as an addition to the byte-code
instructions, we think that it would provide even more understandability to show
the source code and similarly color the its recorded parts. In the Java class file, there
are some attributes that provide debug information to connect byte-code instructions
to lines in the source code.

6.3.4 Scientific Evaluation of Understandability
In this thesis, we have not evaluated the success of understandability in any clear
way. Instead, we have made a case for it by describing the steps taken which

51

6. Discussion

we believe contribute to the understandability. The actual judgment of success is
therefore handed over to the reader as in its current form, understandability is a
very subjective goal.

A more scientific study can be carried out where a group of developers get to
familiarize themselves with our project and then get an assignment to, for example,
implement a new feature or change some behavior of the compiler. We can then
evaluate how easily they are able to complete this task compared to a similar task
in a different tracing JIT compiler.

In this way, we can get a better outside opinion of understandability and since
we try to measure how easily the project can be adopted, the actual degree of
understandability can, in some sense, be measured.

6.4 Conclusion
Tracing JIT compilers can be useful tools when AOT compilation is not an option,
either because short start-up times are crucial or because the dynamic nature of the
programming language makes AOT compilation infeasible. Tracing JIT compilation
involves several complicated processes that work together to form a complex system.

We have shown that by separating the functionality of these processes into dis-
tinct modules with clear areas of responsibility, one can get a clear overview of
the processes and how they interact. We have implemented a tracing JIT compiler
designed for understandability which we have evaluated on a small, but relevant,
collection of examples. Additionally, we have implemented a run-time visualizer
capable of exposing some of the inner functionality of our tracing JIT compiler that
would otherwise be hidden from the user.

As far as we know, this is the first tracing JIT compiler designed with this ob-
jective accompanied by a run-time visualizer tool.

52

Bibliography

[1] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A Transparent Dynamic
Optimization System,” Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, vol. 35, no. 5, p. 1–12, 5
2000. [Online]. Available: www.hpl.hp.com/cambridge/projects/Dynamohttps:
//doi.org/10.1145/358438.349303https://doi.org/10.1145/349299.349303

[2] “SpiderMonkey Internals.” [Online]. Available: https://developer.mozilla.org/
en-US/docs/Mozilla/Projects/SpiderMonkey/Internals

[3] “V8 Development Blog.” [Online]. Available: https://v8.dev/blog
[4] C. F. Bolz, A. Cuni, M. Fijalkowski, A. Rigo, I. Rogers, O. Zendra, and E. Jul,

“Tracing the Meta-Level: PyPy’s Tracing JIT Compiler,” in Proceedings
of the 4th Workshop on the Implementation, Compilation, Optimization of
Object-Oriented Languages and Programming Systems, ser. ICOOOLPS ’09.
New York, NY, USA: Association for Computing Machinery, 2009, p. 18–25.
[Online]. Available: https://doi.org/10.1145/1565824.1565827

[5] G. Garen, “Announcing SquirrelFish,” 2008. [Online]. Available: https:
//webkit.org/blog/189/announcing-squirrelfish/

[6] T. Kalibera, P. Maj, F. Morandat, and J. Vitek, “A Fast Abstract Syntax
Tree Interpreter for R,” in Proceedings of the 10th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p. 89–102.
[Online]. Available: https://doi.org/10.1145/2576195.2576205

[7] I. Piumarta and F. Riccardi, “Optimizing Direct Threaded Code by Selective
Inlining,” in Proceedings of the ACM SIGPLAN 1998 Conference on
Programming Language Design and Implementation, ser. PLDI ’98. New
York, NY, USA: Association for Computing Machinery, 1998, p. 291–300.
[Online]. Available: https://doi.org/10.1145/277650.277743

[8] J. A. Fisher and S. M. Freudenberger, “Predicting Conditional Branch
Directions from Previous Runs of a Program,” in Proceedings of the Fifth
International Conference on Architectural Support for Programming Languages
and Operating Systems, ser. ASPLOS V, vol. 27, no. 9. New York, NY, USA:
Association for Computing Machinery, 1992, p. 85–95. [Online]. Available:
https://doi.org/10.1145/143365.143493

[9] I. of Electrical, I. S. Electronics Engineers, J. R. Larus, T. Ball, and
J. R. Larus, “Efficient Path Profiling,” in Proceedings of the 29th Annual
ACM/IEEE International Symposium on Microarchitecture, ser. MICRO
29. USA: IEEE Computer Society, 1996, p. 46–57. [Online]. Available:
https://dl.acm.org/citation.cfm?id=243857

53

www.hpl.hp.com/cambridge/projects/Dynamo https://doi.org/10.1145/358438.349303 https://doi.org/10.1145/349299.349303
www.hpl.hp.com/cambridge/projects/Dynamo https://doi.org/10.1145/358438.349303 https://doi.org/10.1145/349299.349303
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals
https://developer.mozilla.org/en-US/docs/Mozilla/Projects/SpiderMonkey/Internals
https://v8.dev/blog
https://doi.org/10.1145/1565824.1565827
https://webkit.org/blog/189/announcing-squirrelfish/
https://webkit.org/blog/189/announcing-squirrelfish/
https://doi.org/10.1145/2576195.2576205
https://doi.org/10.1145/277650.277743
https://doi.org/10.1145/143365.143493
https://dl.acm.org/citation.cfm?id=243857

