
Comparative Performance and
Scalability Analysis of GPU-
accelerated Database Operations.

Harnessing Hardware for Database Efficiency:
A Comprehensive Benchmarking Study of V-Search, Fuzzy
Search, and Join Operations on Central and Graphics Pro-
cessing Units.

Master’s thesis in Computer science and engineering

Carl Andersson, Jonathan Nilsson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2023

Master’s thesis 2023

Comparative Performance and
Scalability Analysis of GPU-

accelerated Database Operations.

Harnessing Hardware for Database Efficiency:
A Comprehensive Benchmarking Study of V-Search, Fuzzy

Search, and Join Operations on Central and Graphics Processing
Units.

Carl Andersson, Jonathan Nilsson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2023

Comparative Performance and Scalability Analysis of GPU-accelerated Database
Operations.
Harnessing Hardware for Database Efficiency: A Comprehensive Benchmarking
Study of V-Search, Fuzzy Search, and Join Operations on Central and Graphics
Processing Units.
Carl Andersson, Jonathan Nilsson

© Carl Andersson, Jonathan Nilsson, 2023.

Supervisor: Pedro Petersen Moura Trancoso, CSE
Advisor: Örjan Vestgöte, Vesiro AB
Examiner: Pedro Petersen Moura Trancoso, CSE

Master’s Thesis 2023
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Description of the picture on the cover page (if applicable)

Typeset in LATEX
Gothenburg, Sweden 2023

iv

Comparative Performance and Scalability Analysis of GPU-accelerated Database
Operations.
Harnessing Hardware for Database Efficiency: A Comprehensive Benchmarking
Study of V-Search, Fuzzy Search, and Join Operations on Central and Graphics
Processing Units.
Carl Andersson, Jonathan Nilsson
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
This Master’s thesis investigates the performance dynamics of database operations -
V-Search, Fuzzy Search, and Join - implemented on both Central Processing Units
(CPU) and Graphics Processing Units (GPU). With the ever-increasing demand
for efficient data processing, it has become crucial to understand and optimize the
use of different hardware platforms for executing diverse database tasks. As such,
this research sheds light on the performance of each type of processing unit when
running the said operations. The study first details the design and implementa-
tion of each database operation on both CPU and GPU, taking into account the
different architectural characteristics and processing capabilities of each unit. The
specific operations were chosen due to their wide use in the field of data manage-
ment and their different processing requirements, which allows for a comprehensive
performance analysis. Next, a series of benchmark tests is conducted to evaluate
the relative performance of the CPU and GPU implementations. Factors such as
data size, data type, and transfer time, among others are taken into account. The
results show a detailed comparison of execution times between the two implementa-
tions, offering insights into the potential advantages and limitations of each. This
work contributes to a better understanding of the trade-offs involved when choosing
between CPU and GPU for database operations. We hope that our findings will
inform future work on hardware-specific optimization for database systems, leading
to more efficient and effective solutions for large-scale data processing tasks.

Keywords: Database, GPU, CPU, Performance, V-Search, Fuzzy, Join, CUDA.0

v

Acknowledgements
We would like to thank our supervisor Pedro Petersen Moura Trancoso for the
support given to us throughout this project. We would also like to thank our Advisor
Örjan Vestgöte, as well as Oskar Hagman and Oscar Widén at Vesiro for their
continued guidance and input that has made this thesis possible.

Carl Andersson, Jonathan Nilsson, Gothenburg, 2023-07-04

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1
1.1 GPU-accelerated databases and their applications 1
1.2 Previous studies . 2
1.3 Aim . 3
1.4 Problem definition . 3
1.5 Scope and Limitations . 4
1.6 Thesis Organization . 5

2 Background 7
2.1 NVIDIA architecture and CUDA . 7
2.2 OpenMP . 8
2.3 Amazon Web Services (AWS) . 8
2.4 Selected database operations . 8

2.4.1 V-search . 8
2.4.2 Fuzzy search . 9
2.4.3 Join . 9

3 Methodology 11
3.1 Operations . 11

3.1.1 V-Search using the Vesiro algorithm 11
3.1.2 Fuzzy search using Levenshtein distance 12
3.1.3 Join using Hash Join . 12

3.2 Hardware and services used . 13
3.3 Test data . 14

3.3.1 V-Search and Fuzzy Search . 14
3.3.2 Join . 14

3.4 Selected test queries . 14
3.4.1 V-Search and Fuzzy Search . 14
3.4.2 Join . 15

4 Results 17
4.1 V-search . 17

ix

Contents

4.2 Fuzzy search . 22
4.3 Join . 25

5 Discussion 33
5.1 V-Search . 33
5.2 Fuzzy search . 34
5.3 Join . 35

6 Conclusion 37
6.1 Future work . 37

6.1.1 Wider Range of Database Operations 38
6.1.2 Implementation evaluation . 38
6.1.3 Execution planning . 38

Bibliography 39

Appendices I

A Appendix 1 - V-Search I
A.1 Instance 1 . I
A.2 Instance 2 . II
A.3 Instance 3 . IV

B Appendix - Fuzzy Search VII
B.1 Instance 1 . VII
B.2 Instance 2 . VII
B.3 Instance 3 . VIII

C Appendix - Join IX
C.1 Instance 1 . IX
C.2 Instance 2 . XI
C.3 Instance 3 . XIII

x

List of Figures

4.1 Term length comparison for V-Search (CPU) 19
4.2 Term length comparison for V-Search (GPU) 20
4.3 Database size comparison for V-Search (GPU) 21
4.4 CPU and GPU comparison over buffer sizes for random terms 22
4.5 Execution times for fuzzy search using random dataset 24
4.6 Execution times for join (CPU) . 27
4.7 Execution times for join (GPU) . 29

xi

List of Figures

xii

List of Tables

3.1 Hardware specifications . 13

4.1 Term length comparison between database sizes (CPU) 18
4.2 Database transfer times in ms, (CPU to GPU) 19
4.3 Execution times of fuzzy search in ms (CPU) 23
4.4 Execution times of fuzzy search in ms (GPU) 24
4.5 Transfer time to construct join table in ms (GPU) 26
4.6 Execution times in ms for join (CPU) 26
4.7 Build and Probe phase comparison in ms (CPU) 28
4.8 Execution times in ms for join (GPU) 28
4.9 Build and Probe phase comparison in ms (GPU) 30
4.10 Build and Probe phase comparison in ms, including overhead (GPU) 31

xiii

List of Tables

xiv

1
Introduction

In the swiftly changing digital environment of today’s world, the amount of data
being generated and consumed continues to grow exponentially [1]. The spread of
connected devices and the rise of Internet of Things (IoT) have contributed signifi-
cantly to this data explosion, making it crucial for organizations and industries to
manage, process, and analyze this vast amount of information efficiently. Concur-
rently, the performance of Graphics Processing Units (GPUs) has experienced an
accelerated growth rate, at the same time as the effects of Moore’s law is coming to
an end.

This surge in data generation, coupled with the impressive advancements in GPU
technology, has led to a growing interest in harnessing the potential of GPU-accelerated
computing for database operations. By optimizing database performance and effi-
ciency, not only can the effectiveness of businesses and organizations be increased
but also contribute positively to global sustainability efforts. Efficient data process-
ing and management can lead to reduced energy consumption, decreased resource
usage, and lower operational costs, ultimately benefiting the world at large.

In this master’s thesis, we focus on implementing three GPU-accelerated database
operations and evaluating their performance in comparison to traditional CPU-based
approaches, as well as investigating the factors that impact the performance of their
execution. The specific database operations chosen for this project are string search
using the Vesiro algorithm (V-Search), Levenshtein distance-based fuzzy search, and
join operation using the hash join algorithm. By comparing and contrasting the ef-
ficiency of CPUs and GPUs in conducting these specific database operations, we
aim to provide a more nuanced understanding of the potential benefits and draw-
backs of each processing unit type. The outcome of this work aspire to provide
valuable insights that can guide database administrators and developers in choosing
the right hardware for specific database tasks, ultimately leading to more efficient
and optimized data processing systems.

1.1 GPU-accelerated databases and their applica-
tions

With the introduction of NVIDIA CUDA in 2006, enabling general-purpose comput-
ing on GPUs, general-purpose computing on GPUs became increasingly adopted.

1

1. Introduction

This eliminated the need for programmers to convert data into a graphical form
to leverage the processing power of GPUs [2]. Taking advantage of this technology,
GPU databases have emerged as a powerful solution for accelerating data processing
and query performance.

In 2017 HEAVY.AI (formerly OmniSci) lanuched the world’s first open source GPU
database and SQL engine, enabling faster query execution and real-time data ex-
ploration [3]. SQreamDB, another notable GPU-accelerated database system, offers
exceptional performance for data analytics and warehousing [4]. Additionally, there
are implementations that extend existing databases, such as BrytlytDB and PG-
Strom, both based on PostgreSQL, leveraging GPU processing for enhanced query
execution and data analysis [5][6].

Although GPUs can achieve significant speedups for tasks that can be highly paral-
lelized, such as data analytics and machine learning, it is important to acknowledge
the limitations of GPUs. Operations that have low parallelism or rely on sequen-
tial processing are not well-suited for GPU acceleration. Additional limitations for
GPU databases are small queries or operations that require frequent data transfers
between the CPU and GPU. Despite achieving faster execution times on the GPU,
if the data transfer time exceed the speedup, the overall performance may suffer. As
a result, GPUs are most effective and yield the greatest benefits in big data applica-
tions, where their parallel processing capabilities and high-memory bandwidth can
be fully leveraged.

1.2 Previous studies
Numerous past studies have underlined the remarkable performance benefits that
GPUs, with their high parallel processing capabilities, can offer in database oper-
ations. One such study focused on executing aggregation functions, namely MIN,
MAX, and SUM, within a CUDA kernel. In fact, when compared to CPU execution
using MySQL, an average speedup of 97 times was observed [7]. This staggering per-
formance difference attests to the significant potential of GPU-based computation
for these types of functions.

In another study, GPU acceleration was incorporated into SQLite. The results,
documented in [8], showcased an average speedup of 35 times for numerical select
queries. Again, the use of a GPU proved to be a game-changer, demonstrating
impressive acceleration of the query processing. The use of GPUs has also been
found to outperform both MySQL and Apache Spark for large data queries [9].
However, when it comes to smaller data queries, CPUs still tend to be more efficient,
indicating that each processing unit might have superior performance depending on
the context.

String matching, exact string matching as well as approximate string matching, has
also been studied and found to benefit from the parallel processing capabilities of
GPUs [10][11][12].

Building on these explorations, research has ventured into additional optimization

2

1. Introduction

strategies to further amplify the power and efficiency of GPU-accelerated databases.
One such approach is the concurrent processing of queries, an advancement over
the traditional sequential execution model. This method leverages the inherent
parallel processing capabilities of GPUs to simultaneously process multiple queries,
dramatically reducing overall execution time and boosting system throughput[13].

Moreover, the concept of in-memory GPU databases has sparked considerable in-
terest. These databases store data directly on the GPU’s memory, significantly
reducing the overhead associated with data transfer between the CPU and GPU.
This approach is particularly advantageous when working with large datasets and
complex queries, where the transfer costs can otherwise significantly impact perfor-
mance for execution on GPU [14].

1.3 Aim
The objective of this master thesis is to implement and evaluate the performance and
scalability of three GPU-accelerated database operations in relation to their CPU
counterparts, while also examining the different factors that impact the performance
of each operation and device with the overall goal to evaluate the potential of GPU-
accelerated computing in database operations.

1.4 Problem definition
Outlined below are key issues and questions that this study aims to address and
resolve in order to achieve the stated aim.

1. Choice of Algorithm: The choice of algorithm for the implementation of the
operations will significantly affect the efficiency and performance of these oper-
ations. An important aspect to consider when selecting algorithm is whether
it is fair to use the same algorithm on both the GPU and CPU. This involves
investigating the compatibility of the chosen algorithm with both types of pro-
cessors, as well as the trade-offs associated with potential variations in the
algorithmic design for each.

2. Test Data Selection: Selecting appropriate test data is key to correctly
evaluating the performance of operations on both the CPU and GPU. It’s
essential to carefully consider which test data to use in these performance
evaluations, ensuring that it not only represents real-world application usage
but also enables others to make an accurate comparison of the result.

