
Studying Imperfect Communication In Dis-
tributed Optimization Algorithm

Master’s thesis in Computer science and engineering

Swati Math, Madhumitha Venkatesan

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2024

Master’s thesis 2024

Studying Imperfect Communication In
Distributed Optimization Algorithm

Swati Math and Madhumitha Venkatesan

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2024

A Chalmers University of Technology

© Swati Math, 2024. © Madhumitha venkatesan, 2024.

Supervisor: Ashkan Panahi, DS&AI
Examiner: Ashkan Panahi, DS&AI

Master’s Thesis 2024
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Gothenburg, Sweden 2024

iv

A Chalmers University of Technology

Swati Math
Madhumita Venkatesan
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Distributed optimization methods are essential in machine learning, especially when
data is distributed across multiple nodes or devices. These algorithms enable effec-
tive model training without data consolidation, improving privacy and reducing
communication costs. However, their performance is greatly influenced by the qual-
ity of communication, which may degrade due to factors such as quantization and
erasure. Quantization, which involves estimating values during transmission, can re-
sult in loss of information and requires strategic optimization to manage distortion
and communication expenses. Similarly, erasure causes loss of transmitted informa-
tion, leading to delays in convergence ,increased energy usage. This study explores
how communication imperfections affect the performance of distributed optimization
algorithms, emphasizing convergence rates, scalability, and overall efficiency. The
research examines how quantization and erasure impact different distributed archi-
tectures like Federated Learning and push-pull gradient methods under different
network topologies and suggests ways to reduce their effects.

Keywords: Distributed optimization, machine learning, quantization, erasure, con-
vergence, communication overhead, scalability, Federated Learning, push-pull gradi-
ent methods, distributed systems.

v

Acknowledgements
We wish to express our gratitude to Prof. Ashkan Panahi, who supervises us at
the Department of Computer Science and Engineering at Chalmers University. His
steadfast support, wise advice, and priceless expertise have been crucial to the ac-
complishment of our project. We really appreciate his support and his kind sharing
of his extensive knowledge on distributed optimization techniques, which have im-
proved our comprehension and enabled us to successfully navigate the complexities
of this difficult subject. We could not have completed this assignment without his
commitment and guidance.

Swati Math, Gothenburg,
Madhumitha venkatesan, Gothenburg,
2024-11-08

vi

Contents

List of Figures ix

1 Introduction 1
1.1 Background . 2
1.2 Previous Work on FEDAVG and PUSHPULL algorithms 5
1.3 Goals . 6

2 Theory 8
2.1 Distributed Optimization . 8
2.2 Overview of Algorithms . 9

2.2.1 FEDAVG . 9
2.2.1.1 Algorithm: FedAvg 11

2.2.2 PUSH-PULL . 12
2.2.2.1 Algorithm: Push-Pull 15

2.2.3 Evaluation Metrics . 16
2.3 Quantization . 19

2.3.1 Trade-offs in Quantization . 20
2.3.1.1 Reduced Model Size and Communication time 21
2.3.1.2 Communication Efficiency and Computational Over-

head . 21
2.3.1.3 Optimal balance in Quantization 21

2.3.2 Quantization in FedAvg and push-pull 22
2.4 Erasure . 23

2.4.1 Effects of Erasure . 24
2.4.1.1 Impact Convergence time 24
2.4.1.2 Increased Communication Overhead 24

2.4.2 Strategies for Mitigation . 24
2.4.3 Erasure in Fedavg and Push-Pull 25

3 Methods and Results 28
3.1 Methods . 28

3.1.1 Implementation . 29
3.1.1.1 Architecture of High Performance Computing Cluster: 29

3.2 Results . 31
3.2.1 Analysis of Quantization Impact on FedAvg 32

vii

Contents

3.2.1.1 Accuracy . 32
3.2.1.2 Average communication Time 32
3.2.1.3 Execution Time . 33
3.2.1.4 Average Convergence Time and Convergence Loop . 33

3.2.2 Analysis of Quantization Impact on Pushpull 34
3.2.2.1 Accuracy . 34
3.2.2.2 Average communication Time 35
3.2.2.3 Average convergence time and convergence loop . . . 36
3.2.2.4 Execution Time . 37

3.2.3 Analysis of Erasure Impact on FedAvg 38
3.2.4 Analysis of Erasure Impact on Pushpull 38
3.2.5 Communication Topologies . 39

3.2.5.1 Topology in FedAVg 40
3.2.5.2 Topology in Push-Pull 41

3.2.6 Analysis of Scalability in FEDAVG 45
3.2.7 Analysis of Scalability on Push-pull 46

4 Conclusion and Discussion 48
4.1 Discussion . 48
4.2 Conclusion . 49

Bibliography 50

A Appendix 1 I

viii

List of Figures

1.1 Communication grapgh for a distributed optimatation 2

2.1 Centralized Federated Averaging . 10
2.2 Decentralized Federated Averaging [31] 11
2.3 Algorithm:FedAvg [33] . 12
2.4 illustrates the Push-Pull Algorithm working mechanism. The left side

of the figure shows node 1 actively pulling information from nodes 2,
3, and 4, while the right side shows node 1 pushing information to
nodes 2, 3, and 4. This visualizes how node 1 acts as a central hub,
pulling information in one phase and pushing information in the other
phase, consistent with the push-pull dynamics[34]. 13

2.5 Push-pull block diagram . 14
2.6 Algorithm:Push-pull[34] . 16

3.1 Impact of Quantization Levels on Accuracy, Communication Time,
Convergence Time, and Convergence Rate for MNIST and CIFAR-10
Datasets. The leftmost subplot compares the accuracy percentages of
the datasets across different quantization levels. The second subplot
shows the communication time in seconds, highlighting the efficiency
of data transfer. The third subplot presents the convergence time in
seconds, reflecting the overall time required for the models to converge
during training. The rightmost subplot shows the convergence rate,
measured in FedAvg loops, indicating the number of communication
rounds required for the model to converge to a stable state. 35

3.2 Impact of Quantization Levels on Accuracy, Communication Time,
and Convergence Time for MNIST and CIFAR-10 Datasets. The left
subplot compares the accuracy percentages of the datasets across dif-
ferent quantization levels, indicating the effect on model performance.
The middle subplot shows the communication time in seconds, high-
lighting the efficiency of data transfer. The right subplot presents the
convergence time in seconds, reflecting the overall time required for
the models to converge during training. 37

3.3 Impact of Erasure on Accuracy, Communication Time, Convergence
Time and loop for MNIST and CIFAR10. 38

ix

List of Figures

3.4 The figure illustrates the performance differences between the baseline
and erasure methods in a peer-to-peer quantization strategy for both
MNIST and CIFAR-10 datasets, particularly in managing missing
packets or data loss . 39

3.5 Figure presents a comparative analysis of three different algorithm
topologies (Star, Fully Connected (FC), and Circular) across two
datasets, CIFAR-10 and MNIST . 40

3.6 Comparison of Different Graph Topologies on Accuracy, Commu-
nication Time, and Convergence Time for MNIST and CIFAR-10
Datasets. The left subplot compares the accuracy percentages of the
datasets across different graph topologies (star, fully connected, cir-
cular, and random), indicating the effect on model performance. The
middle subplot shows the communication time in seconds, highlight-
ing the efficiency of data transfer. The right subplot presents the
convergence time in seconds, reflecting the overall time required for
the models to converge during training 44

3.7 Scalability analysis of MNIST and CIFAR-10 datasets showing the
impact of increasing clients on accuracy, convergence time, communi-
cation time, and convergence loops. 46

3.8 Scalability analysis of MNIST and CIFAR-10 datasets showing the
impact of increasing tasks on accuracy, convergence time, communica-
tion time, and convergence loops. The plots compare the performance
metrics across 8, 16, and 24 tasks for both datasets, highlighting the
trade-offs between accuracy and computational resources 47

x

1
Introduction

Distributed optimization algorithms are designed to solve the optimization prob-
lems where the computation is spread across multiple nodes or clients or devices.
These algorithms are widely employed in large-scale systems such as machine learn-
ing, where decentralized processing is critical for handling huge amounts of data
and model parameters. By distributing the workload across several agents, such
algorithms ensure scalable and efficient solutions without the need for a centralized
systems. The workload is distributed across the nodes or clients, allowing for parallel
processing, which increases computational efficiency and saves training time. This
parallel technique enables simultaneous computations on various sections of the data,
resulting in faster convergence and shorter overall processing time. Beyond machine
learning, distributed optimization also plays a crucial role in other large-scale sys-
tems, such as networked systems where it optimizes resource allocation, routing, and
load balancing, assuring efficient network performance. Distributed optimization is
particularly important in sensor networks for tasks such as data gathering, target
tracking, and environmental monitoring. It allows sensors to collectively process
data and make judgments [1].

In traditional centralized systems, a single central server has access to the entire
dataset and is responsible for performing all computations. While this approach
works well for smaller datasets, it quickly becomes inefficient for large-scale systems
due to scalability issues and communication overhead. Centralized methods also
create a single point of failure, meaning that if the central server crashes or becomes
overloaded, the entire system can be compromised.

These limitations highlight the importance of decentralized approaches in large-scale
systems. In decentralized system no single node has access to the entire data set; in-
stead, each node operates on a local data subset. To ensure a global solution, nodes
must communicate with one another; However, developing effective communication
protocols is critical, as excessive communication might cause bottlenecks, reducing
convergence.

To minimize the communication overhead quantization is used, which is the process
of reducing the precision of the data being communicated between nodes or clients.
However, while this technique can optimize bandwidth (reducing communication
overhead) and speed up training, it may introduce small errors called quantization
error which affects the model performance. In addition to quantization errors, era-
sure or message loss may occur. This means that information such as model updates

1

or gradient information are lost during transmission between nodes. This data loss
can occur due to various reasons, such as network issues, corrupted data packets,
or dropped connections. This can slow down the convergence process or lead to
inaccurate updates in the model, as missing messages prevent nodes from fully syn-
chronizing their local states.

The convergence rate in distributed optimization is not only influenced by the num-
ber of nodes or clients involved and the desired level of accuracy but also on the
structure and nature of the network over which nodes communicate. This includes
factors like whether links are directed or undirected, static or time-varying. The
State-of-the-art algorithms and their analyses are tailored to these different scenarios,
highlighting the crucial role of network topology [2]. It has also been highlighted that
denser networks tend to accelerate convergence due to faster information propaga-
tion but at the cost of increased communication overhead, whereas sparser networks
reduce communication costs but may require more iterations to reach consensus.

In our research, our primary focus is in the effects of quantization, erasure and
network topology on communication efficiency and convergence in distributed opti-
mization. By understanding how these factors interact, we aim to provide insights
into how quantization errors and message loss affect the performance of distributed
optimization algorithms.

Figure 1.1: Communication grapgh for a distributed optimatation

1.1 Background
Over the past few years, distributed optimization and distributed machine learn-
ing (DML) have become increasingly important, particularly due to the rise of
large-scale data processing and the development of highly distributed computing
infrastructures. Distributed approaches to optimization aim to breaks the complex
problems into smaller, more manageable subproblems that can be solved collabo-
ratively by multiple agents or nodes in a network. These methods are crucial for

2

applications where data is inherently distributed (e.g., edge computing, federated
learning, and cloud-based systems) or when data cannot be centralized due to pri-
vacy or resource constraints. This section provides an overview of centralized and
decentralized methods in distributed optimization, highlighting key techniques like
gossip-based and dual-based methods.

Centralized optimization methods rely on a central controller that collects infor-
mation from all nodes, solves a global optimization problem, and disseminates the
solution back to the nodes. Methods like Stochastic Gradient Descent (SGD) and
Gradient Boosting Machines exemplify this centralized approach, requiring a central
server to aggregate gradients or updates after each iteration. While these methods
can achieve high accuracy and convergence, they suffer from several drawbacks in
distributed settings. Specifically, centralized methods are sensitive to single points
of failure, are limited by the capacity of the central server, and can be inefficient
due to the need for massive data transfer. To address these limitations, recent ad-
vancements have focused on distributed optimization techniques. Downpour SGD
is introduced as a variant of asynchronous stochastic gradient descent designed to
handle large data sets by using multiple replicas of a single DistBelief model[3]. This
method, along with Sandblaster L-BFGS, leverages distributed systems to mitigate
the drawbacks of centralized methods. By distributing the computational load across
multiple nodes and reducing dependence on a single central server, these distributed
approaches significantly improve efficiency and scalability.

Federated optimization refers to the optimization problem implicit in federated learn-
ing, drawing a connection (and contrast) to distributed optimization. Federated
optimization has several significant characteristics that distinguish it from a conven-
tional distributed optimization problem: (1)Non-IID: The training data on a given
client is typically based on the usage of the mobile device by a particular user, and
hence any particular users local dataset will not be representative of the population
distribution. (2)Unbalanced: Similarly, some users will make much heavier use of
the service or app than others, leading to varying amounts of local training data.
(3)Massively distributed: The number of clients participating in an optimization to
be much larger than the average number of examples per client. (4)Limited commu-
nication: Mobile devices are frequently offline or on slow or expensive connections[4].

Decentralized optimization techniques distribute the computation workload across
nodes, each solving a local problem and sharing information with its immediate
neighbors. This approach removes the dependency on a central node, enhancing
robustness and scalability. However, this methods faces challenges such as slower
convergence due to limited information sharing and the need for consensus across
nodes. Decentralized methods are often seen in environments such as wireless sen-
sor networks, edge computing. where data privacy and communication overhead are
critical concerns.

In recent years, Federated Learning (FL) has emerged as a groundbreaking approach
in distributed machine learning, particularly suited to the challenges posed by sensi-

3

tive and voluminous data generated by mobile and edge devices[5], [6]. FL enables
model training directly on devices, preserving data privacy and reducing the need for
central data aggregation[7]. A pivotal algorithm in Federated Learning is Federated
Averaging (FedAvg), which combines local stochastic gradient descent with server-
side model averaging. FedAvg is notably effective in handling non-IID (Independent
and Identically Distributed) data and reducing communication overhead compared
to traditional methods[7], [8].

Consensus methods are another class of decentralized approaches where nodes itera-
tively communicate with their neighbors to reach agreement on the global solution.
Methods such as Distributed Consensus-ADMM and Gradient Descent (DGD) be-
long to this category, ensuring that all nodes converge to a common solution over
time. Nedic et al.[9] considered several algorithms that use different types of con-
sensus models, namely weighted-averaging and push-sum models[10].

Alternating direction method of multipliers (ADMM)[11] is a simple but powerful
algorithm that is well suited to distributed convex optimization, and in particular
to problems arising in applied statistics and machine learning. It takes the form of
a decomposition-coordination procedure, in which the solutions to small local sub-
problems are coordinated to find a solution to a large global problem. ADMM can
be viewed as an attempt to blend the benefits of dual decomposition and augmented
Lagrangian methods for constrained optimization, two earlier approaches. It turns
out to be equivalent or closely related to many other algorithms as well, such as
Douglas-Rachford splitting from numerical analysis, Spingarns method of partial
inverses, Dykstras alternating projections method, Bregman iterative algorithms for
problems in signal processing, proximal methods, and many others. The fact that
it has been re-invented in different fields over the decades underscores the intuitive
appeal of the approach.

