
Decentralized Deep Learning under
Distributed Concept Drift
A Novel Approach to Dealing with Changes in Data Distribu-
tions Over Clients and Over Time

Master’s thesis in Data Science and AI

EMILIE KLEFBOM

Master’s thesis in Complex Adaptive Systems

MARCUS ÖRTENBERG TOFTÅS

DEPARTMENT OF Mathematical Sciences

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se




Master’s thesis 2023

Decentralized Deep Learning under
Distributed Concept Drift

A Novel Approach to Dealing with Changes in Data Distributions
Over Clients and Over Time

EMILIE KLEFBOM
MARCUS ÖRTENBERG TOFTÅS

Department of Mathematical Sciences
Division of Applied Mathematics and Statistics

Chalmers University of Technology
Gothenburg, Sweden 2023



Decentralized Deep Learning under Distributed Concept Drift
A Novel Approach to Dealing with Changes in Data Distributions Over Clients and
Over Time
EMILIE KLEFBOM
MARCUS ÖRTENBERG TOFTÅS

© EMILIE KLEFBOM, MARCUS ÖRTENBERG TOFTÅS, 2023.

Advisor: Edvin Listo Zec, RISE
Supervisor: Devdatt Dubhashi, Data Science and AI
Examiner: Klas Modin, Applied Mathematics and Statistics

Master’s Thesis 2023
Department of Mathematical Sciences
Division of Applied Mathematics and Statistics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: DALL·E 2 generated image for the prompt: ’Picture of a decentralized neural
network with different clustered clients’

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Gothenburg, Sweden 2023

iv



Decentralized Deep Learning under Distributed Concept Drift
A Novel Approach to Dealing with Changes in Data Distributions Over Clients and
Over Time
Emilie Klefbom
Marcus Örtenberg Toftås
Department of Mathematical Sciences
Chalmers University of Technology

Abstract
In decentralized deep learning, clients train local models in a peer-to-peer fashion by
sharing model parameters, rather than data. This allows collective model training
in cases where data may be sensitive or for other reasons unable to be transferred.
In this setting, variations in data distributions across clients have been extensively
studied, however, variations over time have received no attention. This project
proposes a solution to address decentralized learning where the data distributions
vary both across clients and over time. We propose a novel algorithm that can adapt
to the evolving concepts in the network without any prior knowledge or estimation
of the number of concepts. Evaluation of the algorithm is done using standard
benchmarks adapted to the temporal setting, where it outperforms previous methods
for decentralized learning.

Keywords: Federated Learning, Decentralized Learning, Machine Learning, Data
Heterogeneity, Non-IID, Personalization, Concept Drift
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ANN Artificial Neural Network.

CNN Convolutional Neural Network.

DAC Decentralized Adaptive Clustering.

FL Federated learning.

HAST Hierarchichal Aggregation with Similarity based Tuning.

IID Identically and independently distributed.
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Glossary

FedAvg In this paper, we use the term FedAvg to refer specifically to the aggregation
method used in Federated Averaging [1], rather than the whole algorithm. For
more information see section 2.2.

batch size The number of training examples used in a single iteration of backprop-
agation of a machine learning algorithm.

catastrophic forgetting When a machine learning model forgets knowledge about
previous tasks i.e. performance on previous tasks drops as models continue to
train on new data.

client Used to denote one node/user in a distributed network.
continual learning Refers to setting in Machine Learning where models have to

learn from a continuous stream of data.
curse of dimensionality Refers to the phenomenon in machine learning where

increasing the number of features or dimensions in a dataset can lead to com-
putational challenges and deteriorating model performance due to the sparsity
of data.

decentralized learning Denotes the machine learning setting where both models
and model training is distributed across multiple clients and communication
is not facilitated by one central point.

deep learning Refers to the field of machine learning that deals with layered mod-
els such as artificial neural networks, convolutional neural networks, trans-
formers, etc.

drift See section 2.4.

empirical risk minimization (ERM) is a machine learning principle that mini-
mizes average loss/error over a dataset.

federated learning Denotes the machine learning setting where both models and
model training is distributed across multiple clients and communication is
facilitated by one central node.

hyperparameters Are user-set parameters in machine learning that control the
model/algorithm behavior, training, and performance. Examples include learn-
ing rate and regularization strength.

perceptron A basic unit of artificial neural networks. A single perceptron can be
seen as a binary classifier.
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Glossary

shift See section 2.4.
spatial In this paper used to refer to variations in data distributions occurring

across clients in the decentralized network.

temporal In this paper used to refer to variations in data distributions over time
for one or several clients in a decentralized network.

transfer learning A machine learning technique that leverages knowledge from
one task to improve performance on a related task, allowing pre-trained models
to be adapted and fine-tuned for different but related tasks.
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1
Introduction

1.1 Background
With the drastic spread of smartphones and other devices capable of continuously
collecting and transmitting data, the amount of available data for machine learning
has increased immensely. However, in some of these cases, data cannot be shared
explicitly. First, users and businesses may not want to share private or business-
sensitive data due to privacy concerns. Second, regulations like GDPR [2] or other
data protection acts may restrict data sharing. Lastly, practical limitations such as
large distributed datasets or low network bandwidth may make transmitting data
to a centralized location infeasible.

In such scenarios, Federated learning (FL) algorithm can be a viable solution as
its scalability and applicability in various domains has already been demonstrated
in, hospitals [3], retail stores [4], and companies such as Google [5]. The FL algo-
rithm, allows collaboration between multiple clients to train one shared global model
without exchanging their local data. However, FL often relies on a central node to
coordinate communication among the clients, which can cause communication bot-
tlenecks and single points of failure. To overcome these limitations, Decentralized
learning proposes a peer-to-peer communication protocol that eliminates the need
for a central node and thereby reduces the vulnerability of the system. However,
decentralized learning also poses new challenges, such as how to optimize the client
models in a decentralized manner.

Figure 1.1: The left image symbolizes a federated setting in which a central server
coordinates all communication on the network, while the right image presents the
decentralized approach with peer-to-peer communication.
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1. Introduction

Traditionally, decentralized machine learning is based on consensus optimization,
where clients converge to a common model using a gossip learning approach [6]–[8].
This works well when the data distributions across clients are similar, however, when
the data distributions or tasks differ significantly across clients, consensus optimiza-
tion can be detrimental. Therefore, recent work has suggested viewing decentralized
learning as a clustering problem, where clients try to find suitable collaborators in
a network of peers and avoid merging their models with dissimilar ones [9], [10].
All of these works consider Non-IID data in decentralized deep learning, however,
they still assume that the data distributions are stationary in time. In real-world
scenarios, this is often not the case for edge devices that continuously collect new
data.

1.2 Contributions
This work presents the first study of decentralized deep learning with distributed
concept drift, which accounts for the dynamic nature of data distributions over
time. We propose a novel algorithm that allows clients to learn personalized models
in Non-IID settings where their concepts may evolve over time. Our problem setting
is related to the recent work of [11], which investigates Non-IID data across clients
and time in a federated learning setting. Additionally, we provide an extensive
overview of Non-IID settings for temporal and spatial heterogeneity for decentralized
algorithms and suggest a coherent naming convention.

1.3 Problem Formulation
We assume a fully connected network N onto which we apply a distributed learning
scenario. On it, we have K clients: C = {C1, ..., CK}, each with its own deep neural
network fk with model parameters wk ∈ Rd. There exist N different data distribu-
tions, which we denote through a cluster identity n ∈ {1, ..., N}. We can describe
these distributions as P(x, y) = {P1(x, y), ..., PN(x, y)} where x are the input fea-
tures and y the data labels.

Throughout all scenarios, model training is split into T time steps, each consisting of
some number of training rounds. At which each client k may draw a new local train-
ing set Dt

k(x, y) from one of the distributions, ensuring Dt
k(x, y) ∈ P(x, y) | ∀k, t.

During each round of training, all clients sample m other clients based on some func-
tion and receive the sampled model parameters. The client then aggregates these
with its local parameters before training locally for a set number of epochs. After
completion by all clients, the next training round begins.
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1. Introduction

Distributed concept drift occurs when Dt
k(x, y) and Dt+1

k (x, y) are not drawn from
the same distribution Pn(x, y). The problem at hand is to define a decentralized
learning algorithm that utilizes the local data and model of each client to train
the weights wk in order to solve the optimization problem described in equation
1.1. Formally it becomes a statistical learning problem in which we want to map
a feature space X to a label space Y . This mapping h : X −→ Y is called the
hypothesis and it represents the ideal solution for the model, as it correctly maps
all features to their corresponding labels. Throughout training the weights are up-
dated to more closely resemble the hypothesis, and during validation, the predicted
labels Ŷ are compared with the expected outputs Y to calculate a loss value. Here
the statistical learning attempts to minimize the risk, i.e. maximize the probability
distribution that Ŷ ≡ Y , as it would indicate that the model has achieved perfect
performance. As calculating the true distribution is difficult, we instead use em-
pirical risk minimization to approximate it, so that the models could improve over
time.

min
wk∈Rd

L(fk(wk)) := min
wk∈Rd

Exk∼Dk
[L(f(xk; wk); yk)] (1.1)

1.4 Limitations
With time as a limiting factor in this research-oriented study, some areas were left
unexplored. The decentralized algorithm should in theory be problem agnostic and
be able to work efficiently for multiple domains but during this project, testing has
only been performed on supervised image classification, therefore the performance
on other domains is unknown. Further, we use datasets and data augmentations
that are common in the research field. This includes modifying the datasets to sim-
ulate Non-IID distributions. These datasets however do not accurately represent
the nuances of real-world data [12].