3. Testing Procedure: A well-defined testing procedure is necessary to ensure
a fair comparison of performance between the CPU and GPU. This raises the
question of how the operations should be tested on each processor, considering
factors like workload distribution and redundancy. Given that data transfer
times to the GPU can significantly influence overall performance, it is impor-
tant to consider how tests should be conducted to account for this factor as

3

1. Introduction

well as to establish a method for when to include data transfer times in the
test results.

4. Configuration impact: Variations in hardware configurations can have great
impact on performance. It is important to understand the impact that specific
hardware properties can have on performance. Similarly, database configura-
tions can significantly affect the efficiency of operations, and it is therefore
essential to analyze which properties have the most impact on performance.

5. CPU vs. GPU Usage: Finally, the most critical aspects of this thesis is
to determine if, and in that case when, it becomes more beneficial to use the
GPU for the operations as opposed to the CPU. This involves understanding
the factors that drive this decision and developing an execution plan that can
guide this choice in real-world applications.

1.5 Scope and Limitations

This master’s thesis focuses primarily on the implementation and performance eval-
uation of three specific GPU-accelerated database operations. It’s important to
note that, while there could be numerous ways to implement these operations, this
work only takes into account a single algorithm approach for each operation. The
objective is to understand the practical applicability and performance implications
of GPU acceleration for these database operations and not to compare different
algorithms for the same operation.

It is also worth mentioning that this study does not provide any specific hardware
recommendations based on the results obtained. This is primarily because the focus
of the research is not to suggest specific hardware configurations, but to evaluate
the potential of GPU-accelerated computing in database operations.

When considering performance, this thesis primarily focuses on the speed of opera-
tions, rather than energy performance. Although it is acknowledged that these two
aspects often overlap, the specific energy efficiency of the operations is outside the
scope of this study.

In terms of hardware, this study exclusively considers NVIDIA GPUs, with CUDA
serving as the development tool. Other GPUs and development tools are available
but none with the same widespread adoption and development support.

Lastly, it should be noted that the database operations considered in this thesis
are not limited to any specific type of database. The operations themselves are
generic and could potentially be adapted for different types of databases and indicate
performance benefits for other operations. Therefore, while the focus is on three
specific operations, the findings of this work could have broader implications for the
field of database management and GPU computing.

4

1. Introduction

1.6 Thesis Organization
The subsequent chapter provide background information required to easily follow
the rest of the thesis, including CUDA, OpenMP, AWS and a description of the
selected database operations. Following that, chapter 3 gives a brief description of
the implementation of the three database operations, the hardware and data sets
used for the performance testing, and the test queries used with these datasets.
Chapter 4 then presents the result from the performance tests for both CPU and
GPU executions for multiple impacting configurations including database sizes and
data sets. Building upon the results presented in Chapter 4, Chapter 5 then presents
a comprehensive analysis of the performance tests conducted, accompanied by the
corresponding outcomes and findings. Lastly, Chapter 6 concludes the thesis by
summarizing the key findings and contributions.

5

1. Introduction

6

2
Background

The following background section offers an overview of the relevant aspects associ-
ated with our investigation into comparing the performances of CPUs and GPUs in
executing selected database operations. In the first subsection we delve into the intri-
cacies of the architecture of NVIDIA’s GPUs and the CUDA parallel computing plat-
form. We explore how NVIDIA’s architectural choices facilitate high-performance
computing and how CUDA enables software developers to use a CUDA-enabled
GPU for general purpose processing. In the subsequent subsection, we provide an
overview of OpenMP, detailing its functionalities and how we have leveraged it in
our research. Following this, we present an overview of AWS (Amazon Web Services)
and expand on its role in our project. Finally, in the fourth subsection, "Selected
Database Operations", we present a detailed description of the three chosen oper-
ations for our study, V-Search, fuzzy Search, and join. This section explains the
rationale behind their selection and their importance in the realm of database man-
agement.

2.1 NVIDIA architecture and CUDA
The architecture used in the NVIDIA GPU’s used in this thesis is the NVIDIA
Ampere architecture [15]. The architecture is divided into streaming multiprocessors
(SMs), where each SM consists of CUDA cores, Tensor Cores, Texture units, one
Ray tracing core and a L1 cache/Shared memory. Each SM uses a Single Instruction
Multiple Thread (SIMT) architecture and handles threads in groups of 32 parallel
threads called warps [16]. Each thread in a warp start at the same program address,
but since they all have their own register state and instruction address counter they
are free to operate separately. The warp scheduler in each SM is allowed to switch
executing between warps for free since each warps execution context is maintained
on-chip during the whole lifetime of the warp.

CUDA, a general purpose computing platform and programming model, allows devel-
opers to use NVIDIA GPUs to solve problems in a more effecient way by parallelizing
them on the many core architectures offered by GPUs. CUDA C++ extends C++
so developers can create C++ functions, called kernels, that allows them to paral-
lelize there code into block and threads [16]. These blocks of threads are divided to
the available SMs and then partitioned into warps by the warp scheduler. The max-
imum number of warps per SM depends on the graphics cards compute capability,

7

2. Background

however the number of active warps on a SM varies over time and is determined by
four factors; Warps per SM, Blocks per SM, Registers per SM and Shared Memory
per SM. Together these four determine the maximum number of active warps each
SM can have and thus also the occupancy per SM, which is defined as the ratio
between number of active warps and maximum number of active warps.

2.2 OpenMP

Open Multi-Processing (OpenMP) is a widely used, industry-standard API that
supports shared-memory parallel programming in C, C++, and Fortran [17]. It
is designed for multi-processor, multi-core, and multi-threading computing systems
and provides a simple and flexible interface for developing parallel applications. Un-
like other parallel computing methods, OpenMP uses a directive-based approach to
parallel programming. These directives allow developers to mark areas of code to
be executed in parallel, forcing the compiler to handle the creation, synchronization,
and termination of threads.

In the context of our study, we use OpenMP to fully utilize the CPU’s capabilities
by distributing the processing load across its multiple cores. This helps us make
a fair comparison with GPU execution and provides a benchmark for assessing the
performance improvements achieved through GPU-accelerated database operations.

2.3 Amazon Web Services (AWS)

AWS is a comprehensive cloud service platform that offers a wide range of cloud
based services, including Elastic Compute Cloud (EC2) [18]. EC2 is a service that
offers virtual computers, called instances. Instances can be launched with different
operating systems and a large variety of hardware combinations of CPU, GPU,
network capacity, memory, and storage.

In this project EC2 instances with different CPU and GPU configurations have been
used for the performance tests. The usage of EC2 for this research has enabled a
more diverse set of hardware that would have otherwise been possible.

2.4 Selected database operations

2.4.1 V-search
The first implemented and tested operation focused on locating a string in a sorted
list. A variety of methods can be applied to achieve this, including sequential and
binary search techniques. Our approach utilizes the Vesiro algorithm, which has been
specifically optimized to better utilize core performance during the search process.

8

2. Background

2.4.2 Fuzzy search
The second operation implemented is fuzzy search or approximate string search.
Fuzzy search works by creating a measurement of the similarity between the search
term and the terms being searched, the terms with a similarity measurement under
a certain value is then returned as the result. Multiple similarity measurement meth-
ods exist like Hamming Distance that measure the number of differing characters in
string of the same length, n-grams that divides the strings into sub-strings of length
n and measures their similarities and Levenshtein distance that is a measurement
that return the number of edits required to transform one string into another us-
ing the edit operations insert, delete and replace [19]. Levenshtein distance is the
method used in this thesis.

Previous studies have investigated the performance of calculating the Levenshtein
distance on GPU’s but have mainly focused on comparing the performance of the
actual computation as opposed to the performance in the context of a database
query [20][21][22]. Little attention has been given to the impact on performance of
the word length and at what size of the search space is needed for each device to be
superior.

2.4.3 Join
The last operation implemented is the join operation that combines values from two
tables into one table using common values from each table. Multiple methods can
be used to achieve this operation including Nested Loop Join that for each record
compares the join key in every record in the other table and Sort-Merge Join that
first sort all records by the join key and then iterates through the sorted tables
combining matching records. The algorithm chosen for this thesis is the Hash Join
algorithm that works by creating a hash table from one of the tables using the join
key as the hash key. The other table is then iterated through and its join keys is
used as hash keys to find matching records in the first table.

Moreover, evidence from literature indicates the superiority of the Hash Join algo-
rithm for join operations, especially when executed on GPUs[23]. It consistently
exhibits substantial speed enhancements compared to other algorithms. This is fur-
ther corroborated by another study, revealing that the implementation of GPUs for
join operations can catalyze an impressive speedup, potentially up to 20 times faster
than the execution on CPUs[24]. Such findings underline the significant advantages
that can be gained by harnessing the power of GPUs in database operations.

9

2. Background

10

3
Methodology

This chapter describe the methodology used in this research, providing a comprehen-
sive overview of the process undertaken to evaluate and compare the performance of
the CPU and the GPU in executing the specific database operations. The approach
consists of selecting appropriate datasets and algorithms, conducting performance
tests, and analyzing the results in a comparative manner. The methodology aims
to strike a balance between experimental control and practical relevance, ensuring
that the results obtained are both scientifically valid and applicable to real-world
scenarios.

The chapter is organized as follows: firstly, an explanation of how the chosen opera-
tions have been implemented is given. Subsequently, an overview of the computing
hardware and services used to execute the performance tests is provided, detailing
the specific system configurations and cloud-based platforms utilized. Thereafter
follows a comprehensive overview of the various datasets utilized for each operation.
Lastly, a description of the queries used for the performance test and specifics for
the test is given.

3.1 Operations

3.1.1 V-Search using the Vesiro algorithm
As Vesiro intends to maintain the confidentiality of their search algorithm, the spe-
cific details of its implementation will not be elaborated upon here. It is important
however to emphasize that executing a single search with V-Search does not offer
substantial opportunities for parallelization and also requires overhead for the GPU
in the form of copy the search term to the GPU for every search. The performance
for a single search executed on the GPU does therefor not exceed the performance
of a CPU. This is why single searches have not been the central focus of this test.
Instead, the evaluation methodology adopted primarily involves quantifying the vol-
ume of searches conducted in batches that is required to surpass the throughput of
searches accomplished by the CPU. This approach gives a more fair comparison as
the advantage of the GPU is its parallelization capability.

It is worth mentioning that the search functions for both CPU and GPU has been
optimized with OpenMP to ensure that the result reflects the full capability of the
devices. For the CPU, OpenMP ensures that the CPU executes multiple searches

11

3. Methodology

in parallel, depending on the number of cores available to the CPU. For the GPU
OpenMP ensures that multiple kernels are created in parallel to avoid the sequential
execution of kernels for low batch sizes.

3.1.2 Fuzzy search using Levenshtein distance
To calculate the Levenshtein distance between two strings, String1 and String2, a
cost matrix is created of size (L1+1, L2+1) where L1 is the length of String1 and
L2 the length of String2. Each value [x, y] of the matrix does then represent the
Levenshtein distance between the first x number of characters of String1 and the
first y number of characters of String2. The first row and column is then initialised
to 0,1,2..., as the first row and column represents the insertion of characters to form
String1 and String2. The rest of the cost matrix is then filled row after row by taking
the minimum cost of each operation. Since [x-1, y] is the Levenshtein distance of
the first x-1 characters of String1 and the first y characters of String2, the cost of
the deletion operation becomes [x-1, y]+1. The cost of insertion is then similarly
calculated with [x, y-1]+1. Finally the substitution cost is calculated by taking the
value [x-1, y-1] plus the cost of substituting the x character of String1 with the y
character of String2, which is 1 if they differ and 0 if they are equal.

As the Levenshtein distance computation offer little parallelisms due to its depen-
dency on previously computed matrix values, OpenMP has not been used to paral-
lelize the computation for CPU execution. Neither has it been used to parallelize
the words searched as early testing showed significant decreased performance. GPU
execution has however parallelized the words searched by dividing the search space
for each kernel thread.

