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Rust Implementation, Experimental Evaluation and Applications in Trucks
Chibin Kou
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Abstract
Modern society relies on many critical digital services such as cloud storage and
vehicular systems. To bring reliability to these services, State Machine Replica-
tion (SMR) is one possibility. This thesis focuses on the performance evaluation of
the SMR algorithm by Dolev et al.. Specifically, our evaluation criterion considers
latency, which is the time from when a client issues a request until it has received
replies from the servers. We base our study on an analytical estimation of the latency
as well as a high-quality pilot implementation in the Rust programming language,
which is suitable for embedded systems. Moreover, since Dolev et al. consider both
synchronous and asynchronous system executions, we study our pilot implementa-
tion on PlanetLab with 15 nodes and 26 ms message round trip delay as well as an
embedded system with 5 nodes and 0.17 ms message round trip delay. We find that
the SMR algorithm by Dolev et al. scales linearly with the number of completed re-
quests, the number of servers as well as the number of clients. Furthermore, we also
find that the performance behavior is similar in the two environments, although the
network latency plays a big role. In addition to the above, we have also identified
three possible use cases of SMR in trucks.

Regarding the use of unbounded variables, queues, and message sizes that appear
in the SMR algorithm by Dolev et al., we offer the use of a global reset algorithm
by Georgiou et al. In addition to a detailed evaluation of the algorithm, we explain
how this self-stabilizing algorithm can fit in the analytical framework of Dolev et al.,
which considers both Byzantine faults and arbitrary transient faults. Our evaluation
shows that the latency of the global reset algorithm is around four times the slowest
network round trip time of the participating nodes.

Keywords: Automotive, Byzantine Fault-Tolerance, Distributed Systems,
Self-Stabilization, State Machine Replication.
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1
Introduction

Modern society relies on many critical digital services such as cloud storage and
vehicular systems. For these critical services, fault tolerance is a highly desirable
property in order to provide continuous availability, safety and correctness. To this
end, some form of redundancy can be added to the system so that if one component
fails, there are other components ready to take over. One way to achieve fault
tolerance and redundancy is through the use of distributed systems. In a distributed
system, there are several nodes that collaborate in order to accomplish a common
task, and they communicate by sending messages to each other.

There are several types of faults that can occur in digital services. To this end,
algorithms can have various fault tolerance guarantees. One type is Byzantine fault
tolerance [60]. A Byzantine fault is when a node starts behaving arbitrarily, possibly
actively trying to prevent the system as a whole to work correctly, by not following
the system’s specification. Byzantine faults can happen due to for example software
bugs or malicious attacks. Another fault tolerance property is self-stabilization [21].
A self-stabilizing system can start from any arbitrary initial state, and still automat-
ically recover to a legal state, where the system performs the task it is supposed to
do. Thus a self-stabilizing system can recover from arbitrary transient faults, such as
memory corruption due to electromagnetic interference. It also has the potential of
saving costs, because the system recovers automatically, without any administrator
having to take any action, which saves manpower.

In this Master’s thesis project, we study a general and powerful tool called State Ma-
chine Replication (SMR), which has been extensively researched in the distributed
systems literature. State machine replication is a general technique that can be
used for many programs, including non-trivial real-world distributed systems like
NFS (Network File System), ZooKeeper [57] and Bitcoin [66]. It is worth noting
that ZooKeeper is not Byzantine fault tolerant while Bitcoin is. In particular, we
focus on a state machine replication algorithm with especially high fault tolerance
guarantees, namely, the state machine replication algorithm by Dolev et al. [22],
which is Byzantine fault tolerant and self-stabilizing.

This thesis focuses on the performance evaluation of [22]. Specifically, our evaluation
criterion considers latency, which is the time from when a client issues a request
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1. Introduction

until it has received replies from the servers. We base our study on an analytical
estimation of the latency as well as a high-quality pilot implementation in the Rust
programming language, which is suitable for embedded systems. Moreover, since
[22] considers both synchronous and asynchronous system executions, we study our
pilot implementation in PlanetLab with 15 nodes and 26 ms message round trip
delay as well as an embedded system with 5 nodes and 0.17 ms message round trip
delay. Regarding the use of unbounded variables, queues, and message sizes that
appear in [22], we offer the use of a global reset algorithm by Georgiou et al [51]. In
addition to a detailed evaluation of the algorithm, we explain how this self-stabilizing
algorithm can fit in the analytical framework of [22], which, as already mentioned,
considers both Byzantine faults and arbitrary transient faults.

In the following sections, we present a brief introduction to state machines and state
machine replication as well as the purpose, related work and contributions of this
project.

1.1 State machines and distributed replication
A state machine is a very powerful mathematical abstraction of a computation
in computer science. It consists of states and transitions. States, as the name
suggests, represent the observable internal status of some computation. Transitions
are triggered by external inputs to the state machine and cause it to transit from
one state to a new state, which might or might not be the same as the old state.
One intuitive example that helps explain this concept is the use of data structures
in programming languages, which are essentially state machines. The data stored
inside the data structure represents the state and the call to the data structure’s
API constitutes transitions that can modify the state.

The concept of state machines is vital in computer science because it is the foun-
dation of many advanced technologies, such as regular expressions and parsers of
compilers. In a broader sense, it helps simplify the problem that computer scientists
are trying to solve. For example, if we want to solve some difficult problem which
can be modeled as a state machine, and we have a general solution for state ma-
chines, then the problem is automatically solved. In the context of this thesis, the
problem in question is how to add redundancy to a service to increase reliability.
If we can model the service as a state machine, and we have a solution for adding
redundancy to a state machine, which is exactly what SMR does, then the problem
is solved.

Now the question is how to add redundancy to a state machine. The answer to
this question is presented in the rest of the thesis. But first we need to present
the underlying concept being used, which is distributed replication. The concept
can be simply explained as having multiple identical backups of something of great
importance in a distributed manner. In the case of SMR, we are replicating the
same state machine in distributed servers. In the next section we further explain
the idea and some challenges it imposes.
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1. Introduction

1.2 A brief introduction to state machine
replication

SMR is a general method for adding redundancy to programs that are deterministic
and follow the client-server model. These programs can range from simple ones such
as a dictionary with the operations insert, get and remove, to more complex ones
such as NFS. The power of SMR is that the program to be replicated does not have
to consider redundancy by itself at all. In order to understand SMR, let us first
consider a system without SMR, depicted in Figure 1.1.

Request

Reply

Clients Server

Figure 1.1: A diagram of a system without SMR.

In Figure 1.1 we see a single server that runs the server-side of the program. There
are multiple clients that can send requests to the server. However, this single server
constitutes a single point of failure, since if this server crashes, the service provided
by the program is no longer available to the clients.

In order to add redundancy, we need to add more servers. A naive approach would
be to simply add more servers that all run the program in question, let the clients
send their requests to all servers and then take any of their replies. However, there
is a serious flaw with this approach, namely, it can happen that different servers
receive the requests in different orders. Furthermore, some servers might not receive
all requests. This inconsistency means that the servers are in different states, which
is undesirable. For example, it could mean that a file only exists in some of the
servers but not the others.

The solution to the above inconsistency problem is SMR. Without going into all
details, SMR essentially acts as a middle layer between the clients and the servers,
making sure that all serves actually do receive all requests and in the same order.
How this happens is up to the specific SMR algorithm in question, and for all details,
we refer to [22], which describes how the SMR algorithm this thesis focuses on works.
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At this point, we have multiple servers that the SMR algorithm makes sure are in
identical states. If one or more of them crashes, other servers are alive and the
service is still available to the clients. In fact, the SMR algorithm is completely
transparent to the clients, meaning the clients do not notice any difference between
accessing a single server directly, or multiple servers through SMR. In particular,
this means that for the client, it does not matter that some of the servers have
crashed.

To summarize, SMR is used to add redundancy to a program. This is achieved by
running the program on multiple servers, and letting them receive client requests
in the same order. SMR acts as a middle layer between the program’s clients and
servers and is completely transparent.

1.3 Purpose
The main purpose of this master thesis project is to evaluate the performance of
the self-stabilizing Byzantine fault tolerant state machine replication algorithm of
[22] (briefly described in Chapter 2). In order to do this, we provide an efficient
real-world implementation of it (Chapter 3). Furthermore, we also conduct an ex-
perimental evaluation of it (Chapter 4) where we aim at answering the following
research questions.

• How does the performance change as more client requests have been com-
pleted?

• How well does the system scale with the number of servers and clients?

• How does the system perform in different environments?

The knowledge we gain from the above is important, because it is useful to know
how an algorithm performs in practice.

As a second purpose, we aim at finding possible applications of state machine repli-
cation in trucks (Chapter 5).

1.4 Related work
In the context of fault tolerant state machine replication, one of the most well-
known algorithms is Practical Byzantine Fault Tolerance (PBFT) [15]. PBFT was
the first state machine replication algorithm to be efficient, Byzantine fault tolerant
and work in asynchrony, whereas earlier algorithms were either too slow to be used
in practice, or they assumed synchrony. Following in the footsteps of PBFT, many
variations of Byzantine fault tolerant state machine replication have been proposed,
including BFT2F tolerating more faulty nodes [61], FaB reducing the number of
communication rounds [4] and Zyzzyva improving performance with speculation
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[59].

Another algorithm following the footsteps of PBFT is Self-Stabilizing Byzantine
Tolerant Replicated State Machine Based on Failure Detectors [22], which is the
algorithm this thesis focuses on. As the name suggests, [22] is a self-stabilizing
variation of PBFT, which means that it can handle arbitrary transient faults without
human intervention [21], something PBFT cannot do. [22] is the only self-stabilizing
Byzantine fault tolerant state machine replication algorithm with the exception of
[8]. The difference is that [22] is based on failure detectors while [8] is based on clock
synchronization, and thus [22] requires weaker synchronization guarantees. We note
that the class of algorithms designed for asynchronous systems is considered stronger
than the ones designed for synchronous systems, because in the latter class all nodes
need to wait for the slowest node in the system. We note that the implementation of
[8] requires the implementation of a secure self-stabilization clock synchronization,
such as [48, 55, 56].

Of special interest to this practically oriented project, it is worth noting that in
addition to theoretical work, the literature already contains several implementations
of state machine replication algorithms in practice. The already mentioned PBFT
also included a real-world implementation and evaluation, where an NFS service
was replicated using the PBFT algorithm. It was found that the overhead of state
machine replication in that case was only 3%, meaning state machine replication is
indeed feasible to use in practice. Another well-known real-world implementation
is BFT-SMaRt [7]. BFT-SMaRt is a Java implementation of a PBFT-like protocol
focusing on ease-of-use, reliability and making state machine replication available “to
the masses” [7]. Finally, [22], the focus point of this project, has been implemented
and practically verified in [67]. The implementation was done in Python with the aim
of developing a proof of concept, used to validate the correctness of the algorithm
in favor of focusing on performance. We mention that our performance-focused
implementation is around two magnitudes faster than their implementation.

We note the existence of alternative algorithms for implementing state-machine
replication using self-stabilizing group communications [23, 24, 25, 40, 41, 42] as well
as self-stabilizing virtual nodes [9, 26, 27, 28, 29] and self-stabilizing consensus [32,
33].

One may see Byzantine fault tolerance as a way to model malicious behavior, which
requires a bound on the number of faulty (Byzantine) nodes. In the context of self-
stabilization, another kind of malicious behavior is considered, which model faulty
nodes as rational ones [36, 37, 43, 44, 45, 46, 47]. There, however, no bound on the
number of nodes is required.

