
Help Annotating Software
“HAnS” - Visualisation

IntelliJ IDE plugin for feature-oriented software development

Bachelor’s thesis in Computer science and engineering

Kenny Bang
Johan Berg
Seif Bourogaa
Lucas Frövik
Alexander Grönberg
Sara Persson

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2021

Bachelor’s thesis 2021

Help Annotating Software "HAnS" - Visualisation

IntelliJ IDE plugin for feature-oriented software development

Kenny Bang
Johan Berg

Seif Bourogaa
Lucas Frövik

Alexander Grönberg
Sara Persson

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2021

Help Annotating Software "HAnS" - Visualisation
IntelliJ IDE plugin for feature-oriented software development
Kenny Bang Johan Berg Seif Bourogaa Lucas Frövik Alexander Grönberg Sara Pers-
son

© Kenny Bang, Johan Berg, Seif Bourogaa, Lucas Frövik, Alexander Grönberg, Sara Pers-
son 2021.

Supervisors: Thorsten Berger, Ho Quang Truong
Examiner: Jan-Philipp Steghöfer

Bachelor’s Thesis 2021
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2021

Help Annotating Software "HAnS" - Visualisation
IntelliJ IDE plugin for feature-oriented software development
Kenny Bang, Johan Berg, Seif Bourogaa, Lucas Frövik, Alexander Grönberg, Sara Pers-
son

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

iii

Abstract
Developing large software systems that are feature-oriented is a complex and time-
consuming task that is further hindered by the recurring and repetitive undertaking of
feature lookup. However, feature lookups’ inefficiency can be solved using embedded
annotations that quickly and easily allow for recovery of features and their locations.
Feature lookup is one of the problems this paper aims to solve by creating a plugin for
IntelliJ that enables the use and exploration of feature annotations through multiple
visualisations. With this plugin, the user will be able to: visualise where in the code its
features are implemented, visualise where the code intersects of two or more features
and see useful metrics related to the implemented features.

The project results were determined by utilising a user review of the plugin and com-
paring the completed plugin with predetermined product specifications. While some
functionality were not able to be implemented due to limitations in the project, the
results achieved suggest that our plugin provides an intuitive and easy way to perform
feature lookup. The completed product thus serves as a useful tool to feature based
programming for the IDE IntelliJ.

Keywords: Annotations, Features, Feature location, Visualisation, IntelliJ, Plugin, Soft-
ware development

iv

Sammandrag
Att utveckla stora "feature-oriented" mjukvarusystem är en komplex och tidskrävande
uppgift som hindras ytterligare av återkommande och den upprepade uppgiften av fea-
ture lookup. Däremot, ineffektivitet av feature lookup kan lösas genom att använda
inbäddade annoteringar som med lättnad tillåter återvinning av features och deras plats
i programmet. Feature lookup är ett av problemen som denna rapport syftar till att
lösa genom att skapa ett plugin för IntelliJ som möjliggör användningen och utforsknin-
gen av feature annotations genom flertalet visualiseringar. Med detta plugin kommer
användaren kunna: visualisera var i koden dess features är implementerade, visualisera
var features delar på samma kod och kunna kolla på användbar metrik relaterat till de
implementerade features.

Projektets resultat fastslogs genom en användarundersökning av pluginet och genom
att jämföra pluginet med förutbestämda produktspecifikationer. Då viss funktionalitet
kunde ej implementeras p.g.a begränsningar i projektet, antyder de uppnådda resultaten
att vårt plugin tillhandahåller ett intuitivt och enkelt sätt att utföra feature lookup.
Den färdigställda produkten tjänar således som ett användbart verktyg för feature based
programming för IDEn IntelliJ.

v

Contents

1 Introduction 1
1.1 Aim . 2
1.2 Scope . 2
1.3 Report Structure . 3

2 Background 4
2.1 Related works . 4
2.2 Annotation’s purpose and use . 4
2.3 Visualisation’s purpose and use . 6
2.4 HAnS-Edit . 7

3 Product specifications 8
3.1 Essential visualisations . 9
3.2 Non-essential visualisations . 11
3.3 Visualisation specifications . 12

3.3.1 Feature Location Visualisation 12
3.3.2 Feature Tangling Visualisation 14
3.3.3 Metric view . 15

4 Methodology 17
4.1 Libraries & Tools . 18
4.2 Review . 19

5 Results 22
5.1 HAnS-Vis . 22
5.2 Implementation . 22
5.3 User review results . 26

6 Discussion 28
6.1 Result . 28
6.2 Review . 29
6.3 Future work . 29
6.4 Conclusion . 30

vii

Contents

Bibliography 32

A Appendix 1: User review I
A.1 Questions and tasks . I

viii

Glossary
.

Annotations are code markers that allow the developer to track what and where they
have written a feature. Like a bookmark, the annotation allows the developer not to
lose time and energy recalling and scavenging for the page or location they are searching
for by keeping track of necessary location information.

Features represents an observable functionality in the Software.

Feature tangling/"Tangling" means that features are connected to each other in a
way where a change in one feature could result in a change in another feature.

Feature locating/"feature lookup" is the task to find where a feature is located in
a project.

Metrics are "a set of numbers that give information about a particular process or ac-
tivity" [11].

Feature Metrics are numbers calculated from annotated features.

HAnS Is an acronym for Help Annotating Software.

HAnS-Vis is the plugin developed in this project for visualising annotated features.
"Vis" refers to visualisations.

HAnS-Edit is a plugin developed by another group, consisting of masters students,
for annotating features, which will be referred to as HAnS-Edit. "Edit" refers to editing
support of annotations.

IDE Integrated Development Environment.

HTML Hypertext Markup Language, the standard language for web browsers.

CSS Cascading Style Sheet, the language to style an HTML document.

API Application Programmable Interface.

JVM Java Virtual Machine.

1
Introduction

A feature is a term commonly used when describing software systems. In the context
of software development, a feature represents an observable functionality in the soft-
ware, an abstraction to describe the software’s functionality. Developers and project
managers use these abstractions to describe and communicate software systems to each
other and clients. A significant portion of software development uses features and re-
quires the mechanic of adding new features, maintaining features, or extracting features
in old software projects. Furthermore, managing features in software systems requires
knowledge about the features, their locations and their implementation. However, this
is not always adequately or correctly documented, requiring developers to manually find
and extract all the features and locations in a project. Moreover, this aforementioned
"feature-lookup" task is both time-consuming and error-prone [1], [2], [3].

To give an example of a system where feature-lookup creates issues when not handled
well, imagine a large and old video game with multiple developers and features. In this
hypothetical example, the features are poorly documented, the original developers are
no longer part of the team, and the features are too many and complex to remember
on an individual basis. Much of the development time will go to finding, documenting,
fixing or extracting features in this system. If a new developer wants to look up the
feature that handles the player character’s movement in the game, they might have to
sift through much of the code or code structure to find what they are seeking.