3.1.3 Join using Hash Join
Two functions are used to implement the hash join operation for which there are
two implementations of each, one for CPU and one for GPU. The first function is
the build function, which constructs the hash table from the build table using the
join element as the key for the hash table. The join element and the index of the
row is then saved in the hash table. To manage collision cases and insertion time,
the hash table’s size is set to double the size of the build table and when a collision
occurs, the colliding records is placed in the next available slot in the hash table.

The second function, the probe function, enables the probe table to perform lookups
in the hash table to identify matches. To manage the collision avoidance mechanic,
it looks up the position in the hash table given by using the join attribute as key and
initiates a loop that makes comparisons between the join attributes until either an
accurate match or an empty slot is found. If a match is found, the index of the build
table saved in the hash table is then saved in a new array on an index matching the
row from the probe table.

After these two functions has been executed, an array with corresponding indexes
for each table is returned. The array is then used to combine data from the corre-
sponding rows of both tables on the CPU. The reason for combining the rows from

12

3. Methodology

the tables on the CPU is that it enables us to only transferring the columns of the
join element for both tables to the GPU instead of both whole tables, decreasing
the amount of data transferring overhead significantly.

As both tables are stored as arrays of bytes, a struct with the number of columns,
number of rows, the size of each row, index to the join key, and an array of indexes
to the columns is required for accurate indexing. The declaration of the struct can
be seen below.

1 struct TableStruct {
2 uint32_t num_columns ;
3 uint32_t num_rows ;
4 uint32_t row_size ;
5 uint32_t join_index ;
6 uint32_t * column_indexes ;
7 };

3.2 Hardware and services used

Throughout the development phase two dedicated workstations were utilized, each
equipped with Intel i5 CPUs and NVIDIA Ampere series GPUs. In the subsequent
testing phase, additional hardware resources with diverse configurations was utilized
to contribute to a deeper understanding of performance variations across different se-
tups. For access to additional hardware AWS was used. By leveraging AWS services,
a more comprehensive analysis of scalability and stress-testing on each implemented
operation was made possible. The combined use of dedicated workstations and
AWS during the development and testing phases ensured efficient development and
extensive assessment of performance, scalability, and stress resilience across different
hardware configurations.

Three AWS hardware instances of different compute capabilities were chosen to
examine the scalability of the operations and the impact of different hardware con-
figurations. Detailed specifications of all three hardware instances is described in
Table 3.1. The choice of performing all test on EC2 also ensures that the result is
comparable between the different machines.

Instance 1 Instance 2 Instance 3
CPU Intel Xeon E5-2686 v4 Intel Xeon Cascade Lake P-8259L AMD EPYC 7R32
Cores 16 32 64
RAM 122 GB 128 GB 256 GB
GPU NVIDIA Tesla M60 NVIDIA T4 Tensor Core NVIDIA A10G Tensor Core
VRAM 8 GB 16 GB 24 GB

Table 3.1: Hardware specifications

13

3. Methodology

3.3 Test data

3.3.1 V-Search and Fuzzy Search
The test data utilized for the V-Search and fuzzy search operations consists of ran-
domly generated words ranging from 3 to 20 characters in length. The objective
was to cover a variety of scenarios and accurately assess the performance of GPU-
accelerated operations compared to CPU-based operations. To simulate different
database sizes, lists with varying numbers of rows were created, starting from one
thousand rows and increasing by a factor of 10 up to 100 million. Notably, for the
V-Search evaluation, list of size one thousand and 10 thousand were not used, due
to the design of the test queries used.

This diverse test data enabled a comprehensive evaluation of the scalability, effi-
ciency, and limitations of the operations. This approach allowed for a thorough
examination of the performance characteristics and limitations of GPU-accelerated
operations, as well as a comparative analysis against CPU-based approaches.

3.3.2 Join
The join operation deals with situations that need to bring together data from
different tables. Consequently, a testing environment reflective of conventional SQL
data is necessitated. Datasets designed specifically for SQL benchmarks, embodying
a range of data similar to those found in practical SQL environments, are highly
appropriate for this purpose, satisfying our testing requirements effectively. For
this reason the dataset from TPC-H (Transaction Processing Performance Council
Benchmark H) benchmark suite was chosen. This dataset consist of a number of
data tables considered to represent industry use cases and is widely used in industry
[25]. It is also a dataset that is possible to scale which makes it well suited for testing
different data sizes to find a performance breaking point between CPU and GPU.
Most of the table sizes are defined by a scaling factor that when used to generate
the dataset corresponds to the number of GB of the whole dataset. Meaning that
a scale factor of 1 generates tables that sum up to 1 GB of data. In this project
two tables are utilized: the customer table and the orders table. The size of the
customer table is determined by multiplying the scale factor by 150,000 (number of
rows in the table), while the size of the orders table is determined by multiplying
the scale factor by 1.5 million. These two tables relate through the primary key
named CUSTKEY.

3.4 Selected test queries

3.4.1 V-Search and Fuzzy Search
All test queries, regardless of the operation type, are first categorized based on the
different file sizes ranging between one thousand to 100 million rows of data. Then
they are divided into four different categories based on the length of the words being

14

3. Methodology

searched for. These four categories include:

1. Short Terms: Words with a length between 3 and 8 characters.

2. Middle Terms: Words with a length between 8 and 15 characters.

3. Long Terms: Words with a length between 15 and 20 characters.

4. Random Terms: Words with varying lengths between 3 and 20 characters.

For the operation V-Search search, each query involved searching for 10,000 words.
However, it was quickly realized that searching for one word at a time was not
beneficial for the GPU. The 10,000 words were therefore searched for in different
batch sizes, namely: 1, 5, 10, 50, 100, 500, 1000, 5000, 10000. This enabled a
continued exploration of the overall efficiency and performance to GPU-accelerate
V-Search search.

Conversely, the queries for the operation fuzzy search consisted of 25 words in each
query, as opposed to the 10,000 words used in the V-Search search. These 25 words
were distributed across the same word length categories (short, middle, long, and
random), ensuring a comprehensive evaluation of the operation on both CPU and
GPU.

3.4.2 Join
While the TPC-H benchmark suite includes not only test datasets but also a variety
of queries for performance measurement, these queries were not utilized in the course
of this thesis. This decision stems from the fact that a fully operational DBMS was
not developed throughout the thesis work. Despite the join operation being fully
functional, the benchmark queries incorporate numerous other directives such as
aggregate functions and sorting, which were not the central focus of this study.

The queries formulated for evaluating the join operation involve an inner join be-
tween two tables, namely the customer and orders tables. In this setup, the customer
table consistently serves as the build table, since its possession of the unique primary
key. Conversely, the orders table assumes the role of the probe table. The queries
were categorized into five distinct groups based on the relative scale between the
tables. These categories are denoted as: 100:1, 10:1, 1:1, 1:10, and 1:100. The num-
bering corresponds to the size relationship between the build table and the probe
table, where the sizes of the tables are measured in terms of the number of rows
they contain. By employing this categorization scheme, the evaluation aims to in-
vestigate the how the size of the build and probe table impact performance and were
each phase should be run, whether if it is on the GPU or the CPU.

15

3. Methodology

16

4
Results

In this chapter, we present the findings from the testing of the three operations.
This chapter solely discloses the test results, a comprehensive evaluation of these
outcomes will be provided in the subsequent chapter. First the result from the
V-Search operation is presented, followed by the result from the fuzzy search oper-
ation, and lastly the result from the join operation is presented. It’s important to
mention that the complete set of results is rather extensive, and for this reason, it’s
fully outlined in the appendix. In this chapter, we present selected portions of the
full results, intending to provide a representative overview of the dataset without
overwhelming the reader.

4.1 V-search
In this section the result from the performance test of the V-Search operation is
presented for both CPU and GPU. Initially, the outcomes derived from CPU tests
is presented, followed by those from the GPU tests, and finally a comparison is
between all computing devices is presented.

Performance test results for each CPU on Instance 1, 2 and, 3 are presented in
Table 4.1. The column furthest to the left displays the size of the database tested,
whereas the topmost row indicates the dataset utilized. As observed from the tables,
the term length had a greater impact on performance than the size of the database.

Random Terms Short Terms Middle Terms Long Terms
100K 2.14 0.92 2.03 3.29
1M 2.49 0.99 2.29 3.80
10M 2.14 0.82 1.92 3.13
100M 2.64 1.07 2.30 3.76

(a) Instance 1

Random Terms Short Terms Middle Terms Long Terms
100K 2.26 0.88 2.18 3.57
1M 2.31 0.91 2.17 3.56
10M 2.39 0.81 2.19 3.61
100M 2.52 0.84 2.24 3.67

(b) Instance 2

17

4. Results

Random Terms Short Terms Middle Terms Long Terms
100K 2.35 0.81 2.22 3.74
1M 2.40 0.86 2.21 3.73
10M 2.47 0.84 2.20 3.74
100M 2.56 0.87 2.20 3.76

(c) Instance 3

Table 4.1: Term length comparison between database sizes (CPU)

For a more intuitive comprehension of the results, data visualization is provided
in Figure 4.1. In these diagrams, database sizes are grouped, and the datasets are
denoted by color. The charts reveal a consistent performance discrepancy across
the datasets for every instance. Notably, each instance demonstrates signs of great
scalability.

(a) Instance 1

(b) Instance 2

18

4. Results

(c) Instance 3

Figure 4.1: Term length comparison for V-Search (CPU)

Given the GPU’s memory is separate from the CPU’s, it requires a transfer of the
database to the GPU prior to any operation execution. Table 4.2 presents the
duration required to transfer databases of varied sizes. Since this transfer time
considerably surpasses the time taken for the CPU to execute the operation, the
strategy of fully transferring the database and then conducting the operation is im-
practical from a performance perspective. However, assuming the database has been
pre-transferred to the GPU’s memory, effectively creating an in-memory database,
performance could potentially be enhanced through GPU utilization.

Instance 1 Instance 2 Instance 3
100K 142.51 152.49 136.23
1M 146.76 159.36 134.99
10M 190.67 231.45 167.36
100M 648.18 1122.92 617.35

Table 4.2: Database transfer times in ms, (CPU to GPU)

To illustrate the impact term length had on performance when run on the GPU,
we present the execution times for each instance in Figure 4.2. Consequently, the
GPU:s exhibit a similar performance discrepancy as the CPU:s, between the four
datasets, for every instance. In contrast to the significant disparity observed in
execution time between short terms and long terms tasks on the CPU, reaching up
to a threefold difference, the GPU demonstrates a comparatively modest increase of
up to 1.5 times.

19

4. Results

(a) Instance 1

(b) Instance 2

(c) Instance 3

Figure 4.2: Term length comparison for V-Search (GPU)

20

4. Results

The execution performance of the GPU is notably affected by the selection of a
buffer size for grouping searches. In Figure 4.3, the execution time of a workload
comprising 10,000 randomly selected terms is depicted, considering various buffer
sizes. It is observed that as the buffer size increases, thereby reducing the number
of created kernels and associated overhead, a significant decrease in execution time
is achieved. Interestingly, the impact of the database size on the execution time is
found to have a lesser impact in comparison to the buffer size.

(a) Instance 1

(b) Instance 2

(c) Instance 3

Figure 4.3: Database size comparison for V-Search (GPU)

21

4. Results

As evident from the previous results tables, when buffer searches are performed,
the GPU’s execution time can surpass the CPU’s. This performance pattern is
particularly notable with a dataset of entirely random terms and a database size
of 100M, as depicted in Figure 4.4. The graph demonstrates that the GPU starts
outperforming the CPU when the buffer size is of a magnitude 1000, though the
exact breakpoint largely depends on the specific CPU and GPU under comparison.

Figure 4.4: CPU and GPU comparison over buffer sizes for random terms

4.2 Fuzzy search
This section highlights the results of the performance evaluation for the fuzzy search
operation. Because of the substantial execution times, not all dataset sizes were
utilized for conducting the CPU-based fuzzy search tests. Only the 1K, 10K, and
100K dataset sizes were utilized. However, for GPU-based testing, all dataset sizes
were employed as it demonstrated significantly lower execution times, particularly
for larger databases.

