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Abstract
This thesis has been performed at Volvo Cars, at the department Prototype Vehi-
cles, Data and Methods which supports development of active safety and advanced
driver assistance system. It has been dedicated to exploring the feasibility and ad-
vantages of using various complementary sensors when generating reference data.
Whenever a sensor based system is being developed a vital aspect of achieving op-
timal performance is to verify each sensor independently, and eventually also the
system as a whole. Generating this reference in a dynamic environment such as a
traffic environment is often, as in this case, achieved by an additional sensor-set, a
reference system. To be able to verify sensor and system performance the reference
must be capable of providing superior performance and robustness. A reference
system as such will therefore benefit from making the most of available data by any
and all means possible. In this thesis a sensor fusion between radar and LIDAR
has been performed with the use of a Rauch-Tung-Striebel smoother. The code
framework is created in a flexible way where different models and parameters can
be switched out to compare the relative performance of various solutions. A data
association algorithm using the nearest neighbour method is used to match detec-
tions from the two sensors. The implemented solution shows increased performance
with smoother estimations, increased redundancy, and confidence in detections of
surrounding vehicles as compared to the individual sensors.

Keywords: sensor fusion, tracking, track fusion, radar, LIDAR, Kalman Filter, RTS-
smoother, reference system
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1
Introduction

This chapter describes the background, aim, purpose and delimitations of the project.
The project is carried out in cooperation with the Prototype Vehicles, Data and
Methods department at Volvo Cars.

1.1 Background

The main issue with safety related to travel by car always has and always will be the
driver; human error is the cause of most tra�c-related accidents [3]. To minimize
the danger of inevitable human mistakes, automotive manufacturers have started
to integrate an increasing number of sensors to allow vehicles to interpret its sur-
roundings. The intention of giving the vehicle awareness of its surroundings is to
aid the driver in averting easily avoidable accidents. There are already a variety of
sensors integrated into many modern cars, ultrasonic sensors, cameras, and radar
has become commonplace in the upper echelons of the automotive industry. Input
from these sensors is used by the vehicle to interpret the surrounding tra�c situ-
ation and assist the driver in situations where immediate intervention is necessary
to mitigate or avoid an imminent collision. However, the sensors are never perfect,
and the amount of scenarios that a car might encounter are almost endless.

Driver assistance systems and autonomous driving features are quickly becoming a
requirement in the competitive automotive industry and in the pursuit of optimal
performance developers are collecting massive amounts of data. Data from various
driving scenarios is captured by the sensors integrated in many new cars and also
by additional reference sensors used by test vehicles. The sensors included in the
reference system can be chosen based on performance rather than size and cost con-
straints that must be met by the integrated sensors. The high-performance sensors
and the integrated sensors simultaneously record the surrounding environment. This
provides developers with a baseline against which they can compare the surround-
ings as interpreted by the sensors integrated in the vehicle. The mentioned baseline
is referred to as the ground truth or reference frame since it is often used to validate
the accuracy of the integrated sensors enabled by the increased performance over
the integrated sensors.

Validating performance by comparing input from integrated sensors to an accurate
model of the surrounding environment, generated by a reference system, enables
more e�cient development and testing of advanced driver assistance systems. This
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1. Introduction

approach depends on the accuracy of the ground truth model generated from sen-
sor data from the external sensors. If the model does not accurately depict the
surroundings the recorded data loses its value. Using an inaccurate ground truth
model might have a detrimental e�ect on development and validation of the inte-
grated sensors, assuming the inaccuracies are unknown to developers. To capture
an accurate ground truth model developers use a reference box. The reference box
consists of a roof box mounted on the roof rack of the test-vehicles and is equipped
with a multitude of high-end sensors.

Test-vehicles often face sub-optimal conditions where one or several of the sensors
might not be able to perform optimally. Loss of performance can result in an
inaccurate reference frame despite the accuracy of the individual sensors, limiting
the value and accuracy of the collected data.

1.2 Aim

The aim of this master's thesis will be to increase the reliability and accuracy of
the ground truth model generated from the proprietary reference box. By combin-
ing data from two sensors, the project group intends to provide increased system
performance using existing hardware already integrated in the reference box. Im-
provements are made possible by the complementary abilities of radar and LIDAR
which will be further discussed in Section 2 Hardware.

Evaluate tracking performance of the fused output generated using pre-recorded
data and variuos solutions for sensor fusion. Collect additional data using reference
system and a set of Real Time Kinematic (RTK) sensors [4] to provide a ground
truth against which tracking performance of the sensor fusion output may be vali-
dated. The end goal is to provide a more accurate output in relation to the RTK
ground truth than either of the two sensors are capable of providing on their own.

Increase the robustness of the system with the use of data from sensors with comple-
mentary abilities, see Section 2.1 and 2.2. Robustness of the fusion may be validated
under conditions where one or both sensors perform badly, such as in heavy weather
or over large distances.

2



1. Introduction

1.3 Delimitations

The project will focus on only two sensors types: radar and LIDAR.

The sensor data used by the algorithms created during the course of this project
has been preprocessed by a decoding software that takes raw sensor data from the
reference box as input. From the reference box data, the decoding software gener-
ates a data structure with identi�ed objects, their dynamic states (position, velocity
and more), attributes, and more. The preprocessing that has been performed on the
data was carried out by another in-house team, whom has since left the company.
Due to communication and legal issues the details of this preprocessing has been
unavailable and have thus been considered outside the scope of this project. The
output from the preprocess however is tracked objects and this is what has been
used as input to the implemented algorithm.

The hardware used to gather data shall remain unchanged to avoid adding addi-
tional expenses to the test equipment. The code created during the project should
contribute to and be a part of a pre-existing toolchain. It is intended to be an
optional module providing increased tracking performance if desired by developers.

The project is carried out as a master's thesis and thus the time is limited. Due to
limitations in time and available resources; such as test vehicles and sta� with the
required expertise, it is impossible to guarantee that valid ground truth data will be
attainable. The accuracy of the results can never be veri�ed beyond the accuracy
of the available reference. If such reference does not become available within the
limited time a qualitative evaluation of the results will instead be performed. This
qualitative evaluation together with the implemented solution should, hopefully,
then be considered preparation for future work implementing sensor fusion to the
existing solution.

3
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2
Hardware

When creating a ground truth system for the area surrounding the car, sensor per-
formance is crucial. Sensors are devices that by various means gather information
about the state of a system. There are endless means of sensing the state of systems
and each method has its inherent bene�ts and issues. Sensors that provide a ground
truth against which other sensors are evaluated have to ensure higher accuracy than
the sensors being evaluated. A reference frame also needs to remain accurate and
perform well in di�cult conditions such as heavy rain or snow to be able to see under
which conditions the sensors being evaluated fail. The two sensor types used in this
project are radar and LIDAR sensors which have complementary abilities discussed
further in the following sections. These sensors are integrated in to a roof mounted
box to get a good perspective over the surrounding environment.

2.1 Radar

The radar is a sensor which operates by transmitting pulses of radio waves and then
measuring the signal that is re�ected back, from the returning signal positions and
motions of objects are gathered [5]. The radar in the reference box is a Continental,
model ARS408-21 [1]. It is an advanced radar sensor with two operating modes;
long-range and near-range. The long-range mode has a maximum range of 250 m
with a narrow �eld of view, � 4°. The near mode has a wider �eld of view,� 40°
and a shorter range of 70 m. The device is capable of switching between modes
quickly, to the extent that it can operate in both modes almost simultaneously. By
alternating between operating modes for every scanning sweep the sensor is capable
of providing both long- and short range information with a narrow and wide �eld
of view respectively. For a more precise visualization of the range and �eld of view
see Figure 2.1.

The radar operates at a signal frequency of 77 GHz which is the frequency at which
most new automotive radars are currently operating and it enables increased per-
formance compared to the older 24 GHz [6]. The connection between the radar and
the car uses a CAN interface which is the standard interface used in the automotive
industry and also how all the sensors in the project reference box are communicating.

Radars can not only give the position but also the velocity of the object in only one
measuring cycle by using the Doppler's Principle which gives the radial velocity [7].
One measuring cycle for the radar takes 72 ms during which it performs both near-
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2. Hardware

Figure 2.1: Continental ARS408-21 performance at di�erent ranges, image from
Continental Datasheet [1]

and far-range measurements. The most relevant performance statistics for the radar
sensor are presented in Table 2.1.

Resolution distance measuring Up to 1.79 m far range, 0.39 m near range
Accuracy distance measuring ± 0.40 m far range,± 0.10 m near range
Resolution azimuth angle 1.6° far range, 3.2°@0° / 4.5°@± 45° / 12.3°@± 60° near range
Accuracy azimuth angle ± 0.1° far range,± 0.3°@0°/ ± 1°@± 45°/ ± 5°@± 60°near range
Velocity resolution 0.37 km/h far �eld, 0.43 km/h near range
Velocity accuracy ± 0.1 km/h

Table 2.1: Continental ARS 408-21 measuring performance [1]

The radar has some bene�ts which the other sensors cannot match. One of the most
important bene�ts of radar is its robustness both to lighting- and environmental con-
ditions. Radar does not use emitted or external light when operating which makes
it superior to, for example, cameras which are often used in cars and does not per-
form well in darkness, or LIDAR which struggles with re�ective surfaces. Another
strength with radar is its ability to perform well in harsh weather conditions where
light based sensors sometimes struggle. In a study performed by Ryde and Hillier
both radar and Laser scanners were tested in rainy and dusty conditions [8]. Results
showed that the radar remained una�ected by the test conditions, heavy rain with
50�70 mm/h and dust with a 10 m visibility. The study demonstrated that the
robustness of radar is excellent, however the positional accuracy was deemed too
low for use in their intended application.

Lacking positional accuracy is one of the drawbacks with radar, its resolution and ac-
curacy. It is not recommended to have the radar as the only sensor in an autonomous
vehicle because of the inability to create an accurate map of objects around the car.
The resolution will not allow the radar to distinguish for example: bicycles from
pedestrians since it does not see minor di�erences in shapes and outlines of smaller
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2. Hardware

targets. On near range it also has a problem doing accurate latitudinal localiza-
tion as can be seen in Table 2.1. So without the help of cameras or LIDAR the
localization of surrounding objects will not be accurate enough for the car to drive
autonomously.

2.2 LIDAR

LIDARs measures distances to objects by measuring the distance to a �ne grid of
points equally spread around the sensor to create a point cloud. Each data point
generated by a LIDAR sensor is calculated from the time between a pulse of laser
light being emitted and the re�ection of that light returning to the sensor. Knowing
the speed of light and the time taken for a pulse of light to travel to and back
from an object the distance to that point is calculated with reasonable accuracy for
automotive purposes. The LIDAR that will be used in this project is from Velodyne,
model HDL-64E [2]. This LIDAR utilizes 64 individual channels spread over a 26,9°
vertical �eld of view. The horizontal �eld of view however is 360° since the whole
sensor-head is mounted on a platform that spins continuously during operation. The
device is capable of capturing between 1,3 and 2,2 million data points per second,
and the horizontal resolution is a result of the capture rate and the user-de�ned
rotation speed. The accuracy and other performance speci�cations are presented in
Table 2.2.