Gossip-based methods also known as gossip algorithm are motivated by applications
to sensor, peer-to-peer, and ad hoc networks for exchanging information and com-
puting in an arbitrarily connected network of nodes. These constraints motivate
the design of simple decentralized algorithms for computation where each node ex-
changes information with only a few of its immediate neighbors in a time instance
(or, a round). The goal in this setting is to design algorithms so that the desired
computation and communication are done as quickly and efficiently as possible. The
averaging time of a gossip algorithm depends on the second largest eigenvalue of a
doubly stochastic matrix characterizing the algorithm. Designing the fastest gossip
algorithm corresponds to minimizing this eigenvalue, which is a semidefinite pro-
gram (SDP). There two well-known cases for which the performance and scaling of
gossip matrices are studied: Wireless Sensor Networks, which are modeled as Ge-
ometric Random Graphs, and the Internet graph under the so-called Preferential
Connectivity (PC) model[12].

A key focus of recent research is improving distributed optimization methods. The
paper titled "Push-Pull Gradient Methods for Distributed Optimization in Networks"

4

by Shi Pu, Wei Shi, Jinming Xu, and Angelia Nedi introduces a novel gradient-
based algorithm for distributed (consensus-based) optimization in directed graphs.
This new approach differs from previous push-sum protocols[13], [14] by using a
row stochastic matrix to mix decision variables and a column stochastic matrix to
track average gradients. The paper[15] also explores a random-gossip variant of the
push-pull method, known as the G-Push-Pull algorithm. In this variant, agents com-
municate randomly with one or two of their neighbors during each iteration. The
authors show that both the Push-Pull and G-Push-Pull methods converge linearly
to the optimal solution for strongly convex and smooth objective functions. On-
going research aims to refine these methods and enhance communication-efficient
distributed learning techniques.

1.2 Previous Work on FEDAVG and PUSHPULL
algorithms

The field of decentralized and distributed optimization has seen substantial progress,
particularly in consensus-based methods over both undirected and directed graphs.
Early research efforts focused on static undirected networks and leveraged algorithms
like the Alternating Direction Method of Multipliers (ADMM), achieving linear con-
vergence through the use of doubly stochastic matrices for consensus [16][17]. How-
ever, the construction of doubly stochastic matrices can be impractical for directed
graphs, leading to the development of push-sum algorithms that facilitate consensus
in directed networks[18], [19]. These methods were later extended to accommodate
time-varying graphs and smooth, strongly convex functions [15], [20], [21], although
they often required careful step size selection, which posed stability challenges that
have been addressed in more recent work[13].

The Federated Averaging (FedAvg) approach, developed by [4], [7],combines local
stochastic gradient descent with model averaging at the server to handle federated
learning difficulties such as non-IID data and communication restrictions. This im-
proves on past distributed optimisation efforts, such as those by [22] and [23], which
focused on cluster-based settings but did not address the particular difficulties of
federated settings. FedAvg is contrasted to classic approaches such as synchronous
SGD[8] and asynchronous SGD[3], demonstrating its effectiveness in lowering com-
munication overhead. It also contains privacy considerations, relying on secure mul-
tiparty computing and differential privacy[24] to alleviate vulnerabilities associated
with on-device data.

In particular, the push-pull gradient methods introduced in these works provide a
significant foundation for decentralized optimization, where row-stochastic matrices
are used for decision variable updates and column-stochastic matrices for gradient
tracking. These methods unify different network architectures, including peer-to-
peer, master-slave, and leader-follower systems, allowing for flexibility in distributed
optimization environments. Notably, these algorithms have also been extended to
handle asynchronous communication through random-gossip variants, making them

5

robust to network imperfections such as delays and stochastic updates[25][26].

1.3 Goals
This study evaluates of Federated Averaging (FEDAVG) and push-pull optimiza-
tion algorithms within the context of distributed machine learning, particularly in
high-performance computing (HPC) environments using MPI (Message Passing In-
terface) communication protocols. The study will examine how these algorithms
perform under various communication constraints and predefined network topolo-
gies, such as fully connected, circular, star-shaped, and random networks, involving
interconnected nodes within an HPC cluster.

The primary objective is to explore the impact of communication imperfections on
important algorithm metrics, specifically the Quantization, used to reduce commu-
nication overhead by approximating continuous values with fewer bits, can intro-
duce errors (quantization errors)and erasure flaws that affect the precision of model
updates, potentially slowing convergence and reducing accuracy. The study will
specifically focus on FEDAVG and push-pull optimization algorithms, intentionally
excluding other decentralized machine learning techniques from the scope of analysis.

Experiments are conducted within an HPC cluster environment, utilizing MPI for
communication between nodes. This setup allows for the study of algorithm perfor-
mance under realistic conditions, reflecting the challenges encountered in practical
distributed machine learning scenarios. The investigation will be limited to predeter-
mined network topologies and specific communication techniques, with the purpose
of understanding and documenting the effects of communication defects on algo-
rithm performance under different scenarios.

This delimitation ensures that the research remains focused on its core objectives,
providing detailed insights into the specific challenges and performance characteris-
tics of FEDAVG and push-pull algorithms in the context of quantization, erasure
effects, and network topology variations within an HPC framework.

This dissertation methodically investigates federated learning algorithms, starting
with implementing two core techniques: using FedAvg in a star topology and a
push-pull mechanism in a peer-to-peer network. These applications act as standard
models, setting a starting point for additional examination. The study initially
presents quantization methods to FedAvg and push-pull algorithms, carefully ana-
lyzing their impact on communication costs, model performance, and convergence.
Quantization aims to improve communication efficiency by decreasing data preci-
sion, and this research assesses the compromises associated with this strategy. After
this, the thesis explores how resilient these algorithms are when messages is deleted.
Understanding the impact of message loss on federated learning’s robustness and
reliability is essential for gaining insights into the fault tolerance of the algorithms.

The study then moves on to examine how various communication topologies impact

6

the effectiveness of federated learning by investigating the role of network topol-
ogy. By testing different topological designs, the research identifies configurations
that optimize both training speed and accuracy, revealing insights into how network
topology influences the results of federated learning.

In the last stage, the thesis evaluates how well the baseline algorithms FedAvg and
push-pullcan scale with varying network sizes, using the MNIST and CIFAR-10
datasets. This analysis of scalability plays a crucial role in assessing the algorithms’
suitability for widespread implementation in practical situations. In the thesis, there
is a constant focus on the relationship between communication efficiency, accuracy,
and convergence, offering a thorough insight into the performance variations in fed-
erated learning under various circumstances.

7

2
Theory

2.1 Distributed Optimization
Distributed optimization is an important technique used to solve large scale machine
learning problems where data is distributed across multiple nodes/clients that com-
municate over network. Each agent (i) in a network aims to minimize a its local
objective function (fi(x)), while sharing information with each other to ensure con-
vergence to the optimal solution, which is usually the sum of local objectives from all
node. Communication between nodes is sometimes limited by bandwidth or latency
constraints, necessitating the optimization of both computation and communication.

Each node i has its own local data and aims to minimize a local objective function
fi()x. The main goal of distributed systems is to find the value of x that minimizes
the sum of all the local objective functions from every node, represented as:

min
x

N∑
i=1

fi(x)

Where:
• N is the number of nodes (or clients).
• fi(x) is the local objective function at node i, which depends on local data.
• Each node/clients computes its gradient ∇fi(x) locally, and the clinets commu-

nicate with each other or a central server to update x in a coordinated manner.

The nodes/clients communicate over a communication graph. The communication
graph (G) represent how nodes communicate each other and structure of the commu-
nication graph has considerable impacts the performance of the distributed optimiza-
tion process. A well-connected graph can helps speed up information transmission
and convergence. Conversely, a poorly connected graph can slow down the process
and lead to poor performance [27].

The communication graph G = (V, E) plays an important role in determining how
fast and efficiently consensus can be achieved, where V represents the nodes and
E the communication links between nodes. Each node in the graph represents an
agent, and each edge represents a communication link between two agents. The
graph can be directed or undirected

In symmetric communication[28], data flow between nodes is bidirectional, which

8

means that node A can transmit information to node B and node B can send infor-
mation back to node A. This sort of communication is widespread in balanced and
evenly connected networks, resulting in easier analysis and faster consensus.

Asymmetric communication [28] occurs when information transmission is one-way,
i.e., node A can send data to node B but node B cannot send data back. Asymmet-
ric communication can occur due to limitations in network resources or hierarchical
systems. While it complicates analysis and may hinder consensus, it can simu-
late actual circumstances like master-slave or client-server relationships. Symmetric
communication simplifies convergence analysis and frequently leads to speedier con-
sensus across nodes, although asymmetric communication, while more complex, can
represent practical systems with limited data flow.

The communication graph is central to the distributed consensus algorithm, the con-
sensus algorithm plays an important role to distributed and multi-agent systems. Its
goal is to ensure that all nodes (or agents) in a system agree on the same data value,
even if some nodes fail or deliver inaccurate data [29]. A consensus algorithm ensures
that each node i updates its local decision variable xi by incorporating information
from its neighboring nodes j. Nodes in a network uses communication graphs to
repeatedly update their local decision variables by incorporating information from
neighboring nodes, thus achieving both local convergence and global consensus [29].
The consensus update rule can be represented as:

xt+1
i = xt

i − η
∑

j∈Ni

Wij(xt
i − xt

j)

where:
• η is the learning rate,
• Wij represents the communication weight between node i and node j,
• Ni is the set of neighbors of node i.

2.2 Overview of Algorithms

2.2.1 FEDAVG
Federated Averaging (FEDAVG) is a widely used algorithm in Federated Learning,
where multiple devices (clients) collaborate to train a single, powerful model with-
out sharing their private data. Each client trains a copy of the model using its local
data and after completion of the local training, the client does not sends this data to
server instead, it sends only the updates model parameters (gradients or weights) to
a central server. The server averages these parameters from all devices, this averag-
ing step is core of FedAvg algorithm and broadcasts the averaged parameters back to
the clients. Each devices receive the averaged parameter and update its local model
copy accordingly. This process of local training,sending updates, averaging them
and updating the global model is repeated over several rounds, gradually improving
the global model[30][4]. Traditionally FedAvg uses central server to averaging the

9

updates, but it can be adapted to decentralized topologies (FC or circular).

Federated Learning is a machine learning approach for training models on clients
without sharing original data, for Next-Word Prediction on Mobile Phones. The
diagram 2.6 illustrates a distributed version of federated learning, where remote de-
vices/clients communicate directly with each other without need for central server.
Each client performs local training on its own data and then exchanges model up-
dates with other devices in a peer-to-peer fashion, shown by the dashed commu-
nication lines between smartphones [31]. The privacy of text data is maintained
by training a prediction model locally on non-identically dispersed user data and
delivering updates to the server. The server aggregates these updates to form a
new global model, iteratively improving predictions until convergence or a stopping
criterion is met.This decentralized/distributed approach reduces reliance on a cen-
tral server and allows devices to collaborate more flexibly, although it introduces
additional complexity in communication and coordination.

Both 2.1 and 2.2 illustrate two important aspects of Federated Learning (FL), show-
casing both the traditional centralized and decentralized approaches respectively.

Figure 2.1: Centralized Federated Averaging

10

Figure 2.2: Decentralized Federated Averaging [31]

Constantly updating the model parameters on a regular basis, which for deep neural
network can involve large number of parameters, requires frequent transmission of
substantial amounts of data between cilents and server. This creates a communi-
cation overhead between central server and clients/devices, especially in large-scale-
networks with many participants, which can significantly slow down the model’s
convergence. Given that communication channels between devices/clients and the
server usually have limited bandwidth and power, this frequent data transfer be-
comes a bottleneck.To address this, techniques such as quantization, compression,
and adaptive communication strategies are often employed to reduce the communi-
cation load while maintaining model performance.[32][30]. However, in our study
we are concentrating on the quantization techniques, how its useful in saving com-
munication time and also its effect on convergence of the algorithm.

2.2.1.1 Algorithm: FedAvg

In the FedAvg algorithm, D is entire dataset used for training and is distributed
among clients, w(0) is inital global model,which is same for all clients at begining of
training process. Learning rate η and w(T) is updated global model after specified
number of training rounds.FedAvg algorithm involves two steps one local updates
and global updates .
In local update each client calculates average gradient (∇Li) over its own dataset
Di and client updates its local model w(t)i .

w(t)i = w(t − 1)i − η · ∇Li

Where, w(t − 1)i is clients local model from previous round (t-1), η is learning rate,
∇Li is average gradient calculated over client’s local data.

11

Figure 2.3: Algorithm:FedAvg [33]

In global update, server aggregates the local model updates from all clients.

w(t) =
∑N

i=1(pi · w(t)i)∑N
i=1 pi

Where, w(t) is updated model, pi is weight of client i, w(t)i is local update from
client i.
FedAvg algorithm iterates through these two steps for specified number of rounds
(T),gradually improving the local and global models based on collabrative learninig
from all clients dataset [33].

2.2.2 PUSH-PULL
Push-Pull Optimization: Push-Pull algorithms are essential tools for distributed
optimization, enabling collaborative optimization among interconnected agents or
nodes in various network topologies. These algorithms use local computations to
reach consensus on a global objective function, facilitating effective information ex-
change and synchronization among agents.

Now, we explain the Push-Pull Gradient Method, introduced by Author(s) Shi Pu,
Wei Shi, Jinming Xu, and Angelia Nedic. Push-Pull Gradient Methods for Dis-
tributed Optimization in Networks [34], unifies different types of distributed architec-
tures, including decentralized, centralized, and semi-centralized architectures. This
method provides a cohesive framework that bridges various distributed paradigms,
offering a unified approach to optimizing computational processes across diverse
system configurations.If the graph is directed and strongly connected, For the fully

12

decentralized case, suppose we have a graph G that is undirected and connected.
Here, G represents the network topology. We can set GR = GC = G, where GR

and GC are the adjacency matrices for the receiver and controller nodes, respec-
tively. In this context, R and C are symmetric matrices representing specific weight
assignments within the network, and the proposed algorithm reduces to the one
considered in [13], [35]. If the graph is directed and strongly connected, we can still
let GR = GC = G and design the weights for R and C accordingly.

The matrix R defines the weight distribution for the network when information is
pulled by the neighbors (receiver nodes). The first row has a weight of 1 for the first
node and 0 for others, indicating that node 1’s information is solely determined by
itself. The other rows distribute the information equally between two nodes, reflect-
ing the connections in a decentralized or partially centralized system where nodes
other than node 1 have some degree of interaction with multiple neighbors.

The matrix C defines the weight distribution when information is pushed to the
neighbors (controller nodes). The first row reflects that node 1 pushes its infor-
mation equally to all other nodes, consistent with its role as a central node in a
semi-centralized architecture. The other rows have lower weights, reflecting a less
active role in the push process for nodes 2, 3, and 4, which mainly respond to node 1.