In the context of self-stabilization and Byzantine-fault tolerance, we note the ex-
istence end-to-end communication [34, 35], which extends the fault model of the
state-of-the-art self-stabilizing end-to-end communication algorithm [30, 31].
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1.5 Contributions
We provide the first performance-focused implementation (Chapter 3) of the self-
stabilizing Byzantine fault tolerant state machine replication algorithm by Dolev
et al. [22] as well as the corresponding performance evaluation of it (Chapter 4).
We find that the client latency of [22] scales linearly with the number of completed
client requests, the number of servers and the number of clients. These results were
achieved both on PlanetLab and an embedded environment consisting of Raspberry
Pis.

Our second contribution concerns an analytical lower bound on the client latency
of [22]. The bound, for n ≥ 3 servers, is that a client request takes at least 5
message trips over the network to complete. We also confirm this bound in practice
by comparing it to our experimental findings.

We offer an analytical latency estimation of the global reset algorithm [51] and
compare it to our implementation and experimental evaluation of the algorithm.
We find, analytically and experimentally, that the global reset time is 4 times the
slowest network round trip time of all nodes in the system.

Finally, from the industrial point of view, we have identified three possible applica-
tions of state machine replication in trucks, namely ISO 26262 Diverse Redundancy,
fault tolerant logging and distributed services (Chapter 5).

1.6 Organization
This report is organized as follows. Chapter 2 contains some theoretical background
to state machine replication and related concepts that can facilitate a more com-
plete understanding of the remainder of the report. Chapter 3 describes what our
implementation of the SMR algorithm looks like. Furthermore, it also contains the
design decisions we have made in order to achieve high performance. In Chapter 4
we present how we conducted our performance evaluation of the algorithm and our
implementation of it, as well as the results. Chapter 5 contains three possible appli-
cations of state machine replication in trucks. Chapter 6 presents the Global Reset
technique and our performance evaluation of it. Finally, we conclude the report in
Chapter 7.
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2
Theory

In this chapter we present the theory needed to understand the rest of the report:
terminology and notation, state machine replication, fault models as well as the
state machine replication algorithm we focus on.

2.1 Terminology and notation
Throughout the report, we use the following terminology and notation.

• SMR: an abbreviation of state machine replication.
• Node: an entity (e.g. a computer) that runs an instance of the SMR algo-

rithm.
• Server: a node that runs the server-side of the algorithm.
• Client: a node that runs the client-side of the algorithm.
• n: the number of servers.
• f : the number of faulty servers.
• k: the number of clients.

2.2 State Machine Replication
A state machine is an abstract concept of computation which is modeled by a set of
states and transitions. Given a state and an input, a state machine transitions to a
new state, and so on. There are different types of state machines depending on the
assumption. In this thesis, we focus on deterministic infinite state machines. Deter-
ministic means that given the same state and input, applying the same transition
always leads to the same resulting state. Infinite means that the states are not from
a predetermined fixed set of states. This is a general type of state machines that
can model a number of different applications, from simple data structures (such as
a list) to entire programs (such as NFS [15]).

As the name suggests, State Machine Replication (SMR) is the action of replicating a
state machine in several logical or physical locations, each of which is called a replica.
These replicas should contain the same state, which is determined by the starting
state and the transitions that have been applied. Therefore, in order to achieve
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consistency, all replicas need to be initialized with the same starting state, and the
SMR algorithm should provide a mechanism which guarantees that all transitions
are carried out in the same order at all replicas.

State Machine Replication is a general technique used for implementing fault tolerant
services. To be more specific, SMR can be used as a way to add redundancy to the
system. When a service, which is modeled as a state machine, is replicated in
different locations, even if some of the replicas fail, there are still some surviving
replicas that can continue to provide service. Moreover, SMR can also prevent so
called Byzantine faults [60] (see Section 2.3) if implemented in a certain way. For
example, if one replica is compromised by an attacker and returns incorrect replies to
the client, the client can still obtain the correct state by comparing the replies it gets
from other replicas. The assumption here is that an attacker cannot compromise a
majority of all replicas.

From the users’ perspective, services that use SMR under the hood is very similar
to the client-server model [72, Chapter 2.3], as shown in Figure 2.1. The client
first broadcasts a request to all replicas. Then the replicas communicate with each
other in order to reach consensus about what the next state should be. Finally, the
reply is returned to the client. The client can decide what to do with these replies
based on the requirements of the application. For example, if the application does
not need to provide strong consistency guarantees, i.e., it is not necessary for the
user to get the newest state, then the client can just return the first reply it gets to
the user. Therefore the user can get the result very fast but with the possibility of
getting outdated state. However, if the application needs to fully exploit the strong
fault tolerant guarantees that SMR can provide, then the client needs to collect
enough replies to mask out the faults. It is worth noting that this procedure can be
implemented in a client wrapper that handles everything for the user. In that case,
the user does not notice any difference from using a service that is provided by a
single server. We can also observe from Figure 2.1 that even if one of the replicas
fail, the client can still get replies from the remaining replicas.

Figure 2.1: SMR service paradigm, the replica with a cross means it crashed
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2.3 Fault models
One of the main challenges of SMR is how the system can provide services correctly
in the presence of failures. The SMR algorithm that we focus on in this thesis
can tolerate Byzantine and arbitrary transient faults. These two types of faults are
described in this section.

Byzantine faults. Byzantine faults [60] represent a type of fault in distributed
systems where some nodes fail and behave arbitrarily. In contrast to a crash failure,
a Byzantine failure does not necessarily mean that the node stops sending messages.
Instead, a Byzantine node can still be active and send arbitrary messages that do
not follow the specification of the algorithm running on the system. The messages
sent can simply be corrupted, or they can be carefully constructed by a malicious
attacker whose aim is to cause to system to behave incorrectly.

Compared to crash failures, Byzantine failures are more difficult to handle since it
is no longer possible to trust that the messages received follow the specification.
In fact, it has been proven that in order to solve consensus [18, Chapter 15.5], the
number of Byzantine nodes in the system must be less than one third [60]. Since
many distributed algorithms are related to consensus, this one third ratio is common
to find in many Byzantine tolerant algorithms.

Byzantine faults can occur due to several reasons [15]. As previously mentioned, they
can be the result of a malicious attack, where an intelligent attacker compromises
one or more nodes in the system and has control over what messages are being sent.
However, Byzantine faults do not necessarily happen due to malicious reasons. They
can also be the result of hardware and software bugs, where e.g. a buffer overflow
in one node causes it to send corrupted or outdated messages.

Arbitrary transient faults and self-stabilization. An arbitrary transient fault
represents any possible temporary fault that can happen to the system, except that
the algorithm code stays intact [20, 21]. These types of faults include e.g. memory
corruption induced by electromagnetic interference and control logic failures at the
hardware level. The combination of all things that can go wrong puts the system
in an arbitrary state, from which a self-stabilizing algorithm can recover. This is
depicted in Figure 2.2.

Comparison. Byzantine faults and arbitrary transient faults can sound similar,
but they are indeed different types of faults. Table 2.1 shows their two key differ-
ences. Byzantine faults are permanent, meaning that a Byzantine node acts in an
arbitrary way during the entire lifetime of the system. Arbitrary transient faults on
the other hand are temporary, meaning that they only appear once, and then the
nodes start behaving according to the algorithm again. However, once the nodes
start behaving according to the algorithm, they start from an arbitrary state, which
the algorithm must handle. Since Byzantine faults are permanent, there must be a
limit on how many nodes that are allowed to be Byzantine and yet still allow the
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Legal LegalRecovery
Time

Arbitrary transient fault

Figure 2.2: A time line of an execution of a self-stabilizing algorithm. First,
the execution is legal (i.e. the system does what it is supposed to do). Then an
arbitrary transient fault occurs. Immediately after this event, the system enters
a period where it recovers from the fault. After this recovery period, the system
execution is legal again.

system to behave correctly. As previously mentioned, this limit is that less than
one third of all nodes may be Byzantine. In contrast to Byzantine faults, arbitrary
transient faults may affect all nodes in the system and the system can still function
correctly after that, provided it is self-stabilizing.

Table 2.1: A comparison between Byzantine faults and arbitrary transient faults.
Byzantine faults are permanent but only less than one third of the nodes may have
this fault. Arbitrary transient faults are temporary but all nodes may experience
this fault.

Duration Nodes with the fault
Byzantine fault Permanent Less than one third
Arbitrary transient fault Temporary All

2.4 Self-Stabilizing Byzantine Fault Tolerant
Replicated State Machine Based on Failure
Detectors

In this section we give a broad overview of the SMR algorithm by Dolev et al. [22],
which is the algorithm this thesis has implemented and evaluated. This algorithm
is both Byzantine fault tolerant and self-stabilizing. We focus only on giving an
overview, and some more details on the parts that are critical for the rest of the
report. For all details, we refer to the paper itself [22].

The algorithm consists of three main modules, the View Establishment module, the
Replication module and the Primary Monitor module. Each of these modules has
a specific responsibility, and provides information to the other modules. Figure
2.3 shows a simplified structure of the algorithm and the relationships between the
modules.
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Figure 2.3: A simplified structure of the algorithm drawing inspiration from [22,
Figure 1]
. An arrow from A to B indicates that module A calls a function on module B.

View Establishment. View Establishment is responsible for establishing a
unique and shared view among all correct nodes. A view defines which the current
primary node is, which is responsible for sequencing the client requests. Replication
retrieves this view with getView(). If Primary Monitor suspects that the primary
is not functioning as expected, a view change is carried out by View Establishment,
letting all correct nodes agree on a new view, i.e., a new primary that is functioning.
This happens when viewChange() is called on View Establishment.

Replication. Replication is responsible for the actual state machine replication
task. To do this, the primary assigns a unique sequence number to each client
request. Then, all requests are executed in the same order at all nodes, which is
defined by these sequence numbers. Simply put, this module guarantees that all
correct nodes have the same state in their state machine. In order to understand
the evaluation results of Chapter 4, it is important to know that the local state of
Replication contains an unbounded list holding all client requests that have ever
been executed in the system. This list plays a big role on the performance.

Primary Monitor. Primary Monitor is responsible for monitoring the behavior
of the primary and replacing it if needed. It consists of two sub-modules, View
Change and Failure Detector. If Failure Detector suspects that the primary is mis-
behaving, it notifies View Change of this with a call to suspected(), upon which
View Change raises a “need change” flag. If View Change sees that sufficiently many
nodes have raised this flag, View Change instructs View Establishment to perform
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the previously described view change.

The second sub-module of Primary Monitor, Failure Detector, performs two checks:
a responsiveness check and a progress check. The responsiveness check is carried
out using a failure detector [49, 69], which works as follows. Node pi maintains an
integer array for all servers in the system. Whenever node pi receives a message from
pj, node pj’s entry in the array is set to zero, and all other entries are incremented
by one. Since a crashed node never sends messages, entries belonging to crashed
nodes are never set to zero and eventually exceed a threshold, and in this way, pi

can distinguish crashed nodes from alive nodes. The progress check is carried out by
checking that two consecutive calls to getPendReqs() return different results. If so,
the primary has made progress. This check is to prevent the case where a Byzantine
primary sends dummy messages but is not progressing the replication.

Module structure and communication pattern. All three modules have
the same basic structure and communication pattern. They are all based on a do
forever loop that runs the algorithmic logic forever. In the end of this loop, they
send their entire local state to all other servers in the system. In particular, this
means that the unbounded list of Replication previously described is sent in every
Replication message. Furthermore, Primary Monitor uses a token, which carries
some information used in order to allow Primary Monitor to detect failures. This
token is piggybacked on every message sent by the algorithm.
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3
Implementation

In this chapter we describe the design details of our pilot implementation. We
describe some programming language aspects, the algorithmic layer, threads and
communication, utility programs as well as new and reused code.