Measurement range Up to 120 m
Range accuracy Up to ± 5 cm, Generally± 2 cm
Field of View (vertical) +2.0°to -24.9°(26.9°)
Angular resolution (vertical) 0.4°
Field of View (horizontal) 360°
Angular resolution (horizontal) 0.08°- 0.35°
Rotation rate 5 Hz - 20 Hz

Table 2.2: Velodyne HDL-64E S3 measuring performance [2]

With the 360° �eld of view, a LIDAR sensor is well suited for generating a reference
frame since a single sensor easily captures everything around it with high precision.
LIDAR also functions independently of external light and works just as well in pitch
black darkness as in direct sunlight. It also has a very good resolution and accuracy
for position measurements which makes it perfect for doing accurate localization and
tracking. Since the sensing is performed with a �xed number of points each sweep,
near objects will be covered with more laser points and thus greater accuracy than
far objects of the same size. This makes LIDARs especially suited for near range
detection.

While precision is high, LIDAR sensors have a few issues that inhibits it from being
the one and only sensor needed. The �rst of these issues is that the detail in a scan
is dependent on the number of gathered data points, thus, to generate a detailed
image the sensor needs to rotate at a slower rate. While allowing more detail to be
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captured a slower rotation also results in a lower update frequency. In automotive
applications cars are routinely traveling in excess of 30 m/s and when two oncoming
cars traveling in opposite directions meet, their relative speed will be twice that.
Due to the high speeds involved and the relatively low refresh rate of a LIDAR sen-
sor, some movements will be too fast for the LIDAR to properly capture. LIDAR
can only give estimates of the velocity of identi�ed objects based on their shift in
position between successive scans.

Another thing that must be taken into account when using LIDAR mounted on a
moving vehicle is that it is a spinning sensor. This means that when it is moving
while spinning the detected point cloud will be distorted since it will detect the last
points of the revolution approximately 100 ms later, assuming a rotation speed of
10 Hz, than the points in the beginning of the revolution. This will give signi�cant
distortions to the resulting output as the vehicle speed increases. There are methods
for correcting this problem with motion distortions [9].

LIDAR also encounters problems in conditions where visibility is limited, since LI-
DAR works by bouncing laser beams of objects around it, misreadings are common
if there are a lot of debris in the air. In conditions where visibility is limited by
fog, snow, rain, dust or similar the reliability of LIDAR scans drops signi�cantly [8].
Without having any additional sensors in the system the reference system would be
very vulnerable to tougher weather conditions.

2.3 Real Time Kinematic System

The roofbox is also equipped with a high accuracy Global Navigation Satellite Sys-
tem with Inertial Navigation System (GNSS/INS) for additional accuracy. This unit
provides very precise position measurements by combining GNSS with additional
information from an Internal Measurement Unit (IMU). The GNSS/INS allows for
high accuracy measurements of ego motion and position in a world coordiante sys-
tem. An IMU uses a combination of accelerometers and gyroscopes to determine
changes in position as a result of the acceleration and rotation causing that change.
Estimating position as a result of acceleration and rotation works well in some situ-
ations. It works especially well over short periods since during short periods minor
noise in acceleration measurements will not accumulate to large errors in estimated
position. The hardware used is an OXTS RT3000 [10].

The unit has the ability to provide additional accuracy when used with a calibrated
base station in a Real-Time Kinematic (RTK) setup. When a base station is avail-
able the unit can measure position with an accuracy of� 2 cm. The base station
provides additional accuracy by also being connected to the same GNSS satellites
used by the vehicles. However, unlike the mobile vehicles this base station is always
stationary, thereby the position of that station is known and unchanging. Therefore
the base station has a reference against which the GPS position can be compared,
calculating the di�erence between these two positions gives a good estimation of the
o�set between GNSS position and the true position of the base station. By assuming
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that the o�set between the true position and the GNSS provided position will be
constant over the local area around the base station, the positions for every point
can be compensated with this o�set to increase accuracy. The same o�set will then
be communicated to the surrounding vehicles and applied to their GNSS position
too, resulting in a very accurate GNSS positioning around the base station. The
assumption that all GNSS receivers will experience the same o�set as the base sta-
tion is only valid if both are connected to the same GNSS satellites. The increased
accuracy can thus only be guaranteed within a radius of 10-20 kilometres of the base
station.

The data from the RTK can then be used in the postprocessing of the radar and
LIDAR to make better use of the data these sensors generate, e.g. for ego motion
compensation of the measurements to enable better tracking of the surrounding ob-
jects.

The RTK can also have other purposes during testing. Since it has very accurate
position and velocity measurements it could be used as a ground truth to evaluate
the accuracy of the roofbox output. This would require that both the ego vehicle
and the surrounding vehicles has RTK systems installed and also that the testing
will be performed close to a calibrated base station. System performance evaluation
with RTK will be further described in Chapter 6.
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3
Data

When doing sensor fusion or any kind of data fusion it is, of course, necessary to
have data from two or more sources. The data can vary widely between various
sensor fusion applications, from low level data points to higher level features. This
is described in more detail in Chapter 5. In this thesis the data will mainly be
positions and velocities of surrounding objects. The data provided as input and the
processing that is performed before the fusion can occur is described in this chapter.

3.1 Preprocessing

The input data that has been used in this project is not raw data from the two sensors
but rather preprocessed sensor data. It is often the case with complex sensors that
the output data must be processed to reveal and extract valuable information. The
process often includes several steps which are performed in succession to raw sensor
data. For the radar the output is not raw data, as read from the manufacturers
web page it already tracks objects. It therefore does not need the same amount
of preprocessing, e.g. clustering, before it would work with the implemented code
[1],[11]. For the LIDAR data however the �rst step is clustering of data points
to identify objects in the point cloud. Each sensor update generates a new set
of objects, these objects are then tracked with each sensor update to reveal their
apparent movement. The following sections describe a few alternatives that may be
used to perform data clustering and tracking. Due to the delimitations in Section
1.3 it is not certain that the raw data used in this project was preprocessed using
the following methods, the impact of this is discussed in section 3.3.

3.1.1 Clustering

The LIDAR sensor returns data in form of a point cloud where every point es-
sentially carries information about the distance between the sensor and the object
re�ecting the signal. These points must be clustered and sorted to reveal meaning-
ful information about the surroundings. This transformation from point cloud into
comprehensible and meaningful information is commonly performed with a clus-
tering algorithm. There are many di�erent clustering algorithms out there. One
clustering method that is often used is the DBSCAN algorithm which is e�cient
and works well for larger datasets [12]. Another one that could be used is K-means
clustering described in e.g., [13] which clusters faster than DBSCAN.
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3.1.2 Tracking

The objects from the LIDAR clustering and the objects identi�ed from the radar are
then tracked. Tracking of objects is something that has been studied and applied
in many and varied applications. When doing tracking for both radar and LIDAR
it is suitable to use a Kalman �lter [14]. The inner workings of the Kalman �lters
are described in Sections 5.2 and 5.3. When the processing is done after the data
has been collected another possible method is a smoothing algorithm, the basics
of which is the same with the di�erence being that also the future data is used to
perform each estimation, smoothers are further discussed in Section 5.4. It is of
value to understand how the initial tracking is usually done to better understand
how this might a�ect the system.

3.2 Data structure

The data from the preprocessing is received in a Matlab-struct containing an, for
the purposes of this project, abundance of information. The data structure contains
information in a categorical structure displayed in Figure 3.1. Each slot in the
bottom of the structure is a grid of values. Each row of those grids contains values
for a point in time. Objects are identi�ed with the grid in the id slot and on the
same coordinates as a certain object id in the id grid, the corresponding states and
attributes of that object may be found in the other grids.

The structure in Figure 3.1 is mostly self explanatory but some clari�cations may
aid understanding. First, the coordinate system has to be de�ned to understand
how to interpret variables such as long (longitudinal), lat (latitudinal) and heading.
These variables are to be interpreted as positions and angular heading in relation to
the position and heading of the host-vehicle, Figure 3.2 shows how these variables
are de�ned. The variable onRoad is a boolean which indicates if the object is on the
road or not. A variable only available in the LIDAR data is the referencePos variable
which indicates on what side of a detected vehicle the tracked point is placed. Both
sensors tracks the middle of the closest side, for the radar this is almost always the
front or the back since the radar used is a forward looking radar with a cone-shaped
�eld of view. For the LIDAR this can di�er since it has a �eld of view covering the
full 360° around the vehicle. The referencePos variable has been used to compensate
for the change of tracked point that occurs when the nearest side changes e.g. when
the tracked side changes from front to right side to the rear of a tracked vehicle
overtaking on the left side. The stdDev gives the standard deviation for a speci�c
measurement, this is an output generated by the preprocessing, and is used when
matching using Mahalanobis distance. Mahalanobis is further described in Section
4.2.
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Figure 3.1: Data structure. Some of these are directly measured but most of them
are calculated in the preprocessing.

Figure 3.2: De�nition of the coordinate system with origin in the middle of the
rear axle. The heading is zero if forward facing and positive in the direction of the
arrow
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3.3 Implementation

The structure of the input data means that in order to get all data for a speci�c
detection it is necessary to look through all matrices, this made it di�cult and inef-
�cient to work with. Therefore the �rst thing created was a data sorting code block,
a track builder. The purpose of the track builder was to sort out all the individual
tracks and creating a data structure for each track. This could be done with their
ID:s that was assigned by the preprocessing. From the matrix structure the data
that was required for the algorithm could be retrieved and the rest could be left out
for the time being.

Something that was also implemented was a way to create �lters for which tracks
to save. For example a �lter was used to �lter out tracks that was seen for a certain
amount of time. This could be used both for testing purposes and for sorting out
noise. For testing purposes it is preferable to only sort out the object tracks seen
for more than a couple of seconds. This gives a much smaller data set to work with
and sorts out possible misreading. Using a smaller data set makes it possible for a
human to check results compared to a video and has been necessary when developing
the algorithm. Filtering out unwanted tracks also reduces the computational load
which makes the process more e�ective. The �ltering can also be done using other
parts of the state such as position, velocity, but also the object attributes such as
width, length or object classi�cation.
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Track association

Sensor fusion is a valuable tool but it is important that the correct points/features
get matched together before any fusion algorithm is applied. If properties of di�erent
objects are mistaken as properties belonging to the same object the results of the
fusion will be useless. When doing fusion of coordinate data it is valuable to have
some kind of distance metric to be able to calculate how close two object detections
from di�erent sensors are to each other. The resulting distance is then used to
determine if two detections are actually of the same object. Two of the metrics
that may be used for matching are Euclidean and Mahalanobis distance [15], which
will be introduced in the following sections. The distances calculated using these
methods are not distances as such but rather a metric of deviations over all variables
of the state expressed as a single metric.

