
Aggregation

Local

Upload

Global

Trajectory Prediction for Automotive
Applications using Federated Learning

Master’s thesis in Complex Adaptive Systems

HANNES JOHANSSON
DANIEL OLANDER

DEPARTMENT OF PHYSICS

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2023
www.chalmers.se

www.chalmers.se




Master’s thesis 2023

Trajectory Prediction for Automotive
Applications using Federated Learning

HANNES JOHANSSON
DANIEL OLANDER

Department of Physics
Chalmers University of Technology

Gothenburg, Sweden 2023



Trajectory Prediction for Automotive Applications using Federated Learning

HANNES JOHANSSON
DANIEL OLANDER

© HANNES JOHANSSON, DANIEL OLANDER, 2023.

Supervisor: Koen Vellenga, Analytics & AI at R&D, Volvo Cars
Examiner: Mats Granath, Department of Physics

Master’s thesis 2023
Department of Physics
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Illustration of the federated learning process applied to a fleet of cars.

Typeset in LATEX, template by Magnus Gustaver
Printing /Department of Physics
Gothenburg, Sweden 2023

iv



Abstract
Advanced Driver Assistance Systems (ADAS) and Autonomous Driving Systems
(ADS) increasingly rely on Deep Learning (DL) models. While DL models achieve
state-of-the-art performance for a variety of tasks, they are not robust across a wide
range of traffic scenarios, require large quantities of continuously collected data,
and must follow safety and privacy regulations. Federated learning (FL) enables
the training of DL models to be done locally at each client (vehicle), sharing and
aggregating the trained models while keeping the data local. This allows previously
unreachable data to be harnessed for improved performance. Here, performance
refers to the maximum reached accuracy. FL also enables models to be trained
across regions, limiting sensitive data sharing while training on diverse datasets.
This master thesis evaluates the performance of FL for trajectory prediction (a cen-
tral part of ADAS and ADS) compared to a centralized learning (CL) approach. An
FL framework was implemented and validated through classification experiments on
the MNIST dataset using a convolutional neural network (CNN). The performance
of a CL setup (one client) was used as a benchmark, achieving a validation accu-
racy of approximately 99 %. Results show that FL with multiple clients requires
more training to converge but eventually saturates at a similar level of performance.
Training on independent and identically distributed (IID) data yielded the best
performance, while non-IID data introduced more noise and overall lower perfor-
mance for the FL approach. Selecting a smaller fraction of clients each round (client
fraction) corresponded to lower performance when evaluating non-IID data, while
speeding up training due to processing fewer data samples each round. To test the
effects of FL algorithms on trajectory prediction performance, the nuScenes dataset,
a collection of data from vehicles driving in Boston and Singapore, was used. The
data was transformed into 2D bird’s eye-view (BEV) images and fed to CoverNet, a
trajectory prediction model based on the residual network ResNet-50 which applies
classification over a set of trajectories. The experiments included varying federated
optimization algorithms [FedAvg, FedAvgM, FedProx], number of clients, client frac-
tion, data distribution techniques to test IID/non-IID data, and a direct comparison
of FL to CL. The federated optimization algorithms had no notable impact on the
results. More clients resulted in a slower convergence rate but similar maximum per-
formance to the benchmark CL setup, close to the results of the original CoverNet
publication. Reducing the client fraction resulted in faster training and, contrary
to the MNIST results, no notable performance or convergence rate difference. FL
performed similarly to CL on both IID and non-IID data. Simulating the case where
FL unlocks data from both Boston and Singapore to be used showed substantially
improved performance, compared to CL using local data from only one city. Using
FL and half the data from each city also showed improved performance over CL,
displaying the importance of the data diversity FL can enable.

Keywords: Advanced Driver Assistance Systems, Autonomous Driving Systems,
Federated Learning, Machine Learning, Trajectory Prediction
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1
Introduction

The rapid advancements in artificial intelligence (AI), machine learning (ML), and
deep learning (DL) have impacted various industries, showcasing promising results
in, for example, natural language processing, visual data processing, and speech
and audio processing [1]. Another domain where such advancements have signifi-
cant effects is autonomous driving, where integrating DL techniques can enhance
safety features [2]. Developing efficient safety features for autonomous driving ap-
plications relies on accurate predictions of vehicle trajectories. This thesis aims to
investigate the performance of a trajectory prediction model when applying a strat-
egy for decentralized learning, namely federated learning (FL).

Safety systems in vehicles include both passive and active systems [3]. Passive safety
includes seatbelts, airbags, and crumple zones. Active safety, more prominent in re-
cent years, includes a wide spectrum of capabilities. This ranges from advanced
driver-assistance systems (ADAS) functionalities, such as adaptive cruise control,
lane-keeping assist, and automatic emergency braking to fully autonomous driving
systems (ADS) [4]. Components of an ADAS or ADS depend on accurate trajectory
prediction and environmental awareness to safely navigate through complex traf-
fic scenarios, including diverse driving conditions. However, ensuring the reliable
performance of these active systems is an ongoing challenge, due to dynamic and
unpredictable real-world driving environments [5].

The performance and efficiency of ADAS and ADS are indicated by their ability to
generalize and perform consistently in different scenarios (robustness). In addition,
they need to meet increasingly stricter safety and privacy requirements from gov-
erning bodies in the coming years [6] [7]. To enable continued safe deployment of AI
implementations in the safety systems, there is a need for sustained improvements
through continuous updates (continuous learning) [8]. A challenge in this process is
to collect data from diverse traffic scenarios, a vital aspect to ensure robustness and
reliability.

The active safety capabilities of ADAS and ADS rely on data collected from a variety
of sensors, including cameras, LiDAR, RADAR, and GPS. The sensors capture in-
formation about the vehicle’s surroundings and interior, including other road users,
pedestrians, and objects, enabling the vehicle to build an understanding of its envi-
ronment. Newly produced cars on the road often have various sensors installed. If
utilized, the recorded sensor data could prove to be a valuable asset over time by, for
example, improving ADAS and ADS functionalities. Currently, car manufacturers

1



1. Introduction

use specific fleets of test vehicles to capture the data used for training ADAS and
ADS. Hence, the opportunity for improvement could be substantial if more data
were to be used. It is not currently possible to collect all data from a fleet of cus-
tomer cars. Accessing and processing this vast amount of data to represent diverse
driving scenarios require costly data transfers and lead to additional data privacy
overhead [9].

Ensuring data privacy, addressing the limitations of data collection, and keeping
compliance with increasingly strict regulations are notable challenges in the devel-
opment of active safety systems. Federated learning (FL), presented in 2015 [10][11],
is a promising solution to address these challenges. FL provides a decentralized
framework for training ML models. It allows data from distributed clients, such
as vehicles or servers, to be used during training without the need for moving the
local data from the clients. In the standard centralized learning (CL) approach,
the client data is transferred to a central server for processing. FL offers several
potential benefits, such as improved data privacy, reduced communication costs of
sharing large quantities of data, and the ability to enable previously unreachable
data from diverse and geographically distributed clients to improve model robust-
ness and generalization.

Many studies have been done evaluating FL, including automotive applications.
Examples include steering wheel angle prediction [12] and object detection [13].
However, no other studies evaluated the influence of FL on the performance of road
user trajectory prediction methods learning from different geographical locations.
Therefore, to contribute to the ongoing research to improve the safety and robustness
of ADAS and ADS, this thesis evaluates the performance and generalization effects
of applying FL for trajectory prediction tasks on data from different geographical
regions.

1.1 Aim, scope and limitations
The main aim of this study is to conduct an empirical performance evaluation of
FL compared to CL in a trajectory prediction task. This is done by answering the
following questions:

1. Influence of training MLmodels in a federated way in the context of ADAS/ADS
functionalities:
- What are the effects of FL compared to CL training methods on trajectory
prediction models?
- What are the effects of sampling data from different geographical regions?

2. Generalization of FL: How is the performance and convergence rate on vali-
dation data from datasets A and B affected when trained by:
- FL using datasets A and B?
- CL using dataset A or B?
- CL using datasets A and B?

2



1. Introduction

The scope and limitations of the study include the following assumptions:

(1) We assume that each vehicle can detect and obtain annotations of all surround-
ing objects by using a pre-trained object detection model. We will therefore not
consider self-labeling.

(2) The goal is not to find which model architecture yields the best performance.
Instead, we will stick to a single underlying model architecture for a specific task to
evaluate the effect of FL on validation performance.

(3) The available computing power further limits the scope of the work. Each
experiment was done on a single machine, simulating a server and client structure.

1.2 Thesis outline
In Chapter 2 the underlying background and theory of deep neural networks, tra-
jectory prediction, and FL is outlined. Chapter 3 covers the methodology of the
study. The FL implementation validation experiments are explained, using the
MNIST dataset. This is followed by a trajectory prediction section, introducing the
nuScenes dataset and the specific experiments conducted following the aim of this
study. The results are presented in Chapter 4. The first section includes the results
from the implementation validation, based on the MNIST dataset. The second sec-
tion presents the results from the trajectory prediction experiments on the nuScenes
dataset. The results are discussed in Chapter 5. The key findings and implications
are discussed, including limitations and challenges. A section focused on ethical
considerations is included at the end. Chapter 6 is a summary of the study and
presents possibilities for future studies following our work.

3
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2
Theory

The theory chapter provides the necessary background and theoretical foundation
for understanding the relevance and implications of this study. By presenting a re-
view of the relevant concepts related to deep neural networks (DNNs) and FL, this
chapter prepares the reader with the knowledge required for the following chapters.
In this chapter, we first discuss DNNs, starting with an overview of the basics and
how DNNs are trained and optimized. This is followed by presenting two types
of DNNs, convolutional neural networks (CNNs) and residual neural networks, and
DNN applications within trajectory prediction. Thereafter, FL is thoroughly intro-
duced to the reader, covering the high-level concept of FL, edge computing, privacy
and security, data distribution techniques, and FL optimization algorithms.

2.1 Deep neural networks
Artificial Neural Networks (ANNs) are mathematical models inspired by biological
neural networks. They perform complex computations based on behavior learned
from patterns of data and enable progressive learning by taking biological neurons
as inspiration. Here, the idea of connections is replicated by connections in the
form of weights and biases. The term deep neural networks (DNNs) is given to an
artificial network with at least two hidden layers [14]. There are various types of
DNNs, but they all follow the structure of containing neurons, weights (weighted
connections between neurons), biases (thresholds), and activation functions. The
flexibility and vast capability of DNNs allow them to be used in a wide range of
applications, in various domains. This section provides an introduction to DNNs,
explains how the parameters are trained and optimized, and present relevant types
of DNNs (convolutional neural networks (CNNs) and residual neural networks).

2.1.1 The basics
DNNs are referred to as ”deep” since they have multiple hidden layers between their
input layer and output layer, as opposed to ”shallow” networks with at most one
hidden layer. The presence of these extra layers enables composition of features from
lower layers, thereby modeling complex data with a lower amount of parameters/u-
nits than shallow networks requires [15]. What is learned in these layers depends
on the specific network type and task. DNNs leverage layers to learn different levels
of information about the data. Each layer learns something new and more abstract
than the previous layer, helping the network understand the data better. An ex-
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ample is image recognition models, where the first layer can learn simple patterns
such as edges, and the second layer learns combinations of edges forming patterns.
Progressing deeper means more complex, high-level features. DNNs are capable
to learn complex non-linear relationships from different input data formats (e.g.,
images, sequences, audio) through the use of non-linear activation functions, such
as the sigmoid function, the hyperbolic tangent (tanh) function, and the Rectified
Linear Unit (ReLU) function.

A common type of DNN is feed-forward networks. These consist of layers of in-
terconnected neurons, each receiving input from neurons in the previous layer, thus
only feeding the information forward in the network. Figure 2.1 illustrates the struc-
ture of a classic feed-forward network, displaying the multiple hidden layers between
the input and output layers.

Input layer Hidden layers Output layer

. . .

. . .

. . .

. . .

 𝑎ଵ
()

 𝑎ଵ
(ଵ)

 𝑎ଶ
(ଵ)

𝑤ଵଵ
(ଵ)

𝑤ଶଵ
(ଵ)

Figure 2.1: Illustration of the structure of a feed-forward DNN.