The example above is an example of a flawed Feature-based system. However, feature-
oriented programming is common, both good and bad examples, and for developers
creating these systems, so is the IDE Intellij. According to a survey conducted in 2020,
IntelliJ is the most widely used IDE among JVM developers as 62% of them use the
IDE [4, p. 33].

1

1. Introduction

1.1 Aim
This project aims to save time for developers of feature-based systems by creating an
IntelliJ plugin that can visualise features and feature metrics. Visualising features using
interactive graphs can help developers efficiently handle time-consuming tasks such as
feature lookup. Furthermore, to achieve this efficiency, the following four goals were
created to steer the created product towards the above aim.

Goals of the plugin:

• Being able to extract features from code to use as data for visualisations.
• Displaying where the extracted features can be found in the code, so developers

do not need to put time into looking features up manually.
• Displaying how the code of the extracted features are connected to prevent de-

velopers from making code changes that will unintentionally affect more than one
feature.

• Displaying an overview of the features a developer is working on in the form of
metrics.

The project’s objective is also to have this plugin available for as large a user base as
possible, making IntelliJ a prime candidate to develop this plugin in, as IntelliJ cur-
rently does not have any plugins visualising features.

Further expansion of the plugins visualisation goals are explored later in the text (See
chapter 3 for a product specification that expands on the goals mentioned here by
presenting the visualisations, and the graphical views specifications’).

1.2 Scope
The plugin HAnS-Vis is just one of two parts of the complete plugin HAnS. The second
part of the plugin, HAnS-Edit, is developed in tandem with a team of master students
and is centred around providing editing support for feature-based programming in In-
telliJ. The overarching goal of both of these plugins is to merge them to create a more
comprehensive plugin that handles both editing and visualisation of features.

This project is limited to only the visualisation of features, feature extractions, and
feature metrics. This limitation is due to the fact that the visualisation part is ex-
pected to require a substantial amount of time and because there is already a master
thesis project working on the editing support of an accompanying plugin, HAnS-Edit.

2

1. Introduction

By narrowing the project down to only the visualisations, the focus can be put on one
important aspect, while the master students’ project implement the second aspect, and
in the end have two products that can cooperate as an all-encompassing plugin for
feature development.

Creating an IntelliJ plugin with graphical visualisations necessitated a visualisation
library. Additionally, this library required the delimitation of being regularly main-
tained, well documented, and use a BSD-compatible license [10] for purposes of product
longevity and open-source plugin publication. This limits the available libraries for the
project.

1.3 Report Structure
The following chapter, background, aims to prepare the reader for the following chap-
ters. Although the multiple informative topics in chapter two may seem varied, they
are all necessary for understanding the subsequent text.

Chapter 3, product specifications, act as an extended goal chapter, only exclusively on
the visualisations. The product specification outlines the ideal product in detail. All
features and functionality that would be ideal for adding to the plugin, regardless of
the limitations on the project, are described here. The minimum requirements of the
chosen visualisations precede the specifications.

Chapter 4, methodology, details how the project’s libraries fetch data from feature an-
notations and visualise them into easy-to-use graphs. It also describes the process and
methodology of a user review, where test users tried the project in an interview format.

Chapter 5, results, state the level of completion the project reached by comparing it
with the product specification and details the implementation.

The final chapter, Discussion, discusses the result, the user review, and what could be
improved in the future. Moreover, it examines what conclusions can be drawn from
creating a visualisation plugin for feature-based programming.

3

2
Background

This chapter presents previous projects that are similar to the project being created and
related research. The chapter’s primary focus is to clarify feature annotations, describe
visualisations, and give helpful information for following subject comprehension.

2.1 Related works
Former related research and projects have been conducted such as FeatureDashBoard
and FLOrIDA [5],[1]. Both are tools for extracting and visualising annotated features.
They both support the importance and necessity of annotation-based plugins and sys-
tems. A commonly noted benefit in papers on this subject is the time saved by min-
imising the feature localisation, and the structural and efficiency gain by implementing
these systems [1], [5].

Researchers have created an open-source library called FAXE - Feature Annotation
eXtraction Engine - that automatically parses and receives annotations from software
projects and creates an object model with this information [6]. FAXE has then been
used to create a dashboard, and this dashboard visualises how files and folders map to
features and which features a specific file contains [1], [5]. This previously mentioned
dashboard, called FeatureDashBoard, is a plugin created for Eclipse [5], but currently,
there are no similar plugins for IntelliJ.

2.2 Annotation’s purpose and use
Annotations are code markers that allow the developer to track where a feature is im-
plemented. If two or more features share the same annotation then those two features
depend on the same code, this means the features are tangled. There are three different
types of annotations, namely:

• In-file annotations
• File annotation
• Folder annotations

4

2. Background

In-file annotations are annotations declared directly in the code and allow the de-
veloper to declare that a particular line or block of code belongs to certain features.
There are two types of in-file annotations:

• Line annotations
• Block annotations

Line annotations are used when a single line of code belongs to a feature. This is de-
clared by writing a &line[feature-name] in a comment on the line the code is written.

Figure 2.1: The feature Move is annotated to the line ThreadsController...

Block annotations are used when multiple lines of code belongs to a feature. These
lines are encapsulated with &begin[feature-name] and &end[feature-name] statements
in comments above and under the block to declare which lines belong to a feature.

Figure 2.2: The feature Update is annotated to the method ChangeColor()

File annotations are declared in a file called .feature-to-file, which is located in the
same folder as the mapped files and specifies that entire files belong to certain features.

5

2. Background

Figure 2.3: The feature Controls is annotated to the file KeyboardListener.java and
the feature Move is annotated to the file Direction.java

Finally, folder annotations are declared in a file called .feature-to-folder. This file
is located in the folder that is annotated and specifies that that folder and its content
belong to certain features.

Figure 2.4: The feature Graphics is annotated to the folder graphics and all of its
content

As annotations can be used to keep track of features and where said features are im-
plemented, developers can minimise the time spent locating features, which developers
spend a major part of their time doing [1], [7]. Annotations are also good for software
traceability and software maintainability as it allows developers to document differ-
ences between software directly in the project. Annotations could be read by software
to create an object model, which could then be used to give the user a graphical rep-
resentation of which features exist in a project, where said features are located, the
structure of the software and the degree of scattering for a feature in a project, i.e. how
many different files and folders a feature is implemented in.