We use a small CNN model for each client in all experiments. The model is not
designed to achieve state-of-the-art performance on the supervised tasks, but rather
to have sufficient capacity to solve the tasks while exploring decentralized temporal
drifts. Therefore we do not know how the performance is affected by more complex
models. Lastly, several hyperparameters have been set to estimated values without
extensive hyperparameter tuning.

Simplifications were also made on a system level. All clients were simulated as
objects on a single device. Different hardware capabilities, network latencies, and
other system variations that influence performance have not been explored. In all
simulations, clients were also considered to be fully connected. These simplifications
would in a real-world application be highly unrealistic, however, this is common
practice in decentralized research, and simulating the system falls outside the scope
of the project.
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2
Theory

In this chapter, we will cover the theory required for a deeper understanding of
the proposed algorithm and its different components. To begin with, we will give
a brief introduction to deep learning, federated learning, and decentralized learn-
ing. Secondly a more in-depth description of data heterogeneity and what Non-IID
strategies exist in a federated setting. Finally, a short description of two papers that
have been highly influential for our work.

2.1 Deep Learning
Deep learning refers to layered machine learning models based on Artificial Neural
Networks (ANN) that learns deep representations based on large amounts of data.
ANN’s consist of multiple layers of perceptrons, which allows data to be transformed
into multi-dimensional spaces, wherein it can be more easily separated, allowing for
solutions to complex issues such as self-driving vehicles, speech recognition, and
image classification.

2.1.1 Artificial Neural Networks
In a standard ANN, as illustrated in figure 2.1, an input vector X = {x1, ..., xn} with
n number of inputs, is propagated through the network. Each perceptron utilizes its
own weights W = {w1, ..., wn} and bias b to calculate an output O through equation
2.1. The outputs from all perceptrons in a layer are then sent through a non-linear
activation function and are then used as the input for the following layer.

O = b +
n∑

i=1
wi · xi (2.1)

This continues until the last layer where a specific activation function is used based
on the model’s task to get the network’s final predictions Ŷ . In this project, we
looked at multi-class image classification, in which the most commonly used func-
tion is the softmax function. It works by normalizing all outputs and converting
them into a probability distribution vector, from which the output with the highest
value is chosen as the predicted class.

7



2. Theory

Figure 2.1: To the left is an illustration of a fully connected ANN with three
hidden layers made of perceptrons. To the right, is an illustration a perceptron
receiving three different inputs x1, x2, and x3 their corresponding weights w1, w2
and w3.

For image classification, the number of original inputs n is typically based on the
image size so that n is the total amount of pixels multiplied by the number of color
channels. The final layer has m perceptrons correlating to the total number of pre-
dicted classes. Meaning that the index of the output with the highest probability
directly correlates to the predicted class.

2.1.2 Backpropagation
Artificial neural networks are typically initialized at random, which means that
the likelihood that the network properly predicts correct results at initialization is
near zero, thus, training is required. One of the most common methods for this is
stochastic gradient descent, in which the individual perceptrons’ weights and biases
get updated through backpropagation. During this, the neural network iteratively
adjusts its parameters so that the difference between predicted output and true out-
put approaches zero. This update is often done using a loss function where correct
predictions are assigned lower values and incorrect predictions are assigned higher
values.

The goal of backpropagation then becomes an optimization problem where the goal
is minimization of the total loss. In our case, we have a multiclass classification and
therefore use the Negative Log Likelihood Loss described in equation 2.2. Here x is
the input, y is the target label, w is the weight, and N is the batch size.

L(x, y) =
N∑

n=1

1∑N
n=1 wyn

ln, ln = −wynxn,yn (2.2)

8



2. Theory

By rewriting this loss function on the more common form L(y, ŷ), the naming of the
function becomes more intuitive, see equation 2.3.

L(y, ŷ) = −
N∑

n=1
yn log(ŷn) (2.3)

With the rewritten loss function, the gradient with respect to the model parameters
can then be computed as seen in equation 2.4.

∇wL(y, ŷ) = ∂L(y, ŷ)
∂w

(2.4)

Finally, the weights are updated in the direction of the negative gradient, see equa-
tion 2.5. Here, wt+1 corresponds to the new weights, wt the previous values, and η
the learning rate, a hyperparameter that determines how much the values can be
changed in each backpropagation.

wt+1 = wt − η∇wL(y, ŷ) (2.5)

2.1.3 Convolutional Neural Networks
Although ANNs perform well in many areas, they don’t scale well to some domains.
These include image- and video analysis and natural language processing[13]. In the
case of image analysis, the issue stems from that ANNs input typically requires at
least one perceptron per pixel and channel, meaning that if a training set has m color
images, each with dimensions n by n-pixels, the ANN would require m·3·n·n weight
updates via backpropagation per training round, which quickly becomes costly to
calculate.

For these tasks, Convolutional Neural Networks (CNN) are most commonly used.
These use convolutional layers which apply a kernel to the input data to extract
its main features, see figure 2.2. The kernel works as a moving window that looks
at different sets of pixels throughout the image and converts them into a feature
space matrix. The new matrix is commonly smaller than the original and contains
spatial information of the image features, effectively reducing the number of weights
needed. By stacking convolutional layers, we can extract more complex features
such as faces, numbers, or animals.
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2. Theory

Figure 2.2: Illustration of convolutional kernel. The kernel is applied to the source
pixels and the equation in the top right describes the computations performed to
get the resulting value of the destination pixel.

2.2 Federated Learning

The concept of Federated learning (FL) stems from a 2016 publication [1]. It is an
algorithm for training a decentralized network without explicitly sharing any data.
In it, a central node coordinates communication by sampling subsets of clients and
aggregating their model parameters to form new global models. These are then
distributed back to all clients to use as their new local models. The algorithm they
proposed, FederatedAveraging, can be seen in algorithm 1. In it, we can see that
the algorithm calculates the weighted model average based on the client dataset size
in order to create a new model. Giving preference to models coming from clients
with larger local datasets. Though the algorithm itself is not used in our study, the
aggregation step will be reused under the name FedAvg.

Since 2016, additional algorithms which utilize different client sampling- and aggre-
gation methods have been proposed. Some of these will be covered later in this text,
but the fundamental structure of the FL algorithm still stands in most publications.

10



2. Theory

Algorithm 1: FederatedAveraging [1]
wk: model parameters on client k
Dk: local data on client k
m: number of sampled clients at each round
dk: number of datapoints on client k
C: set of all clients {C1, ..., CK}
FederatedAveraging():

initialize wbase

for each client Ck ∈ C do
wk ← wbase

for each round r = 1, 2, ... do
S ← Random subset of m clients ∈ C
for each client Cj ∈ S do

wj ← ClientTraining(j, wj)
wavg ← FedAvg(S) //Aggregation Step
for each client Ck ∈ C do

wk ← wavg

FedAvg(S):
w⃗ ← {wj | wj ∈ S}, d⃗← {dj | dj ∈ S}
d⃗← d⃗/

∑
d⃗

wavg ←
m∑
j

w⃗j · d⃗j

return wavg

ClientTraining(j, w):
B ← (split Dj into batches of size B)
for each local epoch e = 1, 2, ... do

for batch b ∈ B do
w ← w − η∇wL(w; b)

return w

2.3 Decentralized learning
As mentioned in the introduction, FL has some limitations. To counter these, decen-
tralized learning, instead, removes the need for a central server in favor of peer-to-
peer communication. Decentralized learning also caters naturally to personalization
problems as each client trains their own local model instead of sharing one or several
global models. However, as there is no longer any central node facilitating client
communication, new communication schemes are needed. The trivial implementa-
tion is referred to as gossip learning [6], in which the individual clients sample a
subset of other clients to communicate with at random.

11



2. Theory

Our version of gossip learning, which we use as a baseline, is called Random [9] and
is described in detail in section 3.3. Even though the decentralized peer-to-peer idea
is newer than federated learning, different algorithms have already been proposed
that improve on the trivial solution. One of these methods is decentralized adaptive
clustering DAC, which will be covered later in this chapter.