On the CPU side, the fuzzy search operation results exhibited considerable variabil-
ity based on the dataset size and length of terms used, which can be seen in Tables
4.3. For smaller datasets, the CPU demonstrated a robust performance, successfully
managing the operation with reasonable speed. This can be attributed to the low
overhead involved in initiating the computation process for CPU. As the dataset
size increased, the operation’s performance showed a proportional decrease, scaling
linearly.

Given that the computational requirements for calculating the Levenshtein distance
between two strings are contingent on their character count, the substantial disparity
in execution times across different test datasets is to be expected.

22

4. Results

Random Terms Short Terms Middle Terms Long Terms
1K 25,83 11,47 21,00 34,55
10K 229,18 117,06 211,16 342,80
100K 2341,63 1170,09 2135,09 3529,76

(a) Instance 1

Random Terms Short Terms Middle Terms Long Terms
1K 21,16 9,60 17,50 28,72
10K 190,99 98,64 176,23 285,48
100K 1952,95 986,56 1780,96 2936,19

(b) Instance 2

Random Terms Short Terms Middle Terms Long Terms
1K 26,67 12,33 22,18 36,24
10K 241,85 125,98 222,97 359,55
100K 2474,57 1261,90 2261,35 3700,77

(c) Instance 3

Table 4.3: Execution times of fuzzy search in ms (CPU)

In contrast to the CPU result, the GPU demonstrated a significantly better perfor-
mance advantage for larger datasets. As can be seen in Table 4.4, the execution
times scales quite well, far better than the linear scaling from the CPU. However,
for smaller datasets, the GPU’s performance was not as impressive. The overhead
involved in transferring data between the host and the device, combined with the
initialization of the GPU kernels, resulted in a delay that was noticeable for smaller
operations.

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1K 3,59 1,63 2,93 4,76 146,35
10K 20,04 12,33 18,93 27,59 146,21
100K 49,84 44,06 49,70 55,55 147,57
1M 355,79 302,13 352,58 415,34 152,32
10M 2906,49 2514,35 2782,73 3336,39 166,69

(a) Instance 1

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1K 2,40 1,19 1,99 3,10 162,18
10K 13,02 7,99 12,19 17,96 151,05
100K 31,72 28,20 30,55 37,57 153,43
1M 223,19 183,27 209,63 271,65 156,82
10M 2071,13 1701,49 1937,32 2499,67 182,24

(b) Instance 2

23

4. Results

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1K 2,26 1,08 1,86 2,99 151,89
10K 12,52 7,73 11,80 17,60 135,99
100K 29,65 26,94 28,17 34,45 139,34
1M 167,05 158,32 168,58 173,29 141,36
10M 1297,18 1299,37 1266,30 1343,33 155,64

(c) Instance 3

Table 4.4: Execution times of fuzzy search in ms (GPU)

However, the discrepancy in execution times across the different test sets is notably
diminished for the GPU, especially with respect to the larger datasets. This could
be attributed to the GPU’s architecture, which processes multiple threads in warps.
The execution times of a thread within a warp is influenced not solely by the length
of the strings pertaining to that specific thread, but also by the length of the strings
associated with the other threads in the same warp.

Figure 4.5 presents a comparison of execution times for both CPU and GPU across
all three instances. The visual representation clearly demonstrates that for smaller
datasets, utilizing the CPU for searches yields superior results. However, when
dealing with larger datasets, leveraging the GPU becomes more beneficial.

Figure 4.5: Execution times for fuzzy search using random dataset

Across all instances, a similar performance tipping point is observed - the GPU
starts to outperform the CPU just as the database size approaches 10,000 entries.
Additionally, the figure illustrates that the performance gap between the individual
instances is substantially less significant than the performance divergence between
the CPU and GPU. This highlights the crucial role of device choice in determining
overall performance, as opposed to the specific instance used.

24

4. Results

4.3 Join

This section outlines the performance analysis results for the join operation. Per-
formance testing was conducted using various scaling ratios between the tables,
alongside different sizes corresponding to these ratios. The scaling factors for the
tables are as follows: 100:1, 10:1, 1:1, 1:10, and 1:100. In this context, the table
with a scaling factor of 1 signifies the table whose row count matches the number
provided in the left column. Due to memory constraints for both CPU and GPU,
it was not possible to test all table sizes across every CPU and GPU. Attempting
to circumvent this limitation by subdividing the operation could potentially impact
performance. Hence, the decision was made to exclusively test scenarios where all
data could fit into memory.

A substantial portion of the join operation’s execution time is devoted to data trans-
fer, necessitated by the merging of the tables following the indexing process. As
this segment of the operation is uniformly executed on the CPU for both CPU and
GPU executions, it introduces a constant factor into our execution time measure-
ment. Therefore, to ensure a fair and more precise comparison of execution times
across devices, this data transfer time will be excluded from the subsequent pre-
sentation of results. By focusing solely on device-specific execution times, we can
gain a more accurate understanding of each device’s performance. The time spent
on transferring data is however important to know and is therefor presented for all
table combinations in Table 4.5.

Table Size Scale 100-1 Scale 10-1 Scale 1-1 Scale 1-10 Scale 1-100
15K 3,27 3,07 3,03 48,35 413,54
75K 17,16 17,25 17,16 253,37 2072,69
150K 47,25 47,05 47,11 531,45 4219,88
750K 252,63 255,81 253,08 3078,34 4372,95
1500K 541,22 529,74 6305,86
7500K 3031,99 3059,62 7002,70
15000K 6235,89
75000K 7011,38

(a) Instance 1

Table Size Scale 100-1 Scale 10-1 Scale 1-1 Scale 1-10 Scale 1-100
15K 2,48 2,45 2,39 34,40 311,40
75K 16,03 14,75 15,28 182,18 1567,26
150K 34,64 34,25 34,33 374,91 3228,70
750K 187,00 181,52 181,09 2207,86 3345,00
1500K 380,12 376,44 4661,34
7500K 2244,98 2234,07 5155,41
15000K 4547,73
75000K 5130,48

(b) Instance 2

25

4. Results

Table Size Scale 100-1 Scale 10-1 Scale 1-1 Scale 1-10 Scale 1-100
15K 1,40 1,39 1,37 16,73 162,67
75K 8,59 9,10 8,50 114,03 834,07
150K 16,68 16,75 16,50 240,15 1712,46
750K 113,72 113,92 114,31 1308,11 1889,41
1500K 233,81 233,89 2916,95
7500K 1305,02 1311,40 3544,66
15000K 2880,65
75000K 3496,31

(c) Instance 3

Table 4.5: Transfer time to construct join table in ms (GPU)

The execution times for CPU execution for all scaling combinations and possible
sizes are detailed in Table 4.6 and illustrated in Figure 4.6. Both the table and
figure show that the execution times are influenced by the size of the tables and
their scaling ratios. As expected, larger tables correlate with extended execution
times. Interestingly, execution times also rise when the build table exceeds the size
of the probe table.

Table Size Scale 100-1 Scale 10-1 Scale 1-1 Scale 1-10 Scale 1-100
15K 20,88 3,78 1,77 3,45 15,34
75K 133,35 11,52 3,28 8,95 75,33
150K 282,56 21,72 4,95 16,29 155,17
750K 358,48 138,07 17,68 82,21 183,27
1500K 297,50 33,92 177,40
7500K 444,61 215,33 358,98
15000K 471,64
75000K 583,96

(a) Instance 1

Table Size Scale 100-1 Scale 10-1 Scale 1-1 Scale 1-10 Scale 1-100
15K 13,04 3,32 2,28 2,97 8,45
75K 64,29 7,42 3,05 5,84 36,76
150K 128,84 12,29 3,96 9,11 77,33
750K 161,60 64,55 10,11 41,83 91,48
1500K 137,63 18,16 86,00
7500K 216,86 106,25 167,41
15000K 230,66
75000K 286,74

(b) Instance 2

Table Size Scale 100-1 Scale 10-1 Scale 1-1 Scale 1-10 Scale 1-100
15K 12,08 6,45 5,92 6,21 8,56
75K 35,54 9,11 6,29 7,73 21,63
150K 66,52 12,45 6,85 9,59 36,36
750K 82,37 37,26 10,55 24,50 41,73
1500K 70,05 15,24 48,17
7500K 110,46 59,50 93,49
15000K 121,81
75000K 144,95

(c) Instance 3

Table 4.6: Execution times in ms for join (CPU)

26

4. Results

(a) Instance 1 (b) Instance 2

(c) Instance 3

Figure 4.6: Execution times for join (CPU)

For a more detailed understanding of which phase of the join operation consumes the
most time, execution times are broken down for each phase in the 1:1 proportion
case in Table 4.7. It’s evident from the table that the build phase considerably
exceed the probe phase in execution time.

Table Size Build Phase Probe Phase
15K 1,61 0,16
75K 2,63 0,65
150K 3,67 1,28
750K 11,00 6,68
1500K 20,24 13,68
7500K 134,80 80,53
15000K 278,15 193,49
75000K 350,07 233,89

(a) Instance 1

Table Size Build Phase Probe Phase
15K 2,17 0,11
75K 2,66 0,39
150K 3,22 0,74
750K 7,04 3,07
1500K 11,71 6,45
7500K 62,41 43,84
15000K 134,74 95,92
75000K 167,37 119,37

(b) Instance 2

27

4. Results

Table Size Build Phase Probe Phase
15K 5,69 0,22
75K 5,88 0,41
150K 6,25 0,60
750K 8,68 1,87
1500K 11,75 3,50
7500K 35,15 24,34
15000K 66,59 55,22
75000K 81,18 63,76

(c) Instance 3

Table 4.7: Build and Probe phase comparison in ms (CPU)

The comprehensive results detailing the total execution times on the GPU, mirroring
the tests conducted on the CPU, are compiled in Table 4.8 and shown in Figure 4.7.
In contrast to the CPU test observations, the execution times on the GPU is not
clearly larger when the probe table size exceed the build table size. In fact the
execution times does not seem to follow a clear pattern between the different table
ratios.

Table Size Scale 100-1 Scale 10-1 Scale 1-1 Scale 1-10 Scale 1-100
15K 12,72 2,13 0,76 2,51 17,29
75K 58,12 7,12 1,87 7,68 79,43
150K 108,79 13,48 2,83 13,85 152,52
750K 150,75 61,97 9,67 63,32 162,44
1500K 120,32 19,36 123,94
7500K 181,04 92,17 179,98
15000K 190,54
75000K 229,69

(a) Instance 1

Scale 100-1 Scale 10-1 Scale 1-1 Scale 1-10 Scale 1-100
15K 7,90 1,26 0,60 1,41 7,75
75K 37,13 4,37 1,31 4,31 36,28
150K 73,55 8,40 2,07 7,54 71,35
750K 92,71 39,18 6,61 35,01 77,93
1500K 78,31 12,82 72,35
7500K 119,60 64,86 105,12
15000K 132,76
75000K 153,31

(b) Instance 2

Scale 100-1 Scale 10-1 Scale 1-1 Scale 1-10 Scale 1-100
15K 2,83 0,83 0,48 0,98 3,27
75K 11,57 1,93 0,89 2,10 14,71
150K 22,22 3,15 1,25 3,31 26,75
750K 28,28 12,49 2,81 14,40 28,72
1500K 24,19 4,92 27,99
7500K 40,00 24,24 38,68
15000K 47,43
75000K 54,21

(c) Instance 3

Table 4.8: Execution times in ms for join (GPU)

28

4. Results

(a) Instance 1 (b) Instance 2

(c) Instance 3

Figure 4.7: Execution times for join (GPU)

The time taken for the overhead of transferring required data to and from the GPU
before and after the execution is heavily impacted by the size of the tables. This
impact could be the reason for the more scattered execution times seen on the GPU.
For execution on CPU, larger tables means simply larger compute complexity which
can often scale in an efficient way. For the GPU however, larger tables means larger
transferring times. For a more detailed view, the execution times for the different
phases plus the required initial overhead for the 1:1 proportion case can be seen in
4.9.