3.1 The Rust Programming Language
For our implementation, we have used The Rust Programming Language [58, 65].
Rust was chosen because of its strong type system, memory safety and high per-
formance. Since the data types in [22] are non-trivial, Rust’s strong type system
facilitated making the data types clear and avoiding type issues. Because [22] aims
to be very fault tolerant, we found it appropriate to use a language with strong
memory safety in order to further facilitate fault tolerance. Unlike C/C++, Rust
avoids issues such as dereferencing null, dangling pointers and uninitialized variables
at compile time, which prevents human programmers from making those mistakes.
Finally, like C/C++, Rust is a compiled language, which contributes to its high per-
formance. Furthermore, unlike Java, Rust does not have a runtime garbage collector
that can negatively impact the performance.

A channel [58] is a synchronization primitive existing in several programming lan-
guages, including Rust, for writing multi-threaded programs. A channel is used for
sending data from one thread to another in a safe manner and allows two threads
to coordinate their actions without using shared memory and locks. The channel
primitive makes the producer-consumer pattern [6] easier to implement, which made
channels a good fit for our implementation of [22], since as Section 3.3 shows, our
implementation is based heavily on the producer-consumer pattern.

In this implementation, we have mainly used a particular flavor of channels called
ring channels1. A ring channel is a channel that is FIFO-ordered, has bounded
capacity and is non-blocking by overwriting. As Section 3.3 shows, these are the
properties needed in our implementation.

Central to Rust is Cargo. Cargo is Rust’s build system, package manager and testing
1https://crates.io/crates/ring-channel
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utility, and thus handles all basic needs for programming in Rust.

3.2 The algorithmic layer

Communicator

Mediator

View Establishment Primary monitorReplication

Failure detector View change

Figure 3.1: An overview of the implementation design. A solid arrow from A to
B represents that struct A owns struct B. A dashed arrow from A to B represents
that struct A has a reference to struct B. Mediator is the central struct and is the
starting point of the program.

Figure 3.1 shows an overview of the algorithmic layer in our implementation, de-
picting the implementation’s modules and their interaction. It is useful to have
Figure 2.3 of Section 2.4 in mind when looking at this figure. The main module is
Mediator, which is also the entry point of the program. Mediator owns the modules
View Establishment, Replication, Primary Monitor and Communicator. The first
three correspond to the three modules of the algorithm in [22] and are described in
Section 2.4. View Establishment as described by [22] consists of the two modules
Coordinating Automaton and Predicates and Actions. However, since the interaction
between these two modules is very evolved, we implemented them as only a single
module. For Primary Monitor, on the other hand, we followed [22] and implemented
its two modules Failure Detector and View Change as separate modules. Communi-
cator does not appear explicitly in the paper, but is needed in the implementation
to handle communication.
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As evident from Figure 2.3 and [22, Figure 1], all three modules of [22] interact
heavily with each other, with function calls in both directions between each of them.
One way to implement this would be to have direct references between the different
modules. Due to the circular references between the modules, it is not possible
to have (strongly typed) type-generic references and static dispatch in Rust. It is
desirable to have type-generic references inside the modules to increase modularity
and facilitate testing. Moreover, static dispatch is preferable to dynamic dispatch
from a performance point of view. This meant that direct references between the
modules were ruled out and is the reason why the Mediator Design Pattern [50] was
chosen.

In the mediator design we used, the three modules have references to Mediator
instead of each other. Furthermore, all inter-module interaction happens through
Mediator. For example, when Replication wants to call getView() on View Estab-
lishment, Replication calls getView() on Mediator, which in turn calls getView()
on View Establishment and returns the result to Replication. A similar technique
is used for Primary Monitor’s Failure Detector and View Change modules. All
modules communicate using Communicator through Mediator as well.

3.3 Threads and communication
The program is based on threads and handles communication of the program is based
on UDP. UDP was chosen instead of TCP for its simple use and performance. With
UDP, each application instance needs only one socket, compared to one socket per
node, if TCP was used. The algorithm in [22] is based on sending messages between
the nodes. This means that datagram sockets (UDP) fit better than stream sockets
(TCP). Furthermore, UDP offers better performance than TCP, especially in this
case, since due to the way the algorithm in [22] is designed, re-transmissions are not
needed in most cases. This is described more in Section 3.3.1. Our thread-based
implementation processes incoming and outgoing messages in a way that emulates
asynchronous I/O, as will become apparent in this section.

Figure 3.2 shows an overview of the threads used and how they interact. The
program uses three threads: the Sender thread, the Processing thread and the
Receiver thread. Sender serializes messages into bytes and sends them on the single
UDP socket of the program. Receiver receives messages from the same UDP socket
and deserializes them from bytes. Processing runs the actual algorithmic layer.
In other words, of the modules of Figure 3.1, Processing runs everything except
Communicator. Instead, Sender runs the send-side, and Receiver runs the receive-
side, of Communicator. The inner workings of the three threads are described in
more detail in sections 3.3.2, 3.3.3 and 3.3.4.

The threads interact mainly with channels. As Figure 3.2 shows, the threads are
connected by multiple channels: one per message type and node (the exception
being between Sender and Receiver for Replication and Primary Monitor messages).
Processing sends a message by putting it on the send channel corresponding to the
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Sender Processing Receiver

VE send channels (n)

REP send channel (1)

PM send channel (1)

Client send channels (k)

VE recv channels (n)

REP recv channels (n)

PM recv channels (n)

Client recv channels (k)

Token and Count

Read Write

thread thread thread

msg exists channel

Figure 3.2: An overview of all threads and the coordination between them. The
horizontal arrows represent channels. The numbers in parenthesis are the number
of channels in that group.

message type and receiver node. For Replication and Primary Monitor messages,
the channels are not separated by nodes, because identical messages shall be sent
to all nodes for those message types. After a message is put on the channel, Sender
handles the message at its own discretion. Processing receives a message, at a time it
decides, by taking a message from the receive channel corresponding to the message
type and node it wants to receive from. We note that the time by which a message
is received by Receiver, and the time by which it is received by Processing, can
be different. Similarly to Sender, Receiver handles incoming messages at its own
discretion and simply makes sure to supply Processing with messages.

The channels described above carrying server messages have capacity 2 messages and
the channels carrying client messages have capacity 100 messages. For the channels
carrying server messages (View Establishment, Replication and Primary Monitor),
the capacity is 2 since upon reception of a server message, the algorithm in [22]
completely overwrites the old values. Due to this, only the most recent version of
a message is needed. Capacity 2 was chosen instead of 1, because with capacity 1
we noticed a significant loss of performance, which might be due to race conditions
on the single element of the channel. The channels carrying client messages have
a larger capacity of 100 messages. The reason is that a more recent client message
should not overwrite an older client message. With capacity 100, we experienced
that Processing has time to handle client messages before they are overwritten.

The channels are separated by node and message type for fairness reasons. The
channels have to be bounded, so that a Byzantine node cannot make them arbitrarily
long and delay the processing of legitimate messages for an arbitrary amount of
time. But if the channels are bounded and not node-separated, a Byzantine node
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can instead cause legitimate messages to be overwritten by sending messages at
a high rate. By separating the channels per node, this problem is avoided. The
channels are also separated by message type so that the three modules can be run
at different speeds. Even if one module is run much slower than the other two, its
messages are not overwritten by other messages types since they are on separate
channels. In our current implementation, the three modules run at the same speed,
but with this separation, future optimizations are easier.

There are several advantages of the design of Figure 3.2. One advantage is that there
is no need for concurrency control (locks) inside Processing. This simplifies develop-
ment, debugging and testing. Furthermore, the lack of locks increases performance.
By moving message serialization/deserialization out of Processing, Processing is off-
loaded of those tasks. When serialization/deserialization happen on two separate
threads, more cores of the CPU are utilized, and further increases performance on
multi-core CPUs. Finally, since messages can be, and frequently are, overwritten on
the channels, it means that fewer messages have to be processed, which should lead
to even higher performance. On the channels, the oldest messages are overwritten
first. If a new message arrives, all older message (of same type and from the same
node) are obsolete anyway and there is no need to process them.

Besides the previously described channels, there is one more channel: the message
exists channel, that goes between Sender and Processing. This channel is an auxil-
iary channel used by Sender to know when there exists messages to send. Whenever
Processing sends a new message, a dummy value is sent on the message exists chan-
nel to notify the Sender thread. Section 3.3.3 describes in more detail how Sender
uses this channel.

The last component of Figure 3.2 is Token and Count. Recall from Section 2.4
that Failure Detector monitors how many messages have been received from each
node and also uses the piggybacked tokens. Since message reception (in Receiver) is
separated from message processing (in Processing), and because messages and tokens
can be overwritten, in our implementation, a special mechanism for the tokens had
to be used. Token and count is a lock-free map that Receiver writes to. Whenever
Receiver receives a message from a node, the latest token for that node is updated
and the count (number of tokens received) from that node is incremented. Failure
Detector then reads from Token and Count inside Processing. Suppose Failure
Detector handles the token and count for node pj. Instead of incrementing the
heartbeats of all other nodes by 1, their heartbeats are increased by the count for
pj, as reported by Token and Count. Furthermore, only the last token is needed,
since just like messages, earlier tokens are overwritten in the algorithm of [22].

3.3.1 FIFO and reliability
We use the common Internet jargon for reliable stream originated communications,
which TCP/IP provides. That is, every message sent is eventually received and in
the same order that it was sent. Moreover, UDP/IP does not offer such guarantees,
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but still, we assume communication fairness. That is, every message that is sent in-
finitely often is received infinitely often. We note that a violation of this assumption
implies that eventually, no message from the sender ever arrives at the receiver.

All messages used in the algorithm of [22] require FIFO order. In our implemen-
tation, FIFO is achieved by letting the creator of a message (in Processing) attach
a unique and monotonically increasing sequence number to each message it sends.
Receiver keeps track of the highest sequence number h of each node, and discards
all messages with a sequence number less than h.

Server messages do not need reliability, since only the latest version of a message
is needed. Therefore, if some server messages are dropped, it poses no problems.
Because the implementation periodically sends all server messages, if some messages
are dropped, a retransmission happens soon anyway.

3.3.2 The processing thread

Algorithm 1: Pseudocode of the processing thread
1 local variables:
2 timeOfClientActivity := now();
3 while true begin
4 if pending client requests exist then
5 timeOfClientActivity := now();
6 if now() - timeOfClientActivity > 3 seconds then
7 wait 20 milliseconds;
8 viewEstablishmentIteration();
9 // Similar for the other modules

10 function viewEstablishmentIteration() begin
11 viewEstablishment.processReceivedMessages();
12 viewEstablishment.doForeverIteration();
13 viewEstablishment.sendMessages();

14 // sendMessages() calls are responsible for the monotonically increasing
sequence numbers and for sending a dummy message on msg exists channel.

Algorithm 1 gives a high-level view of how Processing works. Processing is a while
true loop that continuously runs one iteration of each of the three modules one
at a time (lines 8-9). One iteration consists of first letting the module process
received messages, then perform one iteration of its do forever loop and finally send
its messages.

Lines 4-7 are of special interest. If there are no pending client requests, the system
does not need to do anything. Without a special measure, Processing would run
forever and consume unnecessary CPU time. Therefore, Processing keeps updating
the time when there are pending client requests. If there are, Processing never
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sleeps. If there are no requests, Processing sleeps 20 milliseconds before performing
one iteration. In this way, Processing runs fast when there are requests (in order to
handle them quickly) and runs slowly when there are no requests (in order to save
CPU time).