2.4 Proposition of Non-IID Terminology
This project deals with Non-IID data, data that is heterogeneous across clients or
time, which we will refer to as the spatial and the temporal settings. This is equiv-
alent to different clients sourcing their local data from different distributions or the
distribution of our training data changing over time.

As this is an emerging field of research, the existing terminology overlaps and con-
tradicts itself, making it difficult to efficiently refer to specific cases. Thus, we
propose the following terminology as a comprehensive and overlooking summary of
the different Non-IID settings. We have attempted to reuse as much of the existing
terminology as possible but included additional terms to clarify differences between
spatial and temporal Non-IID settings. For reference purposes, we have included
other commonly used terminology in parentheses.

In this nomenclature, the same type of heterogeneity will get the same name in both
spatial and temporal settings but will have separate suffixes. When the data dis-
tribution varies among clients, the suffix shift will be used, and when it varies over
time drift will be used. For example, when observed labels vary it is referred to as a
covariate heterogeneity and would be called covariate shift if it varies among clients,
and covariate drift if it varies over time. In settings where both drift and shift occur
simultaneously we will use the term Distributed Drift as is done in [11]. In the case
of e.g. the Covariate case this would then be denoted as Distibuted Covariate Drift.
Lastly, to refer to a setting where more than one type of Non-IID heterogeneity
occurs we propose using the terminology concept. For example, if both labels and
observed data distributions vary across clients this would be a Concept Shift.

From here the following mathematical notation will be used:

• x : observed data. For example, the observed images from a smartphone may
depend on the user and the phone model, age, quality, etc.

• y : observed labels. Labels here refer to the labels assigned to the data for our
deep-learning models. In short, it can be described as “what the data depicts”.

• P i(), P j(): Here we refer to the data distributions that clients i and j pull their
data from.

• P t(), P t+k(): Here we refer to data distribution used by all clients, at some
time t and t+k.

• Pi, Pj: Refers to two distinct data distributions.
• Pt, Pt+k: Refers to some data distribution at time t and t+k.

12



2. Theory

In addition to describing each setting mathematically, we have also included some
real-world examples. For each setting, only the behavior specified by the mathe-
matical formulas is guaranteed.

• Covariate shift (Feature distribution skew):
P i(x) ̸= P j(x), P i(y|x) = P j(y|x)
Difference in observed data across clients. For example, in a handwriting
recognition domain, users who write the same words might still have different
stroke widths, slants, etc.

• Covariate drift (Virtual concept drift):
P t(x) ̸= P t+k(x), P t(y|x) = P t+k(y|x)
Difference in observed data across time. Consider that you are training an
autonomous car, this situation happens, for instance, when clients move into
places or regions previously unseen to them.

• Label shift (Label distribution skew, prior probability shift, pathological het-
erogeneous):
P i(y) ̸= P j(y), P i(x|y) = P j(x|y)
Difference in observed labels across clients. For example, when clients are tied
to particular geo-regions, the distribution of labels varies across clients. Kan-
garoos are typically only seen in Australia or at zoos; a person’s face is only
seen in a few locations worldwide and for mobile device keyboards, certain
emojis or Unicode symbols are used by some demographics but not others.

• Label drift (not previously mentioned):
P t(y) ̸= P t+k(y), P t(x|y) = P t+k(x|y)
Difference in observed labels over time. For example, as time passes new labels
may appear. E.g, looking at genres for movies, books, etc., new genres emerge
over time, but previous works do not get reclassified.

• Sentiment shift (same features different labels, concept shift):
P i(x) = P j(x), P i(y|x) ̸= P j(y|x)
Same feature vectors in a training data item have different labels. For example,
labels that reflect sentiment or next-word predictors have personal and regional
variations.

• Sentiment drift (Real concept drift):
P t(x) = P t+k(x), P t(y|x) ̸= P t+k(y|x)
Same feature vector change label over time. An example of this could be how
someone’s food preference changes over time and what was previously disliked
might become enjoyed in the future.

• Feature shift (same label, different features, concept drift):
P i(y) = P j(y), P i(x|y) ̸= P j(x|y)
Same label y has different features x for different clients, e.g. due to cultural
differences, weather effects, and standards of living. For example, images
of homes can vary dramatically around the world and items of clothing vary
widely. Even within the U.S., images of parked cars in the winter will be snow-
covered only in certain parts of the country. The same label can also look very
different at different times and at different time scales: day vs. night, seasonal
effects, natural disasters, fashion and design trends, etc.
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• Feature drift (not previously mentioned):
P t(y) = P t+k(y), P t(x|y) ̸= P t+k(x|y)
Same label y changes its corresponding features x over time. Building on the
previous example, you could consider the effects global warming has on our
climate. What we perceive as normal changes, and what temperature and
weather we expect in summer or winter changes.

• Quantity shift (unbalancedness, quantity skew):
|Pi| ≠ |Pj|
The amount of data in different distributions may vary spatially. E.g. local
dataset size or the number of clients per cluster may vary.

• Quantity drift (not previously mentioned):
|Pt| ≠ |Pt+k|
The amount of data in different distributions may vary temporally. E.g. the
number of news articles about the American elections increases significantly
during the later stages of the election period.

• System heterogeneity:
Storage, computational, and communication capabilities of each device in fed-
erated networks may differ due to variability e.g. in hardware, network connec-
tivity, and power. These system-level characteristics dramatically exacerbate
challenges such as straggler mitigation and fault tolerance.

2.5 Non-IID Strategies in Federated Settings
In a federated setting, one typically attempts to generate a global model or distinct
local models for each individual client. These clients are devices with local datasets,
typically only operated by one or a small group of users, each with individual pref-
erences. Due to this, the local data stored on any individual device typically reflect
the needs of the user or group. This results in many different types of data distribu-
tions existing on all devices, making it more likely than not, that the training data
is Non-IID.

As previously mentioned there are several types of heterogeneous distributions. This
section summarizes the findings of Criado et al.s paper Non-IID data and Continual
Learning processes in Federated Learning: A long road ahead [12]. In it, they give an
overview of which areas in FL have been studied for different Non-IID distributions,
and where work is still needed. It highlights that while multiple studies have looked
at spatial heterogeneity, very little is done when the data is both spatially and
temporally heterogeneous. To better understand this area we will first only look at
cases in which we have heterogeneity in one dimension.
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2.5.1 Data Shifts
Since client distributions typically vary, algorithms handling data shifts require some
degree of personalization. Criado et al. note how there are at least two different ap-
proaches to solving this issue, the first being client-level personalization, wherein
each client has and trains its own model, typically in a federated setting, this means
that the individual devices optimize their received model to perform well on the
local data. The second approach is group-level personalization, in which clients
with similar datasets are clustered into groups, wherein they share a single model.
The focus of these types of algorithms, therefore becomes to determine which clients’
data are more homogeneous and should be clustered together, allowing for them to
train with one another, resulting in a common model within the cluster that is still
personalized for their needs. Both methods have advantages but are more compu-
tationally demanding than standard federated learning.

In addition to this, different types of data will need different approaches toward
optimizing their performance. When looking at for example covariate heterogeneity,
there are two main approaches found by Criado et al: domain transformation and
domain adaptation. Domain transformation attempts to detect the data hetero-
geneity by transforming all data into a shared input space, from which conclusions
can be made. This method has seen some use but suffers from high computational
costs due to the high-dimensional spaces and lower accuracy due to the curse of curse
of dimensionality. Domain adaptation on the other hand attempts to leverage
general knowledge from a broad range of data to hopefully generalize sufficiently to
perform well on the specific use case which is what we will attempt.

Lastly, in the case of sentiment heterogeneity, the algorithm needs to accommodate
that different clients may not necessarily correlate the same features with the same
labels. In these cases, a single global model cannot exist to capture this behavior,
and thus personalization is once again required. One possible solution to this is
to treat the issue as a multi-task problem, where associating data with different
conditional distributions correlates to unique tasks.

2.5.2 Data Drifts
If we instead look at the scenarios in which data is homogeneous among clients, but
heterogeneous over time, we get what is commonly referred to as continual learning
(CL). Typically, CL algorithms train an initial model that is then gradually adapted
to the new data. During this time it attempts to preserve its previous knowledge to
avoid what is known as catastrophic forgetting, the case in which it can no longer
perform its previous task. In Criado et al’s paper, it is shown that though this has
to some extent been studied in federated settings, it has not been so in decentralized
ones. Instead, they separate the problem into three categories as seen illustrated by
figure 2.3.
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Figure 2.3: Illustration of concept drifts taken from [12]. Two-dimensional input
space X with two possible labels Y = {◦,△}. On the left of the dotted line, we find
the data samples received before time t, and on the right, the new data is illustrated
in green. Here we see three different time-evolving situations that we will mention.
(1): The new data samples observed are situated in new regions, previously unseen.
However, the conditional probability still holds and a classifier trained on previous
data may still produce the correct labels. (2): The new instances appear in already
known regions of the input space, but they are incorrectly classified using the model
from (0). (3): The two previous situations are combined.