Figure 2.1 highlights some neurons and their interconnecting weights. Mathemati-
cally, the output of a neuron i in layer l can be expressed as:

a
(l)
i = f

 N∑
j=1

w
(l)
ij a

(l−1)
j + b

(l)
i

 , (2.1)

where:
a

(l−1)
j is the output of neuron j in the previous layer (l − 1),
f is the activation function,
w

(l)
ij is the weight connecting neuron j in layer (l − 1) to neuron i in layer l, and

b
(l)
i is the bias term for neuron i in layer l.

2.1.2 Training and optimization
In order to learn, a DNN needs to be trained. During training, the parameters of
the network (the weights and biases) are updated. The training process, where the
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model is tuned by using training data, is done is multiple steps. The training data
consist of both model input and the corresponding correct values/labels (ground
truth). Training a DNN involves updating the weight and biases w to minimize a
chosen loss function F , which is a function that quantifies the difference between
the network’s prediction (output) and the ground truth. The choice of loss function
depends on the type of task the model is trying to learn and the format of this.
Some common loss functions are mean squared error (MSE), likelihood loss, and log
loss (cross-entropy loss). The latter two are often used in classification problems,
where the model should classify the input among a given set of classes.

Training starts with a forward pass, where the input is propagated through the
network, layer by layer. The error (or loss) is calculated by applying the loss func-
tion to the produced output and the ground truth. This loss is then used for a
backward pass, so-called backpropagation, where the error is propagated backward
through the network, done layer-wise but now starting from the output layer. Dur-
ing the backpropagation, the derivative (gradient) of the loss with respect to each
weight in the network, ∂F

∂w
, is calculated. This measures how each small parameter

change would affect the overall error. The calculated gradients are then used by an
optimization algorithm to adjust the weights, as

w ← w − Lr
∂F

∂w
,

where Lr is the decided learning rate, affecting the magnitude of the parameter
updates. Most optimizations algorithms are based on stochastic gradient descent
(SGD) and variants of this, for example, Adam [16] and RMSprop [17]. By itera-
tively repeating this process, often in batches of data in-between each adjustment of
the parameters, the loss function is minimized. Performing backpropagation over the
entire available dataset is referred to as training one epoch. Normally, the dataset
is recycled and used for training a model many epochs.

When training a network, the available data is typically split between a training
set and a validation set. Only the training set is used in the previously described
training process. The validation set is reserved to use for measuring the model’s per-
formance on unseen data, that is, data that the model has not been trained on. This
process is called evaluation. One challenge when training an ANN is overfitting, the
phenomenon that the model learns too specific features of the particular training
data rather than learning more useful, generalizable patterns. Overfitting can lead
to a model that is performing well on the training data used for backpropagation,
but showing low performance on the validation data reserved for testing only. How-
ever, there are regularization techniques to combat overfitting. Dropout [18] and
weight decay are often employed to prevent overfitting and thus improve the gener-
alization of DNNs. The concept of dropout is to randomly temporarily deactivate a
certain percentage of neurons during training, reducing excessive interdependencies.
Weight decay penalizes large weights and thereby encourages the network to learn
simpler functions, making it less likely to overfit. Apart from iteratively training
the network parameters (weights and biases) over epochs, optimization can also in-
clude changing hyperparameters that govern the training process and the structure
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of an ML model. Examples of hyperparameters are (structural) numbers of layers,
neurons in each layer, (training-affecting) batch size, learning rate of the parameter
tuning and learning momentum.

2.1.3 Convolutional neural networks
A CNN is a type of ANN designed for processing structured grid structured data
such as images. CNNs excel in vision tasks such as object detection, classification,
and image segmentation, the concept of partitioning an image into image segments
or regions. They employ convolution, a sliding operation that uses convolutional
filters (so-called kernels) and element-wise multiplications to detect local features
and patterns in the input [19]. Each convolutional filter slides over the input grid,
applying the same weights for each sub-region (input patch) of the data. By re-
peating for all filters, the CNNs produce feature maps of the input. This makes
CNNs particularly effective at detecting local patterns and spatial hierarchies in the
input data. An illustration of how a kernel is applied over input data is presented
in Figure 2.2.

1 0 0 1 1

1 1 1 0 1

0 1 0 0 1

1 0 0 1 0

0 0 1 1 0

1 2

1 0

2 1 3 3

3 4 1 2

3 1 0 3

1 0 3 2

Input

Input patch

Output

1 0

1 1

Kernel

*

Figure 2.2: A kernel of size 2x2 is applied to an input of size 5x5. Sliding the
kernel over the input and repeatedly applying element-wise multiplications results
in the output matrix of size 4x4. Two areas in the input matrix, and the resulting
values in the output matrix, are highlighted. Each input patch (2x2 sub-region of
the input matrix) is element-wise multiplied with the kernel to produce the sums in
the output matrix.

CNNs are usually constructed of multiple convolutional layers, each consisting of
several filters, alternated with pooling layers that have a down-sampling effect. The
first convolutional layers extract smaller features from the input, that are aggregated
into larger patterns in later convolutional layers. CNNs can use padding, the concept
of adding extra border pixels to the input images, to preserve the input dimension
throughout convolution operations, if desired. After the sequence of convolutional
and pooling layers, the resulting output is normally flattened and connected to fully-
connected layers, where the information gained through the convolutions is used to
solve the problem-specific task.
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2.1.4 Residual neural networks
A residual neural network (often referred to as residual network or ResNet) is a
DNN model that incorporates residual connections. These are identity mappings,
allowing the input of a residual block a shortcut to the end of the block, where it is
merged with the regular block output via addition [20]. The structure is illustrated
in Figure 2.3. The residual connections are also known as skip connections since
they allow the input to ”skip” the block that the residual connection passes.

Layer

Identity mapping

x

F(x)

x + F(x)

Layer

+

Figure 2.3: Illustration of a residual block. An input x is passed both trough the
layers and directly to the addition module, via the identity mapping. The identity
mapping can be seen as a shortcut, letting the input pass the layers without being
affected by their operations F . At the addition module, the resulting output from
the layers, F (x), is summed with the original input x to form the final output
F (x) + x.

The residual connections enable easier training of DNNs and combat the vanishing
gradient problem that stacking many layers often leads to [20].

2.1.5 Trajectory prediction
Predicting the trajectories of other road users can support both human and au-
tonomously driven vehicles to safely anticipate future driving scenarios. Accurate
trajectory prediction is essential for ensuring safe and efficient vehicle operation, as
it enables the generation of feasible and safe driving paths. There are two main
approaches to trajectory prediction: physics-based models and data-driven methods
[21]. Physics-based models rely on physical models of vehicle dynamics to predict
future movements [22], while data-driven methods use machine learning algorithms
to learn patterns from large datasets of vehicle trajectories [23].

The use of data-driven methods, based on DNNs, has gained significant attention in
this field in recent years due to their ability to learn patterns in large datasets of ve-
hicle trajectories [24]. DNNs can be trained on various sources of information, such
as vehicle speed, road geometry, and sensor readings, to improve the performance
of the trajectory prediction. Some existing DNN models for trajectory prediction
are CoverNet [25], MTP [26], and TNT [27]. Models for trajectory prediction can
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either treat the task as a regression problem or a classification problem, where the
former tries to directly predict the future positions of the vehicle in question, while
the latter classifies over a given set of trajectories.

2.2 Federated learning
Federated learning (FL) is an approach for training ML models on decentralized
data, offering potential advantages in data privacy and reduced data communication
costs. In this chapter, we outline the key concepts and principles of FL, including
an overview of FL, the training process, privacy and security concerns, the influ-
ence of independent and identically distributed (IID) data, and various federated
optimization algorithms.

2.2.1 FL overview

4.

1.

2.

3.

Figure 2.4: The FL training process. (1) copies of the global model are shared
with each selected client for a training round. (2) the clients train the models on
their locally collected data. (3) the trained models are uploaded to a central server
and (4) aggregated into a new global model. The process is repeated for all training
rounds R.

The process of how training in a federated way can be done is illustrated in Fig-
ure 2.4, where one loop corresponds to one training round. Instead of sharing the
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local data to a central server and training centrally, as done in CL, copies of the
global ML model are distributed to all selected clients. The now local models are
separately trained on the individually observed data stored by each client. After
training, all selected clients share their local model parameter updates to the cen-
tral server, where they are aggregated into a new global model. This is done to
improve and generalize the global model, which is thereafter shared with the clients
again. Throughout training this cycle repeats, enabling global learning while keep-
ing client data decentralized.

FL differs from (1) centralized learning (CL), where observations are collected into
a large dataset that is used for training an ML model, (2) distributed ML, where
the training process is parallelized by distributing the gathered data between multi-
ple processors, called worker nodes, to speed up training and (3) decentralized ML,
where the data usually is assumed to be independent and identically distributed
(IID). Data being identically distributed means that samples are taken from the
same probability distribution and therefore not subject to distribution fluctuations.
Independent refers to items not being connected in any way and knowledge of one
item does not give information of another. For example, the outcomes of a sequence
of roulette wheel spins are IID, while the values of a stock price time series are
usually non-IID. FL does not assume IID data or collection of all data to a central
server, nor is it designed to only be used as a parallelization tool to speed up training.

Edge computing is a decentralized computing model that brings computation and
data storage closer to the data source [28]. In this model, computing processes
take place at edge devices in the network. For FL in an automotive setting, the
computers in each vehicle i.e., at each client, can be seen as edge devices. FL using
edge computing can reduce processing and storing sensitive data to avoid privacy
or security issues, while also reducing latency and improving efficiency compared to
CL [29].

2.2.2 Privacy and security
Although client data is not centrally collected in FL, privacy and security issues still
remain [9] [30]. Parameter updates shared during training are direct consequences of
the data, and reverse deduction methods could therefore be applied to the updates
to get access to the data. There are several privacy techniques that could be used
to prevent malicious activities of this kind. Differential privacy is a technique for
sharing information about a dataset while protecting the data of individual elements.
It works by collecting information into groups with visible patterns, while keeping
individual information confidential. Differential privacy is based on the principle
that small variations in the database caused by the substitution of a single element
do not reveal substantial information about the individual, thus providing privacy.
[31]. Homomorphic encryption is a method that when applied in an ML setting uses
encryption of model parameters, while allowing computations to be made directly on
the encrypted parameters, without the need for decryption [32]. Secure Multi-party
Computation is a protocol for distributing computations across multiple parties,
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without revealing their individual data [33]. By using a combination of some, or all,
of these and other similar methods the privacy and security of FL can be improved.

2.2.3 IID and non-IID data
In ML, there is usually an assumption of IID data [9]. The IID assumption is used
in the concepts of empirical risk minimization, law of large numbers and the cen-
tral limit theorem, all useful to utilize in ML. Due to training on local data from
distributed clients, the assumption of IID is usually not valid in FL [9]. Firstly,
the observations from different clients or groups of clients might have different dis-
tributions, therefore preventing model convergence. Secondly, another shift in the
probability distribution might occur over time if there is a change of participating
clients or a change of behavior of the clients [34], called dataset shift due to a non-
stationary environment. The implications of non-IID data on convergence rate and
accuracy in FL have previously been studied [35] [36]. The results indicate that
deterioration of accuracy is close to inevitable and the convergence rate slows down,
compared to using IID data.

2.2.4 Federated optimization algorithms
FL training algorithms span multiple iterations, each involving local training at
client level and communication of parameters to and from the central server. These
rounds can be structured in different ways and there are several options for how the
parameter aggregations are performed each round.

The strategies to perform FL are called federated optimization algorithms (later
referred to as federated optimizers). Some of the relevant options to be considered
are presented in Table 2.1. It provides an overview of these algorithms, their primary
objectives, and the key techniques employed to address challenges in FL.

Table 2.1: Summary of Federated learning optimization algorithms.