4.1 Euclidean Distance

The standard approach to measure how similar two detections are to each other is
the Euclidean distance between them. The Euclidean distance is calculated as:

dED =
q

(x̂ i � x̂ j )
T (x̂ i � x̂ j ); (4.1)

where x̂ i and x̂ j are the state estimates from the two di�erent detections. The
Euclidian distance is used to calculate similarities between detections and determine
which detections are most similar to each other. If the distance is under a certain
threshold the detections are likely to be of the same object. This method works well
assuming that there is some distance between the objects being detected. However,
if several objects are close to each other in the state space, there can be some
mismatching which may cause problems.

4.2 Mahalanobis Distance

A alternative distance metric �rst presented in [16] called the Mahalanobis distance
is calculated as:

dMD =
q

(x̂ i � x̂ j )
T (P i + P j )

� 1 (x̂ i � x̂ j ); (4.2)

where theP i and P j are the covariance matrices corresponding to the two estimates
x̂ i and x̂ j . This distance metric is similar to the Euclidean but takes into account the
covariances, which helps with matching not only the distance but also similarities in
uncertainties. The Mahalanobis distance uses more of the available information to
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produce a valid match when there are many adjacent detections in the same area.

4.3 Implementation

When implementing the matching algorithm it is �rst important to look at the data
available and how the matching may best be performed. In this case, as can be
seen in Chapter 3, the data is tracks that has a lot of information about the objects
over the time covered by that data set. From all available data one has to retrieve
the most easily distinguishable data. In this case the position in 2D space is easily
distinguishable data since two di�erent vehicles will never be in the same location
at the same time. The Euclidian or Mahalanobis distance for simultaneous tracks
are calculated for all timestamps covered by both tracks. By then taking the root
mean square (RMS) of all those state space distances a similarity score is derived.
This score is then used to match tracks from the two sensors. This is described in
Equation 4.3, wheren is the number of data points in the track andd is the distance
between the two tracks at that point in time.

RMS =

s
1
n

(d2
1 + d2

2 + � � � + d2
n ) (4.3)

In this case the RMS value can be calculated with either the Euclidean or the Ma-
halanobis distance. The tracks are only matched over the time span during which
they overlap which may result in many di�erent shorter tracks from one sensor being
matched to a longer track of the other sensor as long as the shorter tracks are all
active during separate times. There are also tracks when the RMS value is high for
all other tracks meaning that particular track does not have any match. This is very
rare for tracks that have been seen for a longer time since the other sensor usually
catches this object for at least some time, but can happen if the vehicle or object
being detected is outside the �eld of view of the other sensor.

A simpli�ed pseudocode describing the implemented matching solution can be seen
in Algorithm 1. The function is implemented with an option on which states to
use for matchingmatchPosVelwhich if true also matches based on velocity. Most
commonly it only uses position but on occasion it is useful to also use the velocity
when matching detections. It is vital that both inputs are synced in time so that
only simultaneous detections are compared. This sync is made by the functionsync-
CurrentTracks which returns the next two indicies where data should be retrieved.
Then the distance between these two points is calculated with the distance function
which can calculate the distance using either Euclidian or Mahalanobis distance.
When either of the tracks ends no new distances are calculated, instead the root
mean square error is checked against the current best match to see if the current
match is better or worse. If the current match is better the algorithm saves that
track pair as a match for fusion.

When every track have been checked against all the other tracks and their respec-
tively best match has been found, the matched tracks are combined and become
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the input for the fusion algorithm. This combination simply takes both tracks and
outputs one track with all data points in ascending order according to their time
stamps. The resulting combined track has a higher number of data points from the
radar since the update frequency for the radar is higher than that of the LIDAR.
The data is sorted and combined so that the fusion algorithm made to be applicable
to a single track may be applied to the new combined track without any changes.
This solution allows the same code used for generating the covariance matrices used
for data matching to be used to perform sensor fusion without requiring duplicated
code.

Algorithm 1 Matching tracks

1: lidarT racks  lidarPos
2: radarT racks  radarPos
3: if matchPosV el= TRUE then
4: lidarT racks  [lidarT racks; lidarV el ]
5: radarT racks  [radarT racks; radarV el]

end
6: for i = 1 : nrOfRadarTracks do
7: for j = 1 : nrOfLidarTracks do
8: [rC; lC ]  syncCurrentTracks()
9: radarT rack  radarT racks(i )

10: lidarT rack  lidarT racks(j )
11: while bothTracksStil lActive() do
12: d  [d; distance(radarT rack(rC )); lidarT rack (lC))]

end
13: d  

q
mean(d2)

14: saveIfBestMatch(d)
end

end
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5
Sensor fusion

Sensor fusion can be described as merging data streams from multiple sensors to
one uni�ed output with all available data incorporated. Sensor fusion is an excellent
way of making use of the complementary strength of several sensors in almost any
application since it has many advantages when compared to processing each data
source independently [17],[18]. The main advantages of sensor fusion:

ˆ Improved con�dence: When more than one sensor detects an object in the
same location the con�dence in that detection being true will increase. The
con�dence increases since it is unlikely that two or several sensors observing the
same metric deviates in a similar way simultaneously, and thus the con�dence
increases.

ˆ Increased coverage: Areas outside the �eld of view of one sensor may still be
within the �eld of view of another sensor. The active sensor can thus provide
input from that "hidden" area which gives the system as a whole the same �eld
of view as the integrated sensors combined. Once the object becomes visible
from both sensors the data streams are merged.

ˆ Improved accuracy: When fusing data from multiple independent sensors
the output can rely more on the measurements known to be most accurate. An
example of how this may be achieved is by putting emphasis on longitudinal
measurements while trusting less in latitudinal measurements from the radar,
based on the known performance of that sensor.

ˆ Robustness: Additional sensors contributing to the same measurement gives
a certain redundancy where system performance can be maintained even if one
of the sensors were to fail. This redundancy also keeps the system operational
even if interference occurs since di�erent kinds of sensors will be a�ected in
di�erent ways by environmental factors and other disturbances.

5.1 Levels of fusion

The fusion can be done in many di�erent ways and on di�erent levels. One way of
describing the di�erent levels of fusion is by dividing sensor fusion into three levels:
data fusion, feature fusion, and decision fusion. This categorization may be broken
down even further with a more detailed description of the gray zones between these
three levels. In the following paragraphs, various forms of fusion are all grouped and
described according to the di�erent levels of fusion de�ned in [19].
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5.1.1 Data fusion

The data fusion is the lowest level of fusion. One example of this would be how
the human eyes fuse color information, just fusing the raw data from every color
sensitive cone cell within the retina into a fused output that humans perceive as
color vision. Data fusion on this level requires the sensor data to be very similar
regarding compatible data rates, data dimensions, and formats. Performing data
fusion with the same type of sensors can be convenient while trying to fuse the data
from two di�erent sensor types can be quite tricky. The sensor data would probably
need some preprocessing since the data can be given in completely di�erent formats
and units, hence the fusion would no longer be in the lowest level of sensor data
fusion.

There is also a mixed level in between the data fusion and the next level, feature
fusion, where the input is data, but the output is on the feature level, see next section
on feature fusion. One example of this fusion would be to fuse the intensities from
two infrared bands of a multispectral scanner to compute the temperature of a
surface.

5.1.2 Feature fusion

Feature fusion is when the fusion algorithm works with feature inputs and outputs
instead of the raw sensor data. This can, for example, be all the properties of dy-
namic objects that can be deduced from raw sensor data. For example using the
velocity from one sensor and the position from another to give the object a more
detailed description.

Also on this level, there can be some connection to the next level: decision fu-
sion described in the following section. For example in pattern recognition systems
where the algorithm takes feature inputs from di�erent sensors and then sends them
through a classi�cation network that outputs a classi�cation, the decision to classify
an object as such is based on features and the decision is the output.

5.1.3 Decision fusion

Decision fusion is fusion of a higher level than the data or feature fusion, to fuse the
data on the decision level is always a feasible way of performing sensor fusion. Even
if the sensors outputs di�erent raw data and di�erent features it can still be fused
on the top level since the data can be preprocessed and transformed into a format
suitable for fusion. Although this does require that decisions were made further
down the chain either by the sensors independently or by some lower level fusion so
that they output some kind of decision.

An example of decision fusion would be object classi�cation where two or more
sensors identify a single object and each independently classifying it as a car. The
decision fusion algorithm would then assign the fused object to the car class based
on decisions made with partial information further down the chain.
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5.2 Recursive Bayesian estimation

Recursive Bayesian estimation, also known as Bayesian �ltering, is a recursive
method for estimating parameters with the use of prior information about that
parameter and measurements from at least one sensor, but commonly several sen-
sors see, e.g., [20]. The parameters of interest in a tra�c environment would be
at least: position, velocity, and direction in which surrounding objects are heading.
This state would be described by a statexk which is a vector that holds all infor-
mation for one object at the discrete timek.

The measurements/observations from the sensors are all stored in a similar state,
which also is a vectoryk with the same discrete timek. To perform Bayesian �ltering
all previous observations must be considered:Y1:k is a matrix which contains all the
measured data from system startk = 1

Y1:k = f y1; y2; : : : ; ykg (5.1)

up until current time k. Two assumptions are made to perform Bayesian estimations,
see, e.g., [21] where the �rst is that the state vectors stochastic process ful�lls the
Markov property. The Markov property refers to a memory-less model function
where the future state only depends on the current state and not on all previous
states, which is de�ned as

p(xk jxk� 1; : : : ; x0) = p(xk jxk� 1) : (5.2)

The second assumption that must be ful�lled is that current observation/measure-
ment yk is only dependent on the current statexk , de�ned as

p(yk jxk ; : : : ; x0) = p(yk jxk) ; (5.3)

which is how most sensors work when no extra post processing is performed. For
processes where these two assumptions are ful�lled, Bayesian �ltering using recur-
sive Bayesian estimations is applicable.

The Bayesian �lter works recursively towards �nding the posterior probability den-
sity function p(xk jY 1:k). The posterior probability density function describes the
probabilistic density distribution of the state xk , given all prior and current mea-
surementsY 1:k . From the probability density function the estimate x̂kjk can be
computed based on di�erent optimization criteria. One criterion could be the most
likely value of xk and it is called MAP, maximum a posteriori. MAP is de�ned as

x̂kjk = arg max
x

p(xk jY 1:k) ; (5.4)

where the posterior probability density function is used to generate the most likely
state estimation.