For covariate drift, as it only relies on input data distributions, there are two main
methods. First, memory-based methods keeps a record of data samples from
previous concepts so that when a drift is detected, the model is trained on both the
old and new data to avoid forgetting. This approach has shown quite effective at
mitigating catastrophic forgetting. This has resulted in good results but is signifi-
cantly more computationally costly. Second, Regularization methods restrict the
weight updates to prevent forgetting old tasks. The downside is that this may scale
poorly and become computationally inefficient when trying to learn several tasks.

For sentiment drift, different clients need to have models that can produce differ-
ent outputs even though they get similar input. Here as well there are two main
approaches, contextual information methods and architecture-based meth-
ods. Contextual information methods discuss the possibility of adding a piece of
identifying information to separate tasks or domains. When new tasks are identified
new layers or models can be added to learn the new task. While architecture-based
methods focus on the model architecture, to keep important neurons correlating to
specific tasks fixed.

Some of these methods require us to determine when the client distributions change
over time. In other words, the clients need to detect when a drift occurs. This can
mainly be done through two methods, data distribution-based and error rate-
based methods. The first of which aims to detect a covariate drift by measuring
the similarities among data features, grouping these into clusters, and evaluating the
number of features from the new data sample in each cluster. The second detects
sentiment drift through a sliding window that detects sharp changes in prediction
error over time.
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2.6 Previous Works
In this section, we will go deeper into two specific algorithms that we have used as
inspiration for our algorithm and evaluation methods.

2.6.1 Decentralized Adaptive Clustering
Decentralized Adaptive Clustering (DAC) is an algorithm for decentralized learning
that encourages similar clients to communicate more frequently with one another.
This is done with the help of a similarity metric which is used to calculate the sam-
pling probability between clients. As clients sample other clients in the network the
similarity score between clients is calculated as the inverse training loss between the
incoming clients’ models and the local client’s data. The following round’s sampling
probability vector is then calculated from the updated similarity vector via a softmax
function, with a temperature scaling τ . A weighted sampling function is then used
to determine which clients should be sampled. This promotes interactions between
clients with similar data distributions, which in theory improves the convergence
rate and prevents model poisoning. To further speed up convergence, clients also
use a two-hop similarity methodology where client Ci, when sampling client Cj, can
estimate similarity scores for clients that Cj has communicated with but Ci has yet
to sample. When compared to other benchmark models, the DAC algorithm steadily
performs better in quantity shift settings. For our experiments, we use a slightly
modified DAC which is further described in section 3.3.

2.6.2 FedDrift

FedDrift is one of the few FL algorithms that is designed to work with both spatial
and temporal heterogeneity simultaneously. Instead of using only one central model
FedDrift attempt to store one central model for each task. In each training round
the clients calculate the training loss of each of these models on their local data, and
use the model with the lowest loss as their new local model. If the loss from any of the
existing models does not lie below a certain threshold, the client creates a new model
that is trained on the local data. Over time similar models are conservatively merged
until a threshold is reached. To evaluate their algorithm they introduced two drift
patterns, which intend to more realistically introduce new tasks over time. A more
in-depth description of these patterns can be found in section 3.4.2. When compared
to other benchmarks, the FedDrift algorithm outperformed other methods such as
AUE [14], DriftSurf [15], and an oracle which always communicated within the
correct cluster.

17



2. Theory

18



3
Methods

3.1 Datasets
Decentralized learning is problem-agnostic, meaning that it should function well on
different types of data such as sound, images, numbers, etc. However, in literature,
it has most commonly been tested in supervised image classification, thus, to more
easily compare our results to other methods, this project will also focus on supervised
image classification.

Figure 3.1: Illustration of a subset of the CIFAR-10 dataset. Each column contains
images from one of the ten labels present in the dataset with the corresponding label
written above.

3.1.1 CIFAR-10
CIFAR-10 (Canadian Institute For Advanced Research) [16] is an image dataset. It
consists of ten labels: airplanes, automobiles, birds, cats, deers, dogs, frogs, horses,
ships, and trucks, see figure 3.1. In it, there exists a wide range of features for each
label, for example, the ship-set contains both cargo ships, speed boats, and canoes.
Most images also contain varying backgrounds, adding complexity to the images.
The set contains 50000 training images and 10000 testing images, divided evenly into
the ten labels. Each image is 32x32 pixels large and in full color. Top-of-the-line
non-decentralized models have achieved an accuracy of 99.50% [17].
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3.1.2 PACS - Modified
PACS (Photo, Art Painting, Cartoon, and Sketch) [18] is an image dataset consisting
of seven different labels: dogs, elephants, giraffes, guitars, horses, houses, and hu-
mans, across four different domains: photographs, paintings, cartoons, and sketches,
see figure 3.2. It was initially created to study domain adaptation and generaliza-
tion, where three of the domains were used for training and validation while the
last domain was for testing. It consists of roughly 10000, 227x227 pixel, full-color
images split unevenly among the different labels and domains, see appendix A.1.
Previous works have reached a 99% accuracy in domain detection [19]. However, as
we are using the dataset to simulate distributed covariate drift, a modified version
of the PACS set was used in which the labels refer to the image labels rather than
their domains [20]. In addition, as neither of these two sets contained a test set, one
was created from between 22 and 45 images per label and domain, with unevenness
correlating to the training set, see appendix A.1.

Figure 3.2: Four samples of each label in the PACS dataset. Each column contains
the same label but one image is from each of the four domains. Each domain is
denoted on the y-axis as (P)icture, (A)rt painting, (C)artoon, and (S)ketch. Each
label is written out over each image column.

3.2 Client Model Architecture
For all experiments, a similar CNN was used. Consisting of two convolutional lay-
ers, each followed by a max pooling layer, and three fully connected layers. A full
description of network parameters for the different experiments can be found in ap-
pendix A.2. This architecture was selected as it is a common benchmark in federated
and decentralized research [10] [11] [1].
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3.3 Algorithms
In this section we will cover the two algorithms used as baselines as well as our
experiments, our novel algorithm HAST. Throughout this section, functions may
be used by multiple algorithms, but they will only be presented at their first oc-
currence. Note that FedAvg used here, has already been presented in section 2.2.
Further, as an algorithm is running in parallel on all clients at any point in time,
the clients will refer to themselves as the active client. The specific hyperparam-
eters used can be found in appendix A.3. The developed code can be found on:
https://github.com/EmilieKar/HAST.

3.3.1 Random

The decentralized learning algorithm Random, proposed by [9], differs from the com-
monly used Gossip Learning [6], in that each client requests model parameters
from a sampled subset, rather than sending its parameters to the sampled group. In
short, the Random algorithm iterates over R rounds where it samples m other clients
in the network each round, aggregates the sampled client models using FedAvg, de-
scribed in section 2.2, to create a new base model, that it then trains using the
client’s local dataset for a set amount of local epochs. This new base model is used
as the local model for sampling in the following round.

Algorithm 2: Adapted Gossip Learning
m: number of sampled clients at each round
C: active client
D: local dataset of active client
w: local model parameters of the active client
C: set of all clients {C1, ..., CK}
Random():

initialize w
for each timestep t = 1, 2, ... do

// Receive new data
for each round r = 1, 2, ... do

S ← Random subset of m clients ∈ {C \ C}
w ← FedAvg(S ∪ C)

w ← LocalTraining(w)

LocalTraining(w):
B ← (split D into batches of size B)
for each local epoch e = 1, 2, ... do

for batch b ∈ B do
w ← w − η∇wL(w; b)

return w
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As illustrated in algorithm 2 the Random implementation has also been extended to
work in a temporal setting, by adding an outer loop for the time steps. Further, we
use different methods of assigning new data to the clients at time steps which are
described in detail in section 3.4.2.

3.3.2 DAC

The Decentralized Adaptive Clustering (DAC) algorithm here is identical to the one
described in section 2.6.1, except for the addition of time steps. A full overview of
the algorithm is seen in algorithm3. DAC represents an edge case to our proposed
algorithm as it uses similarity aggregation for all layers of the model.