3.3.3 The sender thread

Algorithm 2: Pseudocode of the sender thread
15 local variables:
16 udpSocket; // Shared with Receiver
17 lastViewEstablishmentMessageSent[n];
18 timeOfLastViewEstablishmentMessage[n];
19 // Similar for the other message types
20 while true begin
21 wait until msg exists channel gets a message, then remove it;
22 viewEstablishmentMessageSending();
23 // Similar for the other message types.

24 function viewEstablishmentMessageSending() begin
25 for receiver in [0, n− 1] begin
26 let message := viewEstablishmentSendChannels[receiver].tryTake();
27 if shouldSendViewEstablishmentMessage(receiver, message) then
28 let bytes := message.serialize();
29 udpSocket.send(receiver, bytes);
30 lastViewEstablishmentMessageSent[receiver] := message;
31 timeOfLastViewEstablishmentMessage[receiver] := now();

32 function shouldSendViewEstablishmentMessage(receiver, message) begin
33 if message 6= ⊥ then
34 if message 6= lastViewEstablishmentMessageSent[receiver] then
35 return true;
36 let elapsed := now() - timeOfLastViewEstablishmentMessage[receiver];
37 if elapsed > 100 ms then
38 return true;

39 return false;

Algorithm 2 gives a high-level view of how Sender works. Sender consists of a while
true loop that first waits until a dummy message arrives on the msg exists channel
(line 21) and then proceeds to handle message sending for all modules (lines 22-23).
Recall from Section 3.3 that a message is only sent on the msg exists channel if any
of the modules has sent a message since the last iteration of Sender’s while true
loop. If Sender starts a new iteration but no messages are to be sent, Sender just
sleeps on line 21 until a message to send exists. This saves CPU time when there is
no activity.
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Message sending (for View Establishment) is done in the function in lines 24-31. For
each server receiver, a message is taken from the corresponding View Establishment
send channel (line 26), see also Figure 3.2. If the message should be sent, it is
serialized and then sent on the single UDP socket. The last view establishment
sent to receiver and the time by which it happened are also updated. This last
information is used to determine if a message should actually be sent or not, which
happens in the function in lines 32-39. A message should only be sent if its non-⊥
and is different from the last message sent, or 100 ms has elapsed since a message
was last sent to receiver. By only sending messages if they are different, the system
avoids flooding the network with identical messages. The time out is used in case
packet loss occurs.

3.3.4 The receiver thread

Algorithm 3: Pseudocode of the receiver thread
40 local variables:
41 udpSocket; // Shared with Sender
42 lastViewEstablishmentSeqReceived[n];
43 // Similar for the other message types.
44 while true begin
45 let bytes := udpSocket.receive();
46 let message := deserialize(bytes);
47 handleToken(message);
48 if message.type = viewEstablishment then
49 handleViewEstablishmentMessage(message);
50 // Similar for the other message types.

51 function handleToken(message) begin
52 let sender := message.sender;
53 update last received token from sender;
54 increment count by one for sender;

55 function handleViewEstablishmentMessage(message) begin
56 let sender := message.sender;
57 let seq := message.seq;
58 if seq > lastViewEstablishmentSeqRecevied[sender] then
59 lastViewEstablishmentSeqReceived[sender] := seq;
60 viewEstablishmentReceiveChannels[sender].send(message);

Algorithm 3 provides a high-level description of Receiver. Similarly to Processing
and Sender, Receiver consists of a while true loop. The while true loop of Re-
ceiver blocks on a receive call on the UDP socket (line 45) and returns when a UDP
message is received. The messages is then deserialized.

The first step after deserialization is to handle the piggybacked token. This happens
in lines 51-54, where the last received token for the message’s sender is updated (line
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53) and the count is incremented by one (line 54). Incrementing the count means
that one more message from this sender has been received. The two updates just
mentioned happen to the Token and Count structure seen in Figure 3.2.

The second step after deserialization is to handle the message itself. Depending on
the message type (line 48), the correct message handling function is called (lines
49-50). Message handling is done by checking if the message’s sequence number
is larger than the previously received sequence number for the sender and message
type (line 58). If that is the case, the sequence number is updated (line 59), and the
message is routed to the corresponding module through the correct receive channel
(line 60).

3.4 Utility programs

Smr

Local Starter

Terminal Client

Remote Starter Evaluator
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Figure 3.3: An illustration of the programs and how they relate to each other.

The implementation for this project contains a main program as well as several
utility programs. The programs, shown in Figure 3.3, are Smr, Local Starter, Remote
Starter, Terminal Client and Evaluator.

Smr is the main program, and is the actual implementation of the algorithm. The
two previous sections, Section 3.2 and Section 3.3, have only been about Smr. The
Smr program is stand-alone and can be launched using the appropriate command
line arguments, which include a file with socket addresses of all hosts in the system
as well as info regarding the parameters n, f and k.

Although it is possible to start multiple local instances of Smr manually, it is not
very convenient. Starting and stopping multiple local instances of Smr, with different
parameters and in different numbers each time, is very useful for debugging though.
In order to make this debugging more streamlined, Local Starter created. With Local
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Starter, a single command automatically starts the desired number of local Smr
instances, and they are also automatically stopped when the user presses ctrl+c.

Remote Starter plays a similar role to Local Starter, but as its name suggests, the
Smr instances are instead started on remote computers. These remote computers
are accessed with SSH internally. Remote Starter takes care of everything that is
needed to run Smr on the remote computers, including installation of Rust, upload
of the source code, compilation and start and stop. To use Remote Starter, a file
with socket addresses of the desired remote computers must be created. This file
must also contain some extra information, such as which SSH keys to be used for
login.

The client-side of Smr can be run in both automatic and manual mode. In automatic
mode, all clients send requests all the time and immediately after they get f +
1 identical replies to their previous one. This mode is used for the performance
evaluation, which is described in Chapter 4. In manual mode, the clients are instead
possible to control manually for demonstration purposes. A client in manual mode
starts a TCP server which Terminal Client should connect to. The user can then
use Terminal Client to manually control both local and remote clients and interact
with the SMR system.

The last program is Evaluator, which is used in the performance evaluation described
in Chapter 4. Evaluator has two modes — gather and aggregate. In the gather mode,
Evaluator uses a list of scenarios, runs one scenario at a time on remote computers
using Remote Starter, collects the results from the computers and stores them in
a file. A scenario is a combination of n, f and k for which the performance shall
be investigated. Chapter 4 describes which scenarios are used in our evaluation.
Since Evaluator and Remote Starter merely start one scenario at a time at multiple
computers, they should have no effect on the actual results. In the aggregate mode,
Evaluator reads multiple result files produced by the gather mode, and generates
a Matlab file. This Matlab file contains all graphs that are shown in Chapter 4.
The aggregate mode generates this file automatically so that it is easy to re-run
the scenarios and to minimize manual work. In other words, no Matlab code is
hand-written in this project.

We note that the utility programs do not have the same responsibilities as Cargo
(Section 3.1). Cargo is responsible for building and testing, while the utility pro-
grams are responsible (among other things) for running multiple Smr instances.

3.5 New and reused code

Our implementation contains code that is entirely new for this project, but it also
reuses previous code. The reused code comes entirely from previous open source2

2https://github.com/osklunds/Distributed-SWMR-register.
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and Chalmers3 projects done by us. The extent of the reuse varies from program
to program (see Section 3.4). For Smr, the borrowed code is mainly the mediator
setup (see Section 3.2). For Local Starter, Remote Starter and Evaluator, the ba-
sic structure of them is reused. However, we have made heavy changes to them,
which includes general improvements as well as updating the tools to work for Smr.
Terminal Client is entirely new in this project.

3Chibin: Course DAT085 in SP1 2019/2020 and course DAT295 in SP2 2019/2020.
Oskar: Course DAT295 in SP2 2019/2020.
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4
Evaluation

In order to answer the research questions posed in Section 1.3, we have conducted
an experimental evaluation of our implementation of [22]. In the rest of this chapter,
we present our evaluation criterion, the environments we use, the experiments we
run, the results of the experiments as well as some conclusions.

4.1 Evaluation criterion
The evaluation criterion we consider is client latency. We define client latency as
the time it takes from when a client sends a request to the SMR service until it
gets f + 1 identical replies, shown in detail in Figure 4.1. f + 1 identical replies are
needed in order to tolerate Byzantine faults, and is described more in [22]. Client
latency is an important metric since it tells how fast the system is from the clients’
perspective, the entities that are the actual users of the service.

Time

1. The client sends the 
request to all servers.

2. The servers coordinate 
in order to execute 
the request.

3. The servers send
replies to the client.

Figure 4.1: A diagram of how client latency is defined and measured. The latency
of a single request, i.e., the client latency, is the time between step 1 and step 3.
The small circles represent the client and the large the servers.
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A related metric to latency is throughput. We do not consider throughput directly.
However, in our experiments, clients send a new request immediately after f + 1
identical replies have been received. This means that the throughput can be found
from the corresponding latency by inverting it.

4.2 Environments

In this section we describe the two different environments we use in the performance
evaluation.

4.2.1 PlanetLab

PC Internet

PL computer

PL computer

PL computer

PL computer

PL computer

Figure 4.2: A schematic of PlanetLab.

PlanetLab [17] is an online testbed for distributed systems that consists of hundreds
of computers connected to each other over the public Internet. A schematic of
it is shown in Figure 4.2. We use PlanetLab Europe for our evaluation, which
means that the computers used are located in various parts of Europe. A user of
PlanetLab controls these computers through SSH, and it is possible to run arbitrary
Linux programs on them. Figure 4.2 also contains a PC. This PC is our own local
computer and is only used to control the system and collect data. The PlanetLab
computers we selected were based on the computers the tool plcli [68] reported as
working.

PlanetLab is a good platform for evaluating distributed systems in real world sce-
narios. It provides harsh conditions, including long and variable latency, packet loss,
packet reordering and congestion.
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Ethernet switch

Raspberry Pi Raspberry Pi

Raspberry Pi Raspberry Pi

Raspberry PiPC

Figure 4.3: A schematic of the embedded evaluation environment.

4.2.2 Embedded
Our second environment is an embedded evaluation platform based on Raspberry
Pis. A schematic of it is shown in Figure 4.3. We see that it consists of five
Raspberry Pis and a PC connected by an Ethernet switch. The Raspberry Pis are
model 4B with 4 GB of RAM, the switch is a Netgear ProSafe GS108 and all devices
and cables support Gigabit Ethernet. Four of the Raspberry Pis are designated as
server nodes, and run the server-side of the algorithm in [22]. The fifth Raspberry
Pi is designated as a client node, and runs the client-side. Just like for PlanetLab,
the PC here is not part of the actual system, but merely controls the system and
collects the results.

The Raspberry Pi that acts as the client node can, depending on the experiment, run
multiple client nodes. This is to be able to test scalability with many clients. While
this node gets a higher load, the client-side of the algorithm is very light-weight
compared to the server-side, which means that the results should not be affected
too much by running multiple clients on a single physical node.

This embedded evaluation platform is used because it resembles an in-truck network
better than PlanetLab does. With this platform, we are able to see how the algo-
rithm would perform in such an environment, thus revealing the feasibility of using
SMR to provide fault-tolerant services for critical functionalities in a trucks.

4.3 Experiments
We have conducted the following experiments in the evaluation.

1. Scalability with respect to servers. It is important to see how the system
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scales when the number of servers increases. More servers lead to higher fault-
tolerance, but might come at the cost of performance. The experiment is
conducted with a varying number of servers. For PlanetLab, n ∈ [1, 14], and
for the embedded environment, n ∈ [1, 4]. A single client is used, meaning
k = 1.