The following are the necessary equations and de�nitions that are needed to compute
the p(xk jY 1:k) with the posterior density function from time k � 1 together with the
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measurements from time k [20], [21]. The measurement data is split up into two:
the current measurement and all the earlier ones. The posterior probability density
function then takes the form:

p(xk jY 1:k) = p(xk jyk ; Y 1:k� 1) ; (5.5)

where the state is estimated based on current and all previous measurements. By
using Bayes' law it can be rewritten as:

p(xk jyk ; Y 1:k� 1) =
p(yk jxk ; Y 1:k� 1) p(xk jY 1:k� 1)

p(yk jY 1:k� 1)

=
p(yk jxk) p(xk jY 1:k� 1)

p(yk jY 1:k� 1)
;

(5.6)

where the assumption that no new observations depends on earlier measurements is
used to form the second row, this follows the assumption made in Equation 5.3. The
term p(yk jxk) requires knowledge of how to model the sensors with their physical
properties. The sensors are modelled as

yk = hk (xk ; wk) (5.7)

and can be both linear and nonlinear and has a measurement noisewk . The sensor
model basically describes how any given state will look from the perspective of the
sensors. The termp(xk jY 1:k� 1) is the predicted probability density and the denom-
inator is there for normalization purposes. The denominatorp(yk jY 1:k� 1) de�nes
the probability of a measurementyk given all previous measurements, however this
term is not always used for describing posterior probability density and if left out
the posterior probability density can be described as:

Posterior / Prior � Likelihood: (5.8)

To be able to predict the next state from previous measurements and get the previ-
ously mentioned posterior probability densityp(xk jY 1:k� 1) the Chapman-Kolmogorov
equation is used:

p(xk jY 1:k� 1) =
Z

p(xk ; xk� 1jY 1:k� 1) dxk� 1

=
Z

p(xk jxk� 1; Y 1:k� 1) p(xk� 1jY 1:k� 1) dxk� 1

=
Z

p(xk jxk� 1) p(xk� 1jY 1:k� 1) dxk� 1:

(5.9)

Here one of the earlier mentioned assumptions is used, the assumption being that
the state vectors stochastic process ful�lls the Markov property, that the future
state of the process depends only on the current state, see Equation 5.2. The
term p(xk� 1jY 1:k� 1) is the posterior density function at the timek � 1. The term
p(xk jxk� 1) is the density that describes how the state transitions from one point
in time to another. To accurately predict a state transition requires knowledge of
the system and a set of equations that is capable of representing how the system is

22



5. Sensor fusion

likely to behave in reality. The mathematical model used for this is usually referred
to as a motion model is de�ned as

xk = f k� 1 (xk� 1; vk� 1) ; (5.10)

where f can be linear or non-linear set of equations describing the state transitions of
the process. The termvk� 1 is the process noise that is added and in e�ect accounts
for inaccuracies in motion model. In the case where the variables are normally
distributed and the transitions linear, recursive Bayesian estimations are performed
using a Kalman �lter, described in next section.

5.3 Kalman Filter

The Kalman �lter, �rst developed in late 1950s by Rudolf E. Kalman [14], is a signal
�lter that allows a reasonable state prediction to be made even if the input describing
that state is very noisy. The Kalman �lter achieves this by making a few assumptions
about the system, it assumes that both process model and measurement model are
both linear with known expected values and covariances. With these assumptions
the state xk and the observations of that stateyk can be de�ned as

xk = Fk� 1xk� 1 + vk� 1 (5.11)

yk = H kxk + wk ; (5.12)

where vk� 1 � N (0; Qk� 1) and wk � N (0; R k) are Gaussian distributions with
mean zero and covariancesQk� 1 and R k [20]. The process noise covarianceQ con-
tains information about the noise within the process. Along the diagonal of the
matrix the entries represents the variance within each state e.g. how uncertain the
process model is for that state variable. The o�-diagonal entries in the covariance
matrix represents the cross covariance between state variables e.g. how uncertainties
in one state variable in�uences the other variables. The measurement noise covari-
anceR contains information regarding the noise in measurements. Assuming that
the prior density of the statep(x0) is also Gaussian, so will the resulting posterior
probability density function. A system ful�lling all of the above assumptions may
be optimally �ltered using the Kalman �lter.

When using a Kalman �lter, the posterior probability density at time k � 1 is
calculated from

p(xk� 1jY 1:k� 1) = N
�
xk� 1; x̂k� 1jk� 1; P k� 1jk� 1

�
; (5.13)

where x̂k� 1jk� 1 is the state estimate at timek � 1 and P k� 1jk� 1 is the covariance
matrix de�ning the uncertainties in that estimate. In the �rst step, the prediction
step, the posterior (5.13) which is the best possible estimate using all available data
is propagated through the process model to compute an estimate ofxk using all the
data gathered until that point in time. Because a Gaussian density is completely
described by its mean and covariance it is enough to calculate these parameters.
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The mean and covariance of the predicted posterior state are thus calculated from
the current best state estimate as:

x̂kjk� 1 = Fk� 1x̂k� 1jk� 1 (5.14)

P kjk� 1 = Fk� 1P k� 1jk� 1FT
k� 1 + Qk� 1: (5.15)

Next in the measurement update step, a measurement is made and the predicted
state and the covariance are updated using that measurementyk . The result of this
update step is a Gaussian posterior densityN

�
xk ; x̂kjk ; P kjk

�
computed according

to:

Sk = H kP kjk� 1H T
k + R k (5.16)

K k = P kjk� 1H T
k S� 1

k (5.17)

x̂kjk = x̂kjk� 1 + K k

�
yk � H k x̂kjk� 1

�
(5.18)

P kjk = P kjk� 1 � K kSkK T
k : (5.19)

This process is iterated for every time step k to �nd the posterior probability density
and thus the best state estimate at that point in time.

Basic Kalman �lters are excellent in situations where the mentioned assumptions are
valid but it struggles for non-linear models. For processes that are not approximately
linear it might be more suitable to use an extended, unscented or cubature Kalman
�lter described in the following sections [20].

5.3.1 Extended Kalman Filter

The Extended Kalman �lter (EKF) is an extension to the basic Kalman �lter to
handle non-linear �ltering problems [20]. For a system where both the process and
sensor models are nonlinear the state and measurement can be described by:

xk = f (xk� 1) + vk� 1

yk = h (xk) + wk
; (5.20)

where vk� 1 � N (0; Qk� 1) and wk � N (0; R k) are Gaussian distributions with
mean zero and covariancesQk� 1 and R k . It linearizes by a �rst order Taylor expan-
sion around the expected value. Both the motion and measurement model can be
calculated with

F̂ =
h
r x k � 1 f (xk� 1)T

i T
�
�
�
�
x k � 1= x̂ k � 1j k � 1

; (5.21)

Ĥ =
h
r x k h (xk)T

i T
�
�
�
�
x k = x̂ k j k � 1

; (5.22)

where

r x k ,

"
@

@xk(1)
; : : : ;

@
@xk(n)

#T

(5.23)
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is the partial derivations made [21]. The new equation for expected value and
covariance then equates to

x̂kjk� 1 = f (x̂k� 1jk� 1) (5.24)

P kjk� 1 = F̂P k� 1jk� 1F̂T + Qk� 1: (5.25)

and Ĥ is used in Equations 5.16-5.19 to create the now linearized �lter update
equations. The EKF is a good and easy to understand �lter for handling non-
linear systems since it works with standard linearization methods [20]. But as with
all linearizations it only performs well if the problem does not have to many non-
linearities. There can also be cases when the models are not easily di�erentiable and
can therefore cause problems. Another weakness of EKF is that it becomes slow and
computationally heavy to use as the number of variables in the state increase, as the
number of partial derivatives to calculate increases with the square of dimensions in
the state.

5.3.2 Sigma point methods

For non-linear problems where an EKF becomes ine�cient there are other methods
that has been proven to work e�ectively [22]. One possible method is the� -point
�lter, which works by creating a �xed number of points with a zero mean distributed
symmetrically according to the covariance matrix. By then adding the latest state
estimate x̂ to those points they get symmetrically distributed aroundx̂. How they
are distributed depends on the variables in Equation 5.31 and on which kind of� -
point �lter is used. The two kinds of � -point �lters that has been used in this project
are the Unscented Kalman �lter and the Cubature Kalman �lter, these methods will
be further explained in the following sections.

Both of these� -point methods are based on the unscented transformation [20],[22],
the use of which is motivated by two ideas. The �rst idea is that it is easier to
approximate a probability distribution than it is to approximate an arbitrary non-
linear function or transformation. The second idea is that when a nonlinear mapping
function y = h(x) maps a variable with a Gaussian distribution with known mean
and covariancex � N (x̂ ; P), the expected output value of that function can be ap-
proximated. The approximation works by evaluatingh(x) at a number of discrete
� -points according to

ŷ = Ef h(x)g �
2nX

i =0

W i
mh

�
X (i )

�
; (5.26)

whereX (i ) are � -points and W i
m are the mean weights associated with those points.

The expected output ŷ is thus calculated as an aggregate of the transformed� -
points. By weighting the in�uence of each� -point on the aggregate using the cal-
culated weight-term W i

c the expected mean̂y may be used to compute the corre-
sponding covariance according to:

Covf ŷ g �
2nX

i =0

W i
c

�
h

�
X (i )

�
� ŷ

� �
h

�
X (i )

�
� ŷ

� T
+ R k� 1: (5.27)
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By using this approach both the expected value and the covariance of a nonlinear
mapping function with a Gaussian variable as input can be calculated without the
use of derivatives.

5.3.2.1 Unscented Kalman Filter

A very important aspect of using the unscented Kalman �lter is the choice of� -
points. The �rst � -point is placed at the last estimated state so thatX (0) = xk� 1.
The remaining 2n � -points may be placed in various patterns, however, for all the
results presented in Chapter 7 they have been placed according to

X (0)
k� 1 = xk� 1

X (i )
k� 1 = xk� 1 + (

q
(n + � )P(:; i )) i for i = 1; : : : ; n

X (i )
k� 1 = xk� 1 � (

q
(n + � )P(:; i )) i � n for i = n + 1; : : : ; 2n;

(5.28)

where they are symmetrically distributed around the �rst � -point. By distributing
the points so that each of the2n points deviation from the meanxk� 1 is cancelled
out by a corresponding point on the opposite side of that estimated mean. The
joint mean of all � -points will thereby be equal to the estimated statexk� 1. � is a
variable used for tuning� -point placement andP(:; i ) is a column vector from the
covariance matrix, further tuning parameters are de�ned in Equation 5.31.

The � -points are then passed through the motion model which results in a predicted
distribution of � -points according to

X̂ (i )
k = f

�
X (i )

k� 1

�
; i = 0; : : : ; 2n: (5.29)

After the points have been passed through the motion model they are weighted
before contributing to the prediction. The weight given to each� -point is calculated
according to

W (0)
m =

�
n + �

W (0)
c = W (0)

m +
�
1 � � 2 + �

�

W (i )
m = W (i )

c =
1

2(n + � )
for i = 1; : : : ; 2n:

(5.30)

The weights calculated above are generated from a set of variables� , � , � and n,
wheren is the number of dimensions of the state. However the �rst three variables
may be chosen and thereby used as tuning parameters for adjusting the spread of the
� -points and thus the performance of the �lter. The parameters should however be
restricted within certain ranges and the� value is a calculated value, tuned through
combination of the other parameters:

� � 0
� 2 (0; 1]
� = � 2(n + � ) � n
� = 2:

(5.31)
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It is suggested to restrict the tuning parameters to the ranges de�ned above to
achieve stable and predictable performance of the �lter [23].
The predicted state and corresponding covariance are then calculated according to:

x̂k =
2nX

i =0

W (i )
m X̂ (i )

k

P̂ k =
2nX

i =0

W (i )
c

�
X̂ (i )

k � x̂k

� �
X̂ (i )

k � x̂k

� >
+ Qk� 1:

(5.32)

The update step of the UKF �rst generates a new set of� -points, the di�erence
this time is that the predicted mean and covariance is used. The generated� -points
are thus spread symmetrically around the state predicted in the prediction step of
the �lter. The new � -points are then passed through the measurement model to
generate the predicted measurement according to the following equation.