2.3 Visualisation’s purpose and use
Data visualisation is the graphical representation of information wherein the data is
presented more naturally for the human mind to comprehend than rows and rows of

6

2. Background

texts that could be exceedingly difficult to read, providing an accessible way to see and
understand the information. By visualising the feature annotations and where said fea-
tures are located, the user could easily locate where features are present in the project,
rather than going through a substantial amount of folders and files. Likewise, by visu-
alising which features are connected and dependent on each other in the project, the
user can understand which features would be impacted if one feature was changed at
a specific location. FeatureDashBoard offers multiple visualisations that aid the user
with the points mentioned above. The first two visualisations are called Feature-to-File
view and Feature-to-Folder view. Features, files and folders are visualised in these views
with a connection between them. By using these connections, a user would be able to
see in what files and folders a feature is located. Another visualisation is the Feature
Tangling view. There, when two features are tangled with each other, it says that they
are connected and dependent. Any modifications to one of the features could result in
a change in the other. To prevent this from happening, the Feature Tangling view is
used to see what features are tangled with each other. Lastly, the Metrics view shows
calculated feature-related numbers using a table; a few of them are:

• Number of file annotations - How many file annotations a feature has in the
project.

• Number of folder annotations - How many folder annotations a feature has in the
project.

• Scattering degree - How many folder, file, and in-file annotations a feature has in
the project.

• Tangling Degree - How tangled a feature is with other features in the project.
• Lines of Feature Code - How many lines of code that belongs to the feature.

The additional information that is given with the Metric view provide an overview of
the features that could be useful for a developer. Two features could be compared on
a specific metric to see which one is most tangled or has the most lines of code and
possibly identify which feature impacts the system the most.

2.4 HAnS-Edit
HAnS-Edit which has been developed in tandem with this project provides syntax
highlighting and code completion for feature annotations. Furthermore it is also used
by this project to calculate feature metrics.

7

3
Product specifications

This chapter presents the ideal visualisations for the project, with no regards to any
limitations that are put up during development. This chapter also presents the min-
imum requirements for each visualisations in the created plugin. Furthermore, as the
project aims to visualise feature data there are detailed specifications for each visu-
alisation. The product specification functions as a more specific goal chapter for the
visualisation, to later compare with the implemented product in the result and discus-
sion chapters.

There are five presented visualisations in this chapter. To ensure a minimal viable
product the specifications for the visualisations are divided into two sets:

• Essential visualisations: The visualisations deemed necessary for a finished mini-
mum viable product.

• Non-essential visualisations: The visualisations deemed optional or unnecessary,
and features that will not be in the final implementation but that could be im-
plemented beyond this project’s deadline.

To determine if a visualisation is essential for the minimum viable product, a visuali-
sation must fulfill all four of the following requirements:

• Has the visualisation been used previously in similar projects or research and is
therefore expected by the user?

• Will the visualisation serve the purpose of efficiency for developers more than
other visualisations?

• Will it be possible to create this visualisation in IntelliJ, using the provided li-
braries?

• Does it serve an essential purpose to the plugin?

Visualisations failing to fulfil all four requirements are classified as non-essential and,
as such, are not required to be included in the implemented edition of the plugin. De-
termining the first item, of the above four requirements, was done by looking at the
earlier created similar projects mentioned in 2.1, such as FeatureDashBoard. Deter-
mining the second item, of judging the visualisations level of service to the purpose of

8

3. Product specifications

efficiency, was done by internal discussions within the project’s group and supervisors.
This requirement prioritises the more useful visualisations according to the project’s
aim. Determining the third item was done by researching IntelliJ’s capabilities with
specific visualisations in mind and rejecting the ones that appeared incompatible or
impossible in the allocated time or with the available resources. Determining the last
item was done by internal discussions within the project’s group and supervisors.

3.1 Essential visualisations
In this section the visualisations deemed essential and their minimum requirements are
listed, and the visualisations are briefly summarised.

• Feature Location Visualisation
The visualisations main purpose is to locate the files and folders of features with
the help of a graph (see Figure 3.1). The minimum requirements of the Feature
Location Visualisation is:
– A visualisation with folder annotations of an identifiable node shape.
– A visualisation with file annotations of an identifiable node shape.
– Clearly show in what specific files and folders any specific feature can be

found implemented.
– To help locating features in a project.
– A tool window that shows the visualisation.
– A feature (or more) has to be selected to visualise the graph.

This visualisation is essential to the project since knowing where a feature is lo-
cated will greatly benefit developers who could easily find and work on a feature
in a project without reading through code to locate it.

• Feature Tangling Visualisation
The visualisations main purpose is to show feature tangling using a graph (see
Figure 3.2). The minimum requirements of Feature Tangling Visualisation is:

– Show one central feature, and its tangled features.
– Show the degree of tangling through the size of the edges.
– Allow for clarification of tangling degree, by hovering over a node and then

clearly displaying the tangling degree number.

This visualisation is designated essential because it has been used by previous
similar projects such as Feature Dashboard [5]. More importantly, the visualisa-
tion allows the user to view features that tangle with a specifically chosen feature.
This is helpful to prevent developers from making changes in the code that acci-
dentally affects unintended features.

9

3. Product specifications

• Metrics view
The visualisation’s main purpose is to present the metrics of features, the specific
metrics are brought up in section 3.3.3. The minimum requirements of Metrics
view are:
– Show metrics for any selected features.
– Have a clear and functional table to display the view.
– Have a radio button, or similar element, to toggle on all or toggle off all but

one feature.
– Have a radio button, or similar element, to toggle on all or toggle off all but

one metric.
This view is essential in the project since it is a vital tool for developing a project
or maintaining and reusing an old project. The metrics view was also used in pre-
vious similar works such as FLOrIDA [1] and Feature Dashboard [5], making the
metric view an expected visualisation to have in a feature annotation visualisation
related plugin.

Figure 3.1: Mock-up of the Feature Location Visualisation

10

3. Product specifications

Figure 3.2: Mock-up of the Feature Tangling Visualisation

3.2 Non-essential visualisations
In this section the visualisations deemed non-essential are listed and briefly summarised.

• History view
The visualisations main purpose is to show project changes over time
The history view’s visualisation features a line graph showing the metric value on
the y-axis and the number of commits ago on the x-axis. This would allow the
user to view changes in metrics over a time unit, commits, meaning uploaded or
saved changes to the code.
This visualisation is designated non-essential as the ability to view how feature
metrics have changed from commit to commit is not essential to feature annota-
tions systems but an extra feature that could enhance or lightly help the devel-
opment experience.

• Common features view
The visualisations main purpose is to show common features between projects
The common features’ visualisation is based on a similar visualisation from Fea-
ture Dashboard [5]. The visualisation is supposed to visualise the features from
different projects or variants that the projects have in common.
The common features visualisation is designated non-essential because features

11

3. Product specifications

are extracted from one instance of IntelliJ. Since multiple projects are not allowed
in one instance of IntelliJ there is not a way to extract features from multiple
projects.