2. Scalability with respect to clients. It is important to see how the system
scales when the number of clients increases. More clients has the potential to
slow down the system, and it is useful to see how large the impact is. The
experiment is conducted with four servers, n = 4. For both PlanetLab and the
embedded environment, k ∈ [1, 10]. However, for the embedded environment,
a single Raspberry Pi runs all the clients, as mentioned in Section 4.2.2.

In both experiments, we use f = 0 (because it is harder to offer performance predic-
tions in the presence of failures) and let all clients perform 100 requests, after which
the experiment is over. Recall from Section 2.4 that the algorithm of [22] adds every
completed request to the local state and that the local state is sent in every Repli-
cation message. Due to this, only about 1,700 client requests can ever be completed
by all clients in total before exceeding 65 KB, the maximum size of a UDP segment
using fragmentation. Therefore, we chose 100 requests to allow for multiple clients
in the experiments. We chose not to switch to TCP in our implementation due to an
impossibility result [39] concerning reliable communication (which TCP provides),
quorum systems (which [22] is) and self-stabilization.

The state machine used in the experiments is a dictionary, and the requests the
clients issue are INSERT operations. The reason for this choice is to have a simple
state machine that affects the performance as little as possible, so that the domi-
nating performance factor instead is the SMR algorithm itself.

4.4 A lower bound on client latency
Before presenting the results, we provide here a lower bound on client latency. By
keeping this bound in mind, we can compare how close to the optimal performance
the implementation comes. In order to present a simple bound, let us assume that
the link latency between every pair of nodes is the same. We define link latency as
the one-way latency over a link from one host to another. Note that the link latency
between two hosts is exactly half of the more commonly used round trip time. The
bound is derived as follows.

Lower bound on client latency when n = 1. When n = 1, the system is
not really a distributed system and cannot tolerate any failures. But for the sake
of completeness we also analyze this case, which represents the classic client-server
model [72, Chapter 2.3]. In this case, only two trips are needed, namely the client
request to server and the server’s reply back to the client. All server-side work of
[22] happens completely locally on the single server of the system. Therefore the
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lower bound is two times the link latency.

Lower bound on client latency when n ≥ 3. We analyze the case where n ≥ 3
before n = 2 because the latter is a special case of the former. The message trips of
Replication are analyzed as follows.

1. The client sends its request R to all servers, including the primary.

2. The primary assigns a sequence number to R and sets its status to PREP. The
primary then sends this accepted request to all servers.

3. All backups see that R has been given a sequence number and hence add it
to reqQ, followed by broadcasting this update to all other servers.

4. All servers see that R belongs to knownReqs(PREP) and change its status to
COMMIT, followed by broadcasting this update to all other servers.

5. All servers see that all other servers consider R to have status COMMIT, so they
execute it and send a reply to the client.

From the analysis we can see that at least five trips are needed for a client to get a
reply. Therefore the lower bound in this case is five times the link latency.

Lower bound on client latency when n = 2. The analysis of this scenario is
mostly the same as n ≥ 3, and only differs in step 3 and 4. Since there are only 2
servers in the system, when the backup receives the message sent by the primary
in step 2, the backup already has enough information to change the status of R
to COMMIT. In other words, after the backup performs step 3, it can immediately
perform step 4 without having to wait for other servers to send their updated states
after they performed step 3, and one less trip is needed. Therefore, the lower bound
is four times the link latency.

Based on the analysis above and the link latency of the network, we can roughly
calculate the lower bound of client latency. The link latency in the two environments
was measured using the ping command, by pinging five times from every host to
every other host, and then calculating the average of all measurements. The average
link latency was found to be 12.81 ms for PlanetLab and 0.083 ms for the embedded
environment. It is worth noting that it is possible that the actual client latency is
slightly smaller than the estimated lower bound, especially when n is small. This
is because we use f = 0, which implies that the client only needs to wait for one
reply. This means that for the last trip, only the fastest link to the client from the
servers contribute to the overall client latency. We also note that the measurement
was done at a single time, and not before each experiment. Since the PlanetLab
computers have fluctuating speeds, the numerical values can differ slightly.
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4.5 Number processing
In this section we describe how the raw measured numbers have been processed
before they are presented. Both experiments from Section 4.3 were run 10 times
each and the latency of each of the 100 requests was recorded individually. The
node-ids of all PlanetLab computers were randomized between the runs. This was
done since the various PlanetLab computers have different performance. These
runs were then aggregated in the following manner, done for each request number
individually. First the average latency of the x:th request was taken for all clients.
This was repeated for all 10 runs individually. Then, for the x:th request for all
runs, the two highest and the two lowest latencies were removed, and the average of
the 6 remaining latencies was taken. This was done in order to mitigate the effect
of outliers.

Depending on the graph, additional processing to the above may have been per-
formed. To distinguish this, we use the two terms measured latencies and latencies
according to linear regression. The former have received no additional processing.
For the latter, linear regression has been performed in order to fit the measured
latencies to a straight line. The term “latencies according to linear regression” thus
refers to the latencies that the straight line predicts. When the linear regression
was performed, the x values used were the x:th request, i.e. ranging from 1 to 100.
The y values used were the measured latency of the corresponding x:th request, for
a fixed number of servers and clients. In order to get a clearer understanding of this
processing, we suggest to look at Figure 4.8, which is a good visualization of this
processing.

4.6 Results
In this section we present the evaluation results of the two experiments described in
Section 4.3.

4.6.1 Experiment 1: Scalability with respect to number of
servers

We begin presenting the results of Experiment 1 with the contour graphs in Fig-
ure 4.4 and Figure 4.5, which show the results on PlanetLab and the embedded
environment, respectively. These figures provide a good overview of the behavior
of the algorithm of [22]. In both figures, the x-axis shows the x:th request and the
y-axis shows the number of servers. The colored lines with numbers show the la-
tency in milliseconds. We see that in both environments, there are two factors that
determine the client latency: the number of servers and the number of completed re-
quests. The higher any of these two numbers is, the higher the client latency. In the
following paragraphs, we present these two major factors, as well as the numerical
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Figure 4.4: A contour graph of the
result of Experiment 1 on PlanetLab.
The x-axis is the x:th request. The
y-axis is the number of servers. The
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according to linear regression of the
measured latencies.
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client latencies, in more detail.
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Figure 4.6: The result of Experi-
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Figure 4.7: A zoomed version of
Figure 4.6 that only shows between 1
and 4 servers.

Numerical client latencies. Let us start comparing the numerical client laten-
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cies. To this end, we turn to Figure 4.6 and Figure 4.7, which show how the client
latency of the 100:th1 request changes with the number of servers. We observe for
PlanetLab that:

• The client latency changes from 26.0 ms to 92.6 ms as n changes from 1 to 4
(recall that the link latency of PlanetLab is 12.81 ms).

• This means that the client latency is 3.6 times as large for n = 4 compared to
n = 1.

• It also means that the client latency is between 2.0 and 7.2 times longer than
the link latency.

We observe for the embedded environment that:

• The client latency changes from 0.8 ms to 6.0 ms as n changes from 1 to 4
(recall that the link latency of the embedded environment is 0.083 ms).

• This means that the client latency is 7.5 times as large for n = 4 compared to
n = 1.

• It also means that the client latency is between 9.6 and 72.3 times as long
compared to the link latency.

By comparing the numbers across the environments, we see that increasing the num-
ber of servers has a bigger relative impact on the client latency on the embedded
environment than on PlanetLab. We also see that the client latency has a bigger
relative increase from the link latency on the embedded environment compared to
PlanetLab. The reason behind these two observations is that client latency has two
sources: link latency and local processing time. The link latency of the embedded
environment is much lower than on PlanetLab, and therefore it is reasonable that as
the work load on the CPU increases (more servers), this extra local processing time
has a bigger relative impact on the client latency there than on PlanetLab. Fur-
thermore, the Raspberry Pis have less powerful CPUs than the desktop computers
of PlanetLab, which should make the higher work load even more noticeable.

Number of servers. Now we turn to the first factor which impacts the client
latency, namely, the number of servers. Figure 4.6 and Figure 4.7 show how the
client latency of the 100:th request changes with the number of servers, and we
observe that it appears to increase linearly with the number of servers. The increase
for n ∈ [1, 3] is mainly due to the increased number of message trips needed as
described in Section 4.4. When n ≥ 3 the increase is mainly due to the fact that
a majority of the work performed by Replication’s do forever loop is linear in the
number of servers. This work includes sending/receiving its local state to/from
every other server as well as going through all servers’ queues of requests and other
local state. Since a majority of the server-side work grows linearly in the number of
servers, it is reasonable that also the client latency does.

1We choose the 100:th request as an aggregated metric since the client latency grows with the
number of completed requests.
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We note that there is some work which grows faster than linear. For example, since
every server sends messages to every other server, the total number of messages
sent on the network increases quadratically. However, it appears that on both
PlanetLab and the embedded environment, the network is much faster than the
hosts themselves, and can handle the quadratic increase in load without becoming
the bottleneck of the system. Therefore the graphs do not show any quadratic
tendencies. On the other hand, if even more servers are used, the client latency might
start to increase quadratically as the network becomes more congested. Replication
also contains some sequential logic that is exponential in the number of servers.
With only a few servers, this sequential logic appears not to contribute significantly
to the local processing time. However, just like with the network, as many more
servers are used, it is likely that this will start having an effect.
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Figure 4.8: The result of Experiment 1 on PlanetLab. The x-axis is the x:th
request. The y-axis is the latency in milliseconds. The bold lines are the measured
latencies while the dashed lines are the corresponding trend lines, according to linear
regression.

Number of completed requests. The second factor which impacts the client
latency is the number of requests that have been completed. Figure 4.8 and Figure
4.9 show how the client latency changes as more requests are completed. We observe
that in both environments and for all number of servers, the client latency increases
linearly as more requests are completed. Recall from Section 2.4 that in the algo-
rithm of [22], each completed request is added to the local state, and is then never
removed. Furthermore, in every Replication message sent, the entire local state is
sent. Since the server-side work increases linearly with the number of completed
requests, it is reasonable that the client latency also does so.

Note that for all number of servers, and for both environments, there is a small
peak at approximately 45 completed requests, confer Figure 4.8 and Figure 4.9.
It is interesting that the peak appears consistently across these many cases, yet,
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Figure 4.9: The result of Experiment 1 on the embedded environment. The x-
axis is the x:th request. The y-axis is the latency in milliseconds. The bold lines
are the measured latencies while the dashed lines are the corresponding trend lines,
according to linear regression.

there is nothing in the algorithm that would suggest that this peak should appear.
However, the peak coincides when fragmentation starts being used. Recall from
Section 4.3 that about 1,700 requests fit in a single fragmented UDP datagram of
length 65,536 B, which means that each request contributes about 38.6 B to the
messages. Note that 38.6 · 45 = 1, 700. This is almost 1,500 B, the length at which
UDP datagrams have to be fragmented over Ethernet. It might be the case the
fragmentation starts being used at 45 completed requests. Since it is a peak, and
not a permanent increase, this explanation is not fully satisfactory, but it is an
interesting connection.

Comparison to the lower bound. Before leaving Experiment 1, let us compare
the results with the lower bound on the client latency of Section 4.4. For PlanetLab
and n ∈ [1, 2], the bound is 25.62 ms and 51.25 ms respectively. In Figure 4.7, we
see that the measured latencies match this bound very closely, although for n = 2,
the measured latency is slightly below the bound. However, recall that the bound is
only approximate and that the link latency is an average. It may be that the servers
used in this experiment by chance tended to be faster than average. For n ≥ 3, the
lower bound on the client latency is 64.05 ms. By examining Figure 4.6 and 4.7,
we see that the measured latencies are indeed greater than the lower bound. It is
also worth noting that the client latency for n ≤ 6 is less than 120 ms, only two
times higher than the lower bound. This means that the performance is of the same
magnitude as the optimal latency, meaning the algorithm and implementation fare
relatively well. As for the embedded environment and n ≥ 3, the client latency is
well above the lower bound of 0.42 ms. This is because the link latency is very low
and the local processing time is the bottleneck here, due to the Raspberry Pi’s lower
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processing power.