Algorithm 3: Decentralized Adaptive Clustering
m: number of sampled clients at each round
C: active client
w: model parameters on client
s: similarity vector containing similarity scores for all clients Cj ∈ {C \ C}
C: set of all clients {C1, ..., CK}
DAC():

initialize w
s← Uniform( 1

K−1)
for each timestep t = 1, 2, ... do

// Receive new data
for each round r = 1, 2, ... do

S ← WeightedSampling(m, s)
s← UpdateSimilarities(S, w)
wnew ← FedAvg(S ∪ C)
w ← LocalTraining(w)

WeightedSampling(m, s):
p← SoftMax(s)
S ← Weighted random subset of m clients ∈ {C \ C} with probability
vector p

return S

UpdateSimilarities(S, w):
for each client Cj ∈ S do

sj ← 1/L(wj, D)
// Two-hop similarity update
return s
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3.3.3 HAST

Our algorithm Hierarchichal Aggregation with Similarity based Tuning (HAST), com-
bines Random and DAC by using a hierarchical sampling and aggregation scheme. This
allows it to adapt to different concepts that emerge at different times. At its core, it
is based on the principle of transfer learning. Our hypothesis is that some domain
knowledge is shared between tasks, therefore training a common feature extractor is
possible. To better capture the nuances of the separate tasks we can then fine-tune
a classifier based on similar clients, using similarity clustering taken from the DAC
algorithm.

In more formal terms HAST works as follows. Each client k has a neural network
consisting of a feature extractor fk

θ and a classifier fk
ϕ (the whole model being fk

Ω =
fk

ϕ ◦ fk
θ ). HAST then consists of three steps. For each client k and for each commu-

nication round:

1. A subset of clients Srand is sampled uniformly and at random. Client k updates
all layers fk

Ω using FedAvg.
2. A subset of clients Ssim is randomly sampled based on their similarity to client

k. Client k updates only the classifier layers fk
ϕ using FedAvg.

3. Client k performs local training on its own data, updating the whole model
fk

Ω. Afterward, it fine-tunes only the classifier fk
ϕ .

The similarity function is heavily based on the similarity function used in DAC,
i.e. the empirical training loss of client Ck’s model wk on client Cj’s dataset Dj:
skj = 1/L(wk; Dj). This similarity score is transformed using a softmax with a tem-
perature scaling τ in order to get a probability vector pkj for each client and each
communication round. A two-hop scheme is also used to allow clients to estimate
similarities with clients that have not yet communicated which increases convergence
speed.
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Algorithm 4: Hierarchichal Aggregation with Similarity based Tuning
m: number of sampled clients at each round
C: active client
wΩ, wϕ: model parameters corresponding to fΩ and fϕ of the active client
s: similarity vector containing similarity scores for all clients Cj ∈ {C \ C}
C: set of all clients {C1, ..., CK}
HAST():

initialize wΩ
s← Uniform( 1

K−1)
for each timestep t = 1, 2, ... do

// Receive new data
for each round r = 1, 2, ... do

Srand ← Random subset of m clients ∈ {C \ C}
s← UpdateSimilarities(Srand, wΩ)
wΩ ← FedAvgΩ(Srand ∪ C)

Ssim ← WeightedSampling(m, s)
wϕ ← FedAvgϕ(Ssim ∪ C)

wΩ ← LocalTraining(wΩ)
wϕ ← LocalTraining(wϕ)

3.4 Experiment Setup
As system simulation was not feasible in this project, all clients were simulated on
a single GPU. To ensure parallel operations, the local training on each client only
occurred after all clients had completed their sampling and aggregation. Other-
wise, slower clients would benefit unfairly from communicating with faster clients
on which local training had already been completed and for this project, all clients
were considered to have the same hardware and network capacity.

The above algorithms were tested on multiple datasets with different distributional
drifts including covariate, label, sentiment, and quantity. These datasets however
are limited in size, and when distributing data over both clients and time, the
amount of data was not enough. Therefore we were forced to reuse the training
data, however, the test set that we evaluated the models on was kept completely
separate and not reused. Each time the training set was reused the datasets was to
minimize the risk of clients getting the same data multiple times. This may have
affected our validation scores since data may have been used before, which is why
we only present the test scores for our evaluation.
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All experiments have been averaged over three random seeds to get more robust
results. During training, we used early stopping locally on each client. Instead of
stopping immediately if the validation loss stopped improving, we stopped when it
had not improved for 50 rounds, as the sampling process can sometimes be subopti-
mal for the client and this seemed to give us better performance. At the beginning
of each time step, we reset the early stopping so that all clients started training
again. When stopped, the client could still be sampled by others, but it would not
sample or train itself. In mosdt of our results we will only present the results of
the early "best model" which is only updated as validation loss improved. Lastly,
to speed up training, the clients were only tested on the test set every five rounds.
This means that some resolution of our test scores is lower, however, testing each
client each round was not computationally feasible.

3.4.1 Hyperparameter Tuning
As described, HAST performs two steps of sampling m clients per round. To ensure
a fair comparison with our other baselines, Random and DAC were allowed to sam-
ple as many clients, as HAST, in their communication rounds. Further, HAST also
performs two rounds of local training of E local epochs. However, when doubling
the number of local epochs the performance dropped both for Random and DAC, see
appendix A.4.1. From these results, we decided to use the best-performing version
of the baselines in all comparisons with HAST, i.e. where the baselines samples 2 ∗m
clients but train for E local epochs relative to the m and E used for HAST.

To further ensure that each algorithm performed optimally, a hyperparameter search
was conducted. All parameters were not be tested, instead, only the learning rate
was optimized. This was conducted by testing a range of learning rates surrounding
an initial guess. This range covered ±1

2 , 1, 3
2 , and 2 magnitudes from the original

value. When comparing these runs, the best result would typically correlate to the
optimal learning rate, while the second and third best results were ±1

2 magnitude
from the optimum. When such results were achieved, it was determined that the
best-performing learning rate was sufficiently close to the optimum to be used in
the actual experiments. In some occasions, where the separation between the best-
performing learning rates was not sufficient, an additional test was conducted in
which the learning rate was changed by ±1

4 magnitude to find the optimum through
the same procedure as before.

Lastly, we explored the aggregation depth parameter for the HAST algorithm, which
determines what layers belong to fθ and fϕ respectively. For example, a five-layer
model with aggregation depth three will have two layers in fθ and three layers in fϕ.
Here, setting the value to zero would emulate the Random algorithm, while a depth
of five would correspond to DAC. The results of this tuning can be found in appendix
A.4.2. From this, it was determined that HAST performed the best at depth three,
i.e. when the feature extractor consisted of the two convolutional layers and the
classifier consisted of the two fully connected hidden layers and the output layer.
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Figure 3.3: a) Staggered 2 clusters, b) Staggered 4 clusters, c) Random cluster
assignment 2 clusters, d) Random cluster assignment 4 clusters. In images c) and
d) an example pattern is shown. The respective letters A, B, C, and D correlate to
the given cluster identity of the clients. In our experiments, each of these cluster
identities is used to select which data distribution the client pulls its local data from.

3.4.2 Drift Patterns
Throughout all experiments, two main methods were utilized when assigning the
cluster identities to the clients. The first one followed a predefined staggered pat-
tern proposed by [11]. Rather than ten clients as in the original paper, we doubled
the number by assigning two clients to each pattern, to increase the number of clients
per cluster so that the similarity-based sampling has a chance to sample within the
desired cluster. The second drift method assigns random cluster identities at each
time step, maintaining the number of clients per cluster. In most experiments, clus-
ters were assigned an equal number of clients, but some experiments were also done
with uneven cluster sizes, see section 3.4.7. An example image of both drift patterns,
in two and four cluster variants, can be seen in figure 3.3. Note, that the random
patterns c) and d) are only one example of how the drifts could look.

In the experiments using the staggered drift pattern, clients only got new local data
if their cluster identity changed, i.e. Dt

k ≡ Dt+1
k ⇐⇒ nt

k ≡ nt+1
k . Further, new

clusters may be introduced over time. Thus throughout training, the amount of data
drawn from the different distributions varies. On the other hand, in experiments
utilizing the random cluster assignment, the relative number of clients per cluster
is maintained and therefore the relative amount of data from each distribution also
remains constant. The random cluster assignment scheme also always assigns new
data to all clients at all time steps, i.e. Dt

k ̸= Dt+1
k ∀t. We included all of these

variations to more clearly show the robustness of the algorithm regardless of the
setting as there is yet to be any commonly agreed upon standard of how to perform
the experiments in the distributed drift setting.
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3.4.3 Distributed Covariate Drift
Previous experiments on covariate shifts have used rotated versions of the MNIST
and Fashion MNIST dataset [10], however, we found that this task was too simple
and we were unable to see any separation of the different algorithms. Instead, we
designed a more complex and realistic experiment using the PACS dataset similar
to the experiments proposed in [21]. Here, the different image domains simulated
the variance in observed features for the same labels. In the experiment, all labels
were present in all clusters, but each cluster drew its data from different domains.

For this setting, we only had the time to test the random cluster assignment method
for four clusters as experiments on the PACS dataset were computationally expen-
sive to run. Unlike the other experiments, we only ran these for four time steps
because of time constraints. The model used is a version of the model described in
section 3.2 adapted for 227x227 pixel images. A full list of the experiment parame-
ters can be found in A.3.