3.3 Visualisation specifications
In this section, the visualisations’ specifications are presented. The Following Visuali-
sation specifications are ideal blueprints for the functionality and design. The project
does not require the implementation of all of the specifications to achieve the project’s
goals.

3.3.1 Feature Location Visualisation
Purpose

The Feature Location Visualisation aims to have a way to visualise all features in a
code base and display where the features are implemented. Showing where features
map to files and folders within the project aids users in quickly finding the correct code
to edit when working with feature-based programming.

Nodes and Edges

The Feature Location Visualisation should offer the user an interactive graph view
where features, files, and folders are represented as nodes with edges mapping the rela-
tionship between them. The nodes and edges should change if the user clicks or hovers
over them to give feedback to the user when interacting with the graph. The edges
should appear as thin curved grey lines connected to a non-selected node, and thicker
more colourful lines when connected to a selected node. Through the increased thick-
ness, the edges visualise which feature exists in which file/folder. Moreover, when a
feature is selected, the visual changes make the relevant connections clearer, allowing
the users to perform actions such as finding the feature’s relevant files and thus finding
the relevant code in easy and efficient ways.

In the Feature Location Visualisation, there should be three types of nodes and two
types of edges. The three nodes should be: features, whose icon is an orange coloured
circular shape; files, whose icon is a standard file icon; and lastly, folders, whose icon is
a standard folder icon. The two edge types should be: solid and dashed. The solid line
should represent file and folder annotations, and the dashed line should represent code
annotations, meaning code-line and code-block annotations.

Hovering

12

3. Product specifications

Further interactivity should appear with hovering. Hovering over any element in the
graph, whether it is an edge or node, supports the users’ engagement through visual
feedback. By hovering, the user confirms an interest in the element and the element, in
return, shows interactability or further relevant information when hovered over. Hiding
information behind a hovering action helps hide less prioritised information until the
user specifically requests it. When hovering over a node, the previously hidden infor-
mation should appear in a static box to the right of the visualisation window. The
information displayed in the box should vary depending on what type of node it is.
If the node represents a feature, no information should be displayed. However, there
should be an option to display some metrics from the metrics view here if the user
chooses. Neither should any information be displayed if hovering over an edge, as these
two elements have no additional information that needs to be displayed relevant to this
visualisation. If the node is a file, the information box should show the user the file’s
folder. If the file only contains file annotations, this is the only information that is
displayed. However, if the file contains code annotations, the box should also display
how many lines of code each annotated feature contains; if the node is a folder, the box
should display what files are found within that folder.

Filtering

The feature to file visualisation should toggle between four filter views, “Visualise all
annotations”, “Visualise line annotations”, “Visualise file annotations”, and “Visualise
folder annotations”. These options should be available in the top left-hand corner of
the visualisation window in a dropdown menu called “Select annotations to visualise”.
Applying filtration to this visualisation is another functionality that makes it easier for
users to find the data they are looking for.

Context menu

Right-clicking on a node should show a drop-down menu, where the user can either
rename or delete the node, both in the graph and in the code where they are imple-
mented. File, feature and folder nodes should have specific options in this menu. Files
should have the option of "open", opening to the code in IntelliJ. Folders should have
the option of “expand", which should expand the folder in the project structure if it
was not already. If the folder is expanded it instead should say “collapse”, to collapse
the opened folder. Features should have the option of “go-to tangling”, which should
send the user to a view called Feature Tangling Visualisation, with the feature selected
and in focus. There should also be the options of renaming or deleting the features,
files, and folders.

Direct navigation interaction

By clicking on a file, the user should go to where the feature is implemented in that file.

13

3. Product specifications

Meaning the plugin should open the code in IntelliJ and to the correct position. This
code navigation requires the plugin to receive the exact path of the files that a feature
maps to, which the HAnS-Edit plugin should handle. Being able to quickly navigate
from visualised annotations to where they are written in the code could save time for
developers.

Feature selection

One of the features that HAnS-Edit aims to provide is the ability to select which features
that a user wants to focus on. By using the HAnS-Edit API to extend this functionality
to the Feature Location Visualisation, the user should be able to select which features
should be visualised at one time to give users an even easier time to localise feature im-
plementation. The feature selection functionality should also be extended to the other
views of this project to hide undesired information from the user.

3.3.2 Feature Tangling Visualisation
Purpose

The Feature Tangling Visualisation aims to give developers an idea if changes to the
code will affect certain features. Specifically, what features will be affected if a devel-
oper were to change the code of another feature. Tangling, in this case, means that two
or more features are mentioned in the same annotations. Thus, this means two features
are dependent on the same code.

Edges

The visualisation should show which features tangle with a different selected feature,
which the edges in the visualisation should visualise. Furthermore, to which degree the
feature is tangled with the other features through the varying thickness of the connect-
ing edges.

Presentation

The visualisation should have a mind-map-like structure with only feature nodes. The
graph should work similarly to the graph in Feature Location Visualisation. The design
and elements should have similar design to Feature Location Visualisation.

Hovering

Similarly to the Feature Location Visualisation, there should be a static box to the vi-
sualisation’s right, showing additional information when hovering over the nodes. This

14

3. Product specifications

hovering info should also expand to the edges to show the degree of tangling numeri-
cally. In this visualisation the static box should also show more data on the hovered
feature. However, if the user hovers over the selected feature, no information should
be displayed as it connects to all other nodes. In the box, the user should see in what
different ways the two features are tangled. The different categories of tangling are the
following:

• Tangled line annotations
• Tangled block annotations
• Tangled file annotations
• Tangled folder annotations

Interaction

The nodes and edges should perform the same by interaction. The drop-down menu
should have the same options of “rename” and “delete” as in the Feature Location Visu-
alisation when right-clicking on a node. Additionally, the drop-down menu should have
the option of “go-to Feature Location Visualisation”. This option opens up a Feature
Location Visualisation of the right-clicked node with only that node and the files and
folders connected. This option should also be available if clicking on the edge between
two nodes. In that case, the Feature Location Visualisation should display both of the
features of the connecting edge.

3.3.3 Metric view
Purpose

The purpose of the metric view is to give the user a way to view more detailed infor-
mation about the features annotated in a project. With the metric view, to give an
example, a user can view how many lines of code there is in a feature and in how many
files the feature code is scattered across.

Metrics

The view should be able to display all of the following metrics to the user:

• Scattering degree: How scattered a feature is around the project.
• Number of file annotations: How many file annotations a feature has in the

project.
• Tangling Degree: How tangled a feature is with other features in the project.
• Lines of Feature Code: How many lines of code that belongs to the feature.

15

3. Product specifications

• Number of file annotations: How many file annotations a feature has in the
project.

• Number of folder annotations: How many folder annotations a feature has in the
project.