4.6.2 Experiment 2: Scalability with respect to number of
clients
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Similarly to Experiment 1, we begin presenting the results of Experiment 2 with
contour graphs, which can be found in Figure 4.10 and Figure 4.11, for PlanetLab
and the embedded environment, respectively. The x-axis is the x:th request, the
y-axis is the number of clients and the colored lines with numbers show the client
latency in milliseconds. Just like in Experiment 1, we observe that the client latency
becomes longer as more requests are completed. However, we also see that more
clients also lead to longer client latencies. From the figures, we see that the client
latency on PlanetLab is between 100 and 450 ms (the link latency on PlanetLab is
12.81 ms) and that the client latency on the embedded platform is between 10 and
90 ms (the link latency of the embedded platform is 0.083 ms). In the following
paragraphs, we present the results in more details.

Number of clients. Figure 4.12 shows how the client latency of the 100:th
request changes when the number of clients changes. We expect that the client
latency increases linearly with the number of clients, because with twice as many
clients, twice as many requests are performed and thus the local state grows twice
as fast. By a similar argument as for Experiment 1, a doubled local state should
lead to a doubled client latency as well. In Figure 4.12, we see that our expectations
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Figure 4.12: The result of Experiment 2. The x-axis is the number of clients and
the y-axis is the latency of the 100:th request, according to linear regression of the
measured latencies.

hold very well for the embedded environment, and for PlanetLab for k ≥ 4, but not
as well for k < 4. This unexpected behavior can be due to similar reasons as those
given in the next three paragraphs.
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Figure 4.13: The result of Experiment 2 on PlanetLab. The x-axis is the x:th
request. The y-axis is the latency in milliseconds. The bold lines are the measured
latencies while the dashed lines are the corresponding trend lines, according to linear
regression.

Number of completed requests. Figure 4.13 and Figure 4.14 show how the
client latency changes as more requests are completed. Recall from Section 4.6.1
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Figure 4.14: The result of Experiment 2 on the embedded environment. The x-
axis is the x:th request. The y-axis is the latency in milliseconds. The bold lines
are the measured latencies while the dashed lines are the corresponding trend lines,
according to linear regression.

that we expect the client latency to increase linearly with the number of completed
requests. In both environments, this expectation is matched well for k = 1 client.
For larger k, this expectation is still matched somewhat well in the embedded envi-
ronment.

In Figure 4.13 we see that PlanetLab for k > 1 does not match the expectations
as well as the embedded environment, especially in the beginning and the end. A
possible reason could be that all clients perform 100 requests and then stop, but
their start and stop times might be slightly out of sync due to the varying speeds of
the PlanetLab computers. In the beginning, not all clients are active because some
are slower and have not started yet, and in the end, not all clients are active either
because some clients have finished earlier. The slowest case is when all clients are
active, because then, the Replication messages are the largest due to many pending
requests, and we know from Section 4.6.1 that larger Replication messages lead to
longer a client latency. Furthermore, when all clients are active, it also increases
load and congestion on the network, which could further increase the client latency.
Since the slowest case happens in the middle of the experiment, this could explain
why the client latency is higher between the 30:th and 80:th request, and lower
before 30:th and after the 80:th.

The phenomena just described is more visible on PlanetLab (Figure 4.13) than on
the embedded environment (Figure 4.14). This could be because the computers in
the embedded environment are identical, while on PlanetLab they are much more
heterogeneous. It could also be that the network in the embedded environment is
much more powerful in relation to the computers than the corresponding PlanetLab
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network and computers.

4.7 Conclusions
Our first research question asks how the performance changes as more requests are
completed. From both Experiment 1 and Experiment 2, we see that the client
latency increases linearly with the number of completed requests, with some devi-
ations. The linear increase is expected because each completed request is added to
all servers’ local state, and the entire local state is sent in every server-side message.
The deviations from the expectation are possibly due to the fact the clients start
and finish slightly out of sync.

Our second research question asks how well the system scales with the number of
servers and clients. We expect that the client latency should increase linearly with
the number of servers, since the server-side work, such as sending/receiving message,
increases linearly with the number of servers. From Experiment 1, we see that the
results match this expectation very well. We expect that the client latency should
increase linearly with the number of clients as well. This is because more clients also
increases the sever-side work linearly, in terms of a longer list of completed requests.
From Experiment 2, we see that the results match this expectation very well for the
embedded environment, and for PlanetLab with more than four clients. There are
however some deviations for PlanetLab with less than four servers.

Our third research question asks how the system performs in different environments.
We performed our experiments in two environments: PlanetLab and an embedded
network consisting of Raspberry Pis. We found that the overall behavior is the
same in both environments, but that the client latencies are significantly lower in the
embedded environment. These results are expected since the embedded environment
has a much lower link latency than PlanetLab.
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Applications in trucks

In this chapter we present three possible use cases of SMR in trucks: Diverse Re-
dundancy, fault tolerant logging, and distributed services.

5.1 ISO 26262: Diverse Redundancy
In this section, we share an idea of how SMR can be used to implement Diverse
Redundancy for ECU software. We provide a background on safety in trucks, how
SMR and Diverse Redundancy are related, what SMR could look like in a truck and
some of the challenges of using SMR in a truck.

5.1.1 Background on safety in trucks and ISO 26262
It is important that vehicles on the road, such as trucks, behave in a safe way. Due
to their high speeds and heavy weights, unintended behavior can clearly lead to
severe consequences. Therefore, so called safety goals are identified, examples of
which can be found in Table 5.1. A violation of these safety goals can occur due to
several reasons, including problems at the electric and software levels.

Table 5.1: Three examples of safety goals identified for trucks.

Unintended activation of adaptive cruise control shall not occur.
Engine brake shall not be applied when not requested.
The transmission shall not engage a reverse gear when driving at
high speed in forward direction.

Related to trucks and safety is the ISO 26262 standard [1]. ISO 26262 is a standard
on functional safety of electric and electronic systems of automotive vehicles. It
contains safety requirements and recommendations of methods to increase the safety
of electric and electronic systems. One of these methods related to software is
Diverse Redundancy [3] (or Independent Parallel Redundancy [2]), which means that
a single piece of software is replaced by multiple versions of the same software. These
multiple versions should be developed by different teams and be run on different
hardware so that the same bugs do not appear in all of them. The advantage of this
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scheme is that a bug in one software version cannot bring the whole system down
— as long as the same bug does not occur in the other versions, the system can still
continue to function.

5.1.2 State machine replication for Diverse Redundancy
State machine replication is a method which can facilitate reaching the safety goals in
a way that ISO 26262 suggests, namely, SMR is a way to provide the aforementioned
Diverse Redundancy. Recall from Section 1.2 and Section 2.2 that SMR removes
a single point of failure. This means that if the single software instance crashes
due to a bug, or the CPU running it stops working, the system as a whole can still
work. Furthermore, the SMR algorithm of [22], which this project has focused on
is also self-stabilizing and Byzantine fault tolerant (see Section 2.3). In particular,
this means that not only crashing software can be handled. Also software that keeps
running, but produces incorrect results, can be handled. These incorrect results can
be due to the program not following the specification, bugs such as buffer overflows
or malicious attacks.

Diverse Redundancy, also known as N-version programming in the literature [16], has
previously been used successfully for NFS (Network File System) [15]. The algorithm
used in that case was a Byzantine fault tolerant SMR algorithm, although it was not
self-stabilizing. When comparing the performance between standard unreplicated
NFS, and NFS replicated using SMR, the latter was found to be only 3 % slower.
This shows that Diverse Redundancy can indeed be practical in real world systems.
Furthermore, by using a technique called Abstract Base Encapsulation, multiple
versions of the same software can be easier to combine [71].

5.1.3 What state machine replication could look like in trucks
One option of using SMR for Diverse Redundancy inside a truck is to let the entire
SMR system reside inside a single multi-CPU ECU, as depicted in Figure 5.1. By
having one SMR instance per CPU, each running one version of the ECU’s main
software, the likelihood that a software bug causes the ECU to malfunction is re-
duced.

In order to use the above scheme, one major problem has to be solved, namely, the
ECU software must be adapted to the client-server model. Recall from Section 1.2
that the program replicated with SMR must be based on clients that send requests
and servers that act on these requests and send replies. This is quite restrictive and
current ECU software is most likely not written in this way. However, it might be
possible to adapt ECU software into an SMR-friendly client-server based version as
depicted in Figure 5.2.

The ECU software is decomposed into one server-side and multiple client-sides.
The server-side contains all existing ECU logic, such as data structures with vehicle
state, how to select the correct gear, what actions should be taken based on incoming
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ECU

HW interface

CPU 2

ECU program 2

CPU 4

ECU program 4

CPU 1

ECU program 1

CPU 3

ECU program 3

Figure 5.1: SMR used inside an ECU. All four ECU programs do the same thing
and follow the same specification, but they are developed by different teams and
run on different CPUs. They are coordinated by SMR.

Figure 5.2: A schematic of ECU software adapted to the client-server model. The
server-side contains all ECU logic. The client-sides only contain hardware interfacing
code and act as forwarders between the ECU logic and the hardware.

CAN messages, etc. Of the existing ECU software, as much as possible should be
decomposed into the server-side, since only the server-side is replicated by SMR.
The client-sides should be simple forwarders. For example, when a CAN message
arrives, the client-side simply issues a request, containing this CAN message, to the
server-side and lets the server-side decide what should be done. The client-sides
should be kept as small as possible since they are not replicated, and should only
contain the hardware interface logic.
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In addition to handling the hardware, the client-sides can also act as schedulers
in the above scheme. Recall that in the client-server model, the servers only take
actions based on client requests. Since the ECU logic might contain actions that
should be performed periodically, these events must be triggered in some way. A
possible solution is for the client-sides to periodically send requests whose purpose
is to tell the server-side to perform one of those actions. Furthermore, this can also
solve another problem. Based on the ECU logic, the server-side might want to tell
the hardware to perform some action, or send a CAN message. These “requests”
from the server-side can be sent in the replies to the periodic trigger requests, to
inform the client-sides to do some particular action.

An overview of the ideas presented in the two previous paragraphs appears in Table
5.2.

Table 5.2: An overview of how incoming, periodic and outgoing events can be
handled.

Event type Examples How to handle
Incoming CAN message received, The client-side sends a request

temperature measurement upon the event.
Periodic Set fuel/air ratio, The client-side periodically sends

read engine temperature a “schedule”-request, and performs
the action the server-side
includes in the reply.

Outgoing CAN message to send, The server-side piggybacks these
emergency brake actions in the replies to the

“schedule”-requests.

We note that the ECU logic might be large and complex. However, it is not necessary
to use the above scheme for all ECU logic. Perhaps only the most critical logic needs
to be replicated in the above way.

5.1.4 Problems
Using SMR inside an ECU has the advantage of increased fault tolerance, but it
also comes with some problems which we describe here.

1. SMR algorithms are non-trivial, which means that the SMR service itself is a
potential source of bugs if not implemented carefully, especially if it is respon-
sible for running all other software of the ECUs. For safety critical systems,
it might be more appropriate to have a simple but reliable backup system
instead. One example could be to let the transmission disengage the clutch if
the engine starts behaving in a bad way.