Algorithm Objective
FedAvg [37] Weighted averaging of client models

Key Techniques: Standard averaging
FedAvgM [38] Weighted averaging of client models with momentum

Key Techniques: FedAvg with momentum on the server side
FedProx [39] Robust convergence for heterogeneity

Key Techniques: proximal term
FedOpt [40] Server-side adaptive optimizers

Key Techniques: ADAGRAD, ADAM, YOGI optimizers

The algorithms aim to address various challenges in FL, such as convergence speed
and heterogeneity in devices and data. The techniques employed by these algorithms
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vary, ranging from weighted averaging, momentum, and proximal terms to adaptive
optimizers. The choice of a suitable optimization algorithm depends on the specific
requirements and constraints of the problem at hand, such as the nature of the data
and the desired trade-off between convergence speed and model performance.

FedAvg (federated averaging) [37] is the most common optimization algorithm for
FL. For each round, the algorithm selects a fraction of the clients (client fraction).
These clients receive the current model and perform training on their local data,
before a weighted average of the resulting client models are gathered and constructed
into a new model [41]. Using FedAvg, the FL training follows Algorithm 1. Line 9 is
characteristic for FedAvg, updating the server model by averaging over the updated
weights from all selected clients in the round.

Algorithm 1 FedAvg. The C clients are indexed by c, E is the number of local
epochs, B is the local mini-batch size, FC is the client fraction (fraction of clients
randomly selected for each round of FL), nc is the number of local examples, ` is the
loss function, and Lr is the learning rate. Dc is the dataset at client c and Dc,B is
the corresponding dataset split into mini-batches of size B. Re-presented algorithm
from paper [37].

1: // Server executes
2: initialize w1
3: for each round r = 1, 2, . . . do
4: Nr ← max(FC · C, 1)
5: Sr ← (random set of Nr clients)
6: for each client c ∈ Sr in parallel do
7: wcr+1 ← ClientUpdate(c, wr)
8: mr ←

∑
c∈Sr

nc
9: wr+1 ←

∑
c∈Sr

nc

mr
wcr+1

10:
11: procedure ClientUpdate(c, w) // Run on client c
12: Dc,B ← (split Dc into batches of size B)
13: for each local epoch i from 1 to E do
14: for batch b ∈ Dc,B do
15: w ← w − Lr∇`(w, b)
16: return w

13



2. Theory

FedAvgM (Federated Averaging with Server Momentum) [38] is similar to FedAvg,
but adds momentum on the server side. Implementation of FedAvgM follow Algo-
rithm 2. Previous work shows that FedAvgM’s performance can reach similar levels
of performance faster than FedAvg.

Algorithm 2 FedAvgM. The C clients are indexed by c, E is the number of local
epochs, B is the local mini-batch size, FC is the client fraction, nc is the number of
local examples, ` is the loss function, and Lr is the learning rate. Dc is the dataset
at client c and Dc,B is the corresponding dataset split into mini-batches of size B.
A new constant, β, is the momentum coefficient. In this algorithm, we introduce
server momentum, where weight updates are computed as vr+1 = βvr + ∆w, and
the model is updated with wr+1 = wr − vr+1.

1: // Server executes
2: initialize w1, v1
3: for each round r = 1, 2, . . . do
4: Nr ← max(FC · C, 1)
5: Sr ← (random set of Nr clients)
6: for each client c ∈ Sr in parallel do
7: wcr+1 ← ClientUpdate(c, wr)
8: mr ←

∑
c∈Sr

nc
9: ∆w ← ∑

c∈Sr

nc

mr
(wcr+1 − wr)

10: vr+1 ← βvr + ∆w
11: wr+1 ← wr − vr+1

12:
13: procedure ClientUpdate(c, w) // Run on client c
14: Dc,B ← (split Dc into batches of size B)
15: for each local epoch i from 1 to E do
16: for batch b ∈ Dc,B do
17: w ← w − Lr∇`(w, b)−

18: return w
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In order to address heterogeneity in FL settings, both in the devices’ networks (sys-
tems heterogeneity) and in non-IID data (statistical heterogeneity), the framework
FedProx was introduced, presented in Algorithm 3. FedProx is a generalization
and re-parametrization of the previous mentioned FedAvg algorithm, showing more
robust convergence [39].

Algorithm 3 FedProx. The C clients are indexed by c, E is the number of local
epochs, B is the local mini-batch size, FC is the client fraction, nc is the number of
local examples, and ` is the loss function. Dc is the dataset at client c and Dc,B is
the corresponding dataset split into mini-batches of size B. µ is the proximal term
constant.

1: // Server executes
2: Initialize w1
3: for each round r = 1, 2, . . . do
4: Nr ← max(FC · C, 1)
5: Sr ← (random set of Nr clients)
6: for each client c ∈ Sr in parallel do
7: wcr+1 ← ClientUpdate(c, wr)
8: mr ←

∑
c∈Sr

nc
9: wr+1 ←

∑
c∈Sr

nc

mr
wcr+1

10:
11: procedure ClientUpdate(c, w) // Run on client c
12: Dc,B ← (split Dc into batches of size B)
13: for each local epoch i from 1 to E do
14: for batch b ∈ Dc,B do
15: w ← arg minw′

(
`(w′, b) + µ

2‖w
′ − w‖2

)
16: return w

FedOpt is a family of algorithms containing implementations of several adaptive op-
timizers (ADAGRAD, ADAM, YOGI) [40]. The optimizers are used on the server
side while SGD is used on the client side, to ensure that communication costs are
similar to FedAvg. Similarly to FedProx, FedOpt aims to improve performance on
more diverse data compared to FedAvg. The reader is referred to the original pub-
lication for details about the algorithms.

15



2. Theory

16



3
Methodology

This chapter outlines the overall methodology, datasets, underlying model architec-
tures, design of experiments, and experimental setups used in this thesis. To gain
experience and confirm the functionality, an FL implementation validation was done
on the MNIST dataset, using a simple model. This is followed by the main task,
evaluating FL for trajectory prediction using the nuScenes dataset.

3.1 Implementation validation
The implementation validation methodology section starts with a description of the
MNIST dataset and how it was used to evaluate FL for IID and non-IID data.
Secondly, the specific experimental setup is presented. Lastly, the experiments done
on MNIST are described in detail.

3.1.1 MNIST dataset
The MNIST (Modified National Institute of Standards and Technology) dataset [42]
is an extensive collection of handwritten images that has been widely used for image
classification tasks. The images are grayscale handwritten digits with 28x28 pixels
resolution. In total, the set consists of 60 000 training images and 10 000 testing
images. Some example images from the MNIST set are presented in Figure 3.1.

Digit: 5 Digit: 0 Digit: 4 Digit: 1 Digit: 9

Digit: 2 Digit: 1 Digit: 3 Digit: 1 Digit: 4

Figure 3.1: Images from the MNIST dataset

Although the MNIST dataset is not directly linked to trajectory prediction or fed-
erated learning, the fact that it has been extensively used in previous classification
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tasks with well-established results makes it a great set to benchmark and validate
our FL setup. Additionally, by doing this we gain insight into how FL performs on
another dataset to compare to nuScenes, later used for trajectory prediction.

In our MNIST experiments, we employ different strategies for distributing the
dataset among the clients. We categorize these strategies as either IID or non-
IID. IID distribution involves creating sets with independently and identically dis-
tributed data. To achieve this, we randomly shuffle the training set before dividing
it among the clients. This ensures that each client receives a subset of the dataset
that represents the entire range of digits in a balanced manner. In contrast, non-IID
distribution entails sorting the data based on the labels before allocating it to the
clients. This means that each client receives a portion of the dataset that primarily
consists of samples belonging to a specific digit class. To visualize this process, refer
to Figure 3.2. It demonstrates that even when the data is sorted before distribution,
there is still an overlap of digit classes between clients. This overlap persists even
when the total number of classes is evenly divisible by the number of clients. It
is important to note that this overlap occurs due to the inherent variation in the
distribution of the digit classes. Each digit (0-9) has a slightly different frequency
of occurrences, ranging from 5400 to 6700, summing up to a total of 60000 samples
in the dataset. One exploring experiment was conducted where the 10 classes were,
in fact, balanced and evenly dividable by the number of clients (10), leading to the
case that each client only received instances of one class. This resulted in the model
not learning to classify the numbers. Hence, the overlap is needed.

Client 1                 Client 2                  Client 3                 Client 4

IID

Non-IID

3 1 0 3 2 3 0 1 0 0  3 3 0 0 1 1 2 3 1 0  1 2 0 2 3 0 1 3 0 2  3 1 0 2 3 2 0 2 3 1

0 0 0 0 0 0 0 0 0 0  0 0 1 1 1 1 1 1 1 1  1 2 2 2 2 2 2 2 2 3 3 3 3 3 3 3 3 3 3 3

Figure 3.2: Illustration showing the effect of employing IID and non-IID distribu-
tion methods for dividing the training data. For simplicity, only four numbers and
four clients are depicted. It is important to note that the numbers display slight
variations in their total occurrences, resulting in the non-IID sets containing over-
laps.

3.1.2 Experimental setup
The FL implementation used in this study is built on Flower, a framework for feder-
ated learning [43] [44]. Flower focuses on implementing FL realistically in terms of
scalability and systems heterogeneity. The framework follows a structure that allows
both local (client side) and global (server side) computations, and communications
between the actors. Flower also aims to provide an easier transition from simu-
lated FL to FL in practice on real hardware devices. Our setup utilizes the existing
setup in Flower as a base for development. This includes, for example, methods for
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data processing, server-client communications, client operations, and implementa-
tions of federated optimization algorithms. We used Tesla T4 GPUs for the training
of our ML models. Everything was run through Python 3.8.16 using PyTorch 1.10.2.

To validate our setup and test the effects of settings and parameters, we performed
classification experiments on the MNIST dataset, using a simple CNN model. The
focus and motivation were not only on the results of the MNIST classification task
but also to validate that all installations and implemented functions were working
as intended, by reconstructing a task that has been thoroughly investigated with
recognized results. However, extensive runs were still done to be able to compare
the results to the following trajectory prediction experiments.

3.1.3 Experiments on MNIST
The experiments on the MNIST dataset are set to explore how the model perfor-
mance and convergence are impacted by changes in various parameters. Perfor-
mance, in this case, refers to the highest achieved level of accuracy. This is done by
repeatedly training models with a change in one single parameter, while keeping the
other parameters constant, measuring the loss and accuracy throughout the training
interval. In these experiments, the clients and server are simulated, meaning that
all operations are carried out locally, without the involvement of multiple hardware
devices. The simulated clients represent individual devices with unique data and
communicate accordingly, only sharing and receiving model updates.

Parameter Tested values
Data distribution IID, non-IID
Batch size B 10, 16, 32, 64, 128
Learning rate Lr 0.0001, 0.001, 0.01, 0.1
Number of clients C 1, 5, 10, 20, 40, 80
Client fraction FC 0.2, 0.4, 0.6, 0.8, 1.0
Federated optimizers FedAvg, FedAvgM, FedProx,

FedAdagrad, FedAdam, FedYogi

Table 3.1: Table listing the parameters and values that will be tested. The values
marked in bold represent the chosen standard baseline. Both IID and non-IID are
marked bold since each setup will be repeated with both IID and non-IID.

First of all, we establish a ”standard baseline” in which we decide default values
for all parameters that are investigated. These values have been chosen based on
a combination of previous studies and results/tendencies from our initial exploring
tests. The standard baseline includes batch size B = 32, learning rate Lr = 0.1,
number of clients C = 10, client fraction FC = 1.0, and FedAvg as federated op-
timizer. When conducting the experiments to explore the possible values listed in
Table 3.1, all other parameters, apart from the specific one being tested, are set to
the corresponding default values marked as bold. Note that both IID and non-IID
are listed as standard baseline since both are tested, for each setup. Apart from the
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chosen parameter values, each experiment is performed with 100 rounds of training
R, and all clients are performing 1 epoch of training per round E.