Figure 2.4: illustrates the Push-Pull Algorithm working mechanism. The left side of
the figure shows node 1 actively pulling information from nodes 2, 3, and 4, while the
right side shows node 1 pushing information to nodes 2, 3, and 4. This visualizes
how node 1 acts as a central hub, pulling information in one phase and pushing
information in the other phase, consistent with the push-pull dynamics[34].

To illustrate the less straightforward situation of (semi-)centralized networks, let us
provide a simple example. Consider a four-node star network composed of nodes 1,

13

2, 3, and 4, where node 1 is situated at the center and nodes 2, 3, and 4 are bidirec-
tionally connected with node 1 but not connected to each other. In this case, the
matrix R in our algorithm can be chosen as 1s information regarding x1k is pulled by
the neighbors (the entire network in this case) through GR; the others only passively
infuse the information from node 1. At the same time, node 1 has been pushed infor-
mation regarding yik (for i = 2, 3, 4) from the neighbors through GC ; the other nodes
only actively comply with the request from node 1. This motivates the algorithms
name, push-pull gradient method. Although nodes 2, 3, and 4 are updating their yi

values accordingly, these quantities do not have to contribute to the optimization
procedure and will die out geometrically fast due to the weights in the last three
rows of C. Consequently, in this special case, the local step size for agents 2, 3, and
4 can be set to 0. Without loss of generality, suppose f1(x) = 0. Then the algorithm
becomes a typical centralized algorithm for minimizing ∑4

i=2 fi(x) where the master
node 1 utilizes the slave nodes 2, 3, and 4 to compute the gradient information in a
distributed way. Taking the above as an example for explaining the semi-centralized
case, it is worth noting that node 1 can be replaced by a strongly connected subnet
in GR and GC , respectively. Correspondingly, nodes 2, 3, and 4 can all be replaced
by subnets as long as the information from the master layer in these subnets can be
diffused to all the slave layer agents in GR, while the information from all the slave
layer agents can be diffused to the master layer in GC . Specific requirements on the
connectivities of slave subnets can be understood by using the concept of rooted
trees. We refer to the nodes as leaders if their roles in the network are similar to
the role of node 1; and the other nodes are termed as followers. Note that after the
replacement of the individual nodes by subnets, the network structure in all subnets
is decentralized, while the relationship between the leader subnet and follower sub-
nets is master-slave. This is why we refer to such an architecture as semi-centralized.
This example illustrates a semi-centralized case where node 1 can be replaced by a
strongly connected subnet in GR and GC respectively. Similarly, nodes 2, 3, and 4
can be replaced by subnets, ensuring that information can be diffused appropriately
between master and slave layers in GR and GC . The connectivity requirements of
these slave subnets can be understood using rooted trees. Nodes fulfilling roles sim-
ilar to node 1 are termed leaders, while other nodes are termed followers based on
their network roles [34].

Figure 2.5: Push-pull block diagram

Sender Node A -> Receiver and Requester Node B: The arrow from Node A to
Node B is labelled "Push Request" suggesting that Node A is passing data to Node
B without receiving a request.

14

Receiver Node B -> Responder Node C: The arrow from Node B to Node C is
labelled "Pull Request" indicating that Node B is seeking data from Node C.
Responder Node C -> Receiver, Requester Node B: The arrow from Node C to Node
B is labelled "Response" indicating that Node C is returning the requested data to
Node B.
Where nodes both push data to specific recipients and respond to pull requests from
other nodes.From the viewpoint of an agent, the information about the gradients is
pushed to the neighbors, while the information about the decision variable is pulled
from the neighbors hence giving the name push-pull gradient methods[34].

The 2.5 diagram provide a visual representation of how push and pull algorithms
work in distributed systems, where nodes exchange data or messages based on dif-
ferent communication patterns.
In a push phase of distributed optimization, each node computes its local updates
based on its own data and current model parameters. These local updates are then
transmitted or "pushed" to neighboring nodes in the network. This dissemination of
information enables nodes to share their insights and collaborate effectively towards
a common objective.

Conversely, in the pull phase, nodes receive updates or information from their neigh-
bors. This process involves aggregating the received updates, typically through
techniques like averaging or consensus, to update their own local model parameters.
The pull phase ensures that nodes benefit from the collective intelligence of neigh-
boring nodes to enhance their own understanding and refine their model parameters.

However, in practical scenarios with imperfect communication channels, such as
quantization or erasure channels, the efficacy of push and pull algorithms can be
challenged. Erasure channels may drop transmitted data packets. These imper-
fections can lead to loss of information or introduce errors in the communication
process.

2.2.2.1 Algorithm: Push-Pull

Algorithm 1 (pushpull) can be rewritten in the following aggregated form.

A matrix is nonnegative if all its elements are nonnegative.
In the context of the algorithm, let α = diag{α1, α2, . . . , αn} be a nonnegative diag-
onal matrix, and R = [Rij], C = [Cij] ∈ Rn×n. We make the following assumption
regarding the matrices R and C:
Assumption 2: The matrix R ∈ Rn×n is a nonnegative row-stochastic matrix,
and C ∈ Rn×n is a nonnegative column-stochastic matrix. This means that R

15

Figure 2.6: Algorithm:Push-pull[34]

satisfies R1 = 1, and C satisfies 1T C = 1T . Additionally, the diagonal elements of
both R and C are positive, i.e., Rii > 0 and Cii > 0 for all i ∈ N .
As a consequence of C being column-stochastic, it can be shown by induction that:

1
n

1T yk = 1
n

1T ∇F (xk), ∀k.

This relation is crucial as it allows (a subset of) the agents to track the average
gradient 1

n
1T ∇F (xk) through the y-update.

In each iteration, every agent will share gradient information with its outgoing neigh-
bors and receive decision variables from its incoming neighbors. Each component of
yk tracks average gradients using the column-stochastic matrix C, while each compo-
nent of xk drives optimization through average consensus using the row-stochastic
matrix R. Algorithm 1 resembles gradient tracking methods seen in prior work,
where the doubly stochastic matrix is split into row-stochastic and column-stochastic
components. This asymmetric R−C structure, previously used for achieving average
consensus, differs from linear systems due to its introduction of nonlinear dynamics
from the gradient terms.
Now, we establish the graph structures GR and GC induced by matrices R and C
respectively. Notably, GC mirrors GC with all its edges reversed[34].

2.2.3 Evaluation Metrics
In the field of federated learning and distributed machine learning, the performance
and efficiency of algorithms are critically influenced by several key factors. Under-
standing these factors is essential for optimizing algorithm performance and ensuring
robust, scalable machine learning models.

16

In our project, we implemented and analyzed key metrics such as communication
time, average loss, convergence threshold, convergence time, convergence loop, and
accuracy.

Average Communication Time: Communication time measure shows how long it
takes a client to exchange gradients with all other clients that are participating in
the training. It includes both the time to receive gradients synchronously from all
clients plus the time to send its gradients synchronously to all other clients. Accurate
measurement of communication time is essential for understanding the efficiency of
distributed training processes.The Average Communication Time represents the av-
erage time spent by all clients during each training iteration to exchange gradients
in a distributed setup.

The accumulated total communication time over multiple iterations is given by:

Total Comm Time =
N∑

i=1
Tcomm,i

Where:
• N = Total number of iterations.
• Tcomm,i = Communication time during the i-th iteration, which includes both

the reduction and broadcast times.
The Average Communication Time is calculated as:

Average Comm Time = Total Comm Time
Number of Clients

Where:
• Total Comm Time is the sum of communication times from all clients.
• Number of Clients is the total number of clients participating in the training

process.
This formula effectively represents the overall communication overhead experienced
during the training process.

Convergence Time: Convergence time consumed by a client from the start of training
until it reaches a point where the training loss falls below a predefined convergence
threshold (0.01 in our experiment). This metric, typically measured in seconds, re-
flect the speed at which the model stabilizes and begins producing reliable outputs.
Factors such as hardware specifications, dataset size, and model complexity can in-
fluence convergence time. The Average Convergence Time is the average time taken
by all clients to reach convergence, where the training loss falls below a predefined
threshold.

The convergence threshold ϵ is a predefined value that determines when the training
is considered to have converged. In our experiment, this threshold is set to:

ϵ = 0.01

17

The training is considered to have converged when the average loss falls below this
threshold. The individual client convergence time

Tconvergence = Tk − Tstart where Lavg,k < ϵ

Step-by-step Representation:
1. Start timing at Tstart.
2. For each epoch k, compute the average loss Lavg,k.
3. Identify the first epoch k where (average loss) Lavg,k < ϵ (threshold)
4. Calculate the convergence time as the difference between the end time of this

epoch and the start time.

The average loss Lavg,k for the k-th epoch is calculated as the mean of the loss values
over all batches within that epoch. It measures how well the model is learning during
the training process.

Lavg,k = 1
n

n∑
i=1

Li,k

Where:
• n = Total number of batches in the k-th epoch (len(train_loader)).
• Li,k = Loss value of the i-th batch in the k-th epoch.

Total Convergence time across all clients that have reached convergence is given by.

Tconvergence =
M∑

j=1
Tconvergence,j

Where:
• M = Total number of clients that have reached convergence.
• Tconvergence,j = Convergence time for the j-th client.

The Average Convergence Time is calculated as:

Average Convergence Time = Tconvergence

Number of Clients
Where:

• Tconvergence is the sum of convergence times from all clients who have reached
convergence.

• Number of Clients is the total number of clients participating in the training
process.

Convergence Loops: This metric refers to the specific training loop during which
the training loss drops below the predefined convergence threshold (in this case con-
vergence threshold of 0.01). The number of loops required provides insights into the
stability and efficiency of the training process, indicating how quickly the model is
able to meet the convergence criteria.

Accuracy: In this context, accuracy refers to the test accuracy, which measures how
well the trained model performs on a separate test dataset that was not used during

18

training. It is a key indicator of the model’s ability to generalize to new, unseen
data reflecting the effectiveness of the model in practical applications.

These metrics communication time, convergence time, convergence loops, and accu-
racy were specifically measured during the implementation of distributed optimiza-
tion algorithms, including the FedAvg and Push-Pull. By defining, implementing,
and analyzing these measures within our code, we gained valuable insights into the
real-world difficulties and trade-offs associated with distributed learning settings.
In this study, we focused on implementation of federated averaging algorithm and
push-pull algorithm with specific attention to the data partitioning strategies, quan-
tization of gradients and erasure of gradients. We also emphasized to analyze the
impact of different network topologies with these metrics.

2.3 Quantization
Quantization is a process of mapping continuous values to discrete levels, commonly
used in machine learning to reduce the size of models and the volume of data trans-
mitted during training in distributed systems. We can apply quantization in two
ways Post-training quantization and quantization aware training. In post-training
quantization, quantizes models or gradients after training has been completed. In
the case of gradient quantization, this would mean applying quantization techniques
to the computed gradients after the full-precision training has been completed. This
is useful in scenario where the goal is to minimize the communication overhead.
Whereas in quantization aware training, quantization is integrated during training
phase, leading to better-optimized models with minimal accuracy degradation, but
it requires more computational resources and time due to the need for retraining [36].

Gradient quantization addresses the problem of bandwidth and communication cost,
which are significant bottlenecks in decentralized and distributed learning systems.
In gradient quantization [37], gradients are scaled to a range determined by the
number of bits and then rounded to the nearest quantization level.
This quantization step maps each gradient component to a discrete level, reducing
its precision but significantly compressing the amount of data transmitted.

Let:
• g ∈ Rd be the original gradient vector (tensor).
• max_val = max(|g|) be the maximum absolute value of the gradient.
• b be the number of bits used for quantization.

The quantization process can be broken down into normalization, scaling, rounding,
and clamping.
The gradient is normalized using the maximum absolute value:

ĝi = gi

max_val
where ĝi is the normalized version of the gradient.
The number of discrete levels available for quantization is determined by b bits. The

19

range of quantization levels is:

scale = 2b−1 − 1

The normalized gradient is scaled to this range:

g̃i = ĝi × scale

where g̃i is the scaled gradient ready for quantization. The scaled gradient is rounded
to the nearest integer to map it to a discrete level:

q(gi) = round(g̃i)

The rounded value is clamped to ensure it lies within the range [−scale, scale]:

q(gi) = min(max(q(gi), −scale), scale)

where q(gi) is the quantized value of gi.

For Dequantization of multi-bit case ,

ĝi = q(gi)
2b−1 − 1

× max_val

For the special case where b = 1, the gradient [38] is simply quantized to its sign :

q(gi) = sign(gi)

For Dequantization b = 1,
ĝi = q(gi) × max_val

where:

sign(gi) =


+1, if gi > 0
−1, if gi < 0
0, if gi = 0

Quantization also introduces a loss of precision by representing weights or gradients
with fewer bits. while this reduces communication overhead however this reduces
precision may introduce small errors called quantization error which affects accu-
racy of the model, convergence, and number of iteration needed for convergence
compared to a non-quantized model.

2.3.1 Trade-offs in Quantization
Optimizing quantization requires balancing between communication efficiency, com-
putational complexity, and model accuracy. The selection of an optimal number
of quantization levels/bits is critical in navigating this trade-off. Reducing quan-
tization levels/bits minimizes communication overhead but it introduces the risk

20

of quantization error, leading to a loss of precision and slower convergence. Con-
versely, increasing more quantization levels/bits enhances data precision but also
raises computational cost and communication time. The challenge lies in determin-
ing the optimal quantization level based on specific distributed learning application
requirements.

2.3.1.1 Reduced Model Size and Communication time

Using fewer bits of quantization levels reduces the size of the model updates, de-
creasing the amount of data transmitted between clients and server.This also reduce
communication overhead as less data needs to be communicated between clients and
server. since smaller data packets can be transmitted more quickly and also model
size requires less memory on device . However, this reduction can lead to more
distortion and potentially lower model accuracy due to information loss.[39][40]

2.3.1.2 Communication Efficiency and Computational Overhead

Quantization may offer communication efficiency but in turn it increases compu-
tation overhead, as lowering the model parameter and gradients from the original
format to lower bit forms and back again de-quantization may add extra computa-
tions [41].
Quantization introduces information loss. This quantized values may not be as ex-
act as the original numbers, depending on bit width that was used.This may result
in more calculations to make up for decreased precision. And slow convergence due
to quantization error. Finding the right balance between these factors is crucial for
optimizing the performance of distributed systems, especially in scenarios involving
resource-constrained devices where efficient computation is vital for successful model
training and convergence.

2.3.1.3 Optimal balance in Quantization

Optimizing quantization requires a careful approach to balance between factors
like, communication efficiency, computational complexity, and data precision in our
project’s distributed learning application.
Employing more quantization levels improves data precision but comes at the cost
of increased computational complexity and communication overhead as discussed
in above section. The challenge lies in determining the optimal quantization level
tailored to our specific distributed learning application requirements. This involves
considering the trade-offs between communication efficiency, data precision, and
computational resources.
By navigating these trade-offs effectively , we can optimize the performance and
efficiency of our distributed learning application while maintaining communication
reliability and computation efficiency and data precision.