2. SMR has the potential to be slower and bring more overhead compared to an
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unreplicated program. This is due to both the SMR algorithm’s overhead itself
and to the fact that the program has to be rewritten to be based on sending and
receiving messages. Section 5.1.2 mentioned that NFS became only 3 % slower
when replicated using SMR. However, NFS is already a networked system, and
the network latency might be the bottleneck. The relative slowdown is possibly
larger when using SMR within a single ECU.

3. ECU software might not be possible to rewrite into the client-server model.
Furthermore, even if it is possible, it might be expensive to do so.

4. Due to the theoretical limits mentioned in Section 2.3, at least 4 versions of the
same software is needed for Byzantine fault tolerance. Developing 4 versions
of the ECU software is most likely very expensive.

5. The entire ECU software is not protected by Diverse Redundancy, only the
server-side is. Software bugs in the hardware interfacing code are not masked
by SMR.

5.1.5 Conclusions
SMR is a possible way to increase safety in trucks by reducing the possibility of
software bugs. SMR is a way to implement Diverse Redundancy, which is suggested
in ISO 26262. However, in order to use SMR for ECU software, the ECU software
must be rewritten to fit the client-server model. There are also various problems
with this approach, such as cost and performance.

5.2 Fault tolerant logging
If a truck is involved in an accident, it is interesting to have access to the logs
generated by the truck. These logs include for example engine hours, total distance
travelled and sensor data. It is important to store the logs in multiple physical
locations of the truck, because if it is involved in an accident, there is a chance that
some of the storage locations are destroyed.

With SMR, adding fault tolerant logging is relatively straightforward. The first step
is to define what data structure to store the logs in. One possible data structure is
a dictionary with ECU-id and timestamp as keys, and the log entry as values. Then
the server-side of the SMR algorithm is run on a few ECUs distributed in various
physical locations of the truck while the client-side is run on all ECUs that should
send logs. This is shown in Figure 5.3. The server-side can be seen as a daemon
that is run on the ECUs and the client-side can be seen as a library that can be
called from the software running on the ECUs when it needs to log something.

It is possible to enrich the server-side with more features such as consolidation and
stable storage, also shown in Figure 5.3. With consolidation, the logs are prevented
from growing too large. For example, perhaps it is sufficient to only store hourly
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Figure 5.3: A schematic of an ECU network and fault tolerant logging. Four of the
ECUs run the server-side of SMR while all six run the client-side. The server-side
and client-side run in parallel with all other programs the ECUs run. The CAN bus
might also be connected to cloud storage and onboard permanent storage.

versions of logs older than 24 engine hours. With stable storage, the logs can be
moved from the ECUs into some other storage. One example could be cloud storage,
to which the logs are sent over cellular network. Another example could be some
form of onboard permanent storage, like a black box. Since SMR is not limited to
simple programs, features such as consolidation and stable storage are also possible
to include at the server-side. These features can be performed in the background in
a way transparent to the client-side.

5.3 Distributed services

SMR can be used to implement fault tolerant distributed services in the CAN net-
work of a truck. The ECUs would all be part of a distributed system where they
collaborate on some shared tasks. Since SMR is general, there are many possible
services that can be implemented.

We note that in current ECU network architectures, the aim is to let the ECUs
be self-contained and independent. Of course, there is still communication between
them, e.g. the current gear is sent from the transmission ECU to the engine ECU.
However, despite this communication, the ECUs do not collaborate on tasks. The
suggestions we make imply that the ECUs would collaborate a lot more and be
less self-contained, which is different from current architectures. However, these
suggestions might still be useful for potential future ECU network architectures
where more collaboration is used.
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5.3.1 Shared memory
One service that could be interesting is high-level shared storage in the form of
shared memory [5, 19, 52], which can make coordination between the ECUs easier.
ECUs and shared memory is depicted in Figure 5.4. Shared memory enables ECUs
to store data that multiple of them need. One example of such data could be the
current gear, which the transmission ECU knows. Instead of having the transmission
ECU send the current gear to all ECUs that need it, the transmission ECU can write
the current gear to a shared memory location allocated to the current gear, and then
all ECUs that might possibly need it can read from that memory location.

ECU1 ECU2 ECU3 ECU4

Memory
location 1

Memory
location 2

Write
Write WriteRead

Read

Figure 5.4: An illustration of four ECUs and two shared memory locations. All
ECUs can read and write to the shared memory.

There are several possible advantages that shared memory can bring to ECU net-
works, compared to sending the data directly in CAN messages over the network.
First (continuing with the previous example), the transmission ECU does not need
to be aware of the ECUs that need the current gear. All ECUs that need the current
gear will read it on their own, with no additional action needed to be taken by the
transmission ECU. Second, shared memory can bring additional consistency guar-
antees, such as linearizability [54], compared to sending data directly in messages
over the network. For example, linearizability implies that if two ECUs read the
shared memory, the second read will return a value that is at least as recent as the
first read. Third, multiple ECUs can write to the same memory location [10, 39].
The shared memory algorithm makes sure that there is no disagreement on which
value should be used, even if multiple ECUs write to the location at the same time.

5.3.2 Safety kernel
A safety related service is the safety kernel [11, 12, 13, 14]. The safety kernel is a
central architectural component that makes decisions on what the current Level of
Service (LoS) should be. When every component of the truck functions as expected,
the LoS is “normal”. The LoS can degrade when failures are detected in the truck.
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For example, if a failure is detected in one of the brakes, the LoS can degrade to
“limp home”, where the maximum speed is limited, so that the truck can still move
in a safe way in order to reach a workshop where its brake can be fixed. If all brakes
fail, perhaps the LoS will be ‘no op’. It is useful to have a LoS such as “limp home”
so that there is no need to wait for a tow truck if the truck is still safe to drive,
albeit only slowly. The safety kernel decides on the highest possible LoS that is
safe to maintain. If a LoS is safe or not depends on many safety-related parameters
such as the status of all the truck’s components, the weather and if there are any
nearby hills. Since the safety kernel uses many inputs and its logic can be complex,
it can be easier to design it as a centralized component, that resides in only a single
logical location, as shown in Figure 5.5. However, by combining the safety kernel
with SMR, it is still possible to have the safety kernel in multiple physical locations
in order to have redundancy. In other words, SMR allows the design of complex
components to be centralized, but still have the advantage of redundancy without
extra effort at the design time.

Safety Kernel

Engine ECU

Transmission ECU

Brake ECU

Connected Services ECU

LoS

LoS
LoS

LoS

RPM, te
mpera

ture,
 ...

Gear, temperature, ...

Working brakes, .
..

Nearby altitudes, weather, ...

Figure 5.5: An illustration of the interaction between the safety kernel and ECUs
of a truck. The safety kernel exists in one logical location and all ECUs send safety-
related input data to it. Based on the input, the safety kernel decides on the highest
safe LoS and sends this to all ECUs, which in turn take appropriate actions.
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This chapter is about a technique called Global Reset, which can be used together
with many algorithms, including the SMR algorithm of [22]. This is a technique
for a global system reset for regaining consistency and enforcing garbage collection.
Global Reset can be used to bound unbounded counters, buffers and message sizes
used in algorithms such as [22]. Moreover, it can be used to bound leaking resources
or any other kind of detectable consistency violation. For example, it might also be
possible to use Global Reset to bound the unbounded growth of client latency that
[22] exhibits, as discovered in Section 4.6.

In the context of self-stabilization it is important that all variables used are bounded
[21, Chapter 2.8]. However, many (self-stabilizing) algorithms, including [5, 22, 38,
39, 52, 64], use unbounded integer variables, often as sequence numbers, counters or
timestamps. By using 64-bit integers, the maximum value MAXINT that can be
stored is in practice never reached 1. However, we note that an arbitrary transient
fault can corrupt all variables and make them assume values that are close to MAX-
INT, meaning an overflow can happen in practice. The problem outlined above is
something all self-stabilizing algorithms have to deal with, and thus, it can be useful
to create a general technique that can be used by many self-stabilizing algorithms.
This is what Global Reset is.

Even though the Global Reset technique is not Byzantine fault tolerant, it can still
be combined with [22]. Dolev et al. [22] assume that recovery from transient faults
does not occur in the presence of Byzantine failures. Moreover, reaching MAXINT
can only occur due to a transient fault, as we explain above. Thus, by proposing
a self-stabilizing algorithm for safely resetting the system, we offer [22] the ability
to reset the system when the system in [22] reached its maximum capacity with
respect to the value in it counters, the messages stored in it buffers or the amount
of information that it repeatedly communicates.

In this chapter, we provide a high-level description of the Global Reset technique.
A more detailed description can be found in Appendix A. We also provide an ex-

1If incremented once every nanosecond, the time it takes to count from 0 to 264 − 1 is 264

109 ≈
1.8 ·1010 seconds ≈ 585 years. This is most likely longer than most computer systems will be used.
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perimental performance evaluation of Global Reset in a similar vein as in Chapter
4.

6.1 High-level description of the Global Reset tech-
nique

How to bound an algorithm using the Global Reset technique of course depends on
the algorithm and how it uses unbounded variables. However, one common usage
pattern is that client operations cause the counters of the algorithm to increase.
This is the case for the SMR algorithm by [22], where each client request increments
the current sequence number by one. A similar pattern also appears in algorithms
such as [5, 39, 52, 53]. For such cases, the Global Reset technique works as follows.

1. Once a server stores MAXINT in any variable, it stops responding to client
operations.

2. The server calls the global reset algorithm, which in a delicate way resets the
variable to 0 at all servers, while the remainder of the state is preserved. This
other state includes for example the current state machine state in the case of
[22].

3. When the global reset algorithm is done, the servers resume to normal execu-
tion and start serving clients again.

This was a high level overview of the Global Reset technique. Appendix A contains
some more details on how to use it with MW-ABD, an algorithm for shared memory
emulation. As for the global reset algorithm, we use the one presented by Georgiou
et al. [51].

6.2 Implementation and Evaluation

In order to investigate how the Global Reset technique performs in practice, we have
implemented the global reset algorithm by Georgiou et al. [51], which is the core
algorithm of Global Reset. The implementation reuses the framework of Chapter 3
that we developed for the SMR algorithm, including Communicator and Mediator
shown in Figure 3.1. The only difference is that Mediator’s loop runs the global reset
algorithm’s do-forever iteration instead of the three modules of the SMR algorithm.
To evaluate how long time it takes to perform a Global Reset, we conduct an eval-
uation of the global reset algorithm in a similar manner as for the SMR algorithm
(see Chapter 4). In the following sections we present how the evaluation is carried
out and the results obtained.
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6.2.1 Evaluation criterion
The evaluation criterion we use is global reset time, which is defined as the time it
takes from when a server first proposes a tag until it calls localReset(). It is worth
noting that a possibly more accurate definition of Global reset time can be until
the time that the last call to localReset() among all servers returns. However, this
is much harder to measure since it would require the servers to synchronize their
real-time clocks to sub-millisecond precision. As the global reset operation happens
on the server-side, we do not consider clients in this evaluation.

6.2.2 Experiment
As mentioned earlier, only the participation of servers is considered in this evalua-
tion. Therefore our experiment focuses on the scalability with respect to the number
of servers. Intuitively, when there are more servers, we expect to see an increase in
the global reset time. This is because each server needs to communicate with more
servers.

We conduct the experiment on both PlanetLab (Section 4.2.1) and the embedded
environment (Section 4.2.2). On PlanetLab, we increase the number of servers from
2 to 15. On the embedded environment, we increase the number of servers from 2
to 5.

In the evaluation, we run the experiment 10 times and for each run we invoke the
global reset operation 10 times. Before each run, the order of the PlanetLab hosts is
randomized since they have different speeds and link latencies. In this way, for each
number of servers, we have 100 samples of global reset time. From these samples
we remove the 5 smallest and 5 largest, in order to mitigate the effect from outliers,
and take the average of the rest.