Metric settings

The user should be able to change which of the metrics listed above they want to be
displayed in the view through a menu in File -> Settings -> Tools -> HAnS-Vis. The
settings menu should present all available metrics for features in a table. In the first
column is the metrics. In the second column, the user can toggle each metric on or off.

Using HAnS-Edit, it should be possible for the user to choose if they want to view
metrics for just one feature or select multiple features. The selected metrics should be
presented as a table in the metrics view, where each selected metric will have one column
in the table. The selected features should make up the rows of the table, making it
possible to view metrics for several features at once. The table should allow a developer
to overview relevant information about a feature to make more informed decisions.

16

4
Methodology

The first step of working on the project was to specify how the plugin should function
and look and get clear goals to work towards. While this preliminary step was per-
formed, there was also research into multiple visualisation libraries used to fulfil the
project’s specifications. Furthermore, this research brought insight into what specifica-
tions were impossible and allowed adjustments to them.

After the research and design stage was done, work started on the actual implemen-
tation of visualisations. In order to implement these visualisations, they were divided
into main features that could be worked upon independently. This was to make the
workflow efficient and make sure that as much as possible could be implemented si-
multaneously. During the implementation stage, there were weekly checkups on what
has been done during the past week to know what has been done, what needs to be
changed, and what is left to implement.

Once a visualisation was functional but not necessarily finished, the visualisation was
internally reviewed. The feedback was then analysed to figure out what should be done
and how. Using the feedback, changes were made to the visualisation. The visualisa-
tions went back to the implementation stage to implement new changes and continue
to implement unfinished functionality. Once largely complete, the visualisations were
tested with a user review (see 4.2). The user review was used to get feedback from
users on potential changes or concerns. Then these concerns could be fixed in later
implementation iterations of the visualisation.

17

4. Methodology

4.1 Libraries & Tools
The relevant libraries and dependencies used in the created project are explained here
for clarification purposes. The information soon presented might be necessary to under-
stand the following chapters or give background on essential concepts. This subchapter
will describe three such libraries and dependencies, which were all used in the project.
As such, libraries merely considered or later removed are not described here, neither
are libraries or dependencies that are less relevant for understanding.

Vis.js is a JavaScript web-based visualisation library that render the visualisations
on a HTML canvas. The library enables manipulation and interaction with dynamic
data [8]. The library consists of several components, the ones relevant for this project
are:

• Network is the component that is used for the visualisations. Network displays
networks consisting of nodes and edges that are customisable in both appearance
and layout. It also enables interactions that can handle user actions.

• DataSet is one of the other components of vis.js which is used to handle the
node/edge data that “Network” requires for its visuals. The data required for
Network is retrieved and modified using both JavaScript and DataSet methods

The decision was made to use this library even though it is a JavaScript library, which
comes with the disadvantage of requiring data transfer between Java and JavaScript.
Finding a library suited for the project’s requirements came with difficulties, the set de-
limitation on finding a BSD-licensed library vastly narrowed the range of selection. The
reason why this was demanded is because it provides minimal restrictions and copyright
violations on distribution of the product[10]. The Vis.js library was determined as the
best choice because it is very well documented and user-friendly.

JCEF (Java Chromium Embedded Framework), is a framework for embedding browser
components, such as HTML, CSS and JavaScript, in applications written in Java[9].
This became a tool required for displaying the visualisations with vis.js in this Java-
based project.

JSON (JavaScript Object Notation), is a lightweight format for storing and transport-
ing data. It uses key and value pairs to map keys to data. Due to the way JSON data
is structured, with keys being mapped to values, it is easy to parse and generate.

18

4. Methodology

4.2 Review
To test the product created in this project there was a user review performed close to
the end of the development stage. This user review was created to be less comprehen-
sive than a user study after feedback from the project’s supervisors. The motivation
being that studying the effects of the product created was not the focus of the project.
The purpose of then performing a review, rather than merely having an analysis by
the project’s members, or doing nothing at all, was to increase the project’s scientific
foundation.

The review took the form of an interview, of a qualitative and flexible shape where
the test user, the people who partook in the the review, interacted with a demo of the
plugin. The motivation for choosing this format was:

1. The plugin demo needed a supervised format because of the incompleteness of
the demo at the time of the review. One additional reason for the format was the
test users relative unfamiliarity of the plugin and annotated features. Therefore,
a supervised interview in combination with the demo was deemed appropriate.

2. One purpose of the review was to understand if the plugin improved the hu-
man experience and how? Which is a question that is difficult to quantify, and
therefore, the review took a qualitative rather than a quantitative shape.

3. A lack of time and available test users made a smaller review, with quality research
ideal.

4. A flexible interview, where questions, interactions, and tasks may appear or dis-
appear during the interview to fully explore the experience of the plugin, was
decided on for two reasons. One, the human experience differs and seeing how
the users interact with and without our input and then asking for the thought
process and experience could be valuable and varied. And two, because the demo
was incomplete and required flexibility during the review.

The review aimed to examine the helpfulness of visualisations of feature annotations
and the success of the project’s plugin. In particular, it looked at users’ reaction to
the project’s proposed solution of feature lookup, specifically, the feature location vi-
sualisation. The review’s aim is tested by seeing if the test user can use the plugin as
intended and how they feel about it. The target audience of the plugin was the same
demographic as the review, i.e. programmers who use, or are interested in, feature
annotations. Multiple tasks and questions were written in advance for the review (See
planned questions and tasks in appendix A.1), but because of the flexible nature of the
format, they were not strictly followed.

The two test subjects were chosen for: their availability; belonging to the reviews
intended demographic; and for belonging to a group of similar knowledge on annota-
tions, and visualisations. This all lead to the test users being people who are connected

19

4. Methodology

to the members of the project, but not a part of the visualisation plugin project. The
test users were then contacted, and the test was performed over two different days.

Limitations of the review included: things that will not be included or studied in the
plugin because they are not completed in the plugin at the time of review, or irrelevant
to the aim: layout, unless hindering to user experience; some of the possible inter-
actions, such as highlight and drop-down menu options; design, unless misleading or
hindering the test; certain features such as selecting features—they are instead given
a few selected features. The review was also only done on one iteration of the plugin,
because of time restraints, which could invalidate the results of the review when the
visualisations and plugin change. Therefore the changes made after the review was
limited to backend changes, minor details, or requested changes. With the assumption
that the results of the reviews would remain largely the same.

The test users were informed before the review about the project, visualisations, and
feature annotations. They had similar low levels of familiarity with the subjects. Fur-
thermore, the goal was to have individuals with similar understanding tested and not
mix with individuals who do not fit this demographic. Therefore this limited the indi-
viduals that could be used for the review.