21

2.3.2 Quantization in FedAvg and push-pull
In a federated learning, the gradients computed locally on each device are sent
back to a central server for averaging. However, transmitting high-precision gradi-
ents from millions of devices/clients results in communication overhead. The use of
gradient quantization reduces this overhead by compressing the gradients, thereby
allowing the learning process to be more communication-efficient[4].

In order to alleviate the limitation of bandwidth in distributed networks, quan-
tized messages should be transmitted between the nodes. To solve this distributed
optimization problem, a gradient descent method is combined with a distributed
quantized consensus algorithm that requires nodes to exchange quantized messages
and converges in a finite number of steps [40]. This integration helps in significantly
reducing the communication load while maintaining the algorithm’s overall perfor-
mance.

The application of quantization in FedAvg is to increase efficiency has been the sub-
ject of several studies. For instance, a recent study by [42] shows that FL models
that are significantly more robust to different bit-widths during on-device inference
are produced by incorporating quantization robustness into the training procedure.
Quantization is a strategy that leads to smaller model sizes and lower computational
demands by reducing the number of bits needed to describe model parameters. This
is especially useful for resource-constrained client devices, like those utilized in Fe-
dAvg setups.

In a similar vein, the study by [43] explores various quantization techniques to re-
duce communication overhead in federated learning, particularly with the FedAvg
algorithm. The study highlights the motivation for quantization, its impact on
convergence rates, and robustness against quantization noise. Experimental results
demonstrate that quantized FedAvg can achieve similar accuracy to unquantized
versions with significantly lower communication costs. Additionally, the paper [43]
addresses the application of these techniques to heterogeneous devices, enhancing
efficiency across diverse participants.

In Federated averaging, gradient quantization takes palce after local training of each
clients before gradient are sent back to the server for the aggregation. Similarly
quantization emerges as a promising technique within push-pull algorithms. Several
studies have explored the application of quantization within push-pull frameworks
to optimize performance and reduce computational demands.
At each optimization step, each node executes (i)gradient descent step, subtracting
the scaled gradient from its current estimate, and (ii) a finite-time calculation of the
quantization average of all nodes’ estimates in the network. As a result, this tech-
nique closely resembles the centralized gradient descent algorithm. The approach
is demonstrated to asymptotically converge to a neighborhood of the best solution
at a linear convergence rate [40]. This ensures that the push-pull method remains
effective even with the reduced precision due to quantization.
Both FedAvg and push-pull algorithms benefit from quantization, though their im-

22

plementations and benefits differ. Quantization in FedAvg lowers communication
cost during local model aggregation from distributed devices, allowing for effective
model updates throughout a mobile device federated network. Because of these de-
vices’ limited bandwidth and computational capacity, quantization is essential for
maintaining efficiency.

In contrast, the push-pull algorithm employs quantization to manage communica-
tion constraints within distributed optimization tasks. Here, quantization focuses
on reducing the data exchange between nodes to address the bandwidth limitations
inherent in large-scale distributed systems.

To evaluate the effectiveness of quantization in FedAvg and Push-Pull, we conducted
experiments using the MNIST and CIFAR-10 datasets. These experiments were
designed to measure the impact of various quantization levels(1,2,4,8,16) on the
performance and efficiency of the FedAvg and Psh-Pull algorithm. The high-level
findings indicate that quantized FedAvg can achieve nearly the same accuracy as
the non-quantized version while significantly reducing communication time, though
convergence time may increase with higher levels of quantization However, accuracy
for Push Pull is decreased and also communication times for lower bits of quantiza-
tion for both datasets, deatil about the effects of quantization on both algorithms
is in the section 3.2

2.4 Erasure

In networking or data transmission, a "missing packet/Erasure" occurs when a data
packet, a small unit of data sent through a network, does not reach its intended
destination. This might happen due to various factors such as network congestion,
transmission issues, and signal deterioration. The absence of packets may lead to
communication disruptions, decreased efficiency, or unfinished data transmission.
Commonly used methods like packet re-transmission or error correction are em-
ployed to reduce the effects of missing packets in protocols that depend on accurate
and full packet delivery.

Communication between nodes (devices) and the central node (CN) in distributed
systems, particularly in Federated Learning [44], frequently takes place over unstable
channels that might cause data loss, known as erasure channels. In an erasure
channel, updates or gradient vectors transmitted from a node to the CN are lost
or "erased" at a specific probability perase. When this happens, the CN discards the
missing updates and only includes the received, non-erased updates. This method
reduces the need for comprehensive information and allows the optimization process
to proceed despite communication faults, but with some influence on convergence
and speed.

23

2.4.1 Effects of Erasure
The concept of "erasure" in communication systems involves data loss during trans-
mission, with the receiver being informed of the specific lost data. Unlike errors
in bits that lead to receiving inaccurate data, erasures signify the absence of data
altogether, impacting communication time, convergence time and accuracy signif-
icantly. This part discusses the influence of erasure on system performance and
various methods to minimize its effects.
Erasure affects the convergence and efficiency of communication systems in several
ways:

2.4.1.1 Impact Convergence time

Missing data may lead to multiple retransmissions, which can result in a slowdown
of the communication process as a whole. This issue becomes particularly problem-
atic with protocols that depend on acknowledgements, as the sender must wait for
confirmation of successful receipt before transmitting the next packet. Increased
erasure rates can lead to significant delays in the acknowledgment process, resulting
in delayed convergence of the algorithm which in-turn needs more loops for conver-
gence.

Erasure channels, where updates are lost during transmission at a specific probability
perase,directly impact distributed learning algorithms such as Federated Learning
(FL). This channel result in incomplete gradient aggregation at the central node,
as updates that are lost are not considered in the model updates. consequently,
the model’s updates are based on partial information, delaying convergence and
requiring more iterations to achieve optimal performance. [44] therefore increase in
convergence time.

2.4.1.2 Increased Communication Overhead

While erasure typically increases communication overhead due to re-transmissions or
redundancy, in some systems, it might paradoxically reduce communication time.This
can happen if the system chooses to continue with partial data to maintain speed, or
if it sends less data overall as a result of dropped packets. However, a shorter com-
munication time does not always translate into a more efficient system there could
be other costs involved, like a slower rate of convergence (requiring more loops for
optimal solution) or less precision [44].

2.4.2 Strategies for Mitigation
There are multiple strategies that can be utilized to lessen the impact of erasure in
communication systems. Data packets are lost during transmission due to network
congestion, device failure, or interference, resulting in missing packets. TCP and
other re-transmission protocols are used to mitigate the effects of missing packets by
resending all of them. An error-checking code is sent along with the data to correct
any problems that may arise during transmission. Duplicate data is sent so that

24

the recipient can reconstruct the original data if any packets are missing. Quality
of Service (QoS) helps by assigning higher priority to certain types of traffic, reduc-
ing the likelihood of essential data packet loss. Network redundancy, such as using
multiple paths for data delivery, reduces the likelihood of packet loss.

Furthermore, the use of buffering and latency variation can help to smooth out
discrepancies in packet arrival timings, lowering the impact of packet loss in live
applications. Finally, error detection and recovery methods such as check-sums and
CRCs ensure the identification and re-transmission of any damaged or lost packets.
Although the major focus is on broader data protection and redundancy solutions,
these principles are also useful in managing and eliminating missing packets in net-
work connections. While the strategies mentioned abovesuch as re-transmission
protocols, error correction codes, QoS, and network redundancyare vital for mini-
mizing the impact of erasure.
our study specifically focuses on the effects of erasure on communication time, con-
vergence time, accuracy, and convergence loops. Understanding these effects is cru-
cial for developing more efficient algorithms and systems that can better tolerate
erasures without relying solely on mitigation techniques.

2.4.3 Erasure in Fedavg and Push-Pull
Missing data can greatly impact distributed machine learning methods like Feder-
ated Averaging (FedAvg) and Push-Pull. In federated learning (FL), particularly in
wireless networks, the presence of faulty communication channels adds heterogene-
ity to the system. These communication issues, like as packet loss or transmission
faults, can severely disrupt the learning process by sending incomplete or inaccurate
model updates to the central server.This disruption is especially significant in algo-
rithms such as FedAvg, which implies that all client updates contribute evenly and
consistently to the overall model. However, in environments involving unreliable
communication, FedAvg may struggle to maintain stable convergence because miss-
ing or corrupted updates can cause considerable variations in the model’s training
trajectory [45].

The paper [44] explores the challenges and solutions for federated learning (FL) in
environments where communication links between clients and the server are unre-
liable and prone to packet erasure. In such settings, the communication links are
modeled as packet erasure channels, where local updates from clients can be lost with
a certain probability. This does affect the learning process because some update are
lost during communication. This may potentially slow down the convergence of the
algorithm and also reduce accuracy . However, it also shows that the impact on
convergence can be significantly reduced by using the strategies they propose, such
as reusing the last received update when a new update is lost. These strategies help
to maintain a convergence rate that is close to what would be achieved in a sce-
nario with perfect communication, thereby demonstrating that federated learning
can be robust even in the presence of communication errors. Similarly, Erasures in
the decentralized Push-Pull protocol can lead to false updates spreading through

25

the network, changing the local models and slowing down convergence at each node.
Nodes missing crucial updates from neighbors due to lost packets can lead to in-
consistencies and potentially hinder the overall optimization process.These effects
highlight the critical role that reliable communication plays in maintaining model
accuracy and ensuring efficient convergence in federated learning systems.

We consider a scenario where the sender communicates with the receiver over an
erasure channel, with each action index sent by the learner potentially being erased
with probability ϵ. The receiver is aware of these erasures, but the sender is not,
which can lead to suboptimal learning if the receiver does not receive the intended
action. This issue mirrors challenges in decentralized systems, such as the Push-Pull
protocol, where erasure channels can cause lost messages between nodes. These lost
messages can lead to inconsistencies, delayed convergence, and potentially incorrect
outcomes in distributed optimization processes. Reliable communication is thus cru-
cial for both effective learning and maintaining accuracy in federated learning[46].

In our work, we simulated the effects of erasure channels on both the FedAvg and
Push-Pull algorithms to study their impact on convergence loop and time, accuracy
and communication time . By introducing a controlled probability of erasure ϵ in
the communication between clients (or nodes) and the central server for fedavg and
between clients for Push-Pull algorithms, code implements a stochastic gradient era-
sure mechanism where each node (except the central node) can have its gradient
erased (set to zero) with a certain probability, denoted as perase.

For FeadAvg, where the central node (CN) aggregates only the available (non-erased)
updates from the devices without waiting for full gradients or reusing past updates
[44]. A similar approach applies to the Push-Pull algorithm, where nodes aggregate
only the received updates without waiting for missing data, maintaining progress
despite communication interruptions. We were able to observe how these algorithms
perform under real-world conditions where communication is unreliable. The results,
which are detailed in the section 3.2 , demonstrate the varying degrees of robustness
in these algorithms. For instance, while FedAvg showed sensitivity to missing up-
dates, resulting in delayed convergence time and loop and lower accuracy, Push-Pull
exhibited challenges in maintaining consistency across nodes.

The process of gradient aggregation with erasure in a distributed learning setup can
be represented as follows:

Gradient Vector and Erasure Probability:
Gradient Vector: Let gi be the gradient vector of the i-th node.
Erasure Probability: Let perase be the probability of erasure.
Erasure Process: For each node i (except the central node), the gradient vector is
set to zero with probability perase:

g′
i =

gi with probability 1 − perase

0 with probability perase

26

Central Node Aggregation: The central node aggregates the gradients from all nodes.
If G is the matrix of gradients from all nodes, the aggregated gradient Gagg is:

Gagg =
N∑

i=1
g′

i

where N is the total number of nodes.

our code uses probability-driven approach to simulate communication failures by
erasing gradients, star topology for FEDAVG and peer-to-peer for push-pull algo-
rithm by setting the gradient of non-central nodes to zero with a certain probability
for FEDAVG In contrast, for the Push-Pull algorithm, the erasure applies uniformly,
reflecting equal communication unreliability across all nodes. This approach allows
testing the robustness of distributed optimization algorithms against communication
failures providing insights into their performance under realistic, unreliable commu-
nication conditions.

27

3
Methods and Results

3.1 Methods

This section investigates the framework that underlies the metrics and important
factors to consider our implementation which provides foundation for the subsequent
analysis of our experimental results.
In this study, we focused on implementation of federated averaging algorithm and
push-pull algorithm with specific attention to the data partitioning strategies, quan-
tization of gradients and erasure of gradients. We also emphasized to analyze the
impact of different network topologies on these metrics.

Tools and Libraries: The implementation leverages PyTorch, a popular deep learning
library for dataset pre-processing, model definition, training, gradients synchroniza-
tion and evaluation. Communication between clients during distributed training is
managed using MPI (Message Passing Interface) through PyTorchs torch.distributed
package. This setup allows for efficient communication and synchronization across
multiple clients participating in the federated learning process.

Quantization Type: The implemented code utilizes uniform quantization of gra-
dient values during the synchronization phase. This process involves scaling the
gradients using a fixed scaling factor based on the number of quantization bits spec-
ified (e.g.,1,2 4, 8, 16 bits). The scaled gradients are then rounded to the nearest
integer and clamped within a specified range, ensuring that the quantization process
is both efficient and effective in reducing communication overhead. The quantization
applied in our framework is specifically during the gradient synchronization phase
after the training process. This means that while the model weights are updated in
floating-point precision, the gradients communicated between clients are quantized.
This form of gradient quantization helps in reducing the bandwidth required for
gradient exchange without significantly impacting the model’s performance.

Erasure: We have simulated the occurrence of data loss during communication by
inducing erasure based on a probability factor. This probability represents the likeli-
hood that the gradients (model updates) from client nodes will be lost or corrupted
before they reach the server. During each communication round, a random number
is generated and compared against the probability factor. If the random number
falls within the probability range, the gradient is erased (not sent), simulating a
failed transmission. This approach is done to simulate a real time scenario where

28

where communication channels are unreliable, such as in networks experiencing high
traffic congestion, poor signal strength, or intermittent connectivity.

Network Topology: Different topologies were considered for our implemetation of
FedAVg and push-pull (star,Fully-connected,peer to peer, circular) and their impacts
on the performance metrics of interest, such as convergence time, communication
time, and accuracy.

3.1.1 Implementation
3.1.1.1 Architecture of High Performance Computing Cluster:

HPC system consists of Intel Xeon Gold 6130 and Intel Xeon Gold 6338 cores with
few NVIDIA GPU cards. It also has a central storage system, a slurm scheduler
and a login node. All these components are inter-connected through Infiniband and
ethernet. The cluster is accessed through login node through which we can transfer
input files to cluster, prepare batch scripts and send slurm script to scheduler. The
scheduler then allocates the resources and starts the script on compute nodes.

Steps to schedule model training in HPC system:
First we login to cluster through the login node and prepare a slurm batch script and
a python script for training the model. The slurm script specifies the resource needed,
including the number of cores, CPU, GPU, wall time and memory . Once submitted,
the job is placed in a queue, ordered by priority. Job starts when requested resources
are available and then the automatic environment variables inform MPI to run the
job. There is also a temporary directory available within each node which can be
used during file I/O operations, however this directory is cleaned immediately when
the job ends or fails or crashes. For this thesis we have considered nodes Node 1,4
and Tasks 8,16,24. Nodes in an HPC cluster are individual compute units with their
own CPUs, memory, and sometimes GPUs.