3.4.4 Distributed Label Drift
For distributed label drift several experiments were conducted on the CIFAR-10
dataset. In these experiments, eight of the ten available labels were partitioned into
n different clusters so that no overlap existed. We only used eight labels so that
the same labels could be used in the two-cluster and four-cluster settings and so all
clusters would have an equal number of labels assigned to them. The model used
is the model described in section 3.2 for 32x32 pixel images. The experiment was
conducted using all drift patterns described in 3.4.2 and with ten time steps. All
experiment parameters can be found in appendix A.3

The labels were split into clusters that would seem correlated to humans. In the
two-cluster case, four animals (cat, deer, dog, and horse) were in one cluster, and
four vehicles (airplane, automobile, ship, and truck) were in the other. In the four
clusters case, we instead split each of the previously mentioned clusters and ended
up with the following: (airplane, automobile), (ship, truck), (cat, deer), (dog, horse).

3.4.5 Distributed Label Swap
For the two Non-IID variants that consider variations in conditional probabilities
(sentiment and feature), the most common experiments in literature addresses both
of these together through an experiment called label swap [22]. In this experiment,
the data corresponding to two labels are ”swapped” i.e. if we have labels A and B
we could swap these so that all images depicting A are labeled as B and vice versa.
We tested all drift patterns described in section 3.4.2 and swapped only two labels
in each of our clusters in the same fashion as the label swap experiments in [11].
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The experiment was performed on CIFAR-10 using the same experimental param-
eters, labels, and model as previously mentioned for the Distributed Label Drift. In
this experiment, however, all clusters have access to all 8 labels. Cluster A swaps
no labels, cluster B swaps airplanes and automobiles, cluster C swaps cats and deer,
and cluster D swaps dogs and horses.

3.4.6 Exploring Label Heterogeneity
To test the performance of the model’s performance on different degrees of heteroge-
nous data we performed two additional experiments in the Distributed Label Drift
setting. In the first of these, we simulated a fully homogenous setting where all
clients sampled from one distribution consisting of all available eight labels. In this
experiment, all clients received new data at every time step similar to the random
cluster assignment method. Since HAST was designed to work well in a heterogeneous
setting, this experiment was included to show that the relative performance to the
other baselines does not drop in a homogenous setting.

The second experiment is a variant of the Distributed Label Drift experiment, where
instead of selecting labels according to human perception of similarity, the label
groups were randomly assigned. The assignments were as in table 3.1:

Table 3.1: The three different heterogeneity mixes tested on distributed label
drift. In each of the three experiments, the labels corresponding to each cluster
were randomized to human perception of similarity.

Experiment 1 Experiment 2 Experiment 3
Cluster 1 Cluster 2 Cluster 1 Cluster 2 Cluster 1 Cluster 2
Automobiles Airplanes Airplanes Automobiles Airplanes Automobiles
Dogs Birds Birds Cats Birds Cats
Frogs Cats Dogs Deer Frogs Deer
Horses Deer Frogs Ships Ships Dogs
Trucks Ships Horses Trucks Trucks Horses

For this experiment we included the standard deviation of all cluster variations to
attempts to illustrate how the degree of cluster heterogeneity affects the relative
performance of our model compared to the baselines. However, there are many
more experiments that could be done to more thoroughly test this. Due to time
constraints, only this one was performed.
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3.4.7 Quantity Shift
Lastly, we performed experiments similar to those in [10] where we looked at another
version of the Distributed Label Shift experiment where the clients are unevenly as-
signed to each cluster. We only tested the experiment on random cluster assignment
for two clusters. Here we try to simulate a constant disparity in cluster sizes where
the smaller cluster typically gets disfavored by algorithms like Random. The two set-
tings we explored were a 70-30 split and an 80-20 split, which were both compared
to the previous 50-50 split.

3.5 Evaluation
Initially, we wanted to look at evaluation metrics typically used in continual learning
problems such as knowledge retention and performance on previous tasks. However,
we found these metrics to be unhelpful in experiments like label swap where condi-
tional probabilities change. Instead, we focus on the algorithm’s ability to quickly
adapt to new concepts. We looked at three main metrics, performance, convergence
rate, and robustness to task switching, and were calculated as follows:

• Performance: Average accuracy over time. The test accuracy is averaged
across all clients at the end of each time step and then averaged across all
time steps of the experiment.

• Convergence rate: The number of rounds required to reach 90 percent of
the performance increase of a time step averaged across all clients and time
steps.

• Robustness: Performance drop after concept switch. The difference in the
previous time step’s final accuracy compared to the new time step’s worst
accuracy averaged over all clients and time steps.

29



3. Methods

30



4
Results

Throughout this section, we will present the results of the experiments mentioned in
section 3.4, using plots and the metrics presented in section 3.5. As the performance
of HAST was studied on many different types of Non-IID data and outperformed the
baselines in almost all settings, only some of those results will be highlighted here
along with the setting where HAST did not outperform the baselines. Plots for all
experiments mentioned in section 3.4 can be seen in appendix A.4.

4.1 Metric Results

First, we present the metrics from section 3.5 in table A.5, as it in a condensed
fashion, illustrate the performance of our novel algorithm HAST compared to the two
baselines DAC and Random. Due to its size, the table was moved to appendix. In
the table, we see that our model achieves the highest accuracy in all experiments
but two, in which our performance is only one-half percentage points lower. When
looking at the convergence rate, our performance varies greatly from task to task.
However, a high convergence rate alone is not sufficient to determine the model
performance, if there is no increase in accuracy between time steps, the convergence
rate will be naturally low. This can for example be seen in figure 4.4 where DACs
accuracy decreases between several time steps but still achieves the highest conver-
gence rate.

When we instead look at the resiliency of the algorithms we see that in most experi-
ments, HAST and Random perform about equal, typically only seeing an initial drop of
1-2 percentage points directly after initiating a new time step. Further, we see that
DAC usually has the largest drop in performance but also the highest convergence
rate which we will discuss later.

As we can see the convergence rate and performance drop are heavily dependent
on each other and cannot be viewed as independent metrics. Average performance
also gives us a measurement of how the algorithm performs over time but in some
cases the final performance may be more interesting and this metric may in some
cases not reflect that. We have included these metric as our attempt at giving more
insight into the plots we will present but we can also see that this fields need new
and more informative metrics to be developed in the future.
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4.2 Distributed Covariate Drift
Second, we present the performance on distributed covariate drift, based on the
experiment described in section 3.4.3. Looking at table in appendix A.5 we see that
HAST’s test accuracy outperforms the closest baseline with 5,39 percentage points
while also achieving the fastest convergence rate. In both the table and figure 4.1 we
see that HAST’s performance drop directly after initiating a new time step is rather
large, however, its accuracy during these drops is still equivalent to or better than
the baselines. Additionally, its recovery rate from the drops is fast and the algorithm
manages to improve its performance through all time steps.

Figure 4.1: Distributed covariate drift test accuracy for all algorithms on the
PACS dataset. In the experiment, four clusters exist and the clients are assigned
random clusters at each time step.

4.3 Distributed Label Drift
Third, we show the performance on distributed label drift, based on the experiment
described in section 3.4.4. In figure 4.2 we see that HAST achieves higher accuracy
than the baseline, though with a smaller difference. From the table in appendix
A.5, we see that DAC has the highest convergence rate, however, if we also look
at the figure, we see that in most time steps, DAC stops improving within a few
communication rounds, indicating that it can not take advantage of receiving new
information as well as HAST and Random. We also see that as more clusters are
introduced, the average performance of the algorithms decreases. In figure 4.2a
where we only have two clusters, we would in an ideal situation expect the accuracy
to return to roughly 65% as we reach the latter time steps, as all clusters eventually
belong to the same cluster again. However, as this is not achieved we hypothesize
that the new models consider all 4 labels, and this, in turn, is more difficult.
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(a) N = 2 (b) N = 4

Figure 4.2: Distributed label drift test accuracy for all algorithms on the CIFAR-
10 dataset. In the experiment, N clusters exist and the clients are assigned clusters
based on the staggered drift patterns illustrated in figure 3.3.

If we instead look at the four-cluster case in figure 4.2b, we see that the initial
performance drop is substantial. However, two new clusters are introduced at this
point, tripling the number of labels. In this scenario, we do see that the model
improves over time, even though the number of clusters does not decrease. We
further see this behavior when randomly assigning cluster identities to the clusters,
as in figure 4.3. Throughout this case HAST manages to increase its lead to the
second-best algorithm as time goes on. As we in both of these settings introduce
more new data this might be the main contributor to the performance increase,
which would also explain why we do not see this in the staggered 2 cluster case.

Figure 4.3: Distributed label drift test accuracy for all algorithms on the CIFAR-
10 dataset. In the experiment, four clusters exist and the clients are assigned random
clusters at each time step.
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4.4 Label Swap
Fourth, we show the performance of the label swap experiment described in section
3.4.5. In table in appendix A.5 we see that HAST achieves the best accuracy in these
settings and even with the performance drops HASTs performance in higher than the
next closes baseline. If we look at figure 4.4, HAST’s performance between time steps
remains mostly stable, while both DAC and Random see larger fluctuations to their
accuracy.