Table Size Build Phase Probe Phase
15K 0,55 0,14
75K 1,14 0,45
150K 1,57 0,71
750K 5,91 1,94
1500K 12,09 3,81
7500K 57,21 17,72
15000K 114,66 35,75
75000K 142,01 45,48

(a) Instance 1

Table Size Build Phase Probe Phase
15K 0,45 0,09
75K 0,67 0,34
150K 1,12 0,42
750K 3,62 1,31
1500K 7,30 2,33
7500K 35,94 12,32
15000K 71,60 24,91
75000K 88,44 26,84

(b) Instance 2

29

4. Results

Table Size Build Phase Probe Phase
15K 0,39 0,05
75K 0,52 0,21
150K 0,72 0,24
750K 1,38 0,64
1500K 2,42 0,94
7500K 10,91 4,64
15000K 21,33 9,17
75000K 26,44 10,13

(c) Instance 3

Table 4.9: Build and Probe phase comparison in ms (GPU)

As seen in the table, the build phase takes significantly longer time to execute. As
the size of the index array increase with the size of the probe table however, longer
transfer time is needed to transfer the index array back which could contribute to
longer execution times for the operation as the probe table increases in size. The
amount of overhead to transfer the join attributes of the build and probe table is also
dependant on the size of the tables which have an effect to equalize the execution
times between the different scaling ratios.

When comparing Table 4.6 and Table 4.8 we can see that execution times for the
GPU to execute is almost always better than the CPU for the same instance. When
comparing different instances however there is no evidence for the GPU being supe-
rior in performance.

As the join operation is executed in two separate phases, it is possible for a heteroge-
neous execution plan. This could be done by executing the build phase on the GPU
and the probe phase on the CPU. This does however comes with a bit of overhead for
the GPU since the hash table created in the build phase has to be transferred back
to the host after execution. Likewise if the opposite execution is chosen, executing
the build phase on CPU and the probe phase on GPU, the index array of matching
rows needs to be transferred back to the host after execution. The time taken for
each phase including all required overhead can be seen in Table 4.10 and is the time
to consider when considering a heterogeneous execution.

Table Size Build Phase Probe Phase
15K 0.78 0.21
75K 1.98 0.73
150K 3.08 1.26
750K 12.67 3.76
1500K 25.40 7.27
7500K 138.81 34.96
15000K 273.24 75.88
75000K 334.77 87.67

(a) Instance 1

Table Size Build Phase Probe Phase
15K 0.69 0.15
75K 1.51 0.64
150K 2.55 0.95
750K 10.26 2.99
1500K 21.01 5.52
7500K 109.64 28.93
15000K 219.65 61.16
75000K 270.26 64.88

(b) Instance 2

30

4. Results

Table Size Build Phase Probe Phase
15K 0.52 0.09
75K 0.96 0.37
150K 1.42 0.53
750K 4.49 1.43
1500K 9.46 2.50
7500K 44.51 13.33
15000K 88.12 26.10
75000K 108.08 27.78

(c) Instance 3

Table 4.10: Build and Probe phase comparison in ms, including overhead (GPU)

31

4. Results

32

5
Discussion

In this chapter, we discuss the experiments conducted, their results, and the impli-
cations of these findings. By implementing the aforementioned operations on both
CPU and GPU platforms, we have attempted to quantify and compare their perfor-
mances to provide a better understanding of their capabilities. The objective of our
analysis is not to establish the absolute superiority of one processing unit over the
other, but rather to gain insights into the situational advantages and drawbacks of
each. The goal is to understand the scenarios where CPUs might be more efficient
and others where the use of GPUs can be beneficial. The impact different factors
have on the performance is also discussed and some general guidelines for the cre-
ation of an execution plan is given. We also discuss the possibility to combine the
computational power of each device for a single operation.

5.1 V-Search
For the V-Search operation, we explore several factors that significantly impact the
performance. These factors include the length of the word being searched for, the
batch size used during execution, and the size of the database. Figure 4.1 and 4.2
illustrates the pronounced effect of word length on the CPU’s performance, whereas
the impact is less distinct on the GPU.

Particularly on the CPU’s, where it at worst takes three times longer to search for
a long word compared to a short one. It also demonstrates a linear relationship
between word length and execution time, suggesting a time complexity of O(n).
Which is also demonstrated by comparing the time is takes for random and middle
term length. On the GPU, the difference between various word lengths is not as
substantial as on the CPU, but a similar trend can still be observed, resulting in a
similar time complexity.

Furthermore, when executing the operation in batches on the GPU, we observe
a significant performance impact. Figure 4.4 reveals that all instances eventually
outperform the CPUs. However, there is a trade-off associated with batch processing.
As this approach increase the throughput of searches performed, depending on the
use case of the operation, it could increase the latency, as earlier searches is returned
at the same time as later searches in the search batch. Additionally, the transfer
overhead between the CPU and GPU increases as the batch size grows, introducing

33

5. Discussion

additional considerations when determining the efficiency of running the operation
on the GPU.

The size of the database must also be taken into account for the GPU. Although the
result indicate that the execution of the operation scales remarkably well on both
CPU and GPU, with minimal differences observed, the entire database must still fit
into memory. The amount of memory available on GPU is often less than that is
available for the CPU, resulting in a limit of the scalability offered by GPU. When
considering an in-memory database it is also crucial to consider the frequency of
updates to the database as this then needs to be applied to the GPU memory as
well.

5.2 Fuzzy search
The findings discussed in Chapter 4 indicate that the superiority of CPUs or GPUs in
conducting fuzzy search is context-dependent, and primarily influenced by the size of
the database. For the hardware examined in this study, a breakpoint at a database
size of around 10,000 entries seemed to dictate the CPU and GPU performance.

In circumstances where the database size was less than 10,000, the CPU outpaced
the GPU. This can be attributed to the overhead requirement of the GPU before
execution, which resulted in a slower operation. Conversely, for database sizes ex-
ceeding 10,000, the GPU demonstrated superior execution, leveraging its parallel
structure to handle large volumes of data more effectively.

The length of the search terms also plays a critical role in influencing the perfor-
mance of the CPU and GPU. The impact is more pronounced for CPUs due to
the complexity involved in computing the Levenshtein distance between two terms,
which directly correlates with the length of the terms. In contrast, the performance
impact of varying term lengths on the GPU is less noticeable. Given the GPU’s
capability to execute multiple threads simultaneously in warps, the effect of term
length becomes more diluted since the performance is also dependant on the length
of the terms of the other threads in the warp. As the database size expands, the
GPU concurrently executes an increasing number of threads in parallel. This paral-
lel processing inherently minimizes the influence of term length on performance as
the database size escalates.

Moving on to the impact of hardware capabilities, the findings from Chapter 4
reveal that CPU performance did not correspond directly to the compute power of
the instances. Interestingly, Instance 2, not the most powerful, achieved the highest
performance among the three instances. Given that OpenMP was not employed for
fuzzy search due to its underwhelming performance, the operation is significantly
influenced by memory constraints. Instance 2’s superior performance, in spite of
its less powerful computing capacity, can be attributed to more efficient cache and
memory management. This is particularly noteworthy considering this CPU had the
lowest clock speed among the three instances. Additionally, the increased number
of cores in Instance 3 did not offer any advantage in this context since the operation
was executed with a single core.

34

5. Discussion

Unlike CPU execution, GPU execution displays a straightforward correlation be-
tween performance and compute power - the higher the compute power, the better
the performance, as exemplified by the most powerful GPU instance delivering the
fastest execution time. This relationship further illustrates the GPU’s superior scal-
ing efficiency over the CPU.

The flexibility inherent in GPU operations, due to the ease of subdividing the search
space, also facilitates enhanced scalability. This capacity permits the leveraging of
multiple devices, including various GPUs or CPUs, to maximize performance poten-
tial. Alternatively, a heterogeneous execution strategy can be adopted to optimize
the utilization of all available hardware resources.

5.3 Join
In terms of overall performance, our findings suggest that neither the CPU nor the
GPU can be declared universally better for executing the join operation. The efficacy
of each hardware device largely depends on the context and specific parameters of
the operation. For instance, while the GPU generally outperforms the CPU for
the same instances, when comparing the result between instances the result differ
extensively.

One of the key impacting factors is the overhead associated with transferring data
to and from the GPU both before and after the execution. The efficient way of only
transferring the join columns of the tables does however offer increased efficiency as
quite a lot more data would otherwise be required to be transferred back and forth
to the GPU.

Another influential factor affecting performance is the size of the tables and the
scaling ratio between them. It’s intuitively understood that larger tables will require
longer execution times. However, when assessing performance, it’s crucial to consider
the ratio between the tables, as this factor greatly impacts the duration required to
complete different phases of operation. In situations where one table is significantly
larger than the other, the optimal strategy is to leverage the device that exhibits
superior performance in the most time-consuming phase. This approach ensures
efficiency by capitalizing on the strengths of the specific hardware in dealing with
the most challenging aspects of the task.

The duration required to carry out the indexing process, whether it is executed on
a CPU or GPU, is frequently outstripped by the length of time needed to merge
the tables. Memory becomes a pivotal element at this juncture, directly impacting
the performance metrics of the entire operation. However, the contribution of this
table merging operation to the overall performance comparison between the CPU
and GPU should not be overstated. The reason for this is that the time needed for
this part of the process remains consistent, irrespective of whether the task is being
carried out on a CPU or a GPU. Therefore, while the operation is a constant factor in
our performance equation, it doesn’t necessarily make a substantial difference when
determining which processing unit delivers optimal performance. It’s also important
to remember that the context in which the operation is utilized, some context might

35

5. Discussion

not require the creation of a new table and could instead only require indexes to
retrieve the data from the rows. In this case the time taken to create a new table
can be ignored.

The performance difference between the build and probe phases of the hash join
operation was also notable. The GPU showed more significant improvement during
the probe phase due to its parallel processing capabilities. As for the build phase
however there is not a great advantage of utilizing the GPU due to high overhead
costs. When considering only the execution times for the build phase the GPU
shows good results but the overhead is quite large.

Given the performance discrepancies between CPUs and GPUs in different phases
of the join operation, it is worth considering a hybrid approach. In this model, the
build phase could be executed on the CPU to minimize the effects of GPU memory
latency, and the probe phase could be run on the GPU to take advantage of its
parallel processing capabilities. However, the efficiency of such an approach would
depend on several factors for each hardware configuration, including the overhead
of transferring data between the CPU and GPU, and this presents an interesting
avenue for future research.

In conclusion, while GPUs can offer significant performance improvements for join
operations, there are several factors, including data transfer overhead and the spe-
cific characteristics of the operation phases, which can impact their efficiency. The
findings suggest that a nuanced approach, potentially involving a hybrid model,
may be beneficial for optimizing the performance of the operation depending on the
hardware configuration.

36

6
Conclusion

The primary objective of this thesis was to assess the potential of GPU-accelerated
computing for database operations, with a particular focus on the three selected
operations and an analysis of their performance and scalability. This objective has
been successfully achieved. The insight derived from this investigation suggests a
definite potential for GPU acceleration in these operations, albeit not universally
across all scenarios.

To gain a performance increase by employing GPU-utilization for V-Search, the
operation is required to be performed on an in-memory database and in significant
batches. This is due to the considerable overhead incurred during data transfer to
and from the GPU before and after operation execution. Similarly, for the fuzzy
search to be optimally accelerated by the GPU, a significant search space size is
necessary so that the computational aspect of the operation can offset the initial
overhead associated with GPU usage. In the case of an in-memory database, the
required search space size could be considerably smaller, as the overhead would
reduce significantly. For the join operation, data transfer overhead to the GPU
can be minimized by only transferring the necessary join columns from both tables,
thereby making the parallel architecture of the GPU more beneficial compared to
the CPU, even considering the overhead of data transfer before execution and the
subsequent return of the index array.

While GPUs can provide performance enhancements for these operations, their ef-
fectiveness is always constrained by the data transfer overhead required and the
degree of parallelism in the operation. These factors may preclude many database
operations from experiencing any performance increase with GPU usage. In terms
of scalability, GPUs generally perform commendably due to their parallel architec-
ture. However, their performance is limited by their memory, which is less flexible
to configure compared to conventional memory.

6.1 Future work

While this thesis provides substantial insights into the potential of GPU accelerated
database operations, several avenues for future research still exists.

37

6. Conclusion

6.1.1 Wider Range of Database Operations
While the scope of this thesis was confined to the operations string search, fuzzy
search, and join, future research could incorporate a broader array of operations like
sorting and graph traversal. These operations could potentially benefit from GPU
acceleration, thereby expanding our understanding of GPU-accelerated database
operations further.