Recorded tests was performed over the digital video chat platform zoom, which lasted
about 30 to 45 minutes. Three group members conducted the review, with roles of dis-
cussion leader, moderator, and note-taker. There were planned questions (see planned
questions and tasks in appendix A.1) and unplanned questions. The purpose of the
formulating of the questions and tasks was to simulate regular use of the plugin and
to further the aim of the review and thesis. The depth of the questioning depended
on whether the answer truly answered the question that was asked and whether it was
relevant to the aim of the review. The depth of the questions did not depend on how
many unsatisfactory (as in aim, not in judgement) answers came before. The number
of people to test was determined to be a minimum of 2 and a maximum of 5, primarily
for time constraints and available test users. In the end the review was done with the
minimum number of participants, which was believed to adequately give a sense of the
reception and usefulness of the visualisations.

The user reviews gave results in an informal interview format, and therefore the data
needed to be selected before presented. This process of judging what data is relevant
was done by weighing the reliability of the answers/actions and judging on the applica-
bility to thesis and review scope and aim. The reliability of the answers/actions were
based on a predetermined system given below:

The review process is assumed to provide a correct and honest response, by
prioritising feedback that is observed rather than verbal. Some weight will
be given to direct answers, but more weight is given to feedback delivered

20

4. Methodology

spontaneously as a reaction to the usage of the demo, or if the test user
expands on a question as to why they have that opinion with a reasonable
argument. This is not a perfect system, but was deemed acceptable by the
creators and supervisors, as a review process.

Then finally the answers from the interviews were analysed by the above criteria, and
the relevant results were written in this results chapter. The relevant data gathered
was then used to support the project’s plugin and purpose in the discussion chapter.

21

5
Results

This section contains the results of the project. The plugin is presented following the
visualisations achieved and finally the results of the user review.

5.1 HAnS-Vis
The current version of HAnS-Vis contains the three essential visualisations described
in the specification chapter (see chapter 3.). Due to time constraints, no work on the
non-essential visualisations was done. The three essential visualisations, the feature
location view, the feature tangling view, and the metric view, can be found in IntelliJ
once the plugin is installed. The feature location and tangling view can be found in
IntelliJ’s right toolbar implemented in a JCEF browser. The metric view can be found
at the bottom toolbar by default but can be moved to other toolbars if preferred. The
metric view is displayed in a window using IntelliJ native libraries.

5.2 Implementation
As stated before, two of the three views are implemented in a JCEF browser that uses
the Javascript library Vis.js. In order to get all the visualisation to work, there has to
be a way to transfer the data needed for the visualisations from Java to JavaScript.
Essentially, this is done in two steps:

• Generate JSON-formatted string of said data
• Send said string to the visualisations

First, a JSON-formatted string is generated from a Map<String, Object> object con-
taining all the relevant data needed for the visualisations through a Utility-class called
JSONHandler.java. This JSON-formatted string is then sent to the visualisations,
which parses the relevant data and renders it for the user.

Feature Location Visualisation is implemented partly in Java and partly in HTML,
CSS, and JavaScript. The backend is entirely implemented in Java as, due to JCEF

22

5. Results

constraints, there is no way to extract all the relevant data from the project through
JavaScript and JCEF. Instead, the data is extracted from the project through Java by
a Utility-class called FeatureAnnotationUtil.java. This data is converted to a JSON-
formatted string then sent to the visualisation, upon being requested from the visu-
alisation, through JCEF’s onQuery method, which enables strings to be sent through
Java and JavaScript.

The frontend is entirely implemented in HTML, CSS and JavaScript. It displays an
interactive graph of all the features present in the opened project. The graph displays
where features are annotated in the project and what type of annotation it is. Each
feature is represented by a node in the visualisation. Likewise, each file and folder that
has been annotated is represented by its own nodes. For the user to easily differentiate
between nodes, a file node is displayed as a file icon, and a folder node is displayed
as a folder icon. When a feature node is connected to another node with an edge, it
implies that the said node contains code that implements that feature. Depending on
what kind of annotation is used, the line of the edge will be different. When folder and
file annotations are used, the line is solid; however, if the annotation used is an in-file
annotation, the line used as an edge is a dashed line. This line distinction makes it
easier for users to quickly overview what type of annotations are used in the project
and where they are used.

Figure 5.1: The Feature Location Visualisation with the options for the drop-down
menu. The file SquareToLightUp.java has been clicked on and is highlighted, as well
as the edges to its’ related features

23

5. Results

The frontend is implemented so that the user can choose which level of granularity to
display, with each type of annotation being their own level of granularity. In order to
choose which level of granularity to display, the user can pick the granularity in a con-
text menu in the visualisation window. Upon selecting a new level of granularity, the
visualisation is automatically re-rendered to display the correct data. This will allow
users to quickly find the type of annotation they are looking for and give the user a
way to navigate the annotations present in the project easier. Essentially, this is done
by reading different indices in the JSON-formatted string since each index for a specific
feature contains a different granularity of data.

Furthermore, visual feedback is used to make the graph more user-friendly, easier to
understand, and clearly emphasise that the graph is interactive. Hovering over any
node or edge will highlight it to make it easier for users to navigate the graph, es-
pecially for larger projects where many edges will be present. If the user hovers over
a node, additional highlighting of all connected edges and their respective nodes will
be displayed. Likewise, if the user hovers over a file or folder node, the user receives
additional information about the said node. If the node being hovered over is a file
node, the user gets information where said file exists and how many features and how
many annotated lines of code those features have in said file. However, if the node
being hovered over is a folder node, the users get information telling them how which
files are present in said folder.

Figure 5.2: A hover box is shown when hovering over a file showing what folder it is
located in. The lines of code a feature takes up in a file are also shown

The visualisation contains a number of interactive elements. Features have the options

24

5. Results

to view the feature in Feature Tangling Visualisation. Furthermore, there is additional
interactivity with the nodes. Clicking on a node will change the colour or icon of the
node as well as highlighting all connected nodes, making it easier to navigate for the
user.

Feature Tangling Visualisation, like the Feature Location Visualisation, consists of a
backend and a frontend. The backend is implemented the same. The frontend, how-
ever, although implemented in HTML, CSS and JavaScript, differs.

The frontend features an interactive graph of a chosen feature and the features it is
tangled with. The feature is selected from the Feature Location Visualisation using a
feature nodes’ context menu. The feature is centered with edges going to its tangled fea-
tures. The edge thickness represents the degree of tangling between two features.This
makes it easier for users to quickly get an overview of what features are tangled with
another feature and gives an easy way to visualise the degree of tangling between fea-
tures. This visualisation contains a number of interactive elements as well. In order to
save time for the users, features can be right clicked to display a context-menu allowing
the the user to open the feature in the Feature Location Visualisation.