Ŷ (i )
k = h

�
X̂ (i )

k

�
; i = 0; : : : ; 2n (5.33)

The covariances of the predicted measurement is described by

ŷk =
1

2n

2nX

i =1

Ŷ (i )
k

Sk =
2nX

i =0

W (c)
i

�
Ŷ (i )

k � ŷk

� �
Ŷ (i )

k � ŷk

� >
+ R k

Ck =
2nX

i =0

W (c)
i

�
X̂ (i )

k � x̂k

� �
Ŷ (i )

k � ŷk

� >
;

(5.34)

where Sk is the covariance of the predicted measurement andCk is the cross-
covariance between the predicted state and measurement.

Finally these covariances are used to compute the Kalman gainK k which essentially
de�nes how much the model should rely on the new measurement by taking the
di�erence between those and the predicted measurements. Taking all of the above
into account including the newest measurement inyk the new state is calculated
along with its corresponding covariance

K k = CkS� 1
k

x̂k = x̂k� 1 + K k (yk � ŷk)

P k = P k� 1 � K kSkK >
k :

(5.35)

The unscented Kalman �lter is a variation of estimation methods usually referred to
as� -point methods [24]. The unscented Kalman �lter is one of the� -point methods
used in this project and it uses2n + 1 points, while the method described in the
next section uses only2n points which has a certain in�unce on performance.
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5.3.2.2 Cubature Kalman Filter

The Cubature Kalman �lter (CKF) works very similiar to the UKF with the two
di�erences being how many� -points that are created and the distribution of those
points [20]. The� -points are distributed around the estimated mean value according
to

X (i )
k� 1 = xk� 1 +

p
n

q
P(:; i)k� 1; i = 1; : : : ; n;

X (i )
k� 1 = xk� 1 �

p
n

q
P(:; i)k� 1; i = n + 1; : : : ; 2n;

(5.36)

whereP(:; i)k� 1 is the i:th column of the covariance matrix. The obvious di�erence

between CKF and UKF is that former one does not includeX (0)
k� 1 which for the UKF

is the estimated mean, see Equation 5.28. The� -points are then passed through
the motion model according to

X̂ (i )
k = f

�
X (i )

k� 1

�
; i = 1; : : : ; 2n: (5.37)

After passing the� -points through the motion model they are weighted and added
up to the predicted mean and covariance according to the following equations

x̂k =
1

2n

2nX

i =0

X̂ (i )
k

P̂ k =
1

2n

2nX

i =0

�
X̂ (i )

k � x̂k

� �
X̂ (i )

k � x̂k

� >
+ Qk� 1;

(5.38)

whereQk� 1 is the process noise covariance.

The update step starts with computing new� -points around the predicted mean
using the predicted covariance, these are then passed through the measurement
model to get the predicted measurements

Ŷ (i )
k = h

�
X̂ (i )

k

�
; i = 1; : : : ; 2n: (5.39)

First the predicted measurement mean̂y, measurement covarianceSk and the cross-
covariance between state and measurementsCk are computed as

ŷk =
1

2n

2nX

i =1

Ŷ (i )
k

Sk =
1

2n

2nX

i =1

�
Ŷ (i )

k � ŷk

� �
Ŷ (i )

k � ŷk

� >
+ R k

Ck =
1

2n

2nX

i =1

�
X̂k � x̂k

� �
Ŷ (i )

k � ŷk

� >
:

(5.40)

Finally the �ltered state xk and the covarianceP k can be calculated with the Kalman
�lter gain K k as

K k = CkS� 1
k

xk = x̂k + K k (yk � ŷk)

P k = P̂ k � K kSkK >
k ;

(5.41)

whereyk are the measurements.
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5.3.3 Motion Models

The motion model is a representation of the physical system that is being observed.
This mathematical representation of the system takes as input the last state estima-
tion and the time that has passed since that estimation was made, it then gives an
estimation of the current state based on those inputs. The motion model is the core
of the Kalman �lter and is what enables predictions of the state to be made before
that data becomes available [14]. The motion model can also be referred to with the
wider term process modelsince the Kalman �lters can be applied to processes other
than pure motion. The equations of motion included in the motion model describes
how the variables of the state will in�uence each other over time according to

xk = f (xk� 1) + vk� 1; (5.42)

which also includes a noise term (vk� 1) for the previous time. The set of equations
included in the motion model varies but essentially always describes the relations
within the state over time in a similar way to an equation of motion describing posi-
tion in terms of velocity and acceleration over time. The accuracy of the prediction
made with the motion model is also used to estimate the accuracy of the motion
model, which varies over time as a consequence of the di�erence between actual
measurements and predicted measurements. The motion model picked should accu-
rately re�ect the physical system that is being modeled and is therefore very case
speci�c. In the case of modelling the motions of vehicles there are several suggested
models identi�ed during research of prior work. The models used over the course
this project are described in further detail in the following sections.

5.3.3.1 Constant Acceleration Model

One of the simpler motion models that is applicable in a tra�c scenario is the
constant acceleration model. This model uses a state with six variables and describes
movement within a 2D-plane [25]. The dimensions of the constant acceleration
model state are given in the state vector as

X = [ x; y; _x; _y; •x; •y]T ; (5.43)

which is constituted of variables for position, velocity and acceleration in the x and
y directions. The motion model is the following set of equations

f CA (X ) =

2

6
6
6
6
6
6
6
6
6
4

x + T _x + T 2

2 •x
y + T _y + T 2

2 •y
_x + T •x
_y + T •y

•x
•y

3

7
7
7
7
7
7
7
7
7
5

(5.44)

which describes the di�erential equations of motion along two perpendicular axis.
In the motion model the �rst equation describes how the position along the x-axis
is in�uenced over time by velocity and acceleration along that same axis. Line three
describes how the velocity changes over time and is equal to the time derivative of
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the equation describing position. Line �ve describes how the acceleration along the
x-axis is constant over time. This is the kernel of this motion model, the acceleration
is assumed to be constant or close to it and changes in acceleration are accounted for
by the added noise in Equation 5.42 rather than by the motion model itself which
is where the name constant acceleration model is derived from.

5.3.3.2 Augmented Coordinated Turn Model

The augmented coordinated turn model uses a model that makes assumptions about
the speed and turn rate rather than acceleration. There are two versions of this mo-
tion model, one in Cartesian coordinates and another one in polar coordinates [26].
There are similarities between Cartesian and polar such as the turn rate and speed
being assumed to be constant and included as variables in the state. Another shared
aspect between these models is the type of motion they describe, vehicles are as-
sumed to move along their heading, which means they can never turn without also
moving forward. The kind of motion these models predict is a good approximation
of how a majority of vehicles move, without a turning rear-axle, slip-less motion may
only occur along an axis perpendicular to and intersecting both front- and rear-axle.
Further di�erences and similarities will be described in the following paragraphs.

Cartesian Coordinates
In the Cartesian coordinate system the coordinated turn model state is given as

X = [ x; y; _x; _y; ! ]T (5.45)

and is similar to the constant acceleration model state but has the �fth state variable
! which describes the turn rate rather than the acceleration within the plane. The
Cartesian coordinate version of the motion model used is

f ACT (X ) =

2

6
6
6
6
6
6
4

x + sin( !T )
! _x � 1� cos(!T )

! _y
y + 1� cos(!T )

! _x + sin( !T )
! _y

cos(!T ) _x � sin(!T ) _y
sin(!T ) _x + cos(!T ) _y

!

3

7
7
7
7
7
7
5

; (5.46)

where the turn rate is assumed to be constant and changes in! will therefore be
accounted for by the additive noise in the end of Equation 5.42. That additive noise
is also how the model accounts for changes in velocity. The model assumes the
absolute velocity to be constant while the distribution over the velocity components
in x and y directions varies over time depending on the turn rate.

Polar Coordinates
The polar version of the coordinated turn model is a bit di�erent with the state as

X = [ x; y; v; �; ! ]T ; (5.47)

where the position dimensions of the state remains unchanged but the remainder
of the state is altered. Instead of having the speed of the vehicle broken down into
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two velocities there is only one absolute speed. The absolute speed in combination
with the fourth state, the heading (� ), gives the same information as the third
and fourth state variables in the Cartesian version of the motion model. The �fth
component of the state also remains unchanged and is the turn rate e.g. how quickly
the heading is changing, also known as the yaw rate. The polar coordinate version
of the coordinated turn motion model has the equations of motion as:

f ACT2 (X ) =

2

6
6
6
6
6
6
6
4

x +
�

2v
!

�
sin

�
!T
2

�
cos

�
� + !T

2

�

y +
�

2v
!

�
sin

�
!T
2

�
sin

�
� + !T

2

�

v
� + !T

!

3

7
7
7
7
7
7
7
5

: (5.48)

This model describes movements very similar to the Cartesian coordinate version.
Line four of the motion model de�nes how the, by the model assumed to be constant,
turn rate will in�uence the heading over time.

5.3.3.3 Bicycle Model

This bicycle model state is more complex and attempts to use more of the informa-
tion available from the LIDAR, namely the length and width of the detected vehicle
[27]. The bicycle model state is de�ned as

X = [ x; y; v; '; �; `; w ]T (5.49)

and is similar to the polar coordinated turn motion state with some additional
variables, speci�cally the length and width of the tracked vehicle. It also has the
�fth variable of the state as steering angle rather than the typical turn rate The
model uses several additional variables not included in the state, but rather employs
a couple of equations:

dk = Tvk (5.50)

� k =
dk

`w
k

tan (� k) (5.51)

Rk = dk=� k (5.52)

to de�ne distance covered, turning angle and turning radius respectively.
The bicycle model unlike the other models in this report changes based on the state
of the tracked object. While the estimated steering angle di�ers from zero, in other
words when the tracked vehicle is not traveling in a straight line the motion model
is described by a set of equations:

f BC (X ) =

2

6
4

x � R sin (' ) + R sin (' + � )
y + R cos (' ) + R cos (' + � )

[v; ' + �; �; `; w ]T

3

7
5 : (5.53)

In this model the position varies according to estimated turning radiusR, heading
' and turning angle � .
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This model however is limited to estimations where the steering angle di�ers from
zero since a value of zero for turning angle connotes that turning radius approaches
in�nity, in short the model breaks down. If conditions:

lim
� k ! 0

� k = 0; lim
� k ! 0

Rk = 1 (5.54)

are ful�lled the motion model changes to a model more analogous to a constant
velocity model. The motion model analogous to a constant velocity model:

f CS (xk) =

2

6
4

xk + dk cos (' k)
yk + dk sin (' k)

[vk ; ' k ; � k ; `k ; wk ]T

3

7
5 (5.55)

assumes everything to be constant except the position variables which are in�uenced
by the estimated heading and velocity according to the �rst two lines in the motion
model. The other variables in the state are assumed to be constant and have their
changes accounted for by the additive noise.