6.1.2 Implementation evaluation
As the operations in this thesis were executed using a single implementation, an
evaluation of various implementations could provide valuable insights. Such an
assessment could aid in enhancing performance benefits by enabling more optimized
use of the GPU.

6.1.3 Execution planning
For optimal utilization of GPU acceleration in a Database Management System
(DBMS), a well-defined execution plan is essential. Therefore, further research is
needed to determine more accurately the conditions under which it’s advantageous
to use the CPU versus the GPU for an operation. These conditions would depend
on several factors such as workload, data complexity, and specific database and
hardware configurations.

38

Bibliography

[1] Statista, Volume of data/information created, captured, copied, and consumed
worldwide from 2010 to 2020, with forecasts from 2021 to 2025, 2021. [Online].
Available: https://www.statista.com/statistics/871513/worldwide-
data-created/ (visited on 03/09/2023).

[2] P. Du, R. Weber, P. Luszczek, S. Tomov, G. Peterson, and J. Dongarra, “From
cuda to opencl: Towards a performance-portable solution for multi-platform
gpu programming,” Parallel Computing, vol. 38, no. 8, pp. 391–407, 2012,
APPLICATION ACCELERATORS IN HPC, issn: 0167-8191. doi: https:
//doi.org/10.1016/j.parco.2011.10.002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0167819111001335.

[3] HEAVY.AI, Heavydb. [Online]. Available: https://www.heavy.ai/ (visited
on 03/01/2023).

[4] SQream, Sqreamdb. [Online]. Available: https : / / sqream . com / product /
sqreamdb/ (visited on 03/01/2023).

[5] brytlyt, Brytlytdb. [Online]. Available: https://brytlyt.io/database/ (vis-
ited on 03/01/2023).

[6] H. Inc, Pg-strom. [Online]. Available: https://en.heterodb.com/ (visited on
03/01/2023).

[7] D. Dojchinovski, M. Gusev, and V. Zdraveski, “Efficiently running sql queries
on gpu,” in 2018 26th Telecommunications Forum (TELFOR), 2018, pp. 1–4.
doi: 10.1109/TELFOR.2018.8611821.

[8] P. Bakkum and K. Skadron, “Accelerating sql database operations on a gpu
with cuda,” in Proceedings of the 3rd Workshop on General-Purpose Com-
putation on Graphics Processing Units, ser. GPGPU-3, Pittsburgh, Pennsyl-
vania, USA: Association for Computing Machinery, 2010, pp. 94–103, isbn:
9781605589350. doi: 10.1145/1735688.1735706. [Online]. Available: https:
//doi.org/10.1145/1735688.1735706.

[9] B. Grandhi, S. Chickerur, and M. S. Patil, “Performance analysis of mysql,
apache spark on cpu and gpu,” in 2018 3rd IEEE International Conference
on Recent Trends in Electronics, Information & Communication Technology
(RTEICT), 2018, pp. 1494–1499. doi: 10.1109/RTEICT42901.2018.9012459.

[10] S. S. M. Al-Dabbagh and Y. M. Abdal, “Parallel hybrid string matching algo-
rithm using cuda api function,” in 2021 International Conference on Com-
puting and Communications Applications and Technologies (I3CAT), 2021,
pp. 66–70. doi: 10.1109/I3CAT53310.2021.9629415.

39

https://www.statista.com/statistics/871513/worldwide-data-created/
https://www.statista.com/statistics/871513/worldwide-data-created/
https://doi.org/https://doi.org/10.1016/j.parco.2011.10.002
https://doi.org/https://doi.org/10.1016/j.parco.2011.10.002
https://www.sciencedirect.com/science/article/pii/S0167819111001335
https://www.sciencedirect.com/science/article/pii/S0167819111001335
https://www.heavy.ai/
https://sqream.com/product/sqreamdb/
https://sqream.com/product/sqreamdb/
https://brytlyt.io/database/
https://en.heterodb.com/
https://doi.org/10.1109/TELFOR.2018.8611821
https://doi.org/10.1145/1735688.1735706
https://doi.org/10.1145/1735688.1735706
https://doi.org/10.1145/1735688.1735706
https://doi.org/10.1109/RTEICT42901.2018.9012459
https://doi.org/10.1109/I3CAT53310.2021.9629415

Bibliography

[11] Y. Mitani, F. Ino, and K. Hagihara, “Parallelizing exact and approximate
string matching via inclusive scan on a gpu,” IEEE Transactions on Parallel
and Distributed Systems, vol. 28, no. 7, pp. 1989–2002, 2017. doi: 10.1109/
TPDS.2016.2645222.

[12] C.-H. Lin and C.-C. Huang, “High-performance parallel location-aware al-
gorithms for approximate string matching on gpus,” in 2015 IEEE 21st In-
ternational Conference on Parallel and Distributed Systems (ICPADS), 2015,
pp. 570–575. doi: 10.1109/ICPADS.2015.77.

[13] K. Wang, K. Zhang, Y. Yuan, et al., “Concurrent analytical query processing
with gpus,” Proc. VLDB Endow., vol. 7, no. 11, pp. 1011–1022, Jul. 2014, issn:
2150-8097. doi: 10 . 14778 / 2732967 . 2732976. [Online]. Available: https :
//doi.org/10.14778/2732967.2732976.

[14] B. He, M. Lu, K. Yang, et al., “Relational query coprocessing on graphics
processors,” ACM Trans. Database Syst., vol. 34, no. 4, Dec. 2009, issn: 0362-
5915. doi: 10.1145/1620585.1620588. [Online]. Available: https://doi.
org/10.1145/1620585.1620588.

[15] A. Burnes, “Nvidia ampere ga102 gpu architecture,” NVIDIA Corporation,
whitepaper, Sep. 2020.

[16] “Cuda c++ programming guide, release 12.1,” NVIDIA Corporation & Affili-
ates, whitepaper, Apr. 2023.

[17] “Openmp application programming interface specification, version 5.2,” OpenMP,
whitepaper, Nov. 2021.

[18] A. W. Services, Amazon ec2. [Online]. Available: https://aws.amazon.com/
ec2/ (visited on 07/03/2023).

[19] V. I. Levenshtein, “Binary Codes Capable of Correcting Deletions, Insertions
and Reversals,” Soviet Physics Doklady, vol. 10, p. 707, Feb. 1966.

[20] K. Balhaf, M. A. Alsmirat, M. Al-Ayyoub, Y. Jararweh, and M. A. Shehab,
“Accelerating levenshtein and damerau edit distance algorithms using gpu with
unified memory,” in 2017 8th International Conference on Information and
Communication Systems (ICICS), 2017, pp. 7–11. doi: 10.1109/IACS.2017.
7921937.

[21] S. Soroushnia, M. Daneshtalab, T. Pahikkala, and J. Plosila, “Parallel imple-
mentation of fuzzified pattern matching algorithm on gpu,” in 2015 23rd Eu-
romicro International Conference on Parallel, Distributed, and Network-Based
Processing, 2015, pp. 341–344. doi: 10.1109/PDP.2015.75.

[22] K. Balhaf, M. A. Shehab, W. T. Al-Sarayrah, M. Al-Ayyoub, M. Al-Saleh, and
Y. Jararweh, “Using gpus to speed-up levenshtein edit distance computation,”
in 2016 7th International Conference on Information and Communication Sys-
tems (ICICS), 2016, pp. 80–84. doi: 10.1109/IACS.2016.7476090.

[23] N. Devarajan, S. Navneeth, and S. Mohanavalli, “Gpu accelerated relational
hash join operation,” in 2013 International Conference on Advances in Com-
puting, Communications and Informatics (ICACCI), 2013, pp. 891–896. doi:
10.1109/ICACCI.2013.6637294.

[24] R. Rui, H. Li, and Y.-C. Tu, “Join algorithms on gpus: A revisit after seven
years,” in 2015 IEEE International Conference on Big Data (Big Data), 2015,
pp. 2541–2550. doi: 10.1109/BigData.2015.7364051.

40

https://doi.org/10.1109/TPDS.2016.2645222
https://doi.org/10.1109/TPDS.2016.2645222
https://doi.org/10.1109/ICPADS.2015.77
https://doi.org/10.14778/2732967.2732976
https://doi.org/10.14778/2732967.2732976
https://doi.org/10.14778/2732967.2732976
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1620585.1620588
https://doi.org/10.1145/1620585.1620588
https://aws.amazon.com/ec2/
https://aws.amazon.com/ec2/
https://doi.org/10.1109/IACS.2017.7921937
https://doi.org/10.1109/IACS.2017.7921937
https://doi.org/10.1109/PDP.2015.75
https://doi.org/10.1109/IACS.2016.7476090
https://doi.org/10.1109/ICACCI.2013.6637294
https://doi.org/10.1109/BigData.2015.7364051

Bibliography

[25] T. P. P. C. (TPC), “Tpc benchmark h standard specification revision 3.0.1,”
TPC, whitepaper, 2022.

41

Bibliography

42

A
Appendix 1 - V-Search

In this first part of the appendix is the complete set of result data generated for the
V-Search operation. Executions times for all four test datasets with different term
lengths is presented for both CPU and GPU with the different database sizes. For
GPU the time taken to transfer the batches is also included.

A.1 Instance 1

Random Terms Short Terms Middle Terms Long Terms
100K 2,14 0,92 2,03 3,29
1M 2,49 0,99 2,29 3,80
10M 2,14 0,82 1,92 3,13
100M 2,64 1,07 2,30 3,76

Table A.1: V-Search Execution Times in ms (Instance 1 - CPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 1980.34 1524.60 1934.65 2341.74 144.21
5 561.44 381.79 489.48 586.06 142.11
10 311.38 208.58 269.99 324.35 142.23
50 76.68 50.70 66.18 80.41 143.32
100 39.00 25.94 34.40 41.86 142.71
500 12.41 7.77 10.46 13.50 142.51
1000 7.05 4.71 6.64 7.70 141.54
5000 1.94 1.23 1.55 2.23 142.09
10000 1.83 1.40 1.67 1.90 141.89

Table A.2: V-Search Execution Times (ms) with 100K Database (Instance 1 -
GPU)

I

A. Appendix 1 - V-Search

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 2066.62 1602.60 1985.05 2401.35 148.00
5 596.55 406.85 525.74 618.33 146.67
10 337.68 227.78 292.24 348.46 146.68
50 83.05 55.60 73.36 88.47 146.02
100 41.97 29.55 37.50 45.25 146.80
500 11.91 7.77 10.83 12.43 146.36
1000 7.68 4.81 6.19 7.80 146.89
5000 2.16 1.39 1.87 2.34 146.49
10000 1.88 1.45 1.72 1.97 146.93

Table A.3: V-Search Execution Times (ms) with 1M Database (Instance 1 - GPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 2154.57 1694.93 2056.23 2454.74 192.38
5 610.13 429.43 542.38 640.28 189.88
10 345.05 240.03 301.66 354.41 189.65
50 84.40 58.71 75.75 88.63 188.93
100 41.42 30.55 39.04 44.31 189.60
500 10.13 6.85 8.87 10.82 189.26
1000 5.29 3.53 4.93 5.80 189.79
5000 1.96 1.45 1.82 2.36 192.06
10000 2.17 1.63 1.96 2.29 194.48

Table A.4: V-Search Execution Times (ms) with 10M Database (Instance 1 - GPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 2249.07 1793.69 2126.41 2535.60 645.11
5 646.05 455.79 560.58 663.29 652.76
10 361.49 247.99 318.09 372.26 649.96
50 91.66 60.27 79.45 92.77 643.68
100 47.57 33.94 42.52 52.55 647.98
500 10.96 7.46 9.37 12.62 649.80
1000 5.59 3.80 5.01 6.63 645.35
5000 2.03 1.21 1.84 2.85 649.18
10000 2.08 1.39 1.93 2.87 649.82

Table A.5: V-Search Execution Times (ms) with 100M Database (Instance 1 -
GPU)

A.2 Instance 2

Random Terms Short Terms Middle Terms Long Terms
100K 2.26 0.88 2.18 3.57
1M 2.31 0.91 2.17 3.56
10M 2.39 0.81 2.19 3.61
100M 2.52 0.84 2.24 3.67