Bibliography

[10] C. Lattner and V. Adve, “LLVM: A compilation framework for lifelong
program analysis & transformation,” in International Symposium on Code
Generation and Optimization, CGO, 3 2004, pp. 75–86. [Online]. Available:
http://llvm.cs.uiuc.edu/

[11] A. Gal, C. W. Probst, and M. Franz, “HotpathVM: An Effective JIT Compiler
for Resource-constrained Devices,” in VEE 2006 - Proceedings of the Second
International Conference on Virtual Execution Environments, vol. 2006, 2006,
pp. 144–153.

[12] A. Gal, B. Eich, M. Shaver, D. Anderson, D. Mandelin, M. R. Haghighat,
B. Kaplan, G. Hoare, B. Zbarsky, J. Orendorff, J. Ruderman, E. W.
Smith, R. Reitmaier, M. Bebenita, M. Chang, and M. Franz, “Trace-Based
Just-in-Time Type Specialization for Dynamic Languages,” in Proceedings of
the 30th ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI ’09, vol. 44, no. 6. New York, NY, USA: Association
for Computing Machinery, 6 2009, p. 465–478. [Online]. Available: https:
//doi.org/10.1145/1543135.1542528https://doi.org/10.1145/1542476.1542528

[13] M. Chang, E. Smith, R. Reitmaier, M. Bebenita, A. Gal, C. Wimmer,
B. Eich, M. Franz, R. Rick, M. Bebenita, A. Gal, C. Wimmer, B. Eich, and
M. Franz†, “Tracing for Web 3.0: Trace Compilation for the next Generation
Web Applications,” in Proceedings of the 2009 ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, ser. VEE ’09.
New York, NY, USA: Association for Computing Machinery, 2009, p. 71–80.
[Online]. Available: https://doi.org/10.1145/1508293.1508304

[14] T. Lindholm, F. Yellin, G. Bracha, and A. Buckley, “The Java®
Virtual Machine Specification,” Tech. Rep. 15, 2020. [Online]. Available:
https://docs.oracle.com/javase/specs/jvms/se15/jvms15.pdf

[15] R. Isemann, “Beyond Debug Information : Improving Program Reconstruction
in LLDB using C ++ Modules,” Master’s thesis, Chalmers Univesity of
Technology, 2019. [Online]. Available: https://hdl.handle.net/20.500.12380/
300037

[16] “Visual Studio debugger documentation.” [Online]. Available: https:
//docs.microsoft.com/en-us/visualstudio/debugger/?view=vs-2019

[17] “GDB: The GNU Project Debugger.” [Online]. Available: https://www.gnu.
org/software/gdb/

[18] “The LLDB Debugger.” [Online]. Available: https://lldb.llvm.org
[19] “AsmJit Documentation.” [Online]. Available: https://asmjit.com
[20] “OpenJDK.” [Online]. Available: https://openjdk.java.net
[21] R. Cytron, J. Ferrante, B. K. Rosen, M. N. Wegman, and F. K. Zadeck,

“Efficiently computing static single assignment form and the control dependence
graph,” ACM Trans. Program. Lang. Syst., vol. 13, no. 4, p. 451–490, Oct.
1991. [Online]. Available: https://doi.org/10.1145/115372.115320

54

http://llvm.cs.uiuc.edu/
https://doi.org/10.1145/1543135.1542528 https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1543135.1542528 https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/1508293.1508304
https://docs.oracle.com/javase/specs/jvms/se15/jvms15.pdf
https://hdl.handle.net/20.500.12380/300037
https://hdl.handle.net/20.500.12380/300037
https://docs.microsoft.com/en-us/visualstudio/debugger/?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/debugger/?view=vs-2019
https://www.gnu.org/software/gdb/
https://www.gnu.org/software/gdb/
https://lldb.llvm.org
https://asmjit.com
https://openjdk.java.net
https://doi.org/10.1145/115372.115320

A
Appendix 1

Raw LLDB output discussed in Chapter 4

Process 8733 resuming
General Purpose Registers :

rax = 0 x00007ffeefbfed08
rbx = 0 x0000000000000000
rcx = 0 x203a736574617453
rdx = 0 x0000000000000002
rdi = 0 x00007ffeefbfed08
rsi = 0 x00007ffeefbfe870
rbp = 0 x00007ffeefbfee80
rsp = 0 x00007ffeefbfeab0

r8 = 0 x0a31203a73657461
r9 = 0 x0000000000000000

r10 = 0 x0000000000000002
r11 = 0 x0000000000000499
r12 = 0 x0000000000000000
r13 = 0 x0000000000000000
r14 = 0 x0000000000000000
r15 = 0 x0000000000000000
rip = 0 x0000000100159797 TigerShrimp ` RunTime :: run(Program *) + 407 at RunTime .cpp :20:20

rflags = 0 x0000000000000246
cs = 0 x000000000000002b
fs = 0 x0000000000000000
gs = 0 x0000000000000000