5.4 Smoothing

All the previous mentioned �ltering techniques only considers current and previous
measurements. Filters utilizing only previously gathered data is suitable for online
applications e.g. controlling a process in real time. The reference system that this
project is based upon, however, does not work on-line. The purpose of the algo-
rithm created during this project is to evaluate the internal systems and sensors.
All of this is performed after the data is collected and therefore does not need to
work on-line. Without the need of �ltering data in real-time more methods become
applicable: for example smoothing. Smoothing applies much of the logic used for
�ltering but utilizes future and previous measurements instead of only the current
and previous ones [20]. This yields much better results than using just a �lter. The
probability distribution can be calculated asp(xk jY 1:T ) for any k < T . This T can
either be the end time of the whole set or just some time bigger than the current
time k.

The kind of smoother that has been used is the Rauch-Tung-Striebel smoother (RTS
smoother). The RTS smoother works in two steps, �rst it performs forward �ltering
with the use of a Kalman �lter. This is called the forward pass and it is performed
in the exact same way as when working with only a Kalman �lter. The forward pass
is then followed by a backward recursion through the whole set, working its way
backwards with all measurements and the �ltered output. The update equations
depends on what kind of Kalman �lter that is used. The variations of smoothers
used in this project will be described in further detail in the following sections.

5.4.1 Extended Rauch-Tung-Striebel Smoother

The Extended RTS smoother works by using the basic RTS smoother but changing
the prediction equations to the �rst order Taylor series approximations [20]. There is
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of course the possibility to also use higher order approximations but these methods
will not be covered here. The EKF RTS smoothing algorithm �rst does a forward
�ltering pass with the use of the standard EKF equations described in 5.3.1. Next
it does the backward recursion fork = T � 1; : : : ; 0. Every iteration starts with
predicting the state at time stepk + 1 according to

x̂k+1 = f (xk)

P̂ k+1 = Fx (xk) P kF>
x (xk) + Qk ;

(5.56)

where Fx (xk ) is the Jacobian matrix of the process model evaluated atxk . The
update equations for time stepk then becomes

G k = P kF>
x (xk)

h
P̂ k+1

i � 1

x s
k = xk + G k

h
x s

k+1 � x̂k+1

i
G>

k

P s
k = P k + G k

h
P s

k+1 � P̂ k+1

i
G>

k :

(5.57)

With these update steps it works its way backwards recursively by comparing the
smoothed result with the prediction from stepk+1 to update thek:th step. This will
give a smoother result than the one that is acquired from doing only the forward
�ltering since it has much more information to work with. A smoother result is
desired when tracking vehicles since they tend to have a smooth movement.

5.4.2 Unscented Rauch-Tung-Striebel Smoother

The unscented RTS smoother �rst does a forward �ltering pass as described in
Section 5.3.2.1 where all the �ltered results are calculated. These are then used in
the backward recursion, fork = T � 1; : : : ; 0, which starts with calculating � -points
around the �ltered mean x f

k . The �ltered mean is derived from the forward pass
for the current time step k. These � -points are generated according to Equation
5.28 and then passed through the process model. Once passed through the process
model the � -points are transformed from current time to the next time step by

X̂ (i )
k+1 = f

�
X (i )

k

�
; i = 0; : : : ; 2n; (5.58)

to get the transformed points surrounding the predicted mean. The weights are
calculated as described by Equation 5.30. With the transformed� -points X̂ (i )

k+1 the
predicted meanx̂k+1 along with predicted covarianceP̂ k+1 and cross covariance
D k+1 are calculated according to

x̂k+1 =
2nX

i =0

W (m)
i X̂ (i )

k+1

P̂ k+1 =
2nX

i =0

W (c)
i

�
X̂ (i )

k+1 � x̂k+1

� �
X̂ (i )

k+1 � x̂k+1

� >
+ Qk

D k+1 =
2nX

i =0

W (c)
i

�
X (i )

k � xk

� �
X̂ (i )

k+1 � x̂k+1

� >
:

(5.59)
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With the predicted mean and covariances the following equations can be solved as

G k = D k+1

h
P̂ k+1

i � 1

x s
k = xk + G k

�
x s

k+1 � x̂k+1

�

P s
k = P k + G k

�
P s

k+1 � P̂ k+1

�
G>

k :

(5.60)

Solving the equations above gives the gainG k , the smoothed meanx s
k and the

covarianceP s
k of the smoothed output. Unlike the output of the previously described

�ltering methods the smoothed output is generated based on all available data and
thus likely to deviate less from the true state.

5.4.3 Cubature Rauch-Tung-Striebel Smoother

As with the unscented RTS smoother the Cubature Rauch-Tung-Striebel smoother
�rst performs a forward pass according to the CKF process, explained in Section
5.3.2.2. The �ltered results are saved and later used for the backwards smoothing
pass. Every iteration starts with calculating� -points as described in Equation 5.36,
the � -points are then passed through the motion model

X̂ (i )
k+1 = f

�
X (i )

k

�
; i = 1; : : : ; 2n (5.61)

to get the transformed� -points. After passing through the motion model the trans-
formed � -points are spread around the predicted mean̂xk+1 . The spread and posi-
tion of the transformed � -points in relation to the predicted mean is then used to
calculate the predicted covariancêP k+1 and cross covarianceD k+1 as,

x̂k+1 =
1

2n

2nX

i =1

X̂ (i )
k+1

P̂ k+1 =
1

2n

2nX

i =1

�
X̂ (i )

k+1 � x̂k+1

� �
X̂ (i )

k+1 � x̂k+1

� >
+ Qk

D k+1 =
1

2n

2nX

i =1

�
X (i )

k � xk

� �
X̂ (i )

k+1 � x̂k+1

� >
:

(5.62)

Using the predictions above the smoothing gainG k is calculated and used to com-
plete the prediction step. The smoothed meanx s

k and smoothed covarianceP s
k can

then be calculated according to

G k = D k+1

h
P �

k+1

i � 1

x s
k = xk + G k

�
x s

k+1 � x̂k+1

�

P s
k = P k + G k

�
P s

k+1 � P̂ k+1

�
G>

k :

(5.63)
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5.5 Implementation

The aim with the implementation of this sensor fusion algorithm has been to �nd a
well performing solution, with increased performance in both accuracy and reliabil-
ity. This prompts the use of various performance metrics, the details of which are
extensively explained in Section 6. Performance has to be compared for di�erent
variations of the fusion algorithm to determine which set of models, smoothers and
tuning parameters provides the best performance. The ability to quickly test various
solutions has been highly prioritized when creating the code. Therefore the code has
been been implemented with a modular structure where it is easy to switch between
models, parameters, etc.

The code has also been developed with the intention of it being an o�-line script
applied in post processing. This has made it possible to write code with longer
computational time than what would be appropriate if it were meant to be run
on-line. When working o�-line it is no longer necessary to take the computational
time into account when evaluating various algorithms. Assuming the computational
time does not become unreasonable, better performance is always bene�cial even if
the performance gain is small and computational penalty is high.

All of the code has been implemented in Matlab since the data provided by the
company came in MAT-�les. The fusion algorithm is supposed to be an addition
to the existing post processing and, therefore, it has been considered convenient to
maintain the �le format. Matlab is also a good tool for developing and testing new
code with simple tools for visualizations.

The entirety of the implemented tool chain is visualized in Figure 5.1. In the fol-
lowing sections the implementation of the last three boxes of the tool chain will be
described and explained.

Figure 5.1: A block diagram of sensor fusion tool chain.
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5. Sensor fusion

5.5.1 Kalman Filter Prediction

The prediction step considers information about the previous step to predict how it
is likely to evolve until the current time step. The information needed for this state
prediction is:

ˆ prior mean xk� 1

ˆ prior covariancePk� 1

ˆ motion model f ()

ˆ time step lengthdt

ˆ process noise covarianceQ

ˆ � -points function sigmaPoints()

ˆ which kind of Kalman �lter to use KFtype

The algorithm recursively works its way through the whole time span, saving all the
predictions as they are calculated. Pseudocode describing the implemented predic-
tion function can be seen in Algorithm 2. Here there are three di�erent versions
depending on what kind of Kalman �lter that is used. The EKF is fairly straight
forward wherex0

k is the result received from passingxk� 1 through the Jacobian of
the motion model.

The prediction step for the UKF starts with generating � -points as described in
Section 5.3.2.1. With the process model the algorithm then loops through all the
� -points, passing them through the motion model and adds up the product of the
transformed points and their weights to the predicted mean valuexk .

Next, another for-loop then takes over, this loop uses the mean value and the trans-
formed � -points to generate the covariance of the prediction. The covariance matrix
is generated using the state space distance between the predicted mean and the
predicted � -points. Since the� -points are spread around the last estimated mean
based on the covariance of that estimation, as seen in Equation 5.28, the transformed
points are used to derive the predicted covariance, see Equation 5.32.

The prediction process for CKF is very similar to the UKF process described above.
The only di�erence is how the� -points are placed around the mean and that there
are only 2n � -points instead of the2n + 1 points used by the UKF.
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5. Sensor fusion

Algorithm 2 Kalman Filter Prediction

1: if KFtype = 'EKF' then
2: [xk ; x0

k ]  f (xk� 1; dt)
3: Pk  x0

k � Pk � (x0
k)T + Q

4: else if KFtype = 'UKF' then
5: n  length(xk� 1)
6: [SPk� 1; W]  sigmaPoints(xk� 1; Pk� 1; KFtype)
7: xk  0
8: for i = 1 : 2 � n + 1 do
9: SPk  f (SPk� 1(i ); dt)

10: xk  xk + SPk � W(i )
end

11: Pk  Q
12: for i = 1 : 2 � n + 1 do
13: SPk  f (SPk� 1(i ); dt)
14: Pk  Pk + ( SPk � xk) � (SPk � xk)T � W(i )

end
15: else if KFtype = 'CKF' then
16: n  length(xk� 1)
17: [SPk� 1; W]  sigmaPoints(xk� 1; Pk� 1; KFtype)
18: xk  0
19: for i = 1 : 2 � n do
20: SPk  f (SPk� 1(i ); dt)
21: xk  xk + SPk � W(i )

end
22: Pk  Q
23: for i = 1 : 2 � n do
24: SPk  f (SPk� 1(i ); dt)
25: Pk  Pk + ( SPk � xk) � (SPk � xk)T � W(i )

end
end
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5. Sensor fusion

5.5.2 Kalman Filter Update

Once a prediction has been made using the physical models this predicted state is
used to perform the update step which will be described in this section. The Kalman
�lter update is described with pseudocode in Algorithm 3. The inputs required to
perform the update step are:

ˆ predicted meanx̂

ˆ predicted covarianceP̂

ˆ measurement noise covarianceR

ˆ measurementsy

ˆ measurement modelh

ˆ � -points function sigmaPoints()

ˆ which kind of Kalman �lter that is used KFtype.