In this study, we used Node 1 and Node 4 to explore the scalability of our model
training. By using different nodes, we tested how the distributed training algorithms
(FedAvg and push-pull) scale when moving from a single node (Node 1) to multiple
nodes (Node 4). This helps in understanding the performance impacts of scaling
across nodes and how well the communication and computation distribute when
using more hardware resources.

In this context, tasks refer to the number of clients or processes involved in dis-
tributed training protocols like FedAvg and push-pull. Each task can be viewed as
a different client in a federated learning setup or a separate process in a parallel
computing environment.
Each task in FedAvg represents a client that trains separately on local data be-
fore communicating updates to a central server for aggregate. The number of tasks
(8, 16, 24) represents the number of clients involved in the federated learning system.

Push-Pull uses tasks to represent clients or processes that connect directly with one

29

another to exchange gradients or model updates, rather than a centralized server.
Increasing the number of tasks examines the communication protocol’s ability to
manage larger, more complicated interactions.

Data pre-processing:
In this thesis we have used MNIST and CIFAR-10 dataset. MNIST: A dataset of
grayscale images containing 60,000 training samples and 10,000 test samples. Each
image represents a handwritten digit (0-9). CIFAR-10: A dataset of RGB images
containing 60,000 samples split into 50,000 training samples and 10,000 test samples.
It consists of 10 different classes such as airplanes, cars, birds, etc.
Once the scheduler allocates the requested resources (nodes and tasks as specified
in the SLURM batch script), the job is sent to the compute nodes. The job script is
replicated on other nodes as per the SLURM configuration, allowing independent ex-
ecution on each computing node. Each Python script is executed independently on
its computing node while the communication between nodes is established through
MPI (Message Passing Interface). MPI ensures seamless data exchange, synchro-
nization, and coordination between the nodes during training. The Python script
initially downloads the dataset (MNIST or CIFAR-10) to a central storage location
accessible by all nodes. The dataset is divided according to predefined classes, trans-
forming each data sample into tensor format suitable for neural network training.
From the 60,000 samples/images of data, 10,000 images are reserved for testing.
These test samples are not exposed to the model during training, ensuring unbiased
evaluation. MNIST datsets, images are grayscale, whereas CIFAR-10 datastes im-
ages are RGB, requiring different preprocessing steps for image normalization and
data augmentation depending on the dataset type.

Data Distribution Across Nodes:
Each computing node receives a unique subset of the dataset using the Distributed-
Sampler, which ensures that the data is randomly and identically distributed across
all nodes (IID). This means that each node gets a balanced portion of the data that
reflects the overall dataset distribution.
In our implementation, the data across nodes is IID because each node’s data subset
is randomly sampled and contains a similar distribution of classes and features as the
entire dataset. This arrangement differs from real-world federated learning scenarios,
in which data is frequently non-IID due to client-specific features. To achieve this
IID distribution, we employed a data partitioning strategy that involves shuffling the
dataset before dividing it among clients. The use of the PyTorch DistributedSam-
pler with shuffle=True ensures that each client receives a randomly selected subset
of the data, maintaining the IID property. The IID sampling approach employed
in this implementation ensures that each node processes statistically similar data,
resulting in a controlled environment for evaluating distributed training without the
additional complication of non-IID data, serving as a baseline for assessing the per-
formance of the federated learning model under ideal data distribution conditions.

CNN Model :
The model considered for training is a 2 convolution layered CNN model with num-

30

ber of classes as per the dataset used. The dataset and the model is loaded into
the computing node then the image samples are passed through each layers of the
model which generates the loss. This step is iterated through all the image samples
available to each node. An Epoch is defined as an iteration where the model has
trained through complete dataset once without repeating. The model is then trained
some few epochs, after few epochs we have the upadated model parameters at each
computing node. At this point the nodes need to exchange the model parameters
to update the model and in order to achieve this MPI calls are used to send the
gradients from all the nodes to a single node to avergae the gradients and update
the model. Since we have used a star topology for node placements, the central node
requests the gradient from all the participating nodes, averages the gradients and
updates the model by sharing the new gradients to all nodes including itself. This
procedure of training the model for few epochs, gradient averaging, model update
and then training again keeps reducing the loss indicating the model is learning
effectively and improving its ability to recognise the images. After a certain point
the loss does not reduce significantly indicating the model is converged and no addi-
tional improvement can be achieved so we stop the training and log the evaluation
metrics for further evaluation.

Testing the model:
Once the model is trained, it is tested for its performance using the image samples
which were not used during the training step. By doing this we evaluate the perfor-
mance of model with a separate set of dataset. The purpose here is to assess how
the model works with unseen images providing a correlation to its real world per-
formance. If the model performance good on training images but does not perform
well on testing images it means model is Overfitting where model has learned the
images but not the underlying generalised information. Similarly if the model per-
forms poorly on both training and test images , it indicates underfitting signifying
model is simple for dataset used.

3.2 Results
This section provides a detailed analysis of the experimental results obtained from
applying different quantization levels, erasure and network topologies to the FedAvg
and Push-Pull algorithm on the MNIST and CIFAR-10 datasets.
The FedAvg algorithm was implemented using a star topology, where a central server
aggregates the model updates from all clients, making it the default approach in cen-
tralized federated learning setups.
On the other hand, the Push-Pull algorithm, typically used in distributed optimiza-
tion, was applied in a peer to peer connected topology, where each client directly
communicates with others in a peer-to-peer network. In this setup, the Push-Pull
algorithm facilitates a decentralized learning process, allowing clients to collabora-
tively train a model without a central server. Both algorithms were analyzed under
various quantization levels to assess their performance on the MNIST and CIFAR-10
datasets.
The quantization method used here is uniform quantization, which scales the gradi-

31

ent values to a fixed range based on the number of bits and then rounds them to
the nearest integer. The quantization for 1-bit gradients is a special case, using the
sign function.
The metrics considered for evaluation are defined in section 3.1 .

3.2.1 Analysis of Quantization Impact on FedAvg
3.2.1.1 Accuracy

For the MNIST dataset, the accuracy remains high across all quantization levels,
with a slight decrease observed at 1-bit quantization. Specifically, the accuracy
decreases from 98.42% with no quantization to 97.25% with 1-bit quantization due
to reduction in precision which introduces noise. The accuracy stabilizes around
98% for higher bit quantization levels (2-bit, 4-bit, 8-bit, and 16-bit), indicating the
robustness of the model to quantization.
For the CIFAR-10 dataset, The accuracy of the model slightly decreases as the
quantization level decreases. The accuracy drops from 80% with no quantization to
77.56% with 1-bit quantization, indicating a minor loss of precision. However, the
accuracy stabilizes around 79-80% for higher bit quantization levels. This behavior
is expected as lower bit quantization introduces more approximation errors, but
higher bit levels maintain sufficient precision to preserve model performance.
While both datasets exhibit a drop in accuracy at the lowest bit level, the difference
in the behavior of accuracy drop is due to the complexity of the datasets, the nature
of the images, and the model’s sensitivity to quantization noise. However, the
accuracy stabilizes at higher bit levels, demonstrating that quantization can be
applied effectively with minimal loss of performance, especially at bit levels that
strike a balance between precision and efficiency.

3.2.1.2 Average communication Time

The average communication time for MNIST datasets decreases significantly with
lower bit quantization levels. The communication time reduces from 943.60 seconds
with no quantization to 553.38 seconds with 1-bit quantization, representing a re-
duction of approximately 41.36%. As we increase the bit width, the communication
time gradually increases, achieving 714.19 seconds with 2-bit quantization (24.33%
), 718.66 seconds with 4-bit quantization (23.82% reduction), 816.75 seconds with
8-bit quantization (13.44% reduction), and 806.25 seconds with 16-bit quantization
(14.56% reduction).
The average communication time for CIFAR-10 dataset generally decreases with
lower bit quantization levels. The communication time reduces from 8591.18 sec-
onds with no quantization to 7541.56 seconds with 1-bit quantization, representing
a reduction of approximately 12.22%. However, it’s noteworthy that the 1-bit quan-
tization does not achieve the lowest communication time among all levels. As we
increase the bit width, the communication time further reduces, achieving 7236.27
seconds with 2-bit quantization (15.79% reduction), 7513.10 seconds with 4-bit quan-
tization (12.55% reduction), 7518.80 seconds with 8-bit quantization (12.50% reduc-
tion), and 7737.53 seconds with 16-bit quantization (9.92% reduction).

32

The slightly higher communication time observed with 1-bit quantization CIFAR-
10, compared to 2-bit, may be attributed to the computational overhead associated
with quantizing and dequantizing the model parameters at such a low bit-width.
The process of handling these very small data packets might introduce inefficiencies
that offset some of the gains from reduced data volume. Additionally, network and
implementation specifics, such as error handling and retransmissions due to quanti-
zation noise, could also play a role.These insights are supported by findings in related
works such as [47] who highlighted the trade-offs involved in gradient compression
methods like signSGD, where reducing data volume can sometimes introduce inef-
ficiencies that counterbalance the gains and [48] which discuss the challenges and
overheads associated with low-bit quantization.Communication time reduction was
more significant for MNIST due to its simpler nature, while CIFAR-10’s complexity
introduced overhead at 1-bit quantization.
In large-scale federated learning deployments, even small percentage gains can lead
to significant absolute time savings. The results demonstrate that using lower
bit quantization levels can substantially improve communication efficiency without
severely compromising the models performance. These findings underscore the prac-
tical benefits of quantization in enhancing communication efficiency in federated
learning, validating our approach and encouraging further research into optimal
quantization levels for various distributed learning scenarios.

3.2.1.3 Execution Time

Execution time is indeed a crucial metric for assessing the efficiency of machine
learning models.The data clearly shows that execution times are typically reduced
by lower quantization levels, most likely as a result of the decreased computational
needs of handling smaller numerical representations.
The execution time shows a decreasing trend with lower bit quantization for both the
MNIST and CIFAR-10 datasets. For MNIST, it reduces from 103.67 minutes with-
out quantization to 98.57 minutes with 1-bit quantization. For CIFAR-10, the time
drops from 585.22 minutes without quantization to 518.04 minutes with 2-bit quan-
tization. However, the 1-bit quantization for CIFAR-10 results in a relatively higher
execution time due to the need for more communication rounds to compensate for
reduced gradient precision in this complex dataset. Despite some variation at higher
bit levels, the overall reduction in execution time demonstrates the computational
efficiency gained through quantization.

3.2.1.4 Average Convergence Time and Convergence Loop

Convergence time tends to decrease slightly with lower quantization levels, but the
differences are less pronounced compared to communication time. Both datasets
show similar convergence time patterns, with MNIST converging faster due to its
simplicity, while CIFAR-10 requires more time due to its complexity. The conver-
gence loop, represented by the number of FedAvg loops, indicates the number of
communication rounds required for the model to converge to a stable state.
Quantization, reduces the precision of the model updates sent from clients to the
server, can introduce noise and affect the convergence rate. Lower bit quantization

33

(e.g.1-bit) can significantly slow down convergence due to the high noise in gradient
updates. However, studies [49] have shown that with careful design, such as using
higher bit quantization or adjusting the learning rate, the convergence rate can be
improved and made comparable to full precision .
The difference in convergence behavior between datasets such as CIFAR-10 and
MNIST is primarily due to the complexity of the datasets. CIFAR-10, with its col-
ored images and intricate features, tends to have a slower convergence rate compared
to the simpler grayscale digit images in MNIST. The sensitivity to quantization noise
is higher in CIFAR-10 due to its complex feature space, leading to more pronounced
impacts on convergence.
The convergence loop for CIFAR-10 dataset remains relatively stable across different
quantization levels, with minor variations. The convergence rate is 20 FedAvg loops
for no quantization and increases slightly to 21 loops for 1-bit and 2-bit quantiza-
tion, then stabilizes at 19 loops for higher bit levels. This stability indicates that
the FedAvg algorithm can handle quantization noise without significantly affecting
the convergence loop. In contrast, for MNIST dataset, being less complex, shows
greater resilience to quantization noise. The convergence rate for MNIST remains
stable, requiring 9 FedAvg loops without quantization, slightly increasing to 11 loops
with 1-bit quantization, and stabilizing at 10 loops for higher bit levels.
The convergence loop analysis highlights the trade-off between quantization level and
algorithm performance. While lower-bit quantization can lead to minor increases
in convergence loops, the benefits in communication efficiency and execution time
often outweigh these costs. These findings emphasize the importance of selecting
appropriate quantization levels to balance communication overhead with conver-
gence performance, particularly in federated learning scenarios where communica-
tion costs are a significant consideration. Future research should focus on adaptive
quantization strategies that dynamically adjust bit-widths to optimize convergence
rates based on dataset complexity and network conditions. The quantization bits
and their effects on metrics shown in figure 3.1. Quantization effectively reduced
communication time and execution time without severely impacting accuracy or con-
vergence. While lower bit quantization generally improved efficiency, the optimal
bit level might vary based on specific dataset and model characteristics.

3.2.2 Analysis of Quantization Impact on Pushpull

3.2.2.1 Accuracy

The MNIST and CIFAR-10 datasets were examined through a push-pull method
(peer-to-peer) with varying levels of quantization and configurations, including 8
clients and no quantization. Accuracy for the MNIST dataset rose from 76.35%
using 1-bit quantization to 97.62% with 8-bit quantization, then decreased to 97.14%
with 16-bit quantization. The configuration of 8 clients and absence of quantization
resulted in the top accuracy of 98%. Accuracy for the CIFAR-10 dataset increased
from 79% using 1-bit to 82% with 4-bit quantization and stayed consistent up to
16-bit quantization, with no quantization achieving above 82%.

34

Figure 3.1: Impact of Quantization Levels on Accuracy, Communication Time, Con-
vergence Time, and Convergence Rate for MNIST and CIFAR-10 Datasets. The
leftmost subplot compares the accuracy percentages of the datasets across different
quantization levels. The second subplot shows the communication time in seconds,
highlighting the efficiency of data transfer. The third subplot presents the conver-
gence time in seconds, reflecting the overall time required for the models to converge
during training. The rightmost subplot shows the convergence rate, measured in Fe-
dAvg loops, indicating the number of communication rounds required for the model
to converge to a stable state.