3.1.3.1 Learning rate

Experiment 1 focuses on evaluating the impact of the learning rate Lr on the per-
formance and convergence of the model. The learning rates tested are 0.0001, 0.001,
0.01, and 0.1. The remaining parameters are kept consistent with the standard
baseline configuration, which includes a batch size B of 32, 100 rounds of training
R, 10 clients C, each clients performing 1 epoch of training per round E, 1.0 as
client fraction FC , FedAvg as federated optimizer, and using IID data for train-
ing split. Theses values for E and R are kept constant for all experiments of the
implementation validation. In short, Experiment 1 is therefore summarized as

1: B Lr C FC Optimizer Data
32 [0.0001, 0.001, 0.01, 0.1] 10 1.0 FedAvg IID

using the same order as previously listed with the addition of the inserted learning
rate vector. In Experiment 2, the same tests are repeated, but now using non-IID
data:

2: B Lr C FC Optimizer Data
32 [0.0001, 0.001, 0.01, 0.1] 10 1.0 FedAvg non-IID

3.1.3.2 Batch size

In Experiment 3 and Experiment 4, different values of batch size are tested. Batch
sizes 8, 16, 32, 64, and 128 are investigated, otherwise using the same parameters
as the first experiments and a constant learning rate of 0.1:

3-4: B Lr C FC Optimizer Data
[10, 16, 32, 64, 128] 0.1 10 1.0 FedAvg 3: IID 4: non-IID

3.1.3.3 Number of clients

The effects on performance and convergence rate from different numbers of clients
C are investigated in Experiment 5 and Experiment 6. The client values tested were
1 (equivalent to CL), 5, 10, 20, 40, and 80. In short:

5-6: B Lr C FC Optimizer Data
32 0.1 [1, 5, 10, 20, 40, 80] 1.0 FedAvg 5: IID 6: non-IID
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3.1.3.4 Client fraction

Experiment 7 and Experiment 8 investigates the performance implication of varying
the client fraction used in each training round. We test the client fractions 0.2, 0.4,
0.6, 0.8 and 1.0, once again performed for both IID and non-IID data distributions:

7-8: B Lr C FC Optimizer Data
32 0.1 10 [0.2, 0.4, 0.6, 0.8, 1.0] FedAvg 7: IID 8: non-IID

3.1.3.5 Federated optimization algorithms

The impact of the different federated optimization algorithms [FedAvg, FedAvgM,
FedProx, FedAdagrad, FedAdam and FedYogi] (referred to as optimizers below) are
tested in Experiment 9 (IID) and Experiment 10 (non-IID). Previous altered values
are reverted to C = 10, B = 32 and Lr = 0.1, resulting in:

9-10: B Lr C FC Optimizer Data
32 0.1 10 1.0 optimizers 9: IID 10: non-IID

3.1.3.6 Number of clients and client fraction

An experiment was designed to investigate the impact of the relationship between
the number of clients and client fraction. The parameters are varied according
to C = [5, 10, 20, 40, 80] and FC = [0.2, 0.4, 0.6, 0.8, 1.0], resulting in a total of 25
combinations. This is done with the IID data distributions with the other parameters
again kept constant. Experiment 11 can be summarized as

11: B Lr C FC Optimizer Data
32 0.1 [5, 10, 20, 40, 80] [0.2, 0.4, 0.6, 0.8, 1.0] FedAvg IID
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3.2 Trajectory prediction
This section describes the dataset, models, and methodology used for the trajectory
prediction experiments in this study. First, we present nuScenes [45], a dataset
created for autonomous driving research. Secondly, we describe CoverNet [25], the
model used for predicting trajectories. Lastly, we describe our experiments and
choice of dataset parameters.

3.2.1 nuScenes dataset
For our trajectory prediction experiments, we chose to use nuScenes [45], a dataset
created for autonomous driving research. It is a collection of data from vehicles driv-
ing in different cities/regions, i.e., Boston and Singapore. Therefore, it is suitable
for FL experiments by providing a diverse set of traffic scenarios and environments.
We can leverage this to examine performance and generalizability for geographic
diversity, i.e., non-IID data.

The dataset contains 1000 driving scenes collected from multiple cameras, a LiDAR,
RADAR, and GPS at a frequency of 2Hz. Each scene is approximately 20 seconds
long (∼ 40 time steps), with 2D and 3D bounding boxes annotations tracking all
surrounding vehicles, pedestrians, and objects simultaneously over time. Figure 3.3
shows a vehicle tracked over time. Figure 3.4 shows two different vehicles being
tracked simultaneously. The positions, velocities, and accelerations of all tracked
objects are also available.

(a) First sample. (b) Second sample at a later time step.

Figure 3.3: Tracked vehicle with 2D bounding boxes for two different time steps.

(a) Car with bounding box. (b) Truck with bounding box.

Figure 3.4: Tracked car and truck with 2D bounding boxes.
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The data can be transformed into bird’s eye view (BEV) images of the surrounding
area, illustrating the vehicle to predict (in red), all surrounding vehicles (in yellow),
and pedestrians (in orange), seen in Figure 3.5 and 3.6. This simplifies the dataset
but keeps important spatial information necessary for 2D trajectory prediction. The
vehicle collecting the data is not present in the images. Hence, it is the trajectories
of all surrounding vehicles we predict. All moving objects have their own history
illustrated by the faded trail of boxes. The history represents the chosen number of
previous time steps at 2 Hz. The image resolution is 0.1 meter per pixel and the
total image size is 500x500 pixels, which is equivalent to a 50mx50m square. In Fig-
ure 3.5, two samples are presented with 1.0 and 2.0 seconds of history, respectively.
Figure 3.6 shows one sample from Boston and one from Singapore, apparent by the
right-hand traffic in Boston and left-hand traffic in Singapore.

For each scene, several images can be created. All visible vehicles can be focused
(red) and used for prediction. This is under the assumption that they are visible
and tracked for at least the time period of the chosen history, plus the current frame,
plus the prediction horizon (always set to 6.0 seconds). With 2 Hz, 2.0 seconds of
history demands 2 ·(2.0+0.5+6.0) = 17 time steps to be available. The data can be
sampled in several ways. Either by including one image for each eligible vehicle in a
scene, or several by creating images with non-overlapping histories for each vehicle
in a scene, resulting in a larger dataset. This was later tested with results presented
in Figure 3.12.

(a) BEV image with 1.0 second of his-
tory.

(b) BEV image with 2.0 seconds of his-
tory.

Figure 3.5: BEV images with varying lengths of history used. For each agent,
the bounding boxes displaying the previous positions are ranging from darker to
brighter (current position).
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(a) BEV image from Boston with right-
hand traffic.

(b) BEV image from Singapore with
left-hand traffic

Figure 3.6: BEV images from Boston and Singapore, respectively.

The dataset can be changed and distributed to clients in an FL setting to simulate
all combinations of IID, non-IID, balanced, and non-balanced data distributions.
Here, data from Boston and Singapore are considered to be non-IID if sorted by
city and distributed to separate clients, as shown in Figure 3.7. This is motivated
by the two locations driving on different sides of the road, being different in terms
of infrastructure, and having different driving culture standards. If distributed ran-
domly to clients, the data is considered IID. The dataset is balanced if an equal
number of samples from Boston and Singapore are present, and non-balanced if not.
Our balanced dataset was constructed of 864 samples from Boston and 864 samples
from Singapore, while the non-balanced dataset was constructed of 1152 samples
from Boston and 864 samples from Singapore. The validation set consists of 512
samples from each city in all cases.

Client 1 Client 2

IID, balanced

IID, non-balanced

non-IID, balanced

non-IID, non-balanced

SingaporeBoston

Figure 3.7: The different variations of IID, non-IID, balance, and non-balance
dataset splits.
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3.2.2 Trajectory prediction model architecture
We used CoverNet [25] as our underlying trajectory prediction model. It is a multi-
modal, probabilistic trajectory prediction model based on classification over a set of
trajectories. Using the previously discussed BEV image together with an agent state
vector (speed, acceleration, and yaw rate) as input, CoverNet handles the trajectory
prediction task as a classification problem. It was created to improve trajectory
prediction for autonomous driving in urban environments, which is characterized by
dynamic and interactive scenarios including various types of agents, for example,
motor vehicles, pedestrians, and bicycles among others.

CoverNet is based on a CNN backbone, followed by fully connected layers with
the last layers representing the probabilities for each mode in a chosen trajectory
set. This architecture is presented in Figure 3.8. The backbone CNN consists of
a ResNet model, in particular ResNet50. It contains 48 sequential convolutional
layers, one maxpool layer and one average pool layer. The ResNet backbone out-
puts 2058 image features, which are flattened and concatenated with the agent state
scalar vector, resulting in a combined vector of length 2061. The head of CoverNet
consists of two fully connected layers: the first with dimension 4096 and the second
with a dimension equal to the number of modes in the chosen trajectory set.

Convolutional 
neural 

network

Agent 
state 

vector

Images 
features

Mode 
probabilities

Batch size x 2058 Batch size x 4096 Batch size x κ

DenseFlatten

Scene raster input
(3 channels)

Agent state input
(vel., acc. yaw rate)

Output
(trajectories with probabilities)

Dense

Figure 3.8: Illustration of the CoverNet architecture.

In the original paper, CoverNet was used to predict future agent state over a 6.0-
second horizon. Two versions of CoverNet, specifically with respect to the trajectory
sets, were implemented. One version used fixed trajectory sets to classify its predic-
tions. These sets can be seen in Figure 3.9 and are unaffected by the momentary
agent state or surrounding factors. Another version used dynamic trajectory sets,
taking the agent’s current dynamic state into account. The latter uses physical
models to guarantee that all trajectories in the trajectory set are dynamically fea-
sible. The dynamic sets have been shown to improve performance in comparison to
the fixed sets. However, since this study focuses on evaluating FL, we implemented
the fixed trajectory sets as this reduced the computational requirements and still
provides results to benchmark.
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The fixed trajectory sets are subsets of all trajectories available in the nuScenes
training dataset. They are selected by the conditions stated in Equation 3.1 with
acceptable error tolerance ε, affecting the coverage and size of the trajectory set.
The maximum point-wise Euclidean distance δ between predicted trajectory ŝ and
ground truth s was used to determine the smallest fixed trajectory set κ that ap-
proximates the full set of 20 000 trajectories κ′, as:

argmin
κ

|κ|

subject to κ ⊆ κ′,

∀k ∈ κ′, ∃l ∈ κ, δ(k, l) ≤ ε,

δ(st:t+N , ŝt:t+N) := t+Nmax
τ=t
‖sτ − ŝτ‖2

(3.1)

where:
τ = the current time steps,
t = the first time step,
N = number of time steps.

The trajectory sets κ8, κ4 and κ2 corresponding to ε = 8 m, ε = 4 m and ε = 2 m
are presented in Figure 3.9, respectively. In simpler terms, this guarantees that all
ground truths s in the dataset are no more than a maximum ε m from any predicted
trajectory ŝ at each time step τ . An example can be seen in Figure 3.11. The
tolerance ε = 8 results in 64 trajectories (modes), ε = 4 in 415 modes, and ε = 2 in
2206 modes.
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(a) Trajectory set κ8 corresponding to ε =
8. There are 64 trajectories in total.
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(b) Trajectory set κ4 corresponding to ε =
4. There are 415 trajectories in total.
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(c) Trajectory set κ2 corresponding to ε = 2. There are 2206 trajectories in total.

Figure 3.9: The three available fixed trajectory sets κi with varying εi = [2, 4, 8] m.

The inputs to the CoverNet model are the previously shown three-channel (RGB)
scene raster BEV images and an agent state vector representing the agent’s speed
(m/s), acceleration (m/s2), and yaw rate (radians/s). The corresponding agent state
vector to the red vehicle in the example BEV with 1.0 seconds of history included,
presented in Figure 3.5a is:

[4.38 m/s, 0.31 m/s2, 0.03 radians/s].

The problem of predicting the trajectory of a chosen vehicle is then transformed into
a classification problem. By comparing the ground truth trajectory to all trajecto-
ries in the chosen trajectory set κ with respect to the mean point-wise L2 distance,
the trajectory closest to the ground truth is selected as the κi-specific ground truth,
as shown in Figure 3.10. This is then used for the classification where the loss is
computed using the cross-entropy loss function. However, for all evaluation metrics,
the real ground truth is used.
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(a) Left turn.
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(b) Right turn.