Figure 4.4: Label swap test accuracy for all algorithms on the CIFAR-10 dataset.
In the experiment, two clusters exist and the clients are assigned clusters based on
the drift pattern in figure 3.3.

4.5 Level of Heterogeneity
Fifth, we present the performance of HAST on different heterogeneities, as described
in section 3.4.6. In figure 4.5 we see HAST manages to steadily outperform both
baselines in a homogeneous setting, i.e. when the data is IID. This is interesting
as both the local training set and test set contain data from the same distribution,
thus, since all algorithms utilize the same neural network, we would assume them
to perform equally. Despite this, our HAST achieves higher accuracy in all time steps
with a faster convergence rate, see table in appendix A.5.
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In the table, we also see that when testing different random label assignments for
two clusters, we still achieve more than 1 to 2 percentage points higher accuracy
than our baselines. Here we do see some variation in the final performance achieved
by all models in the different cases, but the relative performance of HAST to the other
models remains roughly the same, indicating that it can generalize more efficiently.

Figure 4.5: Test accuracy for all algorithms on the CIFAR-10 dataset. In the
experiment, one cluster exists and the clients remain in it and they receive new data
at each time step.

4.6 Distributed Quantity Shift

Lastly, we show the findings on distributed quantity shift, as described in section
3.4.7. In figure 4.6, we see that when the clusters become uneven in size, DAC’s
performance starts improving, which correlates to findings in [10]. However, we
also note that, over time, HAST seems to catch up and achieve the same level of
performance, whereas Random stabilizes at a lower level. In table in appendix A.5, we
see that the accuracy difference between DAC and HAST is about one-half percentage
point. We further see that while DAC achieves good accuracy, its task resilience
plummets as a result, falling between 8 and 14 % percentage points at each time step,
while HAST achieves the same accuracy with less than 7 % accuracy drop between
time steps. This clearly indicates that for this type of task, DAC does perform better
than HAST, at the expense of task resiliency, whereas HAST is able to achieve similar
performance over time but with a slower overall convergence rate.
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(a) The first cluster contains 70% of the
clients while the second only has 30%.

(b) The first cluster contains 80% of the
clients while the second only has 20%.

Figure 4.6: Distributed label drift test accuracy for all algorithms on the CIFAR-
10 dataset. In the experiment, two unevenly sized clusters exist and the clients are
assigned random clusters at each time step.
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5
Discussion

Our preliminary experiments suggest that our new method outperforms existing
techniques in terms of accuracy under decentralization and exhibits robustness to
different hyperparameter settings. In addition to improving the accuracy on all het-
erogeneities, we also see in appendix A.5, that our approach offers great resilience
to task switching, where in most cases, the accuracy drop directly after a new time
step is initiated is either the lowest or within one standard deviation of the best
algorithm. Hinting that our algorithm can take advantage of common features that
exist throughout all data distributions to both learn its current task and quickly
adapt to new data.

If we instead look at convergence rate HAST seems to be lower than DACs, however,
at a time step, HAST’s accuracy drop is on average two percentage points compared
to DAC’s ten points. This means, that if the algorithms’ accuracy between two time
steps increases by one percentage point, HAST would need to recover from its drop and
improve the total accuracy with 0,7 points before converging, while DAC only needs
to recover its dropped accuracy, in other words, since it drops so much in accuracy,
it does not need to improve to reach 90% convergence. As we see, the metrics can be
misleading if looked at individually, thus more informative metrics may need to be
developed to achieve a more nuanced view of decentralized task switch performance.

All in all, our algorithm improves accuracy, offers higher resilience to task switching,
and is robust to different heterogeneities, all while achieving a high convergence rate.
All of these offer empirical support to our hypothesis, that learning from an under-
lying distribution is beneficial even in a decentralized setting where personalization
of the models is the main goal.

Although we see many benefits with our algorithm, it comes with some drawbacks.
First of all, our algorithm is more computationally heavy on the local device, as we
perform both a similarity calculation on the incoming models as well as fine-tuning
on parts of our model. Resulting in almost double the computational load as com-
pared to Random. We considered ways of counteracting this downside by increasing
the amount of local training for Random and DAC, however, as we see in figure A.1,
both algorithms performed worse from this, likely due to overfitting on the local
data. Indicating that the hierarchical approach may benefit from additional train-
ing compared to previous methods.

37



5. Discussion

Even though HAST requires more computations for each individual client, the bottle-
neck of a distributed system is more often the communication cost. And here, HAST
manages to achieve all the abovementioned results with less total data transferred,
as it only transfers some of the model parameters in its second aggregation step,
compared to Random and DAC which transfers all model parameters. If we look at
the experiments conducted with three sampled clients per round, HAST would need
to communicate three full models and three classifier models as compared to both
Random and DAC which would transfer six full models.

Lastly, HAST requires tuning of an additional hyperparameter, namely the aggrega-
tion depth. As we used a simple model throughout all experiments we have not
studied how the parameter is affected by the model complexity. Despite these draw-
backs, HAST offers one immense benefit, namely that in all experiments it manages
to outperform the baseline algorithms while communicating less data.

Further evaluation of HAST on separate datasets and with larger variation in clients,
amount of sampling, and local training would help in ensuring the robustness of
the algorithm while also shining more light on its possible uses of it. Specifically,
it would be interesting to test the algorithms on more realistic datasets and real
distributed devices which we did not have time for during this project. For future
works, we would strongly recommend looking at one or more of the following datasets
for distributed learning:

• LEAF [23] a curated suite of realistic federated datasets that focus on datasets
where (1) the data has a natural keyed generation process (where each key
refers to a particular device/user); (2) the data is generated from networks
of thousands to millions of devices; and (3) the number of data points is
skewed across devices. Currently, LEAF consists of six datasets: FEMNIST,
Shakespear, Sentiment140, CelebA, Reddit, Synthetic.

• MAPS [24] dataset collected from keyloggers on smartphones of adolescents
at risk of suicide. All participants gave consent for the data to be collected
and shared for research purposes and scored their mood daily for a 6-month
duration. MAPS is a realistic federated learning benchmark since it contains
real-world data with privacy concerns and high device variance due to the
highly personalized use of mobile phones.

• WILDS [25] is a curated benchmark of 10 datasets reflecting a diverse range
of distribution shifts that naturally arise in real-world applications.

Lastly, we want to highlight the possible ethical issues with decentralized learning.
While federated- and decentralized learning decouple model training from direct ac-
cess to the training data, risks always exist when handling sensitive data such as
hospital records, personal information, and other data that may be used in unde-
sired and sometimes harmful ways to target individuals, institutions, or corpora-
tions. Even when the raw data is not shared, these methods still have several open
issues regarding data privacy and security such as inference of model gradients to
recover raw data, and possibly malicious clients poisoning models with foul data [26].
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5. Discussion

In addition to these risks, there is also the possibility that a malicious client join the
training session and influence the models on other clients. And due to the black-box
nature of many deep learning models, it becomes impossible to know what biases
are picked up during training, which can lead to undesirable model behavior. The
general consensus is that these methods alone are not sufficient to protect highly
sensitive data, but that it needs to be used in tandem with additional methods such
as Differential Privacy [27] [28], Homomorphic Encryption [29] or Secure Multi-Party
Computation [30].
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6
Conclusion

We have presented a novel algorithm, HAST for decentralized deep learning that
can adapt to spatial and temporal data variations in a peer-to-peer network. It
demonstrates the benefits of aggregating different layers of a neural network using
FedAvg for robustness and generalization. Our proposed algorithm uses a similarity-
based clustering technique to group clients with similar concepts and allows them
to update their beliefs of potential collaborators over time. This enables clients to
smoothly transition between different collaboration groups as their concepts change.
Moreover, our algorithm employs a two-stage aggregation scheme that makes the
personalized models robust to concept changes by leveraging the knowledge from
other clients. HAST was tested on multiple types of Non-IID settings where it steadily
outperformed other baselines, however, it was only tested on image classification,
and further testing on other types of data is necessary.
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A
Appendix 1

A.1 PACS Dataset

Table A.1: Number of images for each label and domain, in both the training- and
test-set for the PACS dataset.