Figure 5.3: Visualisation on what feature Move is tangled with. The edge thickness
between Move and Controls is the thickest, indicating a higher level of tangling
between them

Feature Metric Visualisation is implemented entirely in Java using IntelliJ’s own API,
the Java Swing Library and the Java AWT library. The metric view displays a table
with different useful metrics regarding all the features present in the project. The fol-

25

5. Results

lowing metrics are supported in the metric view:

• NoFiA - Number of file annotations
• NoFoA - Number of folder annotations
• SD - Scattering degree
• TD - Tangling Degree
• LoFC Lines of Feature Code

These metrics give the user insight into the features, how big these features are, how
independent they are and how much of the project is made up of individual features.
Additional functions such as searching for a specific feature and sorting by a specific
metrics is also available.

Figure 5.4: Metrics view showing the calculated numbers from the features.

5.3 User review results
The user reviews gave results in an informal interview format, and therefore the data
needed to be selected before presented. This process of judging what data is relevant
is described in the previous chapter (see review, chapter 4.3). Therefore the data pre-
sented here is pre-selected and judged on applicability.

The conclusions of two completed user reviews are:

• Feature lookup and efficiency was deemed to be greatly improved by feature view,
and marginally by metric view. One test user particularly mentioned that these
improvements would be amplified if the feature based project was large or if the
user arrived at the project after its conception.

26

5. Results

• A tutorial might be useful for understanding some of the plugins mechanics. Clar-
ifying such options as the ability to right click nodes to make a context menu
appear.

• One test user was able to act comfortably, confidently, and sometimes indepen-
dently while navigating and using the feature view. The other test user was
behaving similarly, but had to ask for guidance more.

• The test users were able to perform most tasks with minimal guidance and clari-
fication, though some tasks were at first solved incorrectly. The reason for wrong
answers was often over misunderstandings of terms such as features and annota-
tions.

• Most answers were favorable.
• Both test users spontaneously brought up a wish for a horizontal distance increase

between the feature nodes and file/folder nodes.

27

6
Discussion

This chapter discusses the result and if the requirements have been achieved, the user
review results, what could be improved in the future if others wish to improve upon
the project, and what conclusions can be drawn from the project.

6.1 Result
The three views created in the project, although a bit limited in some areas, still
work well and are useful when handling the feature related problems the project set
out to improve. Especially the Feature Location Visualisation provides a very quick
and intuitive way to navigate an annotated project and find the features you need.
The Feature Location Visualisation does however encounter some issues when handling
larger projects. This is because the layout only stacks features vertically, thus making
feature rich projects difficult to overview in full. The Metrics view is able to show
feature-related metrics with search and sort functions. However, the metrics are only
calculated once when opening up a project and are not updated if more annotations
were to be added unless the project is reopened.

To obtain a truly unbiased opinion of the usefulness of the plugin, more reviews from
developers experienced in the field of feature based programming would be required.
Our plugin does however work as intended and provides the functionality designed to
provide.

As stated earlier in the chapter, the plugin is limited in some regards. All the require-
ments were not implemented in the final result of the product. This absence was due to
communication issues between the Bachelor’s group and the Master group that caused
the API not to be implemented in time, and thus all data could not be provided. The
Master group also planned to create functionality to select features to visualise, however
this functionality was not completed in time to have this project implement it. Because
the API could not provide what was expected from it in time, we had to implement
some of the functionality independently under a tight timeline. Thus, certain function-
ality that we could not implement ourselves in time had to be left out. In the end, the
product needed to be more limited than we wanted it to be, and the last requirements
have to be fulfilled in the future when the API has been fully implemented.

28

6. Discussion

6.2 Review
The results of the reviews showed that the test users were able to complete most tasks
independently or with not too much guidance and answered most questions favourably.
There were some deviations from positive feedback, such as asking for a tutorial of some
aspects to help new users such as them, unfavourable opinions on design and layout
despite not being a focus of the test, and some requests for features. Nevertheless,
the users demonstrated that the product could be used and that they understood the
tasks that were being carried out. Furthermore, as the tasks were designed to simulate
regular use of the product, the product is hopefully valuable for actual use in software
development.

According to the user reviews, the project’s aim to save developers time by helping in
tasks such as feature lookup was successful. With the use of the visualisations in the
demo, the test users reported a clear preference for having the plugin, rather than not,
for the tasks presented. However, further testing would be required to show exactly to
what degree it is helpful or what percentage of time is saved by the product’s availability.

After the review, there was one significant esthetical change to the product, as men-
tioned in the results chapter. Both users brought up the small distance between the
feature nodes and the file/folder nodes. Furthermore, as both test reviewers brought
up this design decision spontaneously, their words held much weight. Therefore the
product was changed to accommodate the perceived flaw. The changes made after the
review are untested compared to the old version, but as most are backend changes,
minor details, or requested changes, the assumption is that the results of the reviews
remain the same or improved.

6.3 Future work
While the plugin at the time of writing this report has managed to implement most
of the functionality deemed essential in our product specification, there is additional
functionality that, if implemented, could further enhance the experience of the plugin’s
users. What would benefit the plugin the most would be to have total integration with
the intended HAnS-Edit plugin that was developed in tandem with this project. While
this project provides the means to visualise annotations in a project quickly and find
where features are located in the project, together with HAnS-Edit, the user would
have syntax highlighting of features in the code. Furthermore, the user would be able
to choose which features to visualise in, for example, the feature location view rather
than visualise all features in the project.

There is also the matter of the views not deemed essential in the specification. Due to
the project’s time constraints, the non-essential views ended up in future work.

29

6. Discussion

As stated in 3.2, the History view is not essential for feature lookup. Instead, it would
serve as an additional quality of life feature to aid in keeping track of the project devel-
opment. It would, of course, be beneficial for feature programming developers to have
a way to see when a feature was last updated and with what. As such, it still fits our
stated purpose in 1.1. However, it would require additional libraries to utilise git data,
which would be libraries that could not be reused in other visualisations. Therefore
this view was not prioritised, mainly because it would take additional time from the
prioritised elements.

The common Feature Location Visualisation aims to compare features between different
projects. The view requires comparison between several projects in IntelliJ. However,
seeing as IntelliJ only allows one project to be open per window, the workload of hav-
ing information from several different instances of IntelliJ communicated between each
other was determined to be too great to be achievable during the project’s timeframe.

In the visualisation specification section 3.3, both the Feature Location Visualisation
and Feature Tangling Visualisation are planned to have a a selection menu of features
to visualise. Though, as previously mentioned in 6.1, feature selection which was to be
implemented through HAnS-edit, which as not yet been implemented. This impediment
causes any functionality that requires filtering or selection, such as creating a view with
only one selected feature, to be put into future work. This addition would greatly
enhance the user experience by tidying up the visualisations and allow users to even
quicker find the features they are looking for and should be a priority in future iterations.
Giving the users the functionality to rename features directly from the visualisations
would be a great addition to the plugin. As of right now, users would have to manually
rename every feature in the annotations, a time consuming task. Furthermore, func-
tionality to add to rename, open and delete files or folders in the editor directly from
the visualisations should be implemented. By allowing users to have this functionality
in the visualisations, users would not need to manually traverse the project structure
to open, rename or delete files or folders - which becomes more time consuming as
projects scale in size. The hover box is also in a different placement than mentioned
in the product specification. Like other design/layout mentioned in the specification
chapter, like colour choices and radio buttons, the final implementation was preferred
once properly implemented and seen.