20 10 0 10 20 30 40
x (m)

0

20

40

60

80

100

120

y 
(m

)

Predicted p : 0.16
Predicted p : 0.15
Predicted p : 0.12
Predicted p : 0.09
Predicted p : 0.06
Ground truth
Set 4 Ground truth

(c) Driving straight.
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(d) Poor predictions for a slight left turn.

Figure 3.10: Examples of predicted trajectories from CoverNet. The examples
include a left turn, a right turn, straight driving, and a slight left turn with poor
predictions. The top 5 predicted trajectories, along with their respective probabili-
ties, are compared to the real and κ4-specific ground truths.
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τ = 6.0 s

τ = 5.5 s

τ = 5.0 s

τ = 4.5 s

τ = 4.0 s

τ = 3.5 s

τ = 3.0 s

τ = 2.5 s

τ = 2.0 s

τ = 1.5 s

τ = 1.0 s

τ = 0.5 s

s ŝ

Figure 3.11: Illustration showcasing the displacement of a predicted trajectory ŝ
and the ground truth trajectory s for all time steps τ .

Several different metrics can be used for evaluation of CoverNet’s performance. We
use the following metrics to evaluate predicted trajectories compared to the ground
truth: average displacement error (ADEk) in different forms, final displacement error
(FDEk) and hit rate (HitRatek,d). Figure 3.11 illustrates a predicted trajectory ŝ
and the displacement relative to the ground truth s. The minADEk is then defined
as

minADEk = min
ŝ∈P

1
N

t+N∑
τ=t
‖sτ − ŝτ‖,

where P is the set of all predicted trajectories, ŝ the k most probable (top) predicted
trajectories and s the ground truth trajectory. The metric returns the minimum
ADE value of the top k trajectories. To evaluate the average performance of the top
k trajectories, we introduce

aveADEk = aveŝ∈P
1
N

t+N∑
τ=t
‖sτ − ŝτ‖,

returning the average ADE value of the top k trajectories. The FDE1 is defined as

FDE1 = ‖st+N − ŝ∗t+N‖,

where ŝ∗ is the top predicted trajectory. This metric only considers the displacement
between the final predicted position, in our case when τ = 6.0 s in Figure 3.11, to
the corresponding ground truth value. HitRatek,d is calculated by inspecting the
condition

HitRatek,d = min
ŝ∈P

t+Nmax
τ=t
‖sτ − ŝτ‖ ≤ d,

treated as 1 if upheld and 0 otherwise, and taking the average of all data samples.
The HitRatek,d gives an indication of how often any of the k top predicted trajectories
are within the tolerance d from the corresponding ground truth position throughout
all predicted time steps τ . Lower displacement error metrics and larger HitRate
correspond to higher performance.
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3.2.3 Trajectory prediction experiments
Before the main experiments with FL were done on nuScenes, we did experiments
using CL to choose how to process the raw data, trajectory set κi, and image reso-
lution.

For the choice of a processed dataset, we considered validation accuracy and data
processing requirements. The results are shown in Figure 3.12. Here, the first
processed dataset was constructed by extracting one sample (input image and state
vector) per vehicle and scene with 2.0 seconds of history, resulting in∼ 2000 samples.
The second and third were done using multiple non-overlapping samples per vehicle
and scene. This method can be explained by an example. For a 20-second long
scene, 40 frames are available at 2 Hz. Assuming a vehicle is tracked for all 40
frames, it is possible to extract 8 non-overlapping data samples of the vehicle with
2.0 seconds of history, since each sample includes 5 time steps. This was done using
2.0 and 1.0 seconds of history, resulting in ∼ 3000 and ∼ 6000 samples, respectively.
Considering that the first processed dataset is the smallest, enabled faster training,
and reaches the highest accuracy, it was chosen for all further experiments.
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Figure 3.12: A comparison of validation accuracy using three processed datasets.
These include one instance per vehicle and scene with 2.0 seconds of history, and
non-overlapping multiple instances per scene with 2.0 and 1.0 seconds of history. A
rolling mean of 40 epochs was used to smooth the originally noisy data for improved
visualization.

Next, we did experiments on the three trajectory sets κ2 (2206 modes), κ4 (415
modes), and κ8 (64 modes). In Figure 3.13, aveADE5 is presented as the evalu-
ation metric for the trajectory sets, but all other metrics showed similar trends.
From a pure performance perspective, κ4 performed the best. The size of the data
files saved during each run is proportional to the number of modes. Therefore, κ4
was considered a good compromise between performance and size of files for our
experiments.
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Figure 3.13: A comparison of aveADE5, using the three trajectory sets κ2 (2206
modes), κ4 (415 modes) and κ8 (64 modes). A rolling mean of 10 epochs was used
to smooth the originally noisy data for improved visualization.

To speed up simulations and make it possible to overcome memory issues, we down-
sampled the input images, originally 500 x 500 pixels, by factors of 1/2, 1/4, and
1/10 in both dimensions. As seen in Figure 3.14, 250x250 reached the same perfor-
mance as 500x500, while reducing the number of pixels by a factor of 4.
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Figure 3.14: A comparison of aveADE5, using three differently processed datasets
where the images are generated using resolutions of 500x500 (original), 250x250,
125x125 and 50x50. A rolling mean of 20 epochs was used to smooth the originally
noisy data for improved visualization.

We used the Flower framework for the main experiments, based on the setup used
for the implementation validation in Section 3.1. It was modified to work with Cov-
erNet, the nuScenes dataset, and the new metrics. We conducted experiments on
batch size B and learning rate Lr to choose a suitable baseline for the upcoming
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experiments. Next, we include a sweep of the federated optimizers FedAvg, Fe-
dAvgM, and FedProx, and variations of IID, non-IID, balanced, and non-balanced
data. Furthermore, we evaluate the dependency on the number of clients C and
client fraction FC . Finally, we compare FL to CL for different variations of non-IID
data distributions in an attempt to simulate real-life scenarios and evaluate the per-
formance potential of FL. Table 3.2 provides an overview of the parameters tested in
all experiments. All runs but one were done for R = 1000 rounds, where each round
used E = 1 epoch of data. All experiments are evaluated on the same validation set
consisting of 512 samples each from Boston and Singapore. The metrics used for
evaluating performance are minADE1, minADE5, aveADE5, FDE1 and HitRate5,2m.
Training speed, the time needed to complete one round, and convergence rate, the
number of rounds needed for convergence, were also observed and used for evalua-
tion of all experiments.

Parameter Tested values
Batch size B 4, 8, 16, 32
Learning rate Lr 1e− 5, 5e− 5, 1e− 4, 5e− 4
Federated optimizers FedAvg, FedAvgM, FedProx
Data distribution IID balanced, IID non-balanced,

non-IID balanced, non-IID non-balanced
Full size, Half size

Number of clients C 1, 2, 4, 8
Client fraction FC 0.25, 0.5, 0.75, 1.0

Table 3.2: Table listing the parameters and values tested for trajectory prediction.
The values chosen for the baseline are marked as bold.

The following experiments were conducted, where ”[]” indicates what parameters
were tested, ”n” is short for non, and ”b” is short for balanced, where necessary.

3.2.3.1 Batch size

Experiment 1 evaluated the influence of batch size B and the results affected the
choice of B for all following experiments. This was done using 2 clients and IID and
balanced data. The following variables were tested:

1: B Lr C FC Optimizer Data
[4, 8, 16, 32] 1e− 4 2 1.0 FedAvg IID balanced

3.2.3.2 Learning rate

Experiment 2 evaluated the influence of learning rate Lr and the results affected the
choice of Lr for all following experiments. This was done using 2 clients and IID
and balanced data. The following variables were used:
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2: B Lr C FC Optimizer Data
8 [1e-5,5e-5,1e-4,5e-4] 2 1.0 FedAvg IID balanced

3.2.3.3 Federated optimization algorithms

Experiment 3 evaluated the influence of the federated optimizers FedAvg, FedAvgM,
and FedProx. The results affected the choice of optimizer for all the following
experiments. It was only run for 500 epochs, due to the maximum performance
being reached after only 100 epochs. This was done using 2 and 8 clients and
non-IID and balanced data. The following variables were used:

3: B Lr C FC Optimizer Data
8 1e− 4 2 1.0 [FedAvg,FedAvgM,FedProx] non-IID balanced

3.2.3.4 Variations of IID and balance

Experiment 4 evaluated the influence of variations of data distributions IID bal-
anced, IID non-balanced, non-IID balanced, and non-IID non-balanced. The results
affected the choice of dataset distributions for the following experiments. This was
done using 2 and 8 clients, with the following variables:

4: B Lr C FC Optimizer Data
8 1e− 4 [2, 8] 1.0 FedAvg [IID b, IID n-b, n-IID b, n-IID n-b]

3.2.3.5 Number of clients

Experiment 5 evaluated the influence of number of clients C. The results affected the
choice of C for the following experiments. This was done using both IID balanced
and non-IID balanced data, with the aim to evaluate if the data has an influence on
the performance in combination with varying C. The following variables were used:

5: B Lr C FC Optimizer Data
8 1e− 4 [1, 2, 4, 8] 1.0 FedAvg [IID b, n-IID b]

3.2.3.6 Client fraction

Experiment 6 evaluated the influence of client fraction FC , the fraction of clients
randomly selected for each round of FL. Using C = 8 clients synergized well with the
chosen fractions [0.25, 0.50, 0.75, 1.0], corresponding to [2, 4, 6, 8] clients sampled
per round. The results affected the choice of FC for the following experiments.
This was done using both IID balanced and non-IID balanced data, with the aim
to evaluate if the data has an influence on the performance in combination with
varying FC . The following variables were used:

33



3. Methodology

6: B Lr C FC Optimizer Data
8 1e− 4 8 [0.25, 0.5, 0.75, 1.0] FedAvg [IID b, n-IID b]

3.2.3.7 FL versus CL

Experiment 7 : compared different scenarios of FL and CL to validate the effective-
ness of FL. This includes local CL runs using 864 samples from Boston (864B) and
likewise for Singapore (864S). Two more CL runs were done, using half of the dataset
with an equal number of samples from each region (432B+432S) and the full dataset
(864B+864S). The corresponding FL setups with 2 clients, simulating two regional
servers not able to share data with each other, were done for comparison. This ex-
periment evaluates the performance benefit of making previously inaccessible data
accessible through FL, by comparing 864B CL, 864S CL, and 864S+864S FL. In
addition, it is also possible to draw conclusions on the difference in the performance
of FL and CL when using the same data, using both the full (862B+864S) and half
datasets (432B+432S).

7: B Lr C FC Optimizer Data
8 1e− 4 [1, 2] 1.0 FedAvg n-IID b [full and half datasets]
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4
Results and analysis

In the Results and analysis chapter, we present the results and findings obtained
from the conducted experiments. First, the FL implementation validation results
on MNIST are presented alongside an initial analysis. This is followed by the main
trajectory prediction using FL experiments, including a simple analysis of the re-
sults and their implications. The terms round and epoch are used interchangeably
throughout the chapter as all experiments use one epoch of data per round.
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4.1 Implementation validation results
In this section, we present the results of our implementation validation experiments
conducted on the MNIST dataset. These tests were performed to investigate the
performance implications of our FL model for various parameter configurations and
settings. We considered different learning rates, batch sizes, number of clients, client
fraction rates, federated optimizers, and data distribution types (IID and non-IID).
Training speed refers to the time needed to complete one round (epoch) of training.
The convergence rate refers to the number of rounds needed for convergence.
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Figure 4.1: Accuracy and loss are displayed as a function of the number of epochs
for different number of clients with IID (Experiment 5) and non-IID data distribution
(Experiment 6) between the clients. The tests were performed with the FedAvg
optimizer and all clients were involved in each round of training.