(std :: stack <Value , std :: deque <Value , std :: allocator <Value > > >) state -> stack = {
c = size =1 {

[0] = {
type = {

type = Int
subType = 0 x0000000000000000

}
val = (intValue = 1, longValue = 1, floatValue = 1.40129846E -45 , doubleValue = 4.9406564584124654E -324)

}
}

}
(std ::map < unsigned long , Value , std :: less < unsigned long >, std :: allocator <std :: pair < const unsigned long , Value > > >) state -> locals =

size =3 {
[0] = {

first = 1
second = {

type = {
type = Int
subType = 0 x0000000000000000

}
val = (intValue = 1, longValue = 4294967297 , floatValue = 1.40129846E -45 , doubleValue = 2.121995791459338E -314)

}
}

}
(ProgramCounter) state ->pc =
(size_t) method = 23
(size_t) pc = 5
(std ::map < ProgramCounter , unsigned long , std :: less < ProgramCounter >, std :: allocator <std :: pair < const ProgramCounter , unsigned long > >

>) profiler . loopRecord = size =1 {
[0] = (first =

(size_t) method = 23
(size_t) pc = 4
, second = 1)
}
(JVM :: Mnemonic) $26 = (Mnemonic) mnemonic = SIPUSH

Figure A.1: Example of raw LLDB output.

I

A. Appendix 1

II

B
Appendix 2

Code examples that were too large to fit in Chapter 5.

III

B. Appendix 2

1 public class EvenMoreLoops {
2 public static void main(String [] args) {
3 int a = 1;
4 int i = 0, j = 0, k = 0, l = 0, m = 0, n = 0, o = 0, p = 0,
5 q = 0, r = 0, s = 0, t = 0, u = 0, v = 0, w = 0;
6 for (; i < 4; i++) {
7 a += i;
8 }
9 for (; j < 4; j++) {

10 a += i + j;
11 }
12 for (; k < 4; k++) {
13 a += i + j + k;
14 }
15 for (; l < 4; l++) {
16 a += i + j + k + l;
17 }
18 for (; m < 4; m++) {
19 a += i + j + k + l + m;
20 }
21 for (; n < 4; n++) {
22 a += i + j + k + l + m + n;
23 }
24 for (; o < 4; o++) {
25 a += i + j + k + l + m + n + o;
26 }
27 for (; p < 4; p++) {
28 a += i + j + k + l + m + n + o + p;
29 }
30 for (; q < 4; q++) {
31 a += i + j + k + l + m + n + o + p + q;
32 }
33 for (; r < 4; r++) {
34 a += i + j + k + l + m + n + o + p + q + r;
35 }
36 for (; s < 4; s++) {
37 a += i + j + k + l + m + n + o + p + q + r + s;
38 }
39 for (; t < 4; t++) {
40 a += i + j + k + l + m + n + o + p + q + r + s + t;
41 }
42 for (; u < 4; u++) {
43 a += i + j + k + l + m + n + o + p + q + r + s + t + u;
44 }
45 for (; v < 4; v++) {
46 a += i + j + k + l + m + n + o + p + q + r + s + t + u + v;
47 }
48 for (; w < 4; w++) {
49 a += i + j + k + l + m + n + o + p + q + r + s + t + u+v+w;
50 }
51 System .out. println (a);
52 }
53 }

Figure B.1: Test case: EvenMoreLoops.

IV

	List of Figures
	Introduction
	Contributions
	Limitations

	Background
	Interpreting
	Abstract Syntax Tree Interpreter
	Pure Byte-Code Interpreter
	Threaded Code Interpreter

	Profiling of Hot Traces
	Native Code Assembly
	Dynamic Native Code Execution
	Java Virtual Machine
	Operand Stack & Variable Store
	The Java Class File
	Constant Pool
	Method Info
	Attribute Info

	Java Byte-Code

	Binary Debuggers

	Developing a Tracing JIT Compiler for JVM
	A Tracing JIT Compiler
	Interpreter
	Java Class File Parser
	Byte-Code Interpreter

	Profiler
	Recorder
	Compiler
	Assembler
	Executing an Assembled Trace
	Mixed Execution
	Trace Stitching

	Visualizing Run-Time Behavior
	Implementation
	Example

	Experiments
	Extracting Real Execution Time
	Tests
	Simple Looping Programs
	Tracing JIT Compilation Pitfalls
	Exploding Memory Usage Due to Code Duplication
	Interpreter Fallback

	Discussion
	Understandability
	Designed for Understandability
	Comparisons to Related Work

	Results
	Future Work
	Optimizing the Compiler
	Single Static Assignment Form
	Register Allocation
	Constant Propagation

	Trace Tree Optimization
	Showing Source Code in Visualizer
	Scientific Evaluation of Understandability

	Conclusion

	Bibliography
	Appendix 1
	Appendix 2