3.2.2.2 Average communication Time

In this paper [40],consider the unconstrained distributed optimization problem, in
which the exchange of information in the network is captured by a directed graph
topology, thus, nodes can only communicate with their neighbors. Additionally, in
our problem, the communication channels among the nodes have limited bandwidth.
In order to alleviate this limitation, quantized messages should be exchanged among
the nodes. For solving this distributed optimization problem, we combine a gradient
descent method with a distributed quantized consensus algorithm (which requires
the nodes to exchange quantized messages and converges in a finite number of steps).
Specifically, at every optimization step, each node (i) performs a gradient descent
step (i.e., subtracts the scaled gradient from its current estimate), and (ii) performs
a finite-time calculation of the quantized average of every nodes estimate in the
network.
In Koloskova et al. (2019), the authors present a gossip-based stochastic gradient
descent algorithm, which utilizes arbitrary compressed messages and exhibits lin-
ear convergence.The main idea of quantization in this paper is that nodes transmit
a compressed value (i.e., quantized) of their stored information as they require a
few bits for representation compared to the non-compressed ones (i.e., real values)
which in theory require an infinite number of bits. For this reason, communication-
efficient distributed optimization has received significant attention recently in the
control and machine learning communities.
As a result, the impact of quantization on push pull algorithm for MNIST dataset
is that the communication times for no quantization is 917.97 seconds. Neverthe-
less, the transmission latency fluctuates significantly depending on the number of
quantization bits employed. By using 1-bit quantization, the communication time is
reduced significantly to 141.67 seconds. The notable decrease can be attributed to

35

the acceleration of communication time with 1-bit quantization, which reduces the
amount of data exchanged among peers. Nonetheless, the time for communication
sharply increases to 1118.22 seconds when the quantization bit count is raised to
2-bit. The sudden increase suggests that the benefits of smaller data sets are less
important than the challenge of managing slightly more accurate quantization. The
durations for communication when quantizing with 4 bits, 8 bits, and 16 bits are as
follows: 584.68 seconds, 384.22 seconds, and 688.08 seconds, respectively.
The varying levels of quantization present a different perspective on the communi-
cation times for the CIFAR-10 dataset. The duration of communication is 5380.20
seconds, much longer when not quantized. While not as dramatic, quantization
boosts communication times in the MNIST dataset, as seen. The communication
time decreases to 5132.59 seconds when using 1-bit quantization and for varying
quantization bit: 2, 4, 8, and 16. The communication times vary: 5310.19, 5332.63,
5432.17 and 5459.84 seconds.
As the number of quantization bits increases (2, 4, 8, 16 bits), communication
time gradually increases from 5310.19 seconds to 5459.84 seconds for CIFAR10 and
MNIST from 141.67 to 688.08 seconds . Although higher-bit quantization provides
more accurate data precision, it increases the data size and introduces additional
computational overhead, leading to longer communication times.

3.2.2.3 Average convergence time and convergence loop

The impact of different quantization levels on the convergence times of machine learn-
ing models trained with a push-pull strategy on the MNIST and CIFAR10 datasets.
The original convergence time of the MNIST dataset without quantization is 1147.62
seconds. By implementing 1-bit quantization, the time is significantly shortened to
944.89 seconds, indicating a substantial enhancement as a result of the extensive
data compression, enabling faster communication. Yet, increasing the quantization
to 2 bits results in a substantial increase in convergence time to 2118.91 seconds,
showing a less effective trade-off between communication efficiency and accuracy of
quantized values. Convergence times for quantization with 4 bits, 8 bits, and 16 bits
are 1498.69 seconds, 1507.58 seconds, and 1423.52 seconds, showing varying levels
of efficiency compared to each other and the baseline.
The CIFAR10 dataset has a baseline convergence time of 19249.72 seconds when
no quantization is applied. With 1-bit quantization, there is an improvement seen
as the convergence time decreases to 18725.38 seconds.With convergence lengths of
18935.39 and 18925.96 seconds, respectively, the 2-bit and 4-bit quantisation levels
are marginally longer than the baseline but shorter than the 1-bit quantisation time.
The convergence times for the 8-bit and 16-bit quantisation levels are 19165.05 sec-
onds and 19146.30 seconds, respectively.

Our study investigated the impact of quantization in distributed machine learning
contexts, specifically how different quantization levels and network structures affect
the number of convergence loops needed when dealing with datasets such as MNIST
and CIFAR-10. For instance, the comparison of a push-pull (peer-to-peer) quan-
tization approach in a distributed machine learning scenario revealed that varying
the number of quantization bits, which dictate data transmission accuracy, does

36

not significantly affect the convergence loops. Specifically, for the MNIST dataset,
quantization levels ranging from 1 to 16 bits resulted in a consistent convergence
rate of 8 loops, only slightly lower than the 9 loops observed for a non-quantized
configuration. Similarly, the CIFAR-10 dataset exhibited a convergence rate of 17
loops with 16-bit quantization, just below the 18 loops seen in full-precision setups.
These findings suggest that decreasing data precision through quantization can effec-
tively reduce transmission costs without significantly impacting convergence speed,
aligning with the efficiency goals seen in the earlier works by Pu et al. and Xin and
Khan[40][50] .Ansd also with Basu et al. (2019), the authors present a distributed
optimization algorithm which combines aggressive sparsification with quantization.
The algorithm keeps track of the difference between the true and compressed gradi-
ents, and converges with equal convergence rate as its non-quantized version.

3.2.2.4 Execution Time

The recorded time it takes to complete different levels of quantization demonstrates
the balance between smaller data size and the additional computational work in-
volved in the quantization process. When data is not quantized, it remains at its
full precision, causing slower execution times because of the high communication
overhead needed to transmit and process all the information. Utilizing 1-bit quanti-
zation leads to a dramatic reduction in data size, leading to quicker communication
and shorter execution times, as seen in both the MNIST and CIFAR10 datasets.
Yet, as the quantization bits go up to 2, 4, 8, and 16 bits, the execution times start
to rise. This 3.2 displays how execution time benefits from reduced data size with
low-bit quantization, but as quantization levels increase, performance gains decrease
due to higher computational and communication overhead.

Figure 3.2: Impact of Quantization Levels on Accuracy, Communication Time, and
Convergence Time for MNIST and CIFAR-10 Datasets. The left subplot compares
the accuracy percentages of the datasets across different quantization levels, indi-
cating the effect on model performance. The middle subplot shows the communica-
tion time in seconds, highlighting the efficiency of data transfer. The right subplot
presents the convergence time in seconds, reflecting the overall time required for the
models to converge during training.

37

3.2.3 Analysis of Erasure Impact on FedAvg
The results obtained from the experiments with both the MNIST and CIFAR-10
datasets, conducted under conditions of packet erasure, reveal several important in-
sights.
For the MNIST dataset, the slight decrease in accuracy from 98.42% (baseline) to
98.07% under a 0.4 erasure rate. Similarly for CIFAR-10, accuracy decreased slightly
from 80% (baseline) to 79.63% with 0.4 erasure rate, indicates that while erasures
do impact the learning process, the system remains relatively robust even with some
data loss. This minimal accuracy drop suggests that the overall learning process can
tolerate some degree of erasure without significant degradation, as highlighted by
[44]. The paper also discusses how federated learning algorithms can maintain con-
vergence and accuracy despite communication errors, which aligns with the stability
observed in our results.
Furthermore, the decrease in communication time observed in both datasets-from
943.605 seconds to 558.79 seconds for MNIST and from 8,591.18 seconds to 6,183.78
seconds for CIFAR-10, despite the presence of erasures, also aligns with the paper’s
findings that communication overhead can be reduced in such scenarios. However,
as [44] notes, this reduction in communication time does not necessarily lead to a
more efficient system overall. As seen in our results, for instance, convergence time
increased from 3,109.45 seconds to 4,063.81 seconds for MNIST and from 22,383.83
seconds to 24,622.21 seconds for CIFAR-10, while convergence loops increased from
9 to approximately 12 for MNIST and from 20 to 22 for CIFAR-10. Additionally,
we observed a slight decrease in accuracy across both datasets. This increase in
convergence time and loops is due to erasures as it leads to missing client updates,
which requires more rounds to compensate for missing updates and achieve stable
accuracy

Figure 3.3: Impact of Erasure on Accuracy, Communication Time, Convergence
Time and loop for MNIST and CIFAR10.

3.2.4 Analysis of Erasure Impact on Pushpull
The goal of the erasure technique is to address potential data loss commonly ob-
served in distributed systems with unreliable node connectivity, enhancing the re-
silience and fault tolerance of the system. Nevertheless, this strength is accompa-
nied by specific processing costs and a slight decrease in accuracy. When using
the MNIST dataset, the erasure technique slightly decreases accuracy (from 98% to

38

97.09%) but also significantly increases convergence time (from 1147.62 seconds to
2355.42 seconds). The increased time for convergence is probably because of the
extra processing needed to compensate for possible packet loss, guaranteeing the
model’s resilience in case of data loss during transmission. In spite of the extended
convergence time, this approach manages to enhance communication time slightly
(from 917.97 seconds to 847.72 seconds) and reduce total execution time (from 4093
seconds to 3256 seconds). This demonstrates the model’s ability to successfully ad-
dress and minimize the impact of missing packets without causing notable delays in
the training procedure. The increase in convergence rate (from 9 to 10) means that
the model will need additional iterations to stabilize because the erasure process
adds complexity in handling data loss.
Likewise, on the CIFAR-10 dataset, erasure technique led to a notable decrease in
accuracy (from 82% to 80%), as a result of the data’s higher complexity and dimen-
sionality. The time taken for convergence significantly rises (from 19249.72 seconds
to 193045.10 seconds), showing the increased computational burden of managing
packet loss in a more intricate dataset. However, the communication time slightly
enhances (from 5380.20 seconds to 5158.98 seconds) while the execution time de-
creases (from 25433 seconds to 23279 seconds), showing that the model still profits
from training efficiency enhancements. The convergence loop saw a slight rise, go-
ing from 18 to 19, emphasizing the extra work needed for achieving stable model
performance with the erasure technique.
The study highlights that while communication losses can reduce immediate com-
munication time, they impose a longer-term penalty on convergence loop and time
and accuracy, particularly when the erasure is applied.

Figure 3.4: The figure illustrates the performance differences between the baseline
and erasure methods in a peer-to-peer quantization strategy for both MNIST and
CIFAR-10 datasets, particularly in managing missing packets or data loss

3.2.5 Communication Topologies

Understanding communication topologies is crucial in the design of distributed sys-
tems, particularly in the implementation of Federated Averaging (FedAvg) and Push-
Pull mechanisms. This section explores various communication topologies and how
FedAvg and Push-Pull can be integrated effectively.

39

3.2.5.1 Topology in FedAVg

FedAvg is centralized setup(star topology), Involves a central server that aggregates
model updates from all clients. Clients communicate directly with the central server.
Additionally, this centralized approach has a significant vulnerability: the central
server acts as a single point of failure, making the system more susceptible to com-
munication disruptions.
whereas in decentralized FeadAvg (FC), clients communicate directly with each
other, forming a peer-to-peer network without a central server. Communication
overhead is more in centralized FedAvg (star) due to frequent and direct commu-
nication between clients and server but communication overhead in decentarlized
setup is less compared to centralized due to communication is distributed among
client, reducing the overall load on any single node but possibly increasing the num-
ber of communications needed to reach consensus. The paper [51] primarily focuses
on decentralized setups(FC), it indirectly highlights how decentralized learning is
more resilient to communication issues compared to centralized approaches, where a
single point of failure (the central server) can be more vulnerable to communication
disruptions.
A intermediate approach between fully decentralized setups and centralized ones is
represented by a circular (or ring) architecture. Each client in this topology forms a
ring-like structure by communicating in a closed loop with its immediate neighbors.
By reducing the amount of direct connections that each client has, this technique
lowers communication overhead and more equally distributes the load throughout
the network. By eliminating the central server, it provides greater resilience than
centralized FedAvg; nevertheless, due to the possibility of information flow disrup-
tion from the failure of a single client or communication link, it is not as resilient as
fully connected decentralized configurations.
One example of the use of circular topology is the cyclic federated learning ap-
proach[52], which has been investigated in studies involving medical data. This
approach is especially suitable for situations where data security and privacy are
critical since it places a strong emphasis on knowledge distillation and distribution
of information. The circular topology’s regulated communication flow makes it eas-
ier to handle sensitive data while preserving the system’s resilience and effectiveness.

Figure 3.5: Figure presents a comparative analysis of three different algorithm
topologies (Star, Fully Connected (FC), and Circular) across two datasets, CIFAR-
10 and MNIST

40

The Figure 3.5 shows that, The accuracy remains consistent across different topolo-
gies (Star, Fully Connected (FC), and Circular)for both datasets However,the accu-
racy of decentralized FedAvg is slightly lower compared to the centralized approach.
Specifically, for CIFAR-10, decentralized FedAvg achieves 79.6% accuracy which is
0.5% lower compared to 80% in the centralized method, while for MNIST, the accu-
racy is 98.34% in the decentralized approach exhibiting a negligible 0.08% decrease
compared to 98.42% in the centralized one. This slight decrease in accuracy in the
decentralized method may be attributed to the lack of global aggregation, leading
to potential inconsistencies in updates across different parts of the network[51].
This suggests that topology selection has minimal impact on model accuracy. How-
ever, because FC allows direct client-to-client connection, it eliminates the central
server bottleneck and has a shorter communication time than the star topology.
Because of the central server bottleneck, the star topology experiences longer com-
munication and execution times, whereas the circular topologywhich distributes up-
dates in a ring-like fashion has intermediate communication and execution duration.
Notably, the Circular topology required more convergence loops, suggesting a less
efficient and sequential and dispersed communication pattern compared to FC and
Star.

3.2.5.2 Topology in Push-Pull

In a star-shaped network, agents communicate through a central hub, influencing
communication efficiency and information flow.The central hub is pivotal in dis-
tributing information and coordinating updates among the agents.
In a push-pull distributed machine learning framework, the central node plays a cru-
cial role in aggregating information from various base classifiers distributed across
different nodes. To enhance this aggregation process, In the central node, we train
a probabilistic model to aggregate the base classifiers. We investigate a model rely-
ing on conditional probabilities of classifier outputs given the true class of an input
(whose estimation can be decentralized without difficulty). These distributions are
used as building blocks to classify unseen examples as those maximizing class proba-
bilities given all classifiers outputs [53][54]]. The originality of our approach consists
in resorting to copula functions to obtain a relatively simple model of joint condi-
tional distributions of the local base classifier outputs given the true class.
In a master-worker architecture employing a star topology, one node acts as the
master (sometimes also called the fusion center), maintaining the authoritative copy
of the optimization variable. At each iteration, the master sends to every agent,
and each agent iii computes and returns to the master. The master then averages
the gradients it receives from all agents, and once it has received gradients from
every agent, it performs the gradient-descent update before proceeding to the next
iteration[2]. This architecture is relatively simple to implement and aligns with the
push-pull paradigm where the master node pushes the current state to all agents
and pulls the computed gradients from them.
The Star topology demonstrated the most efficient performance among the algo-
rithms. It achieved an accuracy of 98%, the fastest convergence time of 1338.52
seconds, the shortest communication time of 400.37 seconds, and the lowest execu-
tion time of 1760 seconds. This indicates that the Star topology not only ensures

41

high accuracy but also optimizes both communication and processing times, making
it the most effective choice in terms of overall efficiency.