To demonstrate the results, we generated a collection of graphs that illustrate the
accuracy and loss metrics over the rounds. As an example, the complete results from
Experiment 5 and Experiment 6, investigating the impact of the number of clients
on IID and non-IID data, are presented in Figure 4.1. These results will be discussed
later in this section in combination with the other findings. Displaying the loss per
epoch provides a quantitative measure of the discrepancy between the predicted
outputs and the actual outputs, while the accuracy provides information about the
performance in terms of the percentage of correctly classified predictions. Both
measurements are relevant while evaluating the model since they capture different
aspects of the learning progress. Nevertheless, they tend to show similar behavior.
Therefore, a combined collection of only the accuracy metrics from all Experiments
1-10, described in Section 3.1.3, are presented in Figure 4.2. The corresponding loss
graphs are shown as a function of epochs in Figure A.1 in Appendix A.1.
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Figure 4.2: Accuracy as a function of epochs for experiments 1-10, described in
Section 3.1.3. All axes, except for the graphs in the top row, display the same
interval. The accuracy range for the learning rate graphs is five times larger.
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Initially, we examined the influence of learning rate and batch size on accuracy and
convergence rate through Experiment 1 to Experiment 4. The corresponding results
are presented in the first and second rows in Figure 4.2. Comparing the outcome
of training on IID data and non-IID data, we observed a decrease in both accuracy
and convergence rate for the latter. Both learning rate and batch size are hyperpa-
rameters that can affect convergence and they do have a coupled effect. Modifying
one value alters how the other parameter influences the model’s learning process,
including the frequency and magnitude of weight updates. A larger batch size uti-
lizes the GPU more efficiently, resulting in faster training speed, but also requires
more memory. These experiments indicate that 0.1 as learning rate is the best op-
tion, both for IID data and non-IID data. Further, the batch size can be set to a
maximum of 32 without negatively affecting the convergence rate or performance.
A batch size of 32 was also more stable than the larger values on batch size.

The impact of the number of clients used and the client fraction for each round was
thereafter tested, in the execution of Experiments 5-8. For IID data, the number of
clients had a direct impact on the convergence rate, with more clients resulting in a
slower convergence rate. However, the final achieved accuracy was not significantly
affected by the number of clients used. Notably, the tested values of client fraction
did not have any clear impact on either the accuracy or the convergence rate. Note
that a higher client fraction leads to training on more data samples for each round,
since additional local datasets are used. For the non-IID data, where each client
got the majority of its data from one specific class (digit), all tests with multiple
clients were outperformed by CL (one client). Remember that with only one client,
the data being IID or non-IID has no practical impact since the client receives all
the data. As previously seen in the experiments altering batch size, both accuracy
and convergence rate was negatively impacted by non-IID data for all tests on client
fraction, but to a much larger extent. There was also a larger difference between
the different client fraction values, quickly performing worse and more unstable with
lower client fractions.

The results from Experiments 9 and 10 are illustrated in the last row in Figure
4.2, showing the impact of the different federated optimizers. On the IID data,
all algorithms except FedAdagrad displayed almost identical learning. Although
FedAdagrad was more unstable and had a lower convergence rate on the IID data,
it reached the same level of accuracy as the other optimizers shortly after 40 epochs.
On non-IID data, however, it was increasingly unstable. FedAvgM was also more
unstable on the non-IID data, although not as severe as FedAdagrad. The other
optimizers (FedAvg, FedProx, FedAdam, and FedYogi) showed more stable behavior
and better performance overall.
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Figure 4.3: Experiment 11, altering both the number of clients and the client frac-
tion. Each square displays the average accuracy over rounds 1-100 (and the round
where the minimum loss value was registered, in parenthesis). This experiment was
conducted on IID data.

Figure 4.3 presents the results from Experiment 11, where both the number of clients
and the client fraction are altered for IID data. For each pair of values for these
parameters, the average accuracy over the 100 rounds is listed, together with the
round in which they achieved their minimal loss value, in parenthesis. The color
of the background is based on the value for the average accuracy. The idea of the
Figure is to account both for the final achieved accuracy and the convergence rate
since both of these value affects the average accuracy. Note again that a higher client
fraction corresponds to training on more data sampled for each round compared to a
lower client fraction. As previously seen, fewer total clients lead to faster convergence
rates. In addition, the client fraction has only a small effect on the overall results,
with a very slight decrease in average accuracy and slightly slower convergence rates
for smaller client fractions. This is consistent with the previous results using IID
data.
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4.2 Trajectory prediction results
This section presents the results of the trajectory prediction experiments on the
nuScenes dataset. The metrics used for evaluation are minADE1, minADE5, aveADE5,
FDE1 and HitRate5,2m, all presented in tables. Only aveADE5 and HitRate5,2m are
visualized in the plots, as they were considered to be adequate since all metrics
showed similar relative behavior for all experiments. All experiments are evaluated
on the same validation set consisting of 512 samples each from Boston and Singa-
pore. A higher HitRate↑ equals better performance, while the opposite is true for
the displacement error metrics ADE↓ and FDE↓. This is included in all tables where
our best results are marked in bold text. A rolling mean over 40 epochs has been
applied to all data presented in the figures. This was done to make the results easier
to analyze since the raw data is noisy, a consequence of the stochastic nature of
the training algorithm and data sampling. In addition, small differences can not be
assigned to the evaluated parameters with certainty, as they can in many cases be
explained by randomness. All experiments were run locally for one epoch E of data
for each selected client per round, meaning that the terms epoch and round are used
interchangeably. Performance refers to the minimum (or maximum for HitRate) of
a given metric. Training speed refers to the time needed to complete one round
(epoch) of training. Convergence rate refers to the number of rounds needed for
convergence.
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4.2.1 Batch size

0 200 400 600 800 1000
Epochs

6

7

8

9

10

11

12

av
eA

D
E

5 
(m

)

aveADE5

B = 4
B = 8
B = 16
B = 32

(a) aveADE5

0 200 400 600 800 1000
Epochs

0.06

0.08

0.10

0.12

0.14

0.16

0.18

H
itR

at
e 5

,2
m

HitRate5, 2m

(b) HitRate5,2m

Figure 4.4: Metrics with varying batch sizes B. Fixed parameters: C = 2, FC =
1.0, optimizer = FedAvg, Lr = 1e− 4, and IID balanced dataset.

The first experiment follows Experiment 1 from Section 3.2.3.1 and establishes the
effects of batch size B for the baseline model. Figure 4.4 highlights that a lower
batch size results in a faster convergence rate, with no clear drop in performance.
Instead, improved performance can be seen for the smaller batch sizes 4 or 8, seen
for all metrics in Table 4.1. The faster convergence rate is especially important to
keep in mind when scaling to more clients where the convergence rate gets slower.
Larger batch sizes utilize the GPU more efficiently, providing faster training speeds.
However, this only works up to a certain point where the memory requirements are
too large and the training fails. This happened at B = 64. Batch size B = 8 was
considered a good compromise of the convergence rate and training speed, keeping
an overhead of the convergence rate for scaling up the number of clients. The
results from CoverNet [25] using B = 64 are also included in the table, where the
performance is better for all metrics except for HitRate. Still, our results are close
enough to show that our implementation works as intended.

Table 4.1: All metrics with varying batch sizes B and results from CoverNet [25].

minADE1 ↓ minADE5 ↓ aveADE5 ↓ FDE1 ↓ HitRate5,2m ↑

B = 4 5.66 2.67 6.20 12.09 0.177
B = 8 5.60 2.77 6.19 11.82 0.178
B = 16 5.87 2.77 6.40 12.27 0.167
B = 32 5.99 2.78 6.46 12.12 0.176
CoverNet 5.07 2.31 - 10.62 0.17
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4.2.2 Learning rate
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Figure 4.5: Metrics with varying learning rates Lr. Fixed parameters: C = 2,
FC = 1.0, optimizer = FedAvg, B = 8, and IID balanced dataset.

The succeeding experiment follows Experiment 2 from Section 3.2.3.2 and was done
to choose a suitable learning rate Lr. Naturally, smaller learning rates slow training.
Too large learning rates can cause divergence, a limit that is almost reached by the
largest learning rate trialed here, Lr = 5e−4. The maximum performance is reached
after only ten epochs, seen in Figure 4.5, while the performance does not reach as
high compared to using smaller learning rates. Increasing the learning rate further
caused divergence. Table 4.2 indicated that the performance was similar for all
other learning rates. Lr = 1e − 4 was chosen to maintain good performance and a
fast convergence rate, while minimizing the risk for divergence when scaling to more
clients or changing other parameters. No learning rate scheduler was considered as
this was not recommended by the original CoverNet publication [25].

Table 4.2: All metrics with varying learning rates Lr.

minADE1 ↓ minADE5 ↓ aveADE5 ↓ FDE1 ↓ HitRate5,2m ↑

Lr = 1e− 5 5.70 2.73 6.39 12.02 0.178
Lr = 5e− 5 5.72 2.75 6.32 12.11 0.170
Lr = 1e− 4 5.60 2.77 6.19 11.82 0.178
Lr = 5e− 4 5.89 2.76 6.40 12.62 0.165
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4.2.3 Federated optimization algorithms
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Figure 4.6: Metrics with FedAvg, FedAvgM and FedProx, all using 2 clients. Fixed
parameters: C = 2, FC = 1.0, Lr = 1e− 4, B = 8, and non-IID balanced dataset.

By following Experiment 3 from Section 3.2.3.3, we evaluated the three federated
optimizers FedAvg, FedAvgM, and FedProx with the number of clients C = 2 and
C = 8. This was only done for 500 epochs, due to the maximum performance being
reached after only 100 epochs. The results when using 2 clients are presented in
Figure 4.6 and Table 4.3. All results for 8 clients are included in Appendix A.2.
The FedOpt optimizers FedAdam, FedAdagrad and FedYogi are not included as
they diverged for all our tested parameters. Since the federated optimizer FedProx
is designed to cope with non-IID data more efficiently than FedAvg or FedAvgM,
with no significant difference for IID data, the optimizers are evaluated on non-IID
and balanced data. With 2 clients, FedProx reached the best performance in FDE1.
However, there are no other apparent benefits indicating a performance benefit for
this task as the performance is similar to the other optimizers for all other met-
rics. There were no differences in training speed or convergence rate either, despite
FedAvgM being designed to converge faster than FedAvg. Only minor differences
could be seen when running the same experiment on non-balanced or IID data. For
8 clients, FedAvgM performs worse, specifically for FDE1. Again, the difference is
not apparent for all metrics, indicating no real advantage for either optimizer.

Table 4.3: Metrics with FedAvg, FedAvgM and FedProx using 2 clients.

minADE1 ↓ minADE5 ↓ aveADE5 ↓ FDE1 ↓ HitRate5,2m ↑

Avg, C = 2 5.56 2.71 6.19 11.76 0.173
AvgM, C = 2 5.63 2.71 6.16 11.93 0.180
Prox, C = 2 5.48 2.70 6.30 11.62 0.176
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4.2.4 Variations of IID and balance
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Figure 4.7: Comparison of different datasets using all combinations of IID, non-
IID, balanced, and non-balanced datasets. Fixed parameters: C = 8, FC = 1.0,
optimizer = FedAvg, Lr = 1e− 4, and B = 8.

Since no large differences could be observed for the federated optimizers and due to
time restrictions, only FedAvg was used to evaluate the four dataset variations IID
balanced, IID non-balanced, non-IID balanced, and non-IID non-balanced. It was
done following Experiment 4 from Section 3.2.3.4. We observe that IID balanced
and non-IID non-balanced perform equally well in all metrics, while the performance
is worse when using the two other datasets. This is seen in Figure 4.7 and Table 4.4.
The non-IID balanced dataset is consistently the worst performing in all metrics.
Worth noting is that the non-balanced datasets contain more data, ∼ 17%. This
could explain the difference between the two non-IID datasets.

Table 4.4: Results from different datasets using all combinations of IID, non-IID
(n-IID), balanced (B), and non-balanced (n-B) datasets.

minADE1 ↓ minADE5 ↓ aveADE5 ↓ FDE1 ↓ HitRate5,2m ↑

IID B 5.41 2.57 6.10 11.54 0.185
IID n-B 5.41 2.55 6.16 11.79 0.178
n-IID B 5.57 2.65 6.21 11.83 0.169
n-IID n-B 5.51 2.54 6.14 11.54 0.185
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4.2.5 Number of clients
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Figure 4.8: Metrics with varying number of clients C. Fixed parameters: FC = 1.0,
optimizer = FedAvg, Lr = 1e− 4, B = 8, and non-IID balanced dataset.

