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A 3D-model for O2 airglow perturbations induced by gravity waves in the upper
mesosphere
A forward model for the new Swedish satellite MATS
ANQI LI
Department of Earth and Space Sciences
Chalmers University of Technology

Abstract

To investigate the in�uence of atmospheric waves in the mesosphere, a new Swedish
satellite MATS (Mesospheric Airglow/Aerosol Tomography and Spectroscopy) will
be launched in 2019. It will observe infrared emissions at 762 nm from the O2(b1� +

g )
airglow in the region of 70 - 110 km altitude. As a part of the design work for the
MATS project, an accurate forward model is needed to estimate what MATS is ex-
pected to measure. The results from this model will be used to evaluate the retrieval
methods for processing the measurements from MATS.

In this thesis project, a gravity wave model and a photochemistry model were cou-
pled to simulate both the day- and nightglow emission �elds in three spatial dimen-
sions and time. Simulated satellite images were generated taking into consideration
the sphericity of the Earth and the limb-viewing geometry of MATS. Simulation
parameters were set according to the preliminary design of the instrument, such as
the satellite orbit, image resolution and spectral selections. These satellite images
were the �rst simulated airglow limb images made for the MATS project.

By analysing the output data, the relations between wave parameters and airglow
perturbations were investigated. It was shown that wave patterns can be easily
observed between 85 - 105 km due to the relatively large perturbation in airglow
emissions. The O2 airglow emission �eld was found to be highly sensitive to atomic
oxygen concentration �eld as an input. Furthermore, as expected, wave patterns
projected on simulated satellite images largely depend on the horizontal orientation
of the wave propagation. This implies that a tomographic reconstruction is needed
when the angle between the wave front and the limb-viewing direction is large.
Finally, limitations of the model were discussed.

Keywords: MATS, internal gravity wave, mesosphere, O2 airglow,
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1
Introduction and background

theories

The weather in the mesosphere has been a�ected by human activity since the start
of the industrial revolution, just like the lower atmosphere. An increase of CO2
concentration gives not only a warming e�ect in the lower atmosphere, but also a
cooling e�ect in the middle atmosphere. It is predicted that a signi�cant reduction
in the mean temperature by 10 K will occur with a doubling of CO2 concentrations
(Roble and Dickinson (1989)). A large stratospheric ozone hole was discovered by
Farman et al. (1985) over the Antarctica. Scientists have suggested that the ozone
loss was caused by anthropogenic released chloro�uorocarbons (CFCs). However,
the full implications of climate change are far from understood. For instance, at-
mospheric models used in this region have limited ability to predict future changes.
One of the limiting factors is large uncertainty in the characteristics and the global
distribution of gravity waves. Recent research has revealed that waves can link
together di�erent parts of our climate system over long distances (Brasseur and
Solomon (2005)). Species with short chemical lifetime in the middle atmosphere
such as stratospheric ozone are strongly in�uenced by photochemical �uctuations
induced by gravity waves. Thus, by understanding, measuring and quantifying at-
mospheric waves in the mesospheric region, seasonal forecasts from climate models
can be improved. Similar to the temperature distribution in the Earth's atmosphere,
the level of understanding of ozone layer and other problems that involve gravity
wave transports and mixing can be also improved.

Although the role of gravity waves on the Earth's atmosphere has been studied
over the past 5 decades, many scienti�c questions are still remained. To improve
our understanding of gravity waves in the mesosphere, the MATS satellite will be
launched in 2019. This satellite will provide the �rst 3 dimensional structures of
gravity waves in the upper mesosphere, by making use of optical phenomena that
are speci�c for the mesosphere. These are the light emitted from excited oxygen
molecules called oxygen airglow, and the light scattered by aerosol particles in the
form of "noctilucent clouds" (NLCs). As a part of the preparatory work, an accurate
forward model of what MATS is expected to observe is required.
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1. Introduction and background theories

The objective of this thesis project is to implement a three dimensional model of
gravity waves, and couple it with a photochemistry model to investigate how these
waves modify the airglow emissions from excited oxygen molecules in the meso-
sphere. According to the preliminary design of the MATS project, simulated satel-
lite images of the Earth's limb will be generated. The results can be used for the
evaluation of the retrieval methods for processing the measurements from MATS.

1.1 Atmospheric structure and dynamics

The Earth's atmosphere is divided into di�erent layers based on di�erent character-
istics. One of the most common divisions of the atmosphere is based on its vertical
temperature gradient which is either positive or negative, as shown in Figure 1.1.
The mesosphere is one of the "spheres" among others, where the temperature gradi-
ent is negative and it ranges approximately from50 km altitude to 100km. The top
of mesosphere, the mesopause, is often not clearly de�ned but can be considered as
a region between80 and 100km, where the coldest temperatures in the atmosphere
can be found. Above the mesopause is the thermosphere, in which the vertical
temperature gradient is positive. Below the mesosphere are stratosphere and tro-
posphere. Troposphere, stratosphere and mesosphere are collectively referred as the
homosphere, where the composition of the atmosphere can be roughly regarded as
constant, with the major constituents N2 and O2 made up around 80% and 20%,
respectively, of the total number density.