A circular network topology creates a continuous loop for communication among
agents, impacting how information spreads and synchronization occurs. Consensus
algorithms adjust to this circular layout by utilizing interactions with neighboring
agents along the loop. Circular network topology is widely used in various network
designs, serving as an extension of the ring topology for implementing local area
networks. These networks, also known as distributed loop computer-networks, are
referenced in [55] [56]. A variant of the circular network topology, called Multi-Ring
topology, is employed to achieve high-performance group communication in peer-to-
peer networks. where nodes are connected to their immediate neighbors to form
a ring-like structure, the push-pull communication method enhances data transfer
efficiency. In the push phase, a node initiates the process by sending data to its
adjacent neighbors. These neighbors then forward the data to their own neighbors,
creating a ripple effect around the ring. This ensures that the data propagates
uniformly and efficiently across the network. Conversely, in the pull phase, a node
requests data from its neighbors, who either provide the data if they have it or
propagate the request further around the ring until the data is found and returned to
the requesting node. This method leverages the uniform distance between nodes in
a circular topology, ensuring balanced and reliable communication. By distributing
the communication load evenly and preventing any single node from becoming a
bottleneck, the push-pull method maintains high performance across the network.
For example, in a distributed file system utilizing this topology, nodes can efficiently
disseminate updates or retrieve files through coordinated push and pull operations,
ensuring all nodes are promptly informed or serviced.
The Circular topology, despite reaching a 98% accuracy like the other topologies,
displayed the lowest efficiency in terms of time metrics. Its convergence time was the
slowest at 1428.02 seconds while its communication time was the highest at 656.76
seconds. As a result, it took the longest time to execute, totaling 2106 seconds.
These findings indicate that while the Circular topology is accurate, it is the least
effective in terms of convergence, communication, and overall execution times.
In a fully connected network topology, every pair of agents can communicate di-
rectly with each other. Although this setup offers high communication efficiency,
algorithms need to address the challenges of managing elevated communication
overhead and potential redundancy in information exchange. We assume a fully
connected topology allowing each node to share its trained base classifier with every
other node as well as with a central node which will aggregate models. Local train-
ing phases do not have to be synchronized. Ensemble methods or multiple classifier
systems are good candidates to operate in such a form of decentralized learning. In-
deed, many such methods do not require that the base learners, i.e. those trained on
each local node, have to collaborate at training time [57]. The push-pull framework
can be effectively utilized to manage this decentralized learning process. In this
framework, each node independently trains its base classifier using its local data.
Once a node completes its training phase, it pushes its trained base classifier to all
other nodes and the central aggregator. Simultaneously, each node pulls the latest

42

base classifiers from other nodes, ensuring it has access to the most recent models
for ensemble learning.
The Fully connecte(FC) topology achieved 98% accuracy, however, it showed lower
efficiency compared to the other topologies. The convergence time was 1358.38 sec-
onds and had a relatively high communication time of 525.48 seconds, leading to
an overall execution time of 1915 seconds. Although its performance exceeds the
Circular topology, it is not as efficient as the Star topology because of its longer
communication time.
Randomly connected networks introduce diversity in communication paths and
neighbor connections. Algorithms need to adapt dynamically to these shifting net-
work structures to maintain resilience and flexibility in information exchange. To
reduce communication latency, the network topology of a parallel system should
have low diameter and low average shortest path length (ASPL)[58]. Random net-
work topologies have been proved to be useful for achieving low diameter and low
ASPL, making them advantageous for parallel systems. The communication latency
is a significant performance bottleneck for large parallel systems, which often have
hundreds of thousands of compute nodes. The latency in communicating across
such a large number of nodes can severely impact overall system performance. In
the push-pull communication model, where nodes alternately push data to and pull
data from their neighbors, the benefits of random topologies are particularly evident.
The inherent randomness ensures that the network maintains a low average shortest
path length and minimal contention, which is crucial for efficient data dissemination
and retrieval. This leads to a significant reduction in communication latency, ad-
dressing a critical bottleneck in large parallel systems. The Random topology had
equal 98% accuracy but varied performance in time metrics. The convergence time
totaled 1391.52 seconds while the communication time was 496.94 seconds. 1922
seconds were required for the Random topology to be executed. While it is more
effective than the Circular topology, the Mesh topology lags behind the Star topol-
ogy in efficiency due to longer convergence and communication duration.
Even though the CIFAR-10 dataset was more complex, the topologies still managed
to reach an accuracy of 76%, however their efficiencies varied. The Fully Connected
Topology was found to be the most effective, with a convergence time of 3765.42
seconds, communication time of 1089.59 seconds, and execution time of 25,044 sec-
onds. The Random Topology had a successful performance, achieving the shortest
communication time of 1075.47 seconds, but with a slightly longer convergence time
of 3839.52 seconds and an execution time of 25,361 seconds. The Circular Topology
showed a slight decrease in efficiency, with a convergence time of 3779.17 seconds,
a communication time of 1095.25 seconds, and an execution time of 25,146 seconds.
The Star Topology, which performed well in the MNIST dataset, faced challenges
with CIFAR-10, demonstrating a convergence time of 3848.04 seconds, communica-
tion time of 1169.61 seconds, and execution time of 25,904 seconds. This difference
highlights how the Star Topology, although optimal for basic tasks, is not as suitable
for intricate datasets, where the Fully Connected Topology excels. It was discovered
that the network topology had a greater impact on convergence speeds. Within the
MNIST dataset, different structured topologies like star, fully connected, and circu-
lar achieved a convergence rate of 8, surpassing the random topology’s rate of 7. In

43

the CIFAR-10 dataset, the fully connected topology achieves the fastest convergence
rate at 19, while the circular and star topologies follow closely behind at 18, and
the random topology at 17. These results emphasize the significance of selecting the
right network structure, which can greatly enhance training efficiency in distributed
machine learning systems, even when communication overhead is controlled through
quantization.

Figure 3.6: Comparison of Different Graph Topologies on Accuracy, Communication
Time, and Convergence Time for MNIST and CIFAR-10 Datasets. The left subplot
compares the accuracy percentages of the datasets across different graph topologies
(star, fully connected, circular, and random), indicating the effect on model perfor-
mance. The middle subplot shows the communication time in seconds, highlighting
the efficiency of data transfer. The right subplot presents the convergence time in
seconds, reflecting the overall time required for the models to converge during train-
ing

44

3.2.6 Analysis of Scalability in FEDAVG
Scalability is a important aspect of any distributed learning system, especially in
federated learning, where the number of participating clients might range from a
few to millions. As the system grows, it must effectively manage rising computing
and communication needs while preserving model performance. Scalability in fed-
erated learning refers to the ability to manage a rising number of clients without
significantly raising communication cost or degrading the model’s accuracy and con-
vergence speed.
As we scaled the number of clients, we observed a slight decrease in model accuracy,
especially in complex datasets like CIFAR-10. This issue discussed in [32] where
they suggest using resilient aggregation strategies like Byzantine-resilient secure ag-
gregation and adaptive algorithms for maintaining accuracy in federated learning as
system scales. Implementing such strategies may assist in preventing the accuracy
loss as the system scaled.

Our results indicate a significant increase in communication time as the number of
clients scales from 8 to 24, which aligns with the observations made by[32] regard-
ing the communication bottlenecks in federated learning. Specifically, in our scal-
ability experiments, communication time increased substantially, highlighting the
challenges of scaling federated learning systems. For instance, communication time
for the MNIST dataset increased from 696.81 seconds with 8 clients to 1,872.89
seconds with 24 clients. Similarly, on the CIFAR-10 dataset, the communication
time increased from 8,591.18 seconds to 9,284.62 seconds under the same conditions.
To address the communication bottleneck in a different context, we experimented
with gradient quantization techniques, however this was applied only in the scenario
of Node 1, Task 8. In this isolated test, quantization led to a decrease in commu-
nication time, demonstrating its potential to alleviate some of the communication
burdens. However, since this quantization experiment was not conducted across
all scalability scenarios, further investigation is needed to understand its broader
impact when scaling the number of clients. These separate experimental paths un-
derscore the importance of integrating communication-efficient techniques, such as
quantization into broader scalability strategies to fully assess their effectiveness in
large-scale federated learning deployments.
Convergence behavior of federated learning system as the number of clients increased
from 8 to 24, the convergence time tended to decrease, with the average convergence
time for the MNIST dataset dropping from 3,828.43 seconds with 8 clients to 1,957.81
seconds with 24 clients. This trend was accompanied by an increase in the number
of convergence loops required to achieve stability, with the convergence loops in-
creasing from 9 to 13.74 as the number of clients grew. For the CIFAR-10 dataset,
while a similar pattern of decreased convergence time was observed, with decrease
in time from 24,383.83 seconds with 8 clients to 11,891.45 seconds with 24 clients,
the number of convergence loops also increased, rising from 20 to approximately
20 as the number of clients scaled. This suggests that while the system converges
faster overall, it requires more loops to reach a stable global model as more clients
contribute to the training process. Interestingly, this increase of convergence loops
did not necessarily correspond with higher model accuracy, especially in the more

45

complicated CIFAR-10 dataset, where accuracy declined as the number of clients
grew, despite the faster convergence time. These findings align with the observations
made by [32], discussed that while increasing the number of clients can sometimes
accelerate convergence, it can also introduce challenges related to model accuracy
and data heterogeneity. Our experiments underscore the importance of carefully
balancing the number of local updates, the frequency of communication, and the
convergence loops to ensure that convergence is achieved without sacrificing model
performance.

Figure 3.7: Scalability analysis of MNIST and CIFAR-10 datasets showing the im-
pact of increasing clients on accuracy, convergence time, communication time, and
convergence loops.

3.2.7 Analysis of Scalability on Push-pull
The scalability properties of hybrid protocols like PoP (Push-or-Pull) and PaP
(Push-and-Pull) are notably superior to those of singular approaches like Pull or
Push. As highlighted in the study, the protocol PoPoPaP, which intelligently selects
among Push, Pull, or PaP based on context, exemplifies this adaptability. This
dynamic selection ensures optimal performance across all critical dimensions: re-
siliency, temporal coherency, and scalability[59]. Building on this understanding,
my results from distributed computing experiments further illustrate these princi-
ples. Commencing with the MNIST dataseta benchmark comprising 70,000 28x28
grayscale images of handwritten digitsthe scaling outcomes underscore the efficacy of
distributed computing. In configurations such as N1T8, N1T16, and N1T24 (where
’N1’ denotes a single node and ’T’ the number of tasks per node), the model consis-
tently achieves 98% accuracy. This uniformity, irrespective of task or node count,
underscores MNIST’s scalability owing to its inherent simplicity. Moreover, increas-
ing tasks per node accelerates training by reducing convergence and execution times.
Even as scaling extends to multiple nodes (N4 configurations), minor increases in
execution time due to inter-node communication are offset by enhanced convergence
rates, culminating in optimal model performance. Notably, the N4T8 setup attains
a peak accuracy of 99%, albeit with a marginally extended execution duration.
The CIFAR-10 dataset, with its 60,000 32x32 colour images spanning ten categories,
poses a more complicated problem. This complexity is reflected in slightly dimin-
ished accuracy rates and prolonged convergence and execution times. Single-node

46

configurations like N1T8, N1T16, and N1T24 witness accuracies ranging from 79%
to 82%, with a slight dip as tasks increase. Nonetheless, akin to MNIST, augmenting
tasks per node expedites training. However, scaling across multiple nodes introduces
pronounced communication overheads, leading to increased execution times. For in-
stance, the N4T24 configuration, entailing four nodes with 24 tasks each, experiences
a significant execution time surge compared to single-node setups. Despite this, the
model’s pace in achieving its final accuracy accelerates with added nodes, even if
overall training duration extends.
In conclusion, MNIST scales efficiently due to its simplicity, maintaining high ac-
curacy and faster convergence with more resources. In contrast, CIFAR-10’s com-
plexity leads to trade-offs, where added nodes and tasks improve convergence but
increase communication overhead and execution time, highlighting the need to bal-
ance computational power and efficiency.

Figure 3.8: Scalability analysis of MNIST and CIFAR-10 datasets showing the im-
pact of increasing tasks on accuracy, convergence time, communication time, and
convergence loops. The plots compare the performance metrics across 8, 16, and 24
tasks for both datasets, highlighting the trade-offs between accuracy and computa-
tional resources

47

4
Conclusion and Discussion

4.1 Discussion

The findings in this thesis show how communication imperfections, like quantization
and erasure, affect distributed optimization algorithms such as Federated Averaging
(FedAvg) and Push-Pull. The study shows that the algorithms’ effectiveness is
greatly impacted by the extent of quantization and the likelihood of erasure, despite
their ability to uphold accuracy and timely convergence.

For example, the studies show that decreasing the number of bits in quantization
can help decrease communication costs, but it also adds noise that slightly reduces
accuracy and leads to more convergence iterations. This can be seen clearly in the
CIFAR-10 dataset, as the intricate data format increases the vulnerability of the
model to quantization noise. Nevertheless, the trade-off is frequently offset by the
advantages in communication effectiveness, particularly in situations with limited
resources where minimizing transmitted data is essential. This is consistent with
research, like the study by [32], which indicates that methods that prioritize efficient
communication, such as quantization, are crucial for expanding federated learning
systems, despite the possible effects on model accuracy.

Likewise, the effects of removal indicate that while these algorithms can handle a
certain amount of data loss, there is a significant rise in convergence time and a
small drop in accuracy, especially when dealing with more intricate datasets such
as CIFAR-10. This implies that although FedAvg and Push-Pull can handle small
communication failures well, their effectiveness decreases when there are frequent or
severe losses of data. The findings show that Push-Pull, with its decentralized for-
mat, is somewhat more resistant to deletion than FedAvg, which heavily depends on
consolidating updates at a central server. Push-Pull is a better option in situations
with unreliable communication due to its resilience.

These findings underscore the need for adaptive strategies that can dynamically
adjust quantization levels and employ robust error correction methods to mitigate
the adverse effects of communication imperfections. For instance, implementing
adaptive quantization schemes that adjust the bit rate based on network conditions,
or integrating advanced error correction codes, could enhance the robustness of these
algorithms without significantly increasing communication overhead. Future work
could explore these adaptive techniques in greater depth, potentially combining them

48

with hybrid network topologies that optimize the trade-offs between communication
efficiency, convergence speed, and model accuracy.

4.2 Conclusion
This thesis examined how different network structures and communication methods
affect the effectiveness and expandability of distributed learning systems, specifically
in the realm of Federated Learning. The results show that the structure of the net-
work is crucial in deciding how well distributed learning systems perform, affecting
both the time it takes to reach a solution and how efficiently they communicate. The
Fully Connected (FC) and Random topologies showed high accuracy but were less
efficient with longer convergence and communication times compared to the Star
topology, which balanced efficiency and accuracy among the studied topologies.

Moreover, the study on scalability pointed out the obstacles in scaling up federated
learning systems to support a larger client base. As the system grows, communi-
cation slowdowns become more noticeable, especially with intricate datasets such
as CIFAR-10. While gradient quantization has displayed potential in lowering com-
munication delays, more research is necessary to understand its impact in various
situations. The necessity for adaptive strategies that can dynamically optimize ac-
curacy, convergence time, and communication overhead becomes apparent as the
system grows in size, highlighting the trade-offs involved.