This experiment follows Experiment 5 from Section 3.2.3.5. Increasing the number
of clients C slows down both the training speed (due to limitations of memory usage)
and convergence rate, seen in Figure 4.8. However, there is no clear performance
deficit when using more clients, as previously seen for the MNIST experiments in
section 4.1. This holds true for non-IID and IID data, as seen in Table 4.5. The plots
for IID data can be found in Appendix A.3. 8 clients were the maximum possible to
use in combination with the nuScenes dataset, due to limitations of memory usage
in combination with the available hardware.

Table 4.5: All metrics with varying number of clients C using IID and non-IID
(n-IID) data.

minADE1 ↓ minADE5 ↓ aveADE5 ↓ FDE1 ↓ HitRate5,2m ↑

C = 1 IID 5.55 2.64 6.17 11.84 0.173
C = 2 IID 5.60 2.77 6.19 11.82 0.178
C = 4 IID 5.59 2.68 6.24 11.74 0.172
C = 8 IID 5.38 2.66 6.24 11.41 0.178
C = 1 n-IID 5.75 2.70 6.33 12.15 0.177
C = 2 n-IID 5.69 2.61 6.14 11.61 0.183
C = 4 n-IID 5.53 2.66 6.15 11.92 0.178
C = 8 n-IID 5.70 2.56 6.31 11.62 0.175
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4.2.6 Client fraction
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Figure 4.9: Metrics with varying client fraction FC . Fixed parameters: C = 8,
optimizer = FedAvg, Lr = 1e− 4, B = 8, and non-IID balanced dataset.

Following Experiment 6 from Section 3.2.3.6, the client fraction experiments were
done with C = 8, synergizing well with the chosen fractions [0.25, 0.50, 0.75, 1.0],
corresponding to [2, 4, 6, 8] clients sampled per round. Changing the client fraction
FC does not substantially change the results in Figure 4.9 and Table 4.6. Plots for
IID can be found in Appendix A.4. A lower client fraction utilizes fewer data samples
per round, resulting in fewer computations and therefore faster training speed. For
IID data, client fraction 0.25 performs the best for some metrics, indicating that
smaller client fractions can improve both speed and at least maintain performance
in IID scenarios. For the non-IID setup, the larger client fractions tend to perform
slightly better.

Table 4.6: All metrics with varying client fraction FC for IID and non-IID (n-IID)
balanced data.

minADE1 ↓ minADE5 ↓ aveADE5 ↓ FDE1 ↓ HitRate5,2m ↑

FC = 0.25 IID 5.41 2.57 6.10 11.54 0.185
FC = 0.5 IID 5.71 2.66 6.23 11.96 0.176
FC = 0.75 IID 5.36 2.62 6.17 11.35 0.181
FC = 1.0 IID 5.38 2.66 6.24 11.41 0.178
FC = 0.25 n-IID 5.54 2.65 6.21 11.83 0.169
FC = 0.5 n-IID 5.51 2.70 6.20 11.70 0.170
FC = 0.75 n-IID 5.53 2.57 6.22 11.70 0.177
FC = 1.0 n-IID 5.63 2.56 6.31 11.62 0.175
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4.2.7 FL versus CL
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Figure 4.10: Validation of the performance benefits of FL (C = 2) compared to
local CL (C = 1) in Boston (B) and Singapore (S). Fixed parameters: FC = 1.0,
optimizer = FedAvg, Lr = 1e− 4, and B = 8.

In Figure 4.10 and Table 4.7, we compare FL to CL following Experiment 7 from
Section 3.2.3.7. This includes two local CL runs using 864B and 864S, respectively,
two CL runs using full (864B+864S) and half-sized (432B+432S) mixed datasets
from both regions, and corresponding non-IID FL setups with 2 clients. The FL
setup with 864B+864S performs significantly better than local 864B and 864S CL
runs, hence showcasing the potential performance benefit of accessing more data
with FL when CL is not feasible. CL using only 864S is consistently the worst
performing. CL with 864B and CL and FL with 432B+432S all perform equally
better. This might indicate that the Boston data represents the validation dataset
better than the Singapore data, despite the balanced validation data. CL achieves
comparable performance to FL when trained with the same datasets. However, all
CL runs are faster than FL both in terms of training speed and convergence rates.

Table 4.7: Validation of the performance benefits of FL (C = 2) compared to local
CL (C = 1) in Boston (B) and Singapore (S).

minADE1 ↓ minADE5 ↓ aveADE5 ↓ FDE1 ↓ HitRate5,2m ↑

864B, C = 1 5.61 2.72 6.53 12.16 0.156
864S, C = 1 5.73 2.94 7.08 13.14 0.152
432B+432S C = 1 5.57 2.77 6.55 12.06 0.163
864B+864S C = 1 5.45 2.64 6.17 11.84 0.183
432B+432S C = 2 5.70 2.90 6.53 12.13 0.163
864B+864S C = 2 5.47 2.61 6.14 11.61 0.173
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5
Discussion

In this section, we discuss the key findings from our experiments and the limitations
of the results. The implications and subsequent challenges are also presented. Lastly,
ethical considerations related to this study are discussed.

5.1 Implementation validation discussion
Besides verifying that the FL setup worked as intended, we also performed a set
of FL experiments on the MNIST dataset that serve as a comparison baseline for
the trajectory prediction experiments. This needs to be approached with caution,
as the results can not be transferred between contexts. Yet, they are useful when
interpreting the trajectory prediction result.

The FL MNIST experiments in Section 4.1 highlight that FL converges slower than
CL in terms of speed, but eventually reaches a similar performance level (loss and
accuracy). The learning rate had no impact other than the convergence rate, hence
the largest learning rate was used for all experiments for maximized training speed.
Smaller batch sizes induced a faster convergence rate and improved stability for
non-IID data.

The performance of a central model (one client) was used as the benchmark and
achieved a validation accuracy of approximately 99 %. The results show that FL
with increasing numbers of clients takes longer to converge but eventually saturates
at a similar level of performance when using IID data. This is true for all tested
numbers of clients up to C = 80. Extending the client base would have been inter-
esting, as some applications of FL require more than 80 clients [46]. Limitations of
memory, using our specific hardware and FL framework, hindered such experiments
in this study.

Using IID data yielded better performance than non-IID when evaluating FL. The
non-IID data distribution introduced more noise and overall lower maximum per-
formance in most experiments. CL performed better than FL using the non-IID
data distribution. The IID and non-IID distribution methods only affect FL as ex-
plained in Section 3.1 and have no effect when applied to a single client (CL). As
10 clients and 10 classes were used in the FL experiments, each local client dataset
mostly contained only one class and hence tried to learn different digits, affecting
the convergence negatively. Decreasing the client fraction FC for each round of FL
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to less than 1.0 corresponded to lower performance, but increased training speed
since less data is processed each round. It also introduced large fluctuations of loss
and accuracy when using non-IID data. As explained for the number of clients
experiments, each client tries to learn different digits. Choosing a fraction of the
clients each round means that the model trains on only a few digits each round,
resulting in large fluctuations in the trainable parameters. This could potentially
be mitigated by using a smaller learning rate but was not done in this study due to
time limitations and subsequent priorities. Learning is still somewhat hampered for
larger FC , but not substantially since more classes are represented in each round.
Using no overlap of the classes resulted in no learning when tested, showing the
importance of overlap for the MNIST classes when using FL.

The three optimizers in FedOpt were unstable for all our tested parameters, only
converging after several tries with luck involved. Unfortunately, we were not able
to find a set of parameters that improved this behavior. Nevertheless, when they
converged, FedAdam and FedYogi performed better with smaller fluctuations than
the other optimizers on non-IID data, following the advantages for heterogeneous
data outlined in [40]. Overall, there were no substantial performance benefits of
either federated optimizer except for FedAdagrad which performed poorly in all ex-
periments. FedAvg was reliable in all scenarios with no major drawbacks and was
therefore used in most of the experiments.

In summary of the MNIST experiments, we learned that for FL (compared to CL)
convergence is slower, performance is similar for multiple clients and different client
fractions using IID data, and our non-IID data distribution affects the stability
negatively with slightly lower performance for both lower client fractions and more
clients.

5.2 Trajectory prediction discussion
The trajectory prediction experiments on nuScenes follow the same general trend as
the implementation validation MNIST results. The performance when using FL is
similar to CL, while the training speed and convergence rate are slower and scale
with the number of clients C. This increases our confidence in the potential per-
formance benefits of applying FL in practice. However, many more aspects need to
be taken into account for real-life applications. These include challenges of privacy
protection when sending model updates (Section 2.2.2), potentially reduced com-
munication costs, systems heterogeneity, and unreliable clients [46]. The learning
rate and batch size experiments only affected convergence rates and were therefore
chosen to minimize the run time for all experiments.

The results should be interpreted carefully due to our experimental setup. The
dataset was small compared to the MNIST dataset, containing only 2016 data sam-
ples at maximum size. Additionally, all scenes were extracted from urban environ-
ments with no cross-validation testing, i.e., training on Boston data and validating
on Singapore data. No cross-fold validation was done either, i.e., changing data
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partitioning of the training and validation sets to explore unintentional data biases.
The same validation set of 512 samples from each city was always used. For a car
manufacturer, it is essential to validate any system in all relevant driving environ-
ments before making it available in the vehicles, hence why we chose to validate on
all available geographical locations.

Using multiple clients resulted in slower training speeds and convergence rates, with
a similar maximum performance to the benchmark CL setup. This time it was pos-
sible to compare to a benchmark set by the original CoverNet paper for this task
[25], as done in Section 4.2.1. Here, our performance in all metrics is relatively
close to the ones in the original paper, indicating that our model works as intended.
With this result, we have enough confidence to draw conclusions about FL and its
effectiveness relative to CL.

FL performed equally to CL on both IID and non-IID data, with slower convergence
rates. However, reducing the client fraction FC resulted in improved training speed.
This time, a smaller FC did barely have any negative effect on the performance of
IID or non-IID data. The real-life problem of unreliable clients could therefore be
argued to be mitigated in this case, as a lower FC corresponds to simulating unreli-
ability where only a fraction of randomly selected clients is chosen for each round.
Furthermore, the three tested federated optimizers FedAvg, FedAvgM and FedProx
did not have any noteworthy effects on the results on either dataset or distribution.
The differences in the data samples from Boston and Singapore are not extreme,
hence probably why the benefits of the FedProx optimizer do not show, and FedAvg
was considered suitable to use in most experiments.

The arguably most important result from this study was presented in Section 4.2.7.
We simulated the case where FL enables data from both Boston and Singapore to
be used, compared to a scenario where only Boston or Singapore data is available
in a CL scenario. It showed substantially improved performance when FL enables
more data to be used. The performance scaled with more available and diverse data.
Training using only 864 Singapore samples consistently performed the worst, while
training on 864 Boston samples achieved almost the same performance as when
using 432 samples from each city. This indicates that the data diversity matters
in at least one of our two cases, not only the number of data samples available.
Previously, we have shown that FL does not necessarily reduce performance in most
scenarios. This result implies that FL can improve the generalization and possibly
robustness of a trajectory prediction model, by unlocking additional or more diverse
data samples. Overall, the results suggest that FL and CL learn equally well on
the same dataset, with FL performing better when unlocking larger quantities of or
more diverse data samples.

5.3 Ethical considerations
As ADAS/ADS technology, usually relying on ML, continues to advance, there are
numerous ethical, societal and ecological issues that need to be addressed. Such
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issues include transportation safety, concerns about liability, ethical dilemmas, envi-
ronmental sustainability, privacy and security. The following section addresses these
issues further.

5.3.1 Safety and ethical dilemmas
Some of the most commonly discussed issues in literature and media are the poten-
tial safety improvements and how they relate to liability and ethical dilemmas [47].
Implementing ADAS/ADS in vehicles has been shown to reduce the probability of
accidents [48]. However, a side effect of these functionalities is that the driver’s focus
can be reduced, potentially making the safety improvements redundant in certain
situations where human input is necessary. The level of safety required before full
implementation of ADS can be done, with no assumption of driver focus or input,
is subject to dispute [49]. Safety standards (such as ISO26262, the standard for
road vehicles’ functional safety) and future safety legislation will define the required
safety level.