Table A.6: V-Search Execution Times in ms (Instance 2 - CPU)

II

A. Appendix 1 - V-Search

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 1030.28 901.59 1040.43 1202.63 170.84
5 259.93 195.10 233.34 273.89 152.10
10 143.82 101.83 125.85 148.15 149.73
50 34.85 24.79 31.61 36.60 148.64
100 27.04 18.48 24.12 27.19 149.76
500 9.39 5.55 7.45 9.16 150.50
1000 4.82 3.11 3.88 5.13 150.05
5000 1.38 0.99 1.08 1.22 150.49
10000 1.62 1.21 1.43 1.66 150.31

Table A.7: V-Search Execution Times (ms) with 100K Database (Instance 2 -
GPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 1056.46 920.86 1061.41 1227.69 161.69
5 270.64 202.42 248.68 288.43 161.68
10 151.16 108.02 133.80 155.09 159.28
50 36.58 25.96 34.41 38.52 158.36
100 24.36 18.45 23.42 28.57 158.79
500 9.05 5.87 8.56 10.31 158.67
1000 5.23 3.76 3.81 5.84 158.39
5000 1.52 1.22 1.10 1.30 159.31
10000 1.65 1.28 1.52 1.72 158.07

Table A.8: V-Search Execution Times (ms) with 10M Database (Instance 2 - GPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 1081.86 944.54 1079.36 1245.39 236.16
5 273.51 210.19 252.05 290.30 231.92
10 163.41 111.74 136.25 154.53 230.63
50 36.68 33.02 37.62 42.36 228.56
100 33.92 23.38 29.02 30.97 228.96
500 10.08 5.91 9.59 10.73 232.66
1000 5.63 3.71 4.58 6.11 234.39
5000 1.61 1.11 1.29 1.67 230.70
10000 1.69 1.28 1.54 1.76 229.09

Table A.9: V-Search Execution Times (ms) with 10M Database (Instance 2 - GPU)

III

A. Appendix 1 - V-Search

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 1117.46 975.93 1105.01 1276.58 1122.40
5 279.80 217.81 262.93 299.44 1121.74
10 154.79 115.36 140.03 161.43 1123.48
50 35.62 26.62 32.01 37.42 1122.37
100 19.84 14.42 17.40 20.50 1122.18
500 5.18 3.58 5.10 5.55 1122.60
1000 2.77 2.18 2.42 2.84 1123.68
5000 1.01 0.80 0.83 1.10 1124.44
10000 1.34 0.98 1.29 1.39 1123.36

Table A.10: V-Search Execution Times (ms) with 100M Database (Instance 2 -
GPU)

A.3 Instance 3

Random Terms Short Terms Middle Terms Long Terms
100K 2.35 0.81 2.22 3.74
1M 2.40 0.86 2.21 3.73
10M 2.47 0.84 2.20 3.74
100M 2.56 0.87 2.20 3.76

Table A.11: V-Search Execution Times in ms (Instance 3 - CPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 1398.16 1351.12 1426.88 1514.30 168.16
5 296.58 265.97 289.79 317.97 135.61
10 157.90 135.20 148.47 163.80 134.82
50 34.68 28.00 31.12 36.26 133.32
100 18.10 14.19 17.20 19.11 132.60
500 4.65 3.51 4.04 4.58 137.45
1000 2.44 2.06 2.39 2.45 128.41
5000 0.91 1.04 0.80 0.92 128.87
10000 1.13 0.91 0.98 1.07 126.85

Table A.12: V-Search Execution Times (ms) with 100K Database (Instance 3 -
GPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 1410.88 1360.83 1438.60 1529.82 144.49
5 306.99 274.59 300.17 326.37 136.32
10 163.41 138.07 154.19 173.97 132.70
50 36.05 28.80 34.74 39.33 132.82
100 19.71 15.06 17.97 20.43 132.09
500 5.04 3.67 4.56 5.19 134.13
1000 2.54 2.02 2.10 2.94 136.52
5000 1.11 0.84 0.76 0.93 133.74
10000 1.15 0.99 1.01 1.11 132.10

Table A.13: V-Search Execution Times (ms) with 1M Database (Instance 3 - GPU)

IV

A. Appendix 1 - V-Search

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 1421.75 1367.24 1449.48 1540.10 193.64
5 310.70 274.97 302.43 331.80 160.19
10 163.52 141.36 156.54 174.74 175.73
50 37.89 29.90 34.47 39.83 178.01
100 19.63 15.13 19.06 22.64 165.55
500 5.24 3.73 4.22 5.42 157.08
1000 2.58 1.94 2.45 2.42 159.38
5000 1.03 0.76 0.76 0.95 158.41
10000 1.14 0.81 1.02 1.15 158.21

Table A.14: V-Search Execution Times (ms) with 10M Database (Instance 3 -
GPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1 1436.32 1381.56 1456.60 1557.12 618.18
5 317.57 277.61 306.24 333.07 616.68
10 169.98 140.99 157.43 177.74 623.45
50 38.54 30.20 36.56 41.36 611.15
100 19.99 15.83 18.77 22.21 610.66
500 5.53 3.81 4.58 5.41 617.99
1000 2.66 2.25 2.59 2.78 622.65
5000 1.11 0.72 0.89 1.02 613.74
10000 1.10 0.82 1.04 1.16 621.68

Table A.15: V-Search Execution Times (ms) with 100M Database (Instance 3 -
GPU)

V

A. Appendix 1 - V-Search

VI

B
Appendix - Fuzzy Search

In this second part of the appendix is the complete set of result data generated for
the fuzzy search operation on both CPU and GPU. Times are given for all tested
combinations of database sizes and test datasets, including the time taken return
the result for GPU.

B.1 Instance 1

Random Terms Short Terms Middle Terms Long Terms
1K 25.83 11.47 21.00 34.55
10K 229.18 117.06 211.16 342.80
100K 2341.63 1170.09 2135.09 3529.76

Table B.1: Fuzzy Search Execution Times in ms (Instance 1 - CPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1K 3.59 1.63 2.93 4.76 146.35
10K 20.04 12.33 18.93 27.59 146.21
100K 49.84 44.06 49.70 55.55 147.57
1M 355.79 302.13 352.58 415.34 152.32
10M 2906.49 2514.35 2782.73 3336.39 166.69

Table B.2: Fuzzy Search Execution Times in ms (Instance 1 - GPU)

B.2 Instance 2

Random Terms Short Terms Middle Terms Long Terms
1K 21.16 9.60 17.50 28.72
10K 190.99 98.64 176.23 285.48
100K 1952.95 986.56 1780.96 2936.19

Table B.3: Fuzzy Search Execution Times in ms (Instance 2 - CPU)

VII

B. Appendix - Fuzzy Search

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1K 2.40 1.19 1.99 3.10 162.18
10K 13.02 7.99 12.19 17.96 151.05
100K 31.72 28.20 30.55 37.57 153.43
1M 223.19 183.27 209.63 271.65 156.82
10M 2071.13 1701.49 1937.32 2499.67 182.24

Table B.4: Fuzzy Search Execution Times in ms (Instance 2 - GPU)

B.3 Instance 3

Random Terms Short Terms Middle Terms Long Terms
1K 26.67 12.33 22.18 36.24
10K 241.85 125.98 222.97 359.55
100K 2474.57 1261.90 2261.35 3700.77

Table B.5: Fuzzy Search Execution Times in ms (Instance 3 - CPU)

Random Terms Short Terms Middle Terms Long Terms Transfer Time
1K 2.26 1.08 1.86 2.99 151.89
10K 12.52 7.73 11.80 17.60 135.99
100K 29.65 26.94 28.17 34.45 139.34
1M 167.05 158.32 168.58 173.29 141.36
10M 1297.18 1299.37 1266.30 1343.33 155.64

Table B.6: Fuzzy Search Execution Times in ms (Instance 3 - GPU)

VIII

C
Appendix - Join

In this last part of the appendix is the complete set of result data generated for the
join operation for both CPU and GPU. For the CPU the times given is the time
taken to execute the build phase, probe phase, the sum of theses two phases, and
the time taken to construct a result table. For the GPU more times are given and
include the time taken for the required overhead for the build phase, overhead for
the probe phase, execution time of the build phase, time taken to transfer the hash
table back to memory after the build phase, execution time of the probe phase, the
sum of build and probe phase, time taken to return the index array after the probe
phase, and the time taken to construct a result table.

C.1 Instance 1

Build Probe Execution Transfer
15K 20.69 0.19 20.88 3.50
75K 132.55 0.80 133.35 18.37
15K 280.94 1.62 282.56 48.97
75K 351.38 7.10 358.48 256.90

Table C.1: Join Execution Times (ms) for 100:1 ratio (Instance 1 - CPU)

Build Probe Execution Transfer
15K 3.61 0.16 3.78 3.22
75K 10.84 0.68 11.52 18.30
15K 20.34 1.39 21.72 49.06
75K 131.10 6.96 138.07 260.93
15K 283.25 14.25 297.50 545.16
75K 365.71 78.90 444.61 3044.50

Table C.2: Join Execution Times (ms) for 10:1 ratio (Instance 1 - CPU)

IX

C. Appendix - Join

Build Probe Execution Transfer
15K 1.61 0.16 1.77 3.21
75K 2.63 0.65 3.28 18.19
15K 3.67 1.28 4.95 48.79
75K 11.00 6.68 17.68 258.45
15K 20.24 13.68 33.92 533.23
75K 134.80 80.53 215.33 3082.59
15K 278.15 193.49 471.64 6197.75
75K 350.07 233.89 583.96 6964.57

Table C.3: Join Execution Times (ms) for 1:1 ratio (Instance 1 - CPU)

Build Probe Execution Transfer
15K 1.75 1.70 3.45 50.25
75K 2.67 6.29 8.95 259.22
15K 3.69 12.60 16.29 535.04
75K 11.03 71.17 82.21 3087.65
15K 20.76 156.64 177.40 6366.25
75K 137.39 221.58 358.98 6959.92

Table C.4: Join Execution Times (ms) for 1:10 ratio (Instance 1 - CPU)

Build Probe Execution Transfer
15K 1.72 13.62 15.34 418.86
75K 2.68 72.65 75.33 2074.27
15K 3.71 151.46 155.17 4267.82
75K 12.80 170.47 183.27 4379.52

Table C.5: Join Execution Times (ms) for 1:100 ratio (Instance 1 - CPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 1.49 0.41 10.41 13.60 0.32 10.74 0.09 3.05
75K 4.94 0.50 50.85 80.37 1.51 52.36 0.31 15.95
150K 9.39 0.64 95.82 156.30 2.35 98.16 0.60 45.53
750K 11.56 0.97 131.85 193.18 4.54 136.38 1.84 248.36

Table C.6: Join Execution Times (ms) for 1:100 ratio (Instance 1 - GPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.67 0.24 1.08 1.54 0.07 1.15 0.07 2.91
75K 1.02 0.43 5.11 6.77 0.26 5.37 0.30 16.20
150K 1.48 0.47 10.45 13.47 0.49 10.94 0.60 45.05
750K 5.03 0.82 51.91 80.69 2.35 54.26 1.85 250.69
1500K 9.38 1.36 101.33 158.87 4.74 106.07 3.51 537.28
7500K 11.45 4.60 131.02 192.76 17.28 148.30 16.70 3019.48

Table C.7: Join Execution Times (ms) for 1:10 ratio (Instance 1 - GPU)

X

C. Appendix - Join

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.29 0.03 0.26 0.23 0.11 0.38 0.07 2.85
75K 0.63 0.26 0.52 0.84 0.18 0.70 0.28 16.13
150K 0.69 0.46 0.88 1.51 0.25 1.13 0.55 45.42
750K 1.06 0.75 4.85 6.76 1.19 6.04 1.81 247.72
1500K 1.50 1.21 10.59 13.31 2.60 13.19 3.46 526.25
7500K 5.18 4.61 52.03 81.60 13.11 65.14 17.24 3036.66
15000K 9.50 8.75 105.16 158.58 27.00 132.17 40.13 6274.02
75000K 11.76 9.33 130.25 192.76 36.15 166.40 42.19 7058.19