Similarly to the prediction step described in the previous section the update algo-
rithm works recursively, updating the �ltered output for every time step. For the
update step the information from both the prediction step and the sensor data is
used.

For the EKF it �rst passes the predicted meanx̂ through the measurement model
and also computes the Jacobian of the measurement model evaluated at that mean.
The measurement model may di�er depending on which sensor is providing the mea-
surement(s). In sensor fusion the sensors used do not have to measure the same state
variables. Using the Jacobian, the predicted covariancêP and the measurement
noise covarianceR the innovation covarianceS is computed. The innovation covari-
ance together with the cross covariance are later used for computing the Kalman
gain. The Kalman gain is used for updating the estimated statex depending on the
accuracy of the prediction, essentially how good or bad the prediction is. Finally
the covariance is updated with the use of the Kalman gainK and the innovation
covarianceS.

The update for the UKF starts with generating� -points with the predicted meanx̂
and covarianceP̂. All 2n +1 � -points are passed through the measurement modelh
and then multiplied with the weights, received also from thesigmaPoints-function,
and added up to the predicted measurement̂y. With the predicted mean x̂ and
measurementŷ the cross covarianceC and innovation covarianceS are computed.
The cross covariance depends on how much the� -points are spread from both the
predicted mean and the measurement. The innovation covariance only depends on
the predicted measurements and the� -points. With these covariances the Kalman
gain is calculated and the mean and covariance are updated.
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Algorithm 3 Kalman Filter Update

1: if KFtype = 'EKF' then
2: [hx; hx 0]  h(x̂)
3: S  hx0 � P̂ � (hx0)T + R
4: K  P̂ � hx0=S
5: x  x̂ + K � (y � hx)
6: P  P̂ � K � S � K T

7: else if KFtype = 'UKF' then
8: n  length(x̂)
9: [SP; W]  sigmaPoints(x̂; P̂ ;KFtype)

10: ŷ  0
11: for i = 1 : 2n + 1 do
12: ŷ  ŷ + h(SP(i )) � W(i )

end
13: S  R
14: C  0
15: for i = 1 : 2n + 1 do
16: C  C + ( SP(i ) � x̂) � (h(SP(i )) � ŷ)T � W(i )
17: S  S + ( h(SP(i ) � ŷ) � (h(SP(i )) � ŷ)T � W(i )

end
18: K = ( C=S)
19: x  x̂ + K � (h(y) � ŷ)
20: P  P̂ � K � CT

21: else if KFtype = 'CKF' then
22: n  length(x̂)
23: [SP; W]  sigmaPoints(x̂; P̂ ;KFtype)
24: ŷ  0
25: for i = 1 : 2n do
26: ŷ  ŷ + h(SP(i )) � W(i )

end
27: S  R
28: C  0
29: for i = 1 : 2n do
30: C  C + ( SP(i ) � x̂) � (h(SP(i )) � ŷ)T � W(i )
31: S  S + ( h(SP(i ) � ŷ) � (h(SP(i )) � ŷ)T � W(i )

end
32: K = ( C=S)
33: x  x̂ + K � (h(y) � ŷ)
34: P  P̂ � K � CT

end
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5. Sensor fusion

5.5.3 Rauch-Tung-Striebel Smoother

Last in the fusion toolchain the smoothing algorithm is implemented. The smooth-
ing algorithm uses the results generated during the full forward �lter pass to perform
estimations, and was therefore implemented last when the previous parts were �nal-
ized. The smoothing function works backwards recursively and for every time step
it takes as input:

ˆ Smoothed mean at timek + 1, xs
k+1

ˆ Smoothed covariance at timek + 1, P s
k+1

ˆ Filtered mean at time k, x f
k

ˆ Filtered covariance at timek, P f
k

ˆ Predicted mean at timek + 1, xp
k+1

ˆ Predicted covariance at timek + 1, Pp
k+1

ˆ Motion model, f

ˆ Time step length,dt

ˆ � -points function, sigmaPoints()

ˆ which kind of Kalman �lter that is used, KFtype

The RTS process works backwards based on knowledge from the �ltered data from
the previous time stepk + 1. The �rst thing it does is to initialize the �nal values
xs

N , P s
N with the last values from the �ltered output. From this it starts to loop

backwardsk = N � 1; N � 2; : : : ; 2; 1 until it reaches the �rst measurement. For
the EKF it starts with passing the �ltered state for time step k through the motion
model to receive the prediction and the Jacobian for k+1. The Jacobian is then
used together with the covariancesP f

k and Pp
k+1 to compute the gainGk .

The UKF computes the gain in a di�erent way, it �rst creates � -points from the
�ltered mean and covariance for timek. Then a for-loop that runs for2n + 1 times
is used to create the covariancePkjk+1 which is a covariance depending on timek
and k + 1 by comparing the � -points with the mean for both of those time steps.
Then together with that result and the predicted covariancePp

k+1 the gain Gk is
computed. For the CKF this is done exactly the same as for the UKF except the
number of � -points and the weights used to create them.

Once the gain has been computed it is used to scale how much the �ltered value
should be changed depending on the di�erence between the predicted valuexp

k+1
and the smoothed valuexs

k+1 . The covariance is updated in the same manner but
depending on the di�erence between the predicted and the smoothed covariances
Pp

k+1 , P s
k+1 . The gain is also squared for updating the covariances.
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Algorithm 4 Rauch-Tung-Striebel Smoother

1: N  nrOfTimeSteps
2: xs

N  x f
N

3: P s
N  P f

N

4: for k=N-1:1 do
5: if KFtype = 'EKF' then
6: [x f

k+1 ; (x f
k+1 )0]  f (x f

k ; dt)
7: Gk  P f

k � (x f
k+1 )0=Pp

k+1
8: else if KFtype = 'UKF' then
9: [SP; W]  sigmaPoints(x f

k ; P f
k ; KFtype)

10: Pkjk+1  0
11: n  length(x̂)
12: for i = 1 : 2n + 1 do
13: Pkjk+1  Pkjk+1 + ( SP(i ) � x f

k ) � (f (SP(i ); dt) � xp
k+1 )T � W(i )

end
14: Gk  Pkjk+1 =Pp

k+1
15: else if KFtype = 'CKF' then
16: [SP; W]  sigmaPoints(x f

k ; P f
k ; KFtype)

17: Pkjk+1  0
18: n  length(x̂)
19: for i = 1 : 2n do
20: Pkjk+1  Pkjk+1 + ( SP(i ) � x f

k ) � (f (SP(i ); dt) � xp
k+1 )T � W(i )

end
21: Gk  Pkjk+1 =Pp

k+1
end

22: xs
k  x f

k + Gk � (xs
k+1 � xp

k+1 )
23: P s

k  P f
k + Gk � (Pp

k+1 � P s
k+1 ) � GT

k
end
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6
System Evaluation

When creating a new system a large portion of time will be spent creating the
code to get it to a working state. After an acceptable working state is reached
and the code works as intended the need for evaluating and possibly improving the
system emerges. To be able to evaluate the performance of a system a structured
testing process is required. In this chapter �rst the metrics used for evaluating
performance will be described. After that the scenarios, during which all of the
mentioned speci�cations can be evaluated, will be described.

6.1 Evaluation Criteria

Before evaluation could begin there was a need to de�ne how the performance of
the system would be evaluated. The performance of the system will be evaluated
using the four criteria described in the following sections. Given a reference against
which to compare the fused output, performance metrics for accuracy, con�dence
and resolution may be calculated. However even without reference data a qualitative
evaluation may be performed.

6.1.1 Accuracy

Being able to improve the accuracy is of great importance for high end positional
sensors such as radar and LIDAR. Therefore this has been chosen to be one of the
things that should be improved with this sensor fusion system. The fused data
should have a better accuracy then the two sensors can provide individually. To be
able to measure any accuracy there has to be an external ground truth to compare
with. This is where the RTK-data may be used to provide that reference. This
is a sensor which the radar, LIDAR and fused data can be compared to and the
accuracy of each of those outputs may then be calculated.

A good way of measuring the accuracy of sensors in an automotive application would
be the use of Root Mean Square Errors (RMSE) described in Equation 4.3. The
RMSE does not only �nd how far away the points are from the true values but also
punishes large errors. This is desirable since a few large errors is something that
would a�ect the �nal results more than many small errors.
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6.1.2 Con�dence

Measurement con�dence is a property of measurements that de�nes how likely it is
to be correct e.g. if several sources give the same or similar readings of some variable
the con�dence in those measurements being true increases. Having several sensors
covering the same area will reduce the risk of objects being missed and thus increase
the con�dence in the mapping of the surrounding area being correct.

6.1.3 Resolution

The sensors, both the radar and the LIDAR, has a certain resolution which means
that they both only update their measurements in discrete steps. The reality how-
ever is not discrete so it would be preferable to be able to represent the measure-
ments continuously or at least with a better resolution. This is something that can
be achieved with the use of an RTS smoother, or other smoothers, since it �nds a
smooth approximated curve in between those discrete points. A smooth curve is a
much better approximation of how a vehicle is moving since those typically move in
a smooth manner with low acceleration/deceleration.

The output resolution of the system may also achieve a higher temporal resolution
than each of the input sensors could do separately. A higher refresh rate in measure-
ment updates increase the amount of information over a given time period allowing
the user to resolve more detail over a given time period.

6.1.4 Robustness

When discussing robustness many aspects may be taken into consideration. A sys-
tem can be robust in a manner where it withstands di�erent external noise, e.g
weather, movement, force. It can also be a case where it is robust in a way that if
it has faulty measurements it can handle those in a way where the output remains
reasonably stable. Both of these de�nitions have been used when performing eval-
uation of the robustness of the system since both are important for the Reference
box. It will have to perform well under bad weather conditions but also give good
results even though the measurements sometimes can be faulty due to other reasons.

This is something that has been evaluated by checking scenarios where the data
either has faulty measurement or was gathered during bad weather conditions. The
robustness against faulty measurements was checked manually by reviewing plots of
the fused output to see whether it remained stable during the faulty measurements.
For robustness against bad weather conditions the fused output was checked for
scenarios with heavy downpour.

6.2 Scenarios

Validation and evaluation of the fusion algorithm will entail the use of the hunter
and target vehicles to enact a few typical tra�c scenarios. The scenarios would be

44



6. System Evaluation

designed to evaluate various aspects of the fusion algorithm while not deviating to
far from what may be considered normal tra�c situations.