Labels Photographs Art Paintings Cartoons Sketches
Train Test Train Test Train Test Train Test

Dogs 151 38 341 38 353 36 727 45
Elephants 163 38 218 37 421 36 695 45
Giraffes 143 39 247 38 308 37 708 45
Guitars 149 37 145 39 98 37 563 45
Horses 161 38 168 33 286 38 771 45
Houses 243 37 258 37 251 37 58 22
Humans 394 38 411 38 367 38 123 37

A.2 Network architectures

Throughout the experiments, a similar model was utilized however as the images
in the different datasets vary in size, some changes were applied depending on the
dataset to allow for faster computation. In table A.2 we will present the architecture
used for the CIFAR-10 dataset, but it is also fully compatible with any images in the
form of 32x32 pixels with 3 channels. Table A.3 presents the architecture used on
the PACS dataset. As the images are much larger, 227x227 pixels, the computation
time would be much larger, thus we introduced a stride of three pixels so that each
convolutional layer significantly reduced the size of the incoming image.
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Table A.2: Utilized network parameters for 32x32 pixel full color images. In both
convolutional layers, a stride of 1 was used.

Layer #Channels Kernel Size Activation Output Size #Parameters
Input Layer - - - 32 x 32 x 3 -
Convolutional 6 5x5 ReLU 28 x 28 x 6 456
Max Pooling - 2x2 - 14 x 14 x 6 -
Convolutional 16 5x5 ReLU 10 x 10 x 16 2416
Max Pooling - 2x2 - 5 x 5 x 16 -
Dense Layer 1 - Linear 120 48120
Dense Layer - - Linear 84 10164
Dense Layer - - SoftMax 10 850
Total 62006

Table A.3: Utilized network parameters for 227x227 pixel full color images. In
both convolutional layers, a stride of 3 was used.

Layer #Channels Kernel Size Activation Output Size #Parameters
Input Layer - - - 227 x 227 x 3 -
Convolutional 6 5x5 ReLU 75 x 75 x 6 456
Max Pooling - 2x2 - 37 x 37 x 6 -
Convolutional 16 5x5 ReLU 11 x 11 x 16 2416
Max Pooling - 2x2 - 5 x 5 x 16 -
Dense Layer 1 - Linear 120 48120
Dense Layer - - Linear 84 10164
Dense Layer - - SoftMax 7 595
Total 61751

A.3 Experiment Hyperparameters

To avoid duplicating many parameters throughout all experiments, we will present
the parameters in a modular fashion where parameters that were always present
when for example using a certain dataset or drift pattern will be presented together.
More specifically, we will present the parameters correlating to each dataset in table
A.4, algorithm in tableA.5, drift pattern in tableA.6, and experiment-specific pa-
rameters in table A.7. From here each conducted experiment will only specify which
of these tables it drew its parameters. Note that the variations seen in different ex-
periments are due in part to computational resources, in part to algorithm tuning,
and lastly to ensure result robustness as experiment parameters vary.
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Table A.4: Specific parameter for the different datasets used in all results seen
in section 4. In all experiments using for example the CIFAR-10 dataset, unless
otherwise specified, the values seen in this table were utilized.

Dataset CIFAR-10 PACS
Number of Rounds 200 200
Number of Time Steps 10 4
Batch Size 8 8
Local Epochs 3 3
#Training Datapoints (on each client) 250 175
#Validation Datapoints (on each client) 75 75
Number of Labels 10 7

Table A.5: Specific parameter for the different algorithms used in all results seen in
section 4. In all experiments using for example the HAST algorithm, unless otherwise
specified, the values seen in this table were utilized.

Algorithm HAST Random DAC
Sampled Clients 3 6 6
Finetune Epochs 3 - -
Learning Rate 8e-5 8e-5 8e-5
Tau 30 - 30
Aggregation Depth 3 - -

Table A.6: Specific parameter for the different datasets used in all results seen in
section 4. In all experiments using, for example, the staggered drift pattern, unless
otherwise specified, the correlating values for two or four clusters were used. †The
number of clients per cluster in the staggered pattern depends on the current time
step according to figure 3.3.

Drift Pattern 2 Cluster 4 Cluster
Number of Clients 50 50
Number of Clusters 2 4Random Pattern
Clients Per Cluster 25 12 or 13
Number of Clients 20 20
Number of Clusters 2 4Staggered Pattern
Clients Per Cluster Varies† Varies†
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Table A.7: Specific parameter for the different datasets used in all results seen
in section 4. In all experiments using for example the CIFAR-10 dataset and Label
Swap, unless otherwise specified, the correlating values for two or four clusters were
used. The labels are as follows: 0: airplanes, 1: automobiles, 3:cats, 4: deer, 5:
dogs, 7: horses, 8: ships, 9: trucks.

Experiments 2 Cluster 4 Cluster
Cluster A: None Cluster A: None
Cluster B: 0 & 1 Cluster B: 0 & 1

Cluster B: 0 & 1CIFAR-10 Label Swaps

Cluster B: 0 & 1
Cluster A: 0, 1, 8, & 9 Cluster A: 0 & 1
Cluster B: 3, 4, 5, & 7 Cluster B: 3 & 4

Cluster C: 5 & 7CIFAR-10 Label Drift

Cluster D: 8 & 9

A.4 Additional Experiments

Below we present additional experimental results that did not fit in the main report.

A.4.1 Sampling and Training Impact on Random and DAC

In figure A.1, we can see how the Random and DAC algorithms performance depends
on the number of sampled clients as well as the number of local training epochs.
The specific experiment utilized in these figures is a distributed label drift on the
CIFAR-10 dataset with two clusters and random cluster identities assignment. In
this experiment, both the number of sampled clients and the number of local train-
ing epochs were varied to ensure HAST did not have any inherent advantage. This
is because, in essence, HAST completes two rounds of sampling and training per
communication round.
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(a) Test accuracy averaged over all clients
and clusters.

(b) Test loss averaged over all clients and
clusters.

(c) Test accuracy averaged over all clients
and clusters.

(d) Test loss averaged over all clients and
clusters.

Figure A.1: In the figures we see that Random’s and DAC’s performance decreases as
we double the number of training epochs, while its performance is slightly improved
by allowing it to sample twice as many clients.

A.4.2 Aggregation Depth Impact on HAST

In figure A.2, we can see how the HAST algorithm’s performance depends on the
aggregation depth. The specific experiment utilized in these figures is a distributed
label drift on the CIFAR-10 dataset with two clusters and random cluster identities
assignment. In this experiment, aggregation depths zero and five were not tested
as they correlate with the Random and DAC which are shown instead. To make the
image more clear, the three mainly used algorithms are drawn fully, while the unused
aggregation depths are dotted.
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(a) Test accuracy averaged over all clients
and clusters.

(b) Test loss averaged over all clients and
clusters.

Figure A.2: In both figures we see how HAST with aggregation depth three outper-
forms all other algorithms. In both figures, Random correlates to aggregation depth
zero, and DAC with aggregation depth five.

A.4.3 Distributed Label Drift - 2 Clusters
In figure A.3, we can see that the HAST algorithm achieves a higher accuracy and
lower loss in all time steps after the initial one.

(a) Test accuracy averaged over all clients
and clusters.

(b) Test loss averaged over all clients and
clusters.

Figure A.3: Distributed label drift test accuracy and loss for all algorithms on the
CIFAR10 dataset. In the experiment, two clusters exist and the clients are assigned
random clusters at each time step.

We also experimented with changing the labels associated with each cluster to en-
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sure that the results were consistent. In figure A.4, we see averaged results over
three different random cluster label assignments. Here we once again see that our
algorithm HAST manages to outperform the baseline models throughout all time
steps.

(a) Test accuracy averaged over all clients
and clusters.

(b) Test loss averaged over all clients and
clusters.

Figure A.4: Distributed label drift test accuracy and loss for all algorithms on
the CIFAR10 dataset averaged over three different cluster label assignments. In the
experiment, two clusters exist and the clients are assigned random clusters at each
time step.

A.4.4 Distributed Label Swap - 2 Clusters

In figure A.5, we can see that the HAST algorithm achieves much higher accuracy
and lower loss in all time steps.
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(a) Test accuracy averaged over all clients
and clusters.

(b) Test loss averaged over all clients and
clusters.

Figure A.5: Distributed label swap test accuracy and loss for all algorithms on the
CIFAR10 dataset. In the experiment, two clusters exist and the clients are assigned
random clusters at each time step.

A.4.5 Distributed Label Swap - 4 Clusters
In figure A.6 and A.7, we can see that the HAST algorithm achieves much higher
accuracy and lower loss in all time steps when using randomized clusters and that
when using staggered patterns we still achieve the highest accuracy, but our loss
becomes similar to the Random algorithm.

(a) Test accuracy averaged over all clients
and clusters.

(b) Test loss averaged over all clients and
clusters.

Figure A.6: Distributed label swap test accuracy and loss for all algorithms on the
CIFAR10 dataset. In the experiment, two clusters exist and the clients are assigned
random clusters at each time step.
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(a) Test accuracy averaged over all clients
and clusters.

(b) Test loss averaged over all clients and
clusters.

Figure A.7: Distributed label swap test accuracy and loss for all algorithms on
the CIFAR10 dataset. In the experiment, four clusters exist and the clients are
assigned clusters based on the drift pattern in figure 3.3.

A.5 Metric Results
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