Table C.8: Join Execution Times (ms) for 1:1 ratio (Instance 1 - GPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.41 0.30 0.33 0.26 0.90 1.23 0.58 46.45
75K 0.70 0.75 0.67 0.87 3.73 4.40 1.83 247.52
150K 0.75 1.19 1.13 1.53 7.31 8.44 3.48 527.87
750K 1.12 4.56 5.17 6.86 35.10 40.27 17.37 3069.03
1500K 1.76 8.55 9.93 13.63 63.99 73.92 39.72 6245.47
7500K 5.25 9.24 52.32 80.46 70.93 123.25 42.24 7045.47

Table C.9: Join Execution Times (ms) for 10:1 ratio (Instance 1 - GPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.49 1.21 0.33 0.26 11.77 12.10 3.49 408.22
75K 0.72 4.51 0.66 0.89 56.61 57.27 16.94 2071.11
150K 0.90 8.75 1.04 1.77 101.88 102.92 39.95 4171.93
750K 1.32 8.99 5.03 6.94 105.44 110.47 41.67 4366.38

Table C.10: Join Execution Times (ms) for 100:1 ratio (Instance 1 - GPU)

C.2 Instance 2

Build Probe Execution Transfer
1 12.89 0.15 13.04 2.61
2 63.79 0.50 64.29 16.84
3 127.92 0.92 128.84 36.04
4 158.09 3.51 161.60 189.34

Table C.11: Join Execution Times (ms) for 100:1 ratio (Instance 2 - CPU)

Build Probe Execution Transfer
1 3.19 0.13 3.32 2.49
2 7.01 0.41 7.42 15.60
3 11.45 0.84 12.29 35.99
4 61.09 3.46 64.55 183.97
5 130.20 7.43 137.63 382.71
6 172.67 44.19 216.86 2225.94

Table C.12: Join Execution Times (ms) for 10:1 ratio (Instance 2 - CPU)

XI

C. Appendix - Join

Build Probe Execution Transfer
1 2.17 0.11 2.28 2.49
2 2.66 0.39 3.05 15.84
3 3.22 0.74 3.96 35.86
4 7.04 3.07 10.11 183.10
5 11.71 6.45 18.16 379.68
6 62.41 43.84 106.25 2239.11
7 134.74 95.92 230.66 4554.18
8 167.37 119.37 286.74 5253.17

Table C.13: Join Execution Times (ms) for 1:1 ratio (Instance 2 - CPU)

Build Probe Execution Transfer
1 2.21 0.76 2.97 35.94
2 2.69 3.15 5.84 185.37
3 3.22 5.89 9.11 378.51
4 7.07 34.76 41.83 2211.74
5 11.29 74.71 86.00 4746.26
6 60.62 106.79 167.41 5125.87

Table C.14: Join Execution Times (ms) for 1:10 ratio (Instance 2 - CPU)

Build Probe Execution Transfer
1 2.20 6.25 8.45 314.26
2 2.68 34.09 36.76 1576.15
3 3.29 74.04 77.33 3287.99
4 7.06 84.42 91.48 3345.96

Table C.15: Join Execution Times (ms) for 1:100 ratio (Instance 2 - CPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 1.86 0.35 5.50 14.27 0.11 5.61 0.08 2.35
75K 7.05 0.45 28.85 74.12 0.48 29.33 0.29 15.21
150K 13.45 0.56 58.01 148.19 0.95 58.96 0.58 33.24
750K 16.66 1.14 71.62 187.25 1.51 73.13 1.78 184.67

Table C.16: Join Execution Times (ms) for 100:1 ratio (Instance 2 - GPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.65 0.04 0.47 1.43 0.03 0.50 0.07 2.41
75K 1.17 0.39 2.44 6.64 0.09 2.53 0.27 13.90
150K 1.76 0.47 5.49 13.46 0.16 5.64 0.53 32.51
750K 6.76 1.02 28.84 73.31 0.88 29.72 1.68 179.08
1500K 13.61 1.71 58.02 147.88 1.79 59.81 3.18 377.54
7500K 16.79 6.79 71.72 182.25 7.01 78.73 17.29 2264.03

Table C.17: Join Execution Times (ms) for 10:1 ratio (Instance 2 - GPU)

XII

C. Appendix - Join

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.26 0.03 0.19 0.24 0.05 0.24 0.07 2.28
75K 0.39 0.27 0.28 0.84 0.07 0.35 0.30 14.72
150K 0.65 0.32 0.47 1.43 0.10 0.56 0.53 32.81
750K 1.17 0.96 2.45 6.65 0.35 2.80 1.68 179.08
1500K 1.79 1.55 5.51 13.71 0.78 6.29 3.19 373.20
7500K 7.10 6.65 28.83 73.71 5.66 34.50 16.61 2229.02
15000K 13.61 13.02 57.99 148.05 11.88 69.87 36.25 4541.29
75000K 16.79 13.63 71.65 181.82 13.21 84.86 38.03 5007.79

Table C.18: Join Execution Times (ms) for 1:1 ratio (Instance 2 - GPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.32 0.14 0.19 0.25 0.20 0.39 0.55 32.86
75K 0.45 0.99 0.28 0.81 0.89 1.17 1.70 178.98
150K 0.66 1.54 0.46 1.40 1.67 2.13 3.21 371.31
750K 1.23 6.48 2.44 6.58 7.93 10.37 16.93 2203.98
1500K 2.02 12.78 5.49 13.91 15.97 21.46 36.09 4576.42
7500K 7.20 13.45 28.84 73.56 17.58 46.42 38.05 5184.95

Table C.19: Join Execution Times (ms) for 1:10 ratio (Instance 2 - GPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.38 1.57 0.19 0.23 2.32 2.51 3.28 308.55
75K 0.45 6.41 0.28 0.83 11.63 11.91 17.51 1558.36
150K 0.71 12.79 0.46 1.52 21.02 21.47 36.38 3169.41
750K 1.44 13.38 2.45 6.84 22.62 25.07 38.04 3344.05

Table C.20: Join Execution Times (ms) for 1:100 ratio (Instance 2 - GPU)

C.3 Instance 3

Build Probe Execution Transfer
1 11.85 0.23 12.08 1.52
2 35.04 0.50 35.54 8.91
3 65.78 0.74 66.52 16.97
4 80.21 2.16 82.37 119.45

Table C.21: Join Execution Times (ms) for 100:1 ratio (Instance 3 - CPU)

Build Probe Execution Transfer
1 6.28 0.17 6.45 1.43
2 8.65 0.46 9.11 8.82
3 11.76 0.68 12.45 17.10
4 35.05 2.21 37.26 118.97
5 65.84 4.21 70.05 235.82
6 84.10 26.36 110.46 1309.42

Table C.22: Join Execution Times (ms) for 10:1 ratio (Instance 3 - CPU)

XIII

C. Appendix - Join

Build Probe Execution Transfer
1 5.69 0.22 5.92 1.46
2 5.88 0.41 6.29 8.74
3 6.25 0.60 6.85 16.79
4 8.68 1.87 10.55 120.27
5 11.75 3.50 15.24 233.14
6 35.15 24.34 59.50 1318.18
7 66.59 55.22 121.81 2856.98
8 81.18 63.76 144.95 3505.59

Table C.23: Join Execution Times (ms) for 1:1 ratio (Instance 3 - CPU)

Build Probe Execution Transfer
1 5.70 0.50 6.21 17.09
2 6.11 1.62 7.73 119.83
3 6.38 3.21 9.59 242.43
4 8.75 15.74 24.49 1311.86
5 11.85 36.32 48.17 2899.40
6 35.33 58.16 93.49 3575.67

Table C.24: Join Execution Times (ms) for 1:10 ratio (Instance 3 - CPU)

Build Probe Execution Transfer
1 5.67 2.89 8.56 163.26
2 5.96 15.67 21.63 838.31
3 6.27 30.09 36.36 1718.61
4 8.86 32.87 41.73 1914.97

Table C.25: Join Execution Times (ms) for 1:100 ratio (Instance 3 - CPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 1.08 0.30 1.36 7.04 0.04 1.40 0.05 1.27
75K 3.23 0.37 7.69 33.62 0.11 7.80 0.17 8.27
150K 5.81 0.41 15.47 66.51 0.20 15.67 0.33 16.39
750K 7.24 0.59 19.25 81.66 0.33 19.58 0.86 107.98

Table C.26: Join Execution Times (ms) for 100:1 ratio (Instance 3 - CPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.60 0.03 0.13 0.73 0.02 0.15 0.04 1.35
75K 0.82 0.33 0.60 3.32 0.03 0.63 0.16 9.38
150K 1.05 0.36 1.37 7.56 0.05 1.41 0.32 16.40
750K 3.20 0.57 7.69 33.38 0.21 7.90 0.82 108.87
1500K 5.80 0.83 15.47 66.55 0.42 15.89 1.68 231.79
7500K 7.24 2.93 19.19 81.33 1.96 21.16 8.68 1300.63

Table C.27: Join Execution Times (ms) for 10:1 ratio (Instance 3 - CPU)

XIV

C. Appendix - Join

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.31 0.02 0.08 0.13 0.03 0.11 0.04 1.29
75K 0.43 0.18 0.09 0.44 0.03 0.12 0.16 8.27
150K 0.59 0.21 0.13 0.71 0.03 0.16 0.29 16.20
750K 0.78 0.56 0.60 3.11 0.08 0.68 0.79 108.35
1500K 1.05 0.74 1.37 7.04 0.20 1.57 1.56 234.64
7500K 3.24 2.89 7.67 33.60 1.76 9.43 8.69 1304.62
15000K 5.85 5.31 15.48 66.80 3.86 19.33 16.94 2904.31
75000K 7.22 5.57 19.22 81.64 4.57 23.78 17.65 3487.03

Table C.28: Join Execution Times (ms) for 1:1 ratio (Instance 3 - CPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.48 0.06 0.08 0.14 0.05 0.12 0.31 16.37
75K 0.49 0.53 0.09 0.43 0.18 0.27 0.81 108.22
150K 0.60 0.79 0.13 0.68 0.31 0.44 1.47 237.88
750K 0.78 2.88 0.60 3.00 1.52 2.12 8.63 1304.36
1500K 1.05 5.29 1.36 6.98 3.34 4.70 16.95 2934.50
7500K 3.24 5.66 7.69 33.45 4.46 12.15 17.63 3513.65

Table C.29: Join Execution Times (ms) for 1:10 ratio (Instance 3 - CPU)

Build
Overhead

Probe
Overhead

Build
Execution

Hash
Table

Probe
Execution

Total
Execution

Index
overhead

Result Table
Creation

15K 0.45 0.75 0.08 0.14 0.41 0.49 1.59 162.08
75K 0.52 2.82 0.09 0.51 1.88 1.97 9.40 829.82
150K 0.62 5.40 0.13 0.70 3.53 3.66 17.07 1706.31
750K 0.84 5.51 0.60 3.07 4.20 4.79 17.58 1863.84

Table C.30: Join Execution Times (ms) for 1:100 ratio (Instance 3 - CPU)

XV

	List of Figures
	List of Tables
	Introduction
	GPU-accelerated databases and their applications
	Previous studies
	Aim
	Problem definition
	Scope and Limitations
	Thesis Organization

	Background
	NVIDIA architecture and CUDA
	OpenMP
	Amazon Web Services (AWS)
	Selected database operations
	V-search
	Fuzzy search
	Join

	Methodology
	Operations
	V-Search using the Vesiro algorithm
	Fuzzy search using Levenshtein distance
	Join using Hash Join

	Hardware and services used
	Test data
	V-Search and Fuzzy Search
	Join

	Selected test queries
	V-Search and Fuzzy Search
	Join

	Results
	V-search
	Fuzzy search
	Join

	Discussion
	V-Search
	Fuzzy search
	Join

	Conclusion
	Future work
	Wider Range of Database Operations
	Implementation evaluation
	Execution planning

	Bibliography
	Appendices
	Appendix 1 - V-Search
	Instance 1
	Instance 2
	Instance 3

	Appendix - Fuzzy Search
	Instance 1
	Instance 2
	Instance 3

	Appendix - Join
	Instance 1
	Instance 2
	Instance 3