6.4 Conclusion
If features are the foundation in Feature-oriented software development, then embed-
ded annotations are the missing keystones. As mentioned previously, prior research
shows that identifying a features location, or the assignment of "feature-lookup", is a
time-demanding task for developers involved in feature-oriented software development.

30

6. Discussion

Therefore, the mitigation or solving of feature-lookup is a problem to resolve if one
seeks to improve developers efficiency. This problem is what led to the project’s aim
of solving that problem. The project’s scope then limited the project to only visual-
isations helpful with this developer difficulty. With the goal of achieving efficiency, a
plugin was created that could visualise and simplify the aforementioned problem. The
resulting plugin was a product able to save time for developers, though limited in its
ability to filter features fully. The plugin helps developers save time by visualising
where the code that implements a feature can be found. It helps developers find where
code of different features intersect and give helpful information about features in the
form of features. While similar plugins exist with more functionality, our project serves
as a helpful addition to the feature-based programming community on IntelliJ where
no other similar plugin exists.

31

Bibliography

[1] B. Andam, A. Burger, T. Berger and M. R. V. Chaudron. “FLOrIDA: Feature
LOcatIon DAshboard for Extracting and Visualizing Feature Traces” in VaMoS,
Eindhoven, Netherlands, 2017, pp. 100-107. doi:10.1145/3023956.3023967

[2] J. Krüger, T. Berger, and T. Leich, “Features and How to Find Them: A Survey
of Manual Feature Location,” in Software Engineering for Variability Intensive
Systems: Foundations and Applications, I. Mistrik, M. Galster, and B. Maxim,
Eds. Taylor & Francis Group, LLC/CRC Press, 2018. [Online] Available: http:
//www.cse.chalmers.se/~bergert/paper/2018-sevis-manual_fl.pdf [Accessed: May
14, 2021]

[3] W. Ji, T. Berger, M. Antkiewicz and K. Czarnecki. “Maintaining Feature
Traceability with Embedded Annotations” in 19th International Systems and
Software Product Line Conference, Nashville, TN, USA, 2015, pp. 61-70.
doi:10.1145/2791060.2791107

[4] B. Vermeer. “JVM Ecosystem Report 2020”, Snyk, London, UK, 2020. [Online]
Available: https://snyk.io/wp-content/uploads/jvm_2020.pdf [Accessed: May 14,
2021]

[5] S. Entekhabi, J.-P. Steghöfer, A. Solback and T. Berger. “Visualization of Fea-
ture Locations with the Tool FeatureDashboard” in 23rd International Sys-
tems and Software Product Line Conference, Paris, France, 2019, pp. 1-4.
doi:10.1145/3307630.3342392

[6] T. Schwarz, W.Mahmood, and T. Berger “A Common Notation and Tool Sup-
port for Embedded Feature Annotations” in 24th ACM International Systems
and Software Product Line Conference, Montreal, QC,Canada, 2020. pp. 5-8.
doi:10.1145/3382026.3431253

[7] J. Wang, X. Peng, Z. Xing, and W. Zhao, “How developers perform feature location
tasks: a human-centric and process-oriented exploratory study”. Journal of Soft-
ware: Evolution and Process, vol. 25, 2013, pp. 1193–1224. doi:10.1002/smr.1593.

[8] Vis.js [Online] Available: https://visjs.org [Accessed: May 14, 2021]
[9] JetBrains. JCEF [Online] Available: https://plugins.jetbrains.com/docs/intellij/

jcef.html [Accessed: May 14, 2021]
[10] Wikipedia. BSD licences [Online] Available: https://en.wikipedia.org/wiki/BSD_

licenses [Accessed: May 14, 2021]

32

http://www.cse.chalmers.se/~bergert/paper/2018-sevis-manual_fl.pdf
http://www.cse.chalmers.se/~bergert/paper/2018-sevis-manual_fl.pdf
https://snyk.io/wp-content/uploads/jvm_2020.pdf
https://visjs.org
https://plugins.jetbrains.com/docs/intellij/jcef.html
https://plugins.jetbrains.com/docs/intellij/jcef.html
https://en.wikipedia.org/wiki/BSD_licenses
https://en.wikipedia.org/wiki/BSD_licenses

Bibliography

[11] Cambridge. Metrics [Online] Available: https://dictionary.cambridge.org/
dictionary/english/metrics [Accessed: June 3, 2021]

33

https://dictionary.cambridge.org/dictionary/english/metrics
https://dictionary.cambridge.org/dictionary/english/metrics

A
Appendix 1: User review

A.1 Questions and tasks
(Q is questions, T is tasks)

Overall plugin -
Q. Do they understand how to navigate? (interpret from actions)
T. Go to X visualisations. (use the menu)
Q. How do they feel about the navigation?

Feature view -
T. Find file X.
T. Find a specific folder annotated to feature Y.
T. In what folder is file x annotated to feature Y?
T. Find a file containing code annotations to a feature.
T. Find a file containing file annotations.
T. Find how many different annotations exist for file x.
Q. How do they feel about the feature view?
Q. Would feature lookup be made easier or more efficient by this visualisation?
T. Final task: go to tangling view for feature x.

Tangle view -
Q. How do you interpret this view?
T. What degree of tangling has the least tangled feature?
T. What degree of tangling has the most tangled feature?
Q. Was the line thickness indicative enough to allow you to easily find the least- and
most tangled features?
Q. Does the static box provide enough information about the different kinds of tangling
that you know that you will be able to change one feature without damaging the other.
Q. How do they feel about the tangle view after using it?
T. Final task: go to metric view.

I

A. Appendix 1: User review

Metric view -
Q. What do you think about having the settings for the metrics view under file ->
settings?
Q. How do they feel about the metric view after using it?
Q. is it useful?

II

	Introduction
	Aim
	Scope
	Report Structure

	Background
	Related works
	Annotation's purpose and use
	Visualisation's purpose and use
	HAnS-Edit

	Product specifications
	Essential visualisations
	Non-essential visualisations
	Visualisation specifications
	Feature Location Visualisation
	Feature Tangling Visualisation
	Metric view

	Methodology
	Libraries & Tools
	Review

	Results
	HAnS-Vis
	Implementation
	User review results

	Discussion
	Result
	Review
	Future work
	Conclusion

	Bibliography
	Appendix 1: User review
	Questions and tasks