The thesis also explored how distributed learning algorithms like FedAvg and Push-
Pull are resilient to communication imperfections, such as quantization noise and
data erasure. Although these algorithms stay strong to some extent, their effective-
ness decreases in harsher conditions, especially when dealing with complex datasets.
The decentralized structure of Push-Pull provides increased resilience, making it a
better option for settings with unreliable communication.

Ultimately, the study highlights the significance of choosing suitable network struc-
tures and communication tactics to enhance the effectiveness of distributed learning
systems. Adaptive techniques that can adjust to changing network conditions and
data complexities will be crucial as these systems grow in size. Future research
should concentrate on creating and combining these flexible approaches to improve
the strength, effectiveness, and expandability of federated learning systems in vari-
ous and demanding settings.

49

Bibliography

[1] T. Yang, X. Yi, J. Wu, et al., “A survey of distributed optimization,” Annual
Reviews in Control, vol. 47, pp. 278–305, 2019.

[2] A. Nedi, A. Olshevsky, and M. G. Rabbat, “Network topology and communication-
computation tradeoffs in decentralized optimization,” Proceedings of the IEEE,
vol. 106, no. 5, pp. 953–976, 2018.

[3] J. Dean, G. Corrado, R. Monga, et al., “Large scale distributed deep networks,”
Advances in neural information processing systems, vol. 25, 2012.

[4] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y Arcas, “Communication-
efficient learning of deep networks from decentralized data,” in Artificial intel-
ligence and statistics, PMLR, 2017, pp. 1273–1282.

[5] J. Poushter et al., “Smartphone ownership and internet usage continues to
climb in emerging economies,” Pew research center, vol. 22, no. 1, pp. 1–44,
2016.

[6] E. M. Noam and E. M. Noam, “Technology management in media and infor-
mation firms,” Managing Media and Digital Organizations, pp. 87–129, 2019.

[7] W. House, “Consumer data privacy in a networked world: A framework for pro-
tecting a privacy and promoting innovation in the globaeconom,” http://www.
whitphi) nse pnY/siles/default/files/privac, 2012.

[8] J. Chen, X. Pan, R. Monga, S. Bengio, and R. Jozefowicz, “Revisiting dis-
tributed synchronous sgd,” arXiv preprint arXiv:1604.00981, 2016.

[9] A. Nedi, A. Olshevsky, and C. A. Uribe, “Nonasymptotic convergence rates
for cooperative learning over time-varying directed graphs,” in 2015 American
Control Conference (ACC), IEEE, 2015, pp. 5884–5889.

[10] A. Nedi and J. Liu, “Distributed optimization for control,” Annual Review of
Control, Robotics, and Autonomous Systems, vol. 1, no. 1, pp. 77–103, 2018.

[11] S. Boyd, N. Parikh, E. Chu, B. Peleato, J. Eckstein, et al., “Distributed opti-
mization and statistical learning via the alternating direction method of multi-
pliers,” Foundations and Trendső in Machine learning, vol. 3, no. 1, pp. 1–122,
2011.

[12] S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah, “Randomized gossip algo-
rithms,” IEEE transactions on information theory, vol. 52, no. 6, pp. 2508–
2530, 2006.

[13] A. Nedic, A. Olshevsky, and W. Shi, “Achieving geometric convergence for
distributed optimization over time-varying graphs,” SIAM Journal on Opti-
mization, vol. 27, no. 4, pp. 2597–2633, 2017.

50

[14] C. Xi, V. S. Mai, R. Xin, E. H. Abed, and U. A. Khan, “Linear convergence in
optimization over directed graphs with row-stochastic matrices,” IEEE Trans-
actions on Automatic Control, vol. 63, no. 10, pp. 3558–3565, 2018.

[15] A. Nedi and A. Olshevsky, “Distributed optimization over time-varying di-
rected graphs,” IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601–
615, 2014.

[16] W. Shi, Q. Ling, K. Yuan, G. Wu, and W. Yin, “On the linear convergence
of the admm in decentralized consensus optimization,” IEEE Transactions on
Signal Processing, vol. 62, no. 7, pp. 1750–1761, 2014.

[17] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal algo-
rithms for smooth and strongly convex distributed optimization in networks,”
in international conference on machine learning, PMLR, 2017, pp. 3027–3036.

[18] D. Kempe, A. Dobra, and J. Gehrke, “Gossip-based computation of aggregate
information,” in 44th Annual IEEE Symposium on Foundations of Computer
Science, 2003. Proceedings., IEEE, 2003, pp. 482–491.

[19] K. I. Tsianos, S. Lawlor, and M. G. Rabbat, “Push-sum distributed dual aver-
aging for convex optimization,” in 2012 ieee 51st ieee conference on decision
and control (cdc), IEEE, 2012, pp. 5453–5458.

[20] J. Zeng and W. Yin, “Extrapush for convex smooth decentralized optimization
over directed networks,” Journal of Computational Mathematics, pp. 383–396,
2017.

[21] C. Xi and U. A. Khan, “Dextra: A fast algorithm for optimization over directed
graphs,” IEEE Transactions on Automatic Control, vol. 62, no. 10, pp. 4980–
4993, 2017.

[22] R. McDonald, K. Hall, and G. Mann, “Distributed training strategies for the
structured perceptron,” in Human language technologies: The 2010 annual
conference of the North American chapter of the association for computational
linguistics, 2010, pp. 456–464.

[23] D. Povey, X. Zhang, and S. Khudanpur, “Parallel training of dnns with natural
gradient and parameter averaging,” arXiv preprint arXiv:1410.7455, 2014.

[24] R. Shokri and V. Shmatikov, “Privacy-preserving deep learning,” in Proceed-
ings of the 22nd ACM SIGSAC conference on computer and communications
security, 2015, pp. 1310–1321.

[25] T. Wu, K. Yuan, Q. Ling, W. Yin, and A. H. Sayed, “Decentralized consensus
optimization with asynchrony and delays,” IEEE Transactions on Signal and
Information Processing over Networks, vol. 4, no. 2, pp. 293–307, 2017.

[26] S. Pu and A. Nedi, “Distributed stochastic gradient tracking methods,” Math-
ematical Programming, vol. 187, no. 1, pp. 409–457, 2021.

[27] U.-E.-H. Alvi, W. Ahmed, M. Rehan, R. Ahmad, and A. Radwan, “A novel
consensus-oriented distributed optimization scheme with convergence analysis
for economic dispatch over directed communication graphs,” Soft Computing,
vol. 27, no. 20, pp. 14 721–14 733, 2023.

[28] A. Johannssen, N. Chukhrova, and Q. Zhu, Symmetrical and asymmetrical
distributions in statistics and data science, 2023.

[29] S. Zheng, “Study of graph theory, distributed average consensus algorithm
and centralized algorithm,” arXiv preprint arXiv:2101.10523, 2021.

51

[30] Y. Yang, Z. Zhang, and Q. Yang, “Communication-efficient federated learning
with binary neural networks,” IEEE Journal on Selected Areas in Communi-
cations, vol. 39, no. 12, pp. 3836–3850, 2021.

[31] M. Dahl, Decentralized learning over wireless networks with imperfect and con-
strained communication: To broadcast, or not to broadcast, that is the question!
2023.

[32] P. Kairouz, H. B. McMahan, B. Avent, et al., “Advances and open problems
in federated learning,” Foundations and trendső in machine learning, vol. 14,
no. 1–2, pp. 1–210, 2021.

[33] E. Darzi, N. M. Sijtsema, and P. van Ooijen, “A comparative study of federated
learning methods for covid-19 detection,” Scientific Reports, vol. 14, no. 1,
p. 3944, 2024.

[34] S. Pu, W. Shi, J. Xu, and A. Nedi, “Push–pull gradient methods for distributed
optimization in networks,” IEEE Transactions on Automatic Control, vol. 66,
no. 1, pp. 1–16, 2020.

[35] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient meth-
ods for multi-agent optimization under uncoordinated constant stepsizes,” in
2015 54th IEEE Conference on Decision and Control (CDC), IEEE, 2015,
pp. 2055–2060.

[36] L. Wei, Z. Ma, C. Yang, and Q. Yao, “Advances in the neural network quan-
tization: A comprehensive review,” Applied Sciences, vol. 14, no. 17, p. 7445,
2024.

[37] D. Alistarh, D. Grubic, J. Li, R. Tomioka, and M. Vojnovic, “Qsgd: Communication-
efficient sgd via gradient quantization and encoding,” Advances in neural in-
formation processing systems, vol. 30, 2017.

[38] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient de-
scent and its application to data-parallel distributed training of speech dnns,”
in Fifteenth annual conference of the international speech communication as-
sociation, 2014.

[39] P. S. Bouzinis, P. D. Diamantoulakis, and G. K. Karagiannidis, “Wireless
quantized federated learning: A joint computation and communication design,”
IEEE Transactions on Communications, 2023.

[40] A. I. Rikos, W. Jiang, T. Charalambous, and K. H. Johansson, “Distributed
optimization with gradient descent and quantized communication,” IFAC-
PapersOnLine, vol. 56, no. 2, pp. 5900–5906, 2023.

[41] Y. Mao, Z. Zhao, G. Yan, et al., “Communication-efficient federated learning
with adaptive quantization,” ACM Transactions on Intelligent Systems and
Technology (TIST), vol. 13, no. 4, pp. 1–26, 2022.

[42] K. Gupta, M. Fournarakis, M. Reisser, C. Louizos, and M. Nagel, “Quantiza-
tion robust federated learning for efficient inference on heterogeneous devices,”
arXiv preprint arXiv:2206.10844, 2022.

[43] Y. Liu, S. Chang, and Y. Liu, “Quantization robust federated learning for
efficient inference on heterogeneous devices,” IEEE Transactions on Big Data,
2024. [Online]. Available: https://openreview.net/forum?id=lvevdX6bxm.

52

https://openreview.net/forum?id=lvevdX6bxm

[44] M. Shirvanimoghaddam, A. Salari, Y. Gao, and A. Guha, “Federated learning
with erroneous communication links,” IEEE communications letters, vol. 26,
no. 6, pp. 1293–1297, 2022.

[45] P. Zheng, Y. Zhu, Y. Hu, Z. Zhang, and A. Schmeink, “Federated learning in
heterogeneous networks with unreliable communication,” IEEE Transactions
on Wireless Communications, 2023.

[46] P. Felber, A.-M. Kermarrec, L. Leonini, E. Riviere, and S. Voulgaris, “P
ulp: An adaptive gossip-based dissemination protocol for multi-source mes-
sage streams,” Peer-to-Peer networking and Applications, vol. 5, pp. 74–91,
2012.

[47] J. Bernstein, Y.-X. Wang, K. Azizzadenesheli, and A. Anandkumar, “Signsgd:
Compressed optimisation for non-convex problems,” in International Confer-
ence on Machine Learning, PMLR, 2018, pp. 560–569.

[48] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient descent
and its application to data-parallel distributed training of speech dnns.,” in
Interspeech, Singapore, vol. 2014, 2014, pp. 1058–1062.

[49] H. Wu and P. Wang, “Node selection toward faster convergence for federated
learning on non-iid data,” IEEE Transactions on Network Science and Engi-
neering, vol. 9, no. 5, pp. 3099–3111, 2022.

[50] R. Xin and U. A. Khan, “A linear algorithm for optimization over directed
graphs with geometric convergence,” IEEE Control Systems Letters, vol. 2,
no. 3, pp. 315–320, 2018.

[51] W. Li, T. Lv, W. Ni, J. Zhao, E. Hossain, and H. V. Poor, “Decentralized fed-
erated learning over imperfect communication channels,” IEEE Transactions
on Communications, 2024.

[52] L. Yu and J. Huang, “Cyclic federated learning method based on distribution
information sharing and knowledge distillation for medical data,” Electronics,
vol. 11, no. 23, p. 4039, 2022.

[53] H.-C. Kim and Z. Ghahramani, “Bayesian classifier combination,” in Artificial
Intelligence and Statistics, PMLR, 2012, pp. 619–627.

[54] A. P. Dawid and A. M. Skene, “Maximum likelihood estimation of observer
error-rates using the em algorithm,” Journal of the Royal Statistical Society:
Series C (Applied Statistics), vol. 28, no. 1, pp. 20–28, 1979.

[55] M. T. Liu, “Distributed loop computer networks,” in Advances in computers,
vol. 17, Elsevier, 1978, pp. 163–221.

[56] J.-C. Bermond, F. Comellas, and D. F. Hsu, “Distributed loop computer-
networks: A survey,” Journal of parallel and distributed computing, vol. 24,
no. 1, pp. 2–10, 1995.

[57] M. Jameel, J. Grabocka, M. u. I. Arif, and L. Schmidt-Thieme, “Ring-star: A
sparse topology for faster model averaging in decentralized parallel sgd,” in
Machine Learning and Knowledge Discovery in Databases: International Work-
shops of ECML PKDD 2019, Würzburg, Germany, September 16–20, 2019,
Proceedings, Part I, Springer, 2020, pp. 333–341.

[58] M. Koibuchi, H. Matsutani, H. Amano, D. F. Hsu, and H. Casanova, “A case
for random shortcut topologies for hpc interconnects,” ACM Sigarch Computer
Architecture News, vol. 40, no. 3, pp. 177–188, 2012.

53

[59] P. Deolasee, A. Katkar, A. Panchbudhe, K. Ramamritham, and P. Shenoy,
“Adaptive push-pull: Disseminating dynamic web data,” in Proceedings of the
10th international conference on World Wide Web, 2001, pp. 265–274.

54

A
Appendix 1

I

	List of Figures
	Introduction
	Background
	Previous Work on FEDAVG and PUSHPULL algorithms
	Goals

	Theory
	Distributed Optimization
	Overview of Algorithms
	FEDAVG
	Algorithm: FedAvg

	PUSH-PULL
	Algorithm: Push-Pull

	Evaluation Metrics

	Quantization
	Trade-offs in Quantization
	Reduced Model Size and Communication time
	Communication Efficiency and Computational Overhead
	Optimal balance in Quantization

	Quantization in FedAvg and push-pull

	Erasure
	Effects of Erasure
	Impact Convergence time
	Increased Communication Overhead

	Strategies for Mitigation
	Erasure in Fedavg and Push-Pull

	Methods and Results
	Methods
	Implementation
	Architecture of High Performance Computing Cluster:

	Results
	Analysis of Quantization Impact on FedAvg
	Accuracy
	Average communication Time
	Execution Time
	Average Convergence Time and Convergence Loop

	Analysis of Quantization Impact on Pushpull
	Accuracy
	Average communication Time
	 Average convergence time and convergence loop
	Execution Time

	Analysis of Erasure Impact on FedAvg
	Analysis of Erasure Impact on Pushpull
	Communication Topologies
	Topology in FedAVg
	Topology in Push-Pull

	Analysis of Scalability in FEDAVG
	Analysis of Scalability on Push-pull

	Conclusion and Discussion
	Discussion
	Conclusion

	Bibliography
	Appendix 1