To fully evaluate the performance of the various fusion solutions implemented dur-
ing the course of this project a more accurate reference is necessary. A reference
system capable of recording position and motion with high enough accuracy is the
RTK system described in Section 2.3. By equipping two vehicles with the same
number of RT3000s, the position and motion of both vehicles may be recorded with
high accuracy. Using the sets of data from both vehicles, their relative position
may be calculated and used as a reference against which the fused output from the
sensor fusion algorithm may be compared. The vehicle equipped with both RT3000
and the roof-mounted reference box will hence be referred to as the hunter. The
second vehicle equipped with only the RT3000 setup will be referred to as the target.

Performing the scenarios and gathering new data with RTK reference for both hunter
and target is a major undertaking. Therefore initial evaluation will be performed
with suitable preexisting data gathered from test drives on public roads. This data
was chosen to be similar to the scenarios planned.

6.2.1 Overtaking Scenario

The overtaking scenario is meant to replicate driving on a motor- or highway where
the hunter passes to the left of a slower moving car. This maneuver might be
thought of either as an overtaking or simply passing a car traveling in the right
lane. The scenario is intended to test the algorithms performance in a scenario
where both hunter and target are traveling at moderate to high speeds with a low
relative velocity.

6.2.2 Following Scenario

The following scenario will replicate the most typical driving scenario where the
hunter is traveling at low to moderate speeds behind the target vehicle. This scenario
is similar to the overtaking scenario but rather than being performed on a straight
motorway this scenario would be performed on a smaller less straight road, intended
to replicate a typical country road with one lane in each direction. The relative speed
between target and hunter will in this scenario be close to or equal to zero. This
scenario will be useful in validating the ability of the fusion algorithms to compensate
for motion and rotation of the hunter.

6.2.3 Oncoming Scenario

The most frequently encountered and also the most hazardous situation encountered
on many roads is the oncoming scenario. This scenario may take almost any shape
and form but the essentials that makes it dangerous is the high relative velocity
between two oncoming vehicles. Most country roads generally have reasonable speed
limits reducing the chances of a fatal outcome in case of run o� road accidents or
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other accidents involving only one vehicle. However, these roads often lack a dividing
barrier separating the lanes in one direction from those in the other direction. The
lack of such a dividing barrier results in situations where two oncoming vehicles,
both traveling at a moderate speed, may collide with a very high relative speed,
increasing the risk of major injury or death of the occupants.

6.2.4 Bad Conditions Scenario

A common factor that all vehicles encounter at some point is bad weather. The most
common result of bad weather conditions is reduced visibility, reduced visibility may
be caused by rain, snow, fog, dust or something completely di�erent. Regardless
of cause, low visibility makes on-road travel more dangerous since it reduces the
e�ective range of both sight and light based sensors, such as cameras and LIDAR.
The bad weather scenario is intended to evaluate redundancy and the ability of the
system to maintain an accurate target tracking in adverse conditions.

6.2.5 Stationary Observer Scenario

When tracking an object, and using a motion model to make predictions regarding
the expected position of that object it is necessary to take into account how the
observer has moved in between two consecutive observations. The motion of the
hunter vehicle, hence referred to as ego-motion, will create an o�set between the
coordinate system in which the prediction is made and the coordinate system from
which the following observation is made. The coordinate system in which the predic-
tion is made is centered in the position of the hunter at the time of the most recent
sensor update/observation, while the consecutive observation will be made from the
then current position of the hunter. When the hunter is stationary the perspective
from which two consecutive observations are made is the same. Therefore, when the
hunter is immobile there is no need to compensate for the movement of the observer
perspective. By having the hunter parked and motionless the motion models used
to make prediction may be evaluated independently of the ability to compensate for
ego-motion.
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Results and Discussion

This chapter will present the results generated during the project. Initial intentions
for evaluation is thoroughly described and discussed in the previous chapter. How-
ever, due to restructuring within the company e�orts to gather, decode, post-process
and evaluate the system using data with the necessary RTK-reference available has
been futile. The implemented code has been designed for and intended to allow
for evaluation using RTK-data, nonetheless in the absence of data and within the
limited time frame of the project such evaluation has proven to be out of reach.
Therefore this chapter will present results generated using pre-existing data gath-
ered during test drives unrelated to this project. Because the data used has been
gathered for other purposes it does not include the RTK reference data that would
be necessary to evaluate increased accuracy or precision of the fused output. With-
out a valid and more accurate reference to compare the fused output to it becomes
much more di�cult to draw conclusions regarding the accuracy. To draw a conclu-
sion regarding the accuracy of the fused output would require knowledge of the true
relative position which cannot be known given the currently available data.

The data used in this chapter has been taken from servers where the company stores
all the data recorded from test drives. From the copious amounts of data the scenar-
ios and tracks presented as results in this chapter have been carefully picked to be
similar to the scenarios described in the previous chapter. The chosen scenarios will
be used to evaluate and draw conclusions regarding various combinations of tunable
parameters, models and more.

Testing with di�erent kinds of Kalman Filters has been performed. The EKF, UKF
and CKF have all been tested on several data sets and produced such similar results,
seen in Figure 7.1, that there is no need in showing the comparison further. The
CKF version has been used for all the results presented below since it has the lowest
computation time of the three methods.
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Figure 7.1: Comparison between the EKF, UKF and CKF, all of them very similar.

Overall the fusion algorithm is working really well and is capable of producing a
reasonable and smooth fusion between the radar and LIDAR measurements when
the measurements are stable. For this reason overall results is only shown in the
�rst Scenario in Section 7.1. For the rest of the scenarios the focus will rather be
on some special cases than on the overall results. The overall results are good and
similar to the �rst scenarios results for all of the below scenarios.
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7.1 Following Scenario

The �rst scenario takes place on a winding country road in California where the
weather is clear, in this data set the hunter is following another test vehicle. The
images in Figure 7.2 display three screenshots from the integrated camera. During
the scenario there was also other oncoming vehicles present. The speed of the hunter
and target vehicle is between 60-80 km/h.

Figure 7.2: Camera frames of the following scenario covering the period during
which the LIDAR gives faulty readings. Target vehicle is encircled in red.

The position of the vehicle in front in relation to the hunter over time is shown in
the two graphs in Figure 7.3 where the relative distance in meters is displayed along
the Y-axis and the time in seconds along the X-axis. The numbers after the radar
and LIDAR is the track ID that was given in the input. In both these graphs it is
apparent that something causes the LIDAR-sensor to return a couple of consecutive
faulty readings between 8 and 9 seconds. How the algorithm deals with these faulty
readings will be discussed below.

(a) Longitudinal measurements (b) Latitudinal measurements

Figure 7.3: The longitudinal and latitudinal relative position of the target vehicle
as seen by the radar and LIDAR.

The input data from the sensors appears correct and smooth in Figure 7.3 but upon
closer inspection it becomes clear that this smoothness is an illusion of the scale used
in the �gure. In Figures 7.4-7.5 a cropped section of the longitudinal and latitudinal
position graphs are shown. At this increased scale it becomes clear that especially
the radar data is quite coarse. The ARS-408 radar used to gather this data has a
lateral resolution of about 0.2 meters which is clear to see in the shape of the blue
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line in Figure 7.5. The lateral resolution of the LIDAR is higher but that line is not
very smooth either.

Looking at the fusion results in Figure 7.4 for the di�erent motion models it can be
seen that they produce slightly di�erent results. The coordinated turn with Carte-
sian coordinates and constant acceleration model produces very similar results, even
to the point where it is hard to distinguish them from each other at the scale used
in Figure 7.4. Both of them are producing very satisfying results with a smooth line
following measurements from both sensors equally. For the coordinated turn with
polar coordinates the output follows the two sensors with some smaller exceptions,
just before 5 seconds. The smoothness of that curve however is not as good as it
makes a subtle jump every time it gets a new measurement update. This it not a
wanted result from the fusion with smoothing.

Figure 7.4: Fused longitudinal position with various motion models. The coordi-
natedTurnCartesian is covered by constantAcceleration since they are very similar.

The bicycle model is the model that follows the sensor measurements the least and
it also gives the most uneven graph. At 2.5 seconds it deviates 1.08 metres from the
LIDAR measurement. After 5 seconds though it starts to settle down and assumes
a reasonable value and after that it follows the sensor values better. Despite evening
out it still is not as smooth as the other motion models. The issue causing it to
not fuse the signals appropriately is probably not within the motion model itself
but rather some issues with the data. The predicament with the bicycle model is
that it was found to be very di�cult to tune to a suitable behaviour in this project.
The process noise covariance matrix has to be extensively tweaked to get a good
behaviour and it is a time consuming task. With more time spent on tuning the
results could possibly have been better.
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Looking at Figure 7.5 which holds the fusion results for the latitudinal position the
coordinated turn motion with Cartesian coordinates curve can not be seen since
it once again almost exactly coincides with the curve for the constant acceleration
model. The results here as well as in Figure 7.4 are good with smooth lines following
the sensors' measurements equally. The coordinated turn with polar coordinates is
also showing good results with a smooth line; even smoother than for the longitudinal
position. The bicycle models shows a very shaky result for the �rst 2 seconds but
then it settles in to a reasonable result. It is still the most uneven of the graphs
but this is probably due to the reasons discussed in the previous paragraph. Since
no better tuning of the bicycle model was found this model will not be used in the
latter scenarios since it does not perform as well as it has capacity for.

Figure 7.5: Fused latitudinal position with various motion models. The coordi-
natedTurnCartesian is covered by constantAcceleration since they are very similar.

In Figure 7.6 and 7.7 cropped versions of the data graphs are shown, these �gures
clearly show the faulty readings from the LIDAR sensor. Between 8 and 9 seconds
the longitudinal position increases by about one meter during 7 measurement up-
dates, simultaneously the latitudinal distance suddenly decreases by approximately
3 meters. The three images in Figure 7.2 shows the camera view just before, during
and just after this issue and the video clearly shows how the tracked vehicle follows
a smooth trajectory during this sequence. In the two cropped �gures the result of
various process noise levels are shown. The process noise is applied as a diagonal
matrix with the same entry to every position. The result of having a very low pro-
cess noise is that the system becomes more resilient against issues like this faulty
reading. The yellow line, with the lowest process noise maintains its trajectory even
when several consecutive measurements from one sensor places the target several
meters away from its true position.
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Figure 7.6: Longitudinal error and fused output with various levels of process
noise. The motion model used is Coordinated turn with Cartesian coordinates

Figure 7.7: Latitudinal error and fused output with various levels of process noise.
The motion model used is Coordinated turn with Cartesian coordinates

Decreasing the process noise to make the fusion less sensitive to bad readings does
however have a cost. Lowering the process noise to such a low level introduces a
considerable amount of latency in the tracking, this becomes obvious in Figure 7.8.
In this graph it is easy to see that the fused output has di�culties keeping up with
sudden changes even if both sensors measures that same change. It may also be
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concluded that less extreme process noise values quickly reduces this inertia to a
more acceptable level.

Figure 7.8: Latitudinal position showing unwanted e�ects of using low process
noise
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