Figure 1.2 shows the zonal mean temperature distribution and illustrates the general
circulation of the middle atmosphere. Although the summer pole receives much more
solar radiation than the winter pole, the coldest region on the earth is found in the
summer mesopause. Also, the tropical tropopause is cooler than its counterpart at
the same altitude. The cold temperature is due to the large scale meridional pole to
pole circulation in the mesosphere, as well as the upward motion above the summer
pole and the tropical region. It is based on simple thermodynamic considerations
� an air parcel displaced upward (pressure decreased) will expand and cool down.
The meridional wind (wind speed in the latitudinal direction) can be observed and
verify the theory of general circulation in the middle atmosphere (Nastrom et al.
(1982)). It is now recognized that an essential component of the general circulation
is the deposition of energy and momentum driven by atmospheric waves. More
precisely, the circulation in the stratosphere, also called Brewer-Dobson circulation,
is driven by planetary waves which have larger wavelengths. The circulation in
the mesosphere is driven by gravity waves which have smaller wavelengths. Thus
understanding the behaviour of gravity waves plays a crucial role to the improvement
of atmospheric models in the mesosphere.

2



1. Introduction and background theories

Figure 1.1: Divisions of the atmosphere based on vertical temperature gradient or
composition. Vertical temperature pro�le is obtained from MSIS-90 model in July
at latitude of 80°S.

1.2 Internal gravity waves

Environmental lapse rate is de�ned as the rate of decreasing temperature with in-
creasing altitude

� E = �
dT
dz

: (1.1)

Combining the hydrostatic equation and the expression for potential temperature,
a dry adiabatic lapse rate (ALR) � d can be derived as10 K=km. In a stable
atmospheric condition, where� E is less than ALR, a parcel of air that is uplifted
will cool to lower temperature than its new surroundings along the ALR. Hence
the air parcel will be denser than its surroundings and will tend to fall back to its
original altitude (pressure level). When the parcel of air is pushed down, it will tend
to rebound for the same reason. In other words, air that is forced to displace will
tend to return to its original altitude by buoyancy force and gravity force, resulting
in an up-and-down bouncing motion. As shown in Figure 1.3, it is identical with a
physical model of a weight that is connected to a spring. Such displacements of air
can be generated by mountains, hills, thunderstorms, velocity jets, large explosions,
etc.

As can be examined from vertical temperature gradients shown in Figure 1.1, the
stratosphere and mesosphere are more likely to exhibit static stability conditions
than in the troposphere. One of the examples of gravity waves is lee wave, or known

3



1. Introduction and background theories

Figure 1.2: An illustration of the dynamics in the middle atmosphere. Black
arrows indicate general circulations both in the stratosphere and in the mesosphere.
The background colour indicates the zonal mean temperature obtain from CIRA-86
model, with red and blue indicating hot and cold temperature, respectively. Dashed
and solid red lines show internal gravity waves and planetary waves, respectively.
Dashed and solid white circles illustrate the easterlies and westerlies zonal wind,
respectively.

Figure 1.3: A physical model of an air parcel under a stable atmospheric condition
is identical with a weight that is connected to a spring.

4



1. Introduction and background theories

Figure 1.4: An illustration of air �ow over the mountain range under a stable
atmospheric condition, as one of the examples of gravity wave.

as mountain wave. As air is blown against a large topographic feature, it is forced to
rise. If the atmosphere is in a stable condition, then on the lee side of the mountain
it will tend to rebound to the original altitude. However, its momentum is such that
it will shoot past its original altitude and go lower than it was before. It then will
rise again to come back to its original height. It will again overshoot, this time going
too high, and so on. This up-and-down motion pushes layers above and below the
air parcel, and thus gravity wave is propagated to even higher (or lower) altitudes
(see Figure 1.4).

Gravity waves have impacts on atmospheric density pro�les, temperature pro�les
as well as wind pro�les in both vertical and horizontal directions. Especially in
the higher altitude region where air densities are low, the amplitudes of the wave
�uctuations will become large. As a result, gravity waves may cause perturbations
in the mesosphere so large that a considerable in�uence on the mean atmospheric
state can not be neglected. As mentioned above, gravity waves play a crucial role to
the general circle in the mesosphere transporting energy and trace chemical species.
Since perturbed air density and temperature alter the physical phases of water in
the air, as well as local photochemical reactions via variations in associated rate
coe�cients and gas distributions. Characteristics of the waves can be captured by
sensing these optical phenomena on clouds and airglow as shown in Figure 1.5.

1.3 Airglow

Airglow is the optical emissions from excited chemical species in the atmosphere.
Airglow causes the night sky never to be completely dark when observing from the
ground. A thin greenish layer on the night side of the Earth's atmosphere can also
be seen from the space (Figure 1.6). It is easier to detect airglow emissions at
night because of the weak intensity and spectral region of the emissions. In the day
the scattered sunlight is abundantly dominant even though airglow intensities are

5
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