One common ethical dilemma often discussed in relation to autonomous vehicles is
the trolley problem [47]. In this problem, a train heads down a track, and a choice
has to be made between hitting one or several people. If no action is taken, five peo-
ple are hit. If a lever is pulled to shift the train to a different lane, only one person
will be hit. Should the lever be pulled? It is easy to think of similar examples more
relevant to autonomous vehicles. What action should be taken if a vehicle needs to
decide between hitting a person on a pedestrian crossing, turning left and risking
hitting an oncoming car, or turning right to end up in the trench? How should the
ADAS/ADS of a vehicle be trained on such scenarios, and what should the preferred
outcome be? If minimizing injuries is the assumed criterion, is it realistic for the
system to know how to act for a particular outcome? To calculate all involved ob-
jects’ trajectories and make an informed decision based on the predictions of future
paths and potential damages in each scenario? One of the goals of developing FL
for automotive applications is to enable learning from corner cases [50], such as the
situation described in this paragraph. It is established that to enable intelligent
decision-making, the decision maker has to be well informed, in this case, about the
vehicle’s surroundings and trajectories of all objects. Continuous research of train-
ing methods for ADAS/ADS, including FL, can potentially contribute to improved
decision-making and, consequently, road safety [48].

Several other aspects of ethical dilemmas can be discussed. Should the age of the
involved people affect the choice, i.e., should the training include preferences of
the attributes of people? Should the system be trained to mimic what a human
driver would do? In order to minimize total injuries, it can be argued that the least
amount of people or vehicles should be hit, weighed against the severity of each
injury. However, this assumes that risk analysis for each possible scenario can be
done in a fraction of a second. Biases affecting such choices can unintentionally
be introduced during training, i.e., if the dataset is unbalanced. One prominent
example of bias in an automotive setting is the weather [51]. Training on data

52



5. Discussion

containing different weather and lighting scenarios is important to ensure the per-
formance is acceptable across all conditions, including different geographical regions
and climates. The same argument can be made about traffic scenarios where ethical
dilemmas arise; variety is essential to minimize unintentional biases and improve
generalization. This further motivates research of FL and other methods that can
potentially improve the variety of the available data [46].

From the scope of this study, no active choices have to be made, as only trajectory
prediction will be studied. Trajectory planning and control systems, trained to ac-
tively minimize risk on the road, are outside the scope. However, the performance of
the trajectory prediction model (including object detection) affects the performance
of the overall ADAS/ADS functionality. A famous example of the functionality
breaking down was when a Tesla car hit a stationary white truck on a highway in
2016 without attempting to avoid the collision [52]. It is claimed that neither the
driver nor ADAS/ADS could distinguish the white trailer from the brightly lit sky,
illustrating the consequences if not all systems work as intended.

While discussing the performance influence of FL on ADAS/ADS, a comparison to
other training methods is needed. Previous studies have shown the potential of FL
to perform on a similar level to CL [53] [54]. If FL performs worse than a corre-
sponding CL method, how much worse is acceptable? How is this weighed against
the privacy and potential cost benefits of FL? Can these benefits ever be measured
against the deterioration of the safety system’s performance? In practice, the per-
formance of FL probably needs to be on par with or better than CL before any
full-scale implementation in a fleet of vehicles is considered. Since road safety is one
of the main concerns for automotive manufacturers and their customers, caution is
to be expected [3].

Another common topic relevant to ADS specifically is the question of liability [47].
Who is to blame in an accident caused by an autonomous vehicle? Should the vehicle
always prioritize its passengers? Volvo Cars, among other large entities within the
automotive industry, has promised to take full liability when their vehicles are in
autonomous mode and at fault in an accident, according to a press release [55].
Representatives from Mercedes and Google have made similar claims in interviews
[56]. This provides an answer for now, but questions remain regarding how this will
be implemented in practice. Will full liability really be taken, or is it an attempt to
influence the perception of the public who is not read up on the fine print?

5.3.2 Ecological aspects
One of the main discussions regarding the future of transportation deals with lower-
ing emissions. How autonomous vehicles can affect emissions is a topic not discussed
as frequently [47]. Developed to increase efficiency, both regarding eco-driving and
route planning, the average vehicle emits less greenhouse gases (GHG) compared to
the average vehicle controlled by a human [57]. However, a potential drawback could
be an increase in the number of passenger cars on the road, due to enabling easier
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travel compared to manual driving. This could replace public transport alternatives,
which by their design are more efficient for a given choice of propulsion method. One
option to deal with this issue is to use ADS capabilities to replace passenger cars
with a fleet of autonomous buses or taxis. Such a taxi service is currently offered by
Waymo in certain parts of the US [58]. Depending on how the distribution of vehi-
cles with ADS functionality changes in the future, one might argue both positive and
negative effects of emissions of GHG. Assuming equal ADS development in all trans-
portation sectors, a net positive effect of emission reduction should be expected [57].

Furthermore, traffic congestion contributes to the waste of energy and consequently
negative environmental impact [59]. A traffic system where all vehicles are au-
tonomous should in theory be able to reduce congestion and improve the flow of
the traffic system. A critical penetration rate of autonomous vehicles for a high po-
tential of traffic flow improvements is 40% [60]. Therefore, introducing autonomous
vehicles in the current system dominated by manual driving might initially nega-
tively impact the traffic flow, but will eventually have positive effects. Trajectory
prediction models, performing well in a wide range of possible traffic scenarios and
environments, are essential for such an improvement.

FL applied at the client level can be defined as edge computing. By processing data
closer to the data source, the vehicle’s sensors in this instance, overall efficiency can
be improved as there is no need for costly data transfer. Additionally, data traffic is
reduced and a larger amount of the available processing power at the vehicle level is
utilized [29]. This can reduce the need for energy-demanding cloud computing, i.e.,
data centers, which have been estimated to be responsible for roughly 1 % to 1.5 %
of the world’s total energy consumption [61] [62]. Increasing the number of compu-
tations done by the vehicle’s computers will naturally increase local power demand,
but it is not known if the total energy consumption would reduce by changing from
cloud computing to FL for a vehicle fleet. One estimation claims that the required
computing hardware development for the energy consumption to break even in 2050
in such a scenario is not probable to happen, based on the development rate today
[63]. This is however based on many assumptions and the prediction is yet to be
verified in practice.

5.3.3 Privacy
As discussed earlier in this study, one of the main advantages of FL is the potential
for strengthened data privacy and security. This is due to the advantages of FL
where no data collection is required, while the most common data leakage occurs
during collection and processing. Nonetheless, measures are still needed as FL is
not inherently secure by default, since for example reversed deduction of model
updates can be done to produce the training data [46]. With such measures applied,
improved privacy is possible to achieve. Another potential benefit of FL is that data
does not need to be shared between regions, for example, countries with different
views on data protection like Sweden and China [46]. This would potentially allow
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for greater global collaboration without breaching the local data privacy legislation
of different nations.

5.3.4 Economical aspects
Another issue concerning the broad topic of vehicle safety is the premiumization of
advanced safety features. With time, it is natural for vehicle safety to improve. Con-
sequently, prices increase as new innovations are introduced. Throughout history,
passive crash protection has been the main focus, but in recent years ADAS/ADS
functionalities have been given increasing amounts of attention and research re-
sources, with forecasts showing the global market for ADAS tripling from 2021 to
2030 [64]. To actively avoid an accident is naturally a desirable outcome, but these
new and improved safety features are usually offered at premium prices. This comes
down to the substantial costs of adding hardware (sensors), software platforms, and
the development associated with adding new technology. From an ethical point of
view, is it ethical to charge premium prices for safety? Is it ethical to only make
these systems available to the wealthy? Over time, new and desirable features trickle
down to cheaper vehicle segments, resulting in a wider spread of safety technology.
Does this increase the base price of vehicles? The average price of passenger cars
in Sweden increased from 34 000€ to 39 000€ from 2015 to 2020 (adjusted for in-
flation), with some countries in Europe experiencing even higher price hikes [65],
partly due to raising the baseline for safety standards. Similarly to premium passive
safety features of the past, active safety (including ADAS/ADS) can be expected to
be common in a majority of sold vehicles around the world in the near future. In
the EU in particular, all newly sold road vehicles from 2024 will be required to be
equipped with certain ADAS features [66], depending on the vehicle type. A few
examples; all road vehicles will need to be equipped with adaptive cruise control
and driver attention warning systems, cars and vans need lane-keeping assistance
and emergency braking, while buses and trucks need various warning systems. These
changes are inevitable, meaning that it will get more difficult for the common family
to afford a new, but safer, car.
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Driving automation has the ability to improve safety and efficiency in traffic. Active
safety systems, such as ADAS and ADS, face challenges related to robustness and
the need to adhere to stringent requirements, including data privacy regulations.
Robustness can be improved through continuous learning from diverse driving sce-
narios, including edge cases, and therefore requires large quantities of data. Col-
lecting this data from a fleet of customer cars (clients) is not feasible due to large
communication costs and the data privacy regulations. FL is a possible solution
that addresses these challenges as it enables learning while keeping client data local.
This can allow for accessing otherwise unavailable data and increases the chances of
observing edge cases.

Although previous studies have investigated the effects of FL and have covered some
applications within an automotive setting, there has been no evaluation of the influ-
ence of FL on trajectory prediction performance for a geographically diverse dataset.
Therefore, this study includes an implementation of FL to train a trajectory predic-
tion model on a dataset collected in different geographical regions, namely Boston
and Singapore. Limitations of our experiments include no practical testing on several
hardware devices, size limitations of the used dataset, and a restricted model search.

The performance influence of FL was tested on two datasets, MNIST and nuScenes,
through a set of similar experiments. The results indicate that a larger number
of clients in FL yields slower convergence rates. Still, a similar final accuracy is
eventually reached. Choosing a smaller client fraction, simulating unreliable clients,
reduces the computational resources needed for each round. However, using a lower
fraction with non-IID data reduced the performance in the MNIST experiments,
while performance remained the same for the nuScenes experiments. Most notably,
the results show that overall model performance can be improved through the use
of the data FL unlocks compared to CL in the imagined scenario. In this scenario,
FL enables data samples from both Boston and Singapore to be used for learning,
compared to only having data from one city available for CL.

Based on our results and limitations, there are multiple research paths that could be
further explored. These include investigating FL for other experiments, using more
clients, using larger datasets, or with more complex or diverse datasets or mod-
els. The privacy methods outlined in Section 2.2.2 can be explored and evaluated
in a suitable application. Out-of-distribution performance, for example, training a
model on datasets A and B and testing it on dataset C, can be researched. Another
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suggestion is to evaluate FL for a model architecture that is able to handle sensor
data from varying sensor setups, i.e., vehicles with different combinations of cam-
eras, LiDARs, and RADARs. Unsupervised representation learning may be used to
achieve this [67] and can eventually be done by modeling similar feature represen-
tations from different sensors and merging the outputs into a single feature vector.
In combination with FL, this could demonstrate a positive effect by unlocking data
from a more diverse set of vehicles in various geographical regions. Another example
of important future work is to implement FL in practice on hardware devices acting
as clients and servers. This can be done to evaluate real communication and relia-
bility challenges and is arguably one of the most important building blocks needed
to realize FL.
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A.1 MNIST - All results loss
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Figure A.1: Loss as a function of epochs for the previously described experiments.
All axes, except for the graphs in the top row, display the same interval. The
accuracy range for the learning rate graphs is five times larger.
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A.2 nuScenes - Federated optimizer 8 clients
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Figure A.2: Metrics with FedAvg, FedAvgM and FedProx, all using 8 clients.
Fixed parameters: C = 8, FC = 1.0, Lr = 1e − 4, B = 8, and non-IID balanced
dataset.

A.3 nuScenes - Number of clients IID balanced
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Figure A.3: Metrics with varying number of clients C. Fixed parameters: FC =
1.0, optimizer = FedAvg, Lr = 1e− 4, B = 8, and IID balanced dataset.
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A.4 nuScenes - Client fraction IID balanced
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Figure A.4: Metrics with varying client fraction FC . Fixed parameters: C = 8,
optimizer = FedAvg, Lr = 1e− 4, B = 8, and IID balanced dataset.
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