6.2.3 Estimation of global reset time
Before presenting the results, we present an analytical estimation on the global reset
time. Since there are no clients, we only analyze the case where n ≥ 2, since a single
node is not a distributed system. Please refer to [51] for the global reset algorithm
itself. The estimation is derived as follows.

1. When node pi calls propose(), it changes its own phase from 0 to 1. After
one round trip of communication, where all nodes exchange information by
sending and receiving, pi notices that all nodes echo its phase, and thus sets
the all[i] flag to true.

2. After the next round trip of communication, all other nodes also echo that pi’s
all[i] flag is true. This means that pi moves from phase 1 to phase 2. During
this process, the all[i] flag is set to false since pi’s state has changed.

3. After the next round trip of communication, all other nodes acknowledge pi’s
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new phase, phase 2. Therefore the all[i] flag is set to true again.

4. After the next round trip of communication, similarly to step 2, all other
nodes acknowledge pi’s state, including all[i] = true. This means that pi calls
localReset().

From the above analysis, we see that it takes 4 communication round trips from
when propose() is called until localReset() is called. Recall from Section 4.4 that the
average RTT is 25.62 ms on PlanetLab and 0.17 ms on the embedded environment.
This means that the estimation on global reset time is around 102 ms for PlanetLab
and 0.66 ms for the embedded environment.

6.2.4 Results
In this section we present the results we obtained from the evaluation. Figure 6.1
and Figure 6.2 show how the global reset time changes as the number of servers
increases. We observe that the general trend is a linear increase in global reset time
for both environments. The linear increase is expected for both environments since
a linear increase in the number of servers means a linear increase in the CPU load
due to message serialization and deserialization, which is the heaviest part of the
global reset algorithm.
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Figure 6.1: Scalability of global re-
set time with respect to the number
of servers.
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Figure 6.2: A zoomed version of Fig-
ure 6.1 that only shows the results for
the embedded environment.

Although the general trend matches our expectations, there are some more surprising
parts. In Figure 6.1, we see that in general, the latency grows faster when there are
few servers compared to when there are many servers. We also see that the linear
increase is much steeper for PlanetLab than for the embedded environment (in
terms of absolute numbers). If the linear increase is majorly due to more message
serialization and deserialization, the increase should be about the same for both
environments.
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In order to understand the two surprising phenomenon Figure 6.1 shows, we analyzed
the 10 runs individually. One such run is shown in Figure 6.3. From the figure we
can see that there are some big leaps from 3 to 4, from 6 to 7 and from 12 to 13.
The reason for this is that due to the way the global reset algorithm is designed,
all servers work in a lockstep manner and must wait for every other server before
they can continue and change their phase. This means that the highest link latency
among all the servers is the bottleneck of the global reset time. When it comes to
Figure 6.3, the servers that are included into the system when the leaps happen have
much higher link latency than the previously included servers. This is confirmed by
analyzing multiple individual runs and we find that it is always the same slowest
servers that cause the leaps. When this is clear, the “plateaus” following the leaps
in Figure 6.3 are explained as follows. Since the slowest link is the bottleneck, after
the inclusion of a server with a high link latency, the global reset time stays at the
same level until a server with an even higher link latency is included.
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Figure 6.3: Scalability of Global reset time, but only the results from 1 of the 10
runs are shown.

With the insights from Figure 6.3, we can explain why the latency grows faster when
there are few servers compared to when there are many servers. When there are
only a few servers, the probability that the next server to be included has a higher
link latency than all the previous servers is relatively large. But when many servers
are already included, the probability that the next one has a longer link latency is
instead relatively low. In other words, as we change from 4 to 5 servers, the 5:th
server is relatively likely to have a slower link latency that the previous 4. But as
we change from 11 to 12 servers, the 12:th server is not as likely to have a slower
link latency than the previous 11. It is only when a server with a slower link latency
is included that we see an increase in global reset time. Since the probability of
including a slower server is larger when there are only a few severs, the global reset
time growth is also larger when there are few servers compared to many servers.
This reasoning is confirmed by Figure 6.1.
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Using the insights from Figure 6.3, we can also understand why PlanetLab has a
steeper increase than the embedded environment. Recall that as more servers are
added, on average, the link latency of the slowest of them increases. And because
it is the slowest server that determines the global reset time, the global reset time
too increases for this reason as more servers are added. The link latency differences
between the PlanetLab servers, which cause the global reset time increases, are
larger than the extra overhead of having each server serialize and deserialize more
messages. For the embedded environment, the increase is due to more serialization
and deserialization, but for PlanetLab, the increase is also due to this described
effect, which clearly has a bigger impact than more serialization and deserialization.

It is also worth noting that the results from neither of the two environments con-
tradict the estimation in Section 6.2.3.

6.3 Conclusions
In this chapter, we presented the Global Reset technique. Global Reset can be used
to bound unbounded counters, which is useful for many self-stabilizing algorithms.
It can also be possible to bound the unbounded latency growth of [22] that was
discovered in Chapter 4. Furthermore, we experimentally evaluated the time it
takes for a global reset, and found that it grows linearly with the number of servers,
although the global reset time is heavily affected by the slowest link speed in the
system.
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7
Conclusions

This thesis focused on the performance evaluation of [22]. Specifically, our eval-
uation criterion considered client latency. We based our study on an analytical
estimation of the latency as well as a high-quality pilot implementation in the Rust
programming language. Moreover, since [22] considers both synchronous and asyn-
chronous system executions, we studied our pilot implementation in two different
environments: PlanetLab and an embedded environment consisting of Raspberry
Pis, where the former has long link latency and varying node speeds, while the
latter has short link latency and identical node speeds.

Our results show that the client latency of [22] scales linearly with the number of
completed requests, the number of servers and the number of clients. The perfor-
mance behavior of [22] is similar in both environments, although the network latency
plays a big role. Our analytical bound shows that for n ≥ 3 servers, the lowest pos-
sible client latency is 5 message trips of the network. This is also confirmed by the
experimental results.

In regard to the unbounded growth of client latency, as more and more requests are
completed, as well as the unbounded counters and buffers of [22], we offered the use
of a global reset algorithm [51]. In addition to a detailed evaluation of the algorithm,
we explained how this self-stabilizing algorithm can fit in the analytical framework
of [22]. The evaluation of the global reset algorithm as well as our analytical latency
estimation of it show that the global reset latency is 4 times the slowest round trip
time between the nodes in the system. As future work, we offer the reader to design
new self-stabilizing algorithms that have unbounded counters and then transform
them into ones that use bounded counters using our global system reset scheme
(Chapter 6). Some examples of applying this technique can be found in [52, 62, 63]
where we bound not only the counters but also the communication queue and the
buffer size.
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A
Details of the Global Reset

technique

In this appendix, we present the Global Reset technique in more detail. We do this
by showing how to apply the Global Reset technique to MW-ABD [53], an algorithm
for shared memory emulation. We show how to make MW-ABD self-stabilizing,
including making it bounded.

We incrementally present our self-stabilizing bounded MW-ABD. We do this by
first presenting the non-self-stabilizing unbounded MW-ABD in [53]. Then we show
how to make that version self-stabilizing (but unbounded). Finally, we show our
self-stabilizing bounded MW-ABD, which uses the global reset algorithm [51].

A.1 Non-self-stabilizing unbounded MW-ABD
MW-ABD is an algorithm for shared memory emulation, a concept already men-
tioned in Section 5.3.1. In some distributed systems such as the Internet, nodes
communicate by sending messages to each other. However, some algorithms are
easier to design for distributed systems if the nodes instead communicate by read-
ing and writing to a shared memory location. Shared memory emulation is depicted
in Figure 5.4.

A pseudocode description of MW-ABD appears in Algorithm 4, and is our inter-
pretation of MW-ABD from [53]. Note that Algorithm 4 is not self-stabilizing and
uses unbounded integers. The algorithm has a server-side and a client-side. Nodes
that are designated as servers run the server-side while nodes that are designated
as clients run the client-side.

The local variable of the server-side. At the heart of Algorithm 4’s server-side
is the local variable pair (line 62). pair is a 2-tuple containing tag and value. value
represents this server’s perception of what the current value of the emulated shared
memory is, and tag is a timestamp that tells the server how recent this perception
is. tag in turn is also a 2-tuple, containing counter and id, both which are integers.
Tags are compared by lexicographical order, i.e. tag1 > tag2 ⇐⇒ tag1.counter >
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A. Details of the Global Reset technique

Algorithm 4: Our interpretation of the non-self-stabilizing unbounded MW-
ABD algprithm of [53]. Code for node pi.

61 Server-side:
62 local variable: pair = 〈tag, value〉, where tag = 〈counter, id〉;
63 upon QUERY arrival from pj begin
64 send QUERYack(pair) to pj ;
65 upon WRITE(pairJ) arrival from pj begin
66 if pairJ.tag > pair.tag then pair ← pairJ ;
67 send WRITEack(pair) to pj ;
68 upon INFORM(pairJ) arrival from pj begin
69 if pairJ.tag > pair.tag then pair ← pairJ ;
70 send INFORMack(pair) to pj ;
71
72 Client-side:
73 function read() begin
74 send QUERY to all servers and wait for a majority of replies;
75 let maxPair be the pair with the largest pair.tag received in the previous line;
76 send INFORM(maxPair) to all servers and wait for a majority of replies;
77 return maxPair.value;
78
79 function write(v) begin
80 send QUERY to all servers and wait for a majority of replies;
81 let maxPair be the pair with the largest pair.tag received in the previous line;
82 let newPair := 〈〈maxPair.tag.counter + 1, i〉, v〉;
83 send WRITE(newPair) to all servers and wait for a majority of replies;

tag2.counter ∨ (tag1.counter = tag2.counter ∧ tag1.id > tag2.id). (The reason for
having id and not just counter will become apparent once the client-side has been
presented.) In other words, the central idea of Algorithm 4 is that all servers store
their perception of the current value, and how recent it is.

The client-side. Before continuing with the server-side, let us turn to the client-
side, found in lines 72-83. A read() operation (line 73) consists of first letting the
client send a QUERY message to all servers and then waiting for a response from
a majority of them (line 74). The purpose of doing this is for the client to discover
the current value (in the emulated memory). Of the received pairs, the client finds
the pair with the largest tag (line 75) and then sends an INFORM message to all
servers, and again waits for a majority of them to reply (line 76). The purpose of
this inform phase is to guarantee linearizability [54] of reads and writes, of which
more details can be found in [5, 53]. After the inform phase, the value with the
maximum tag found during the query phase is returned (line 77). Why majorities
are used will be presented after we have presented the write() operation.

The write() operation (line 79) works in a similar way as the read() operation.
The client first sends a QUERY message to all servers and waits for a majority to
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reply (line 80). The purpose of this is for the client to discover the maximum tag
currently in the system (line 81). Then the client creates a new pair, consisting of
the maximum tag’s counter, the client’s own id and the value the client wants to
write (line 82). By adding one to the current maximum tag’s counter, the client is
sure that this new tag is larger than all other tags, and hence the value that the
client is currently writing will be considered to be the most recent value written
(until a new write happens). Finally, the client sends a WRITE message to all
servers and waits for a majority to respond (line 83).

At this point, we can explain why the tags contain id and not only counter. If two
clients perform write() operations concurrently, it might happen that after their
query is done (they are at line 81), they calculate the same maxPair. If ids are not
used to distinguish between these two client writes, two values will have the same
tag. This means that some servers might store one value and some servers the other,
causing inconsistency. But with id as a tie-breaker, this inconsistency is avoided.

As for why majorities are used, the reason is to be able to be as fault tolerant as
possible while still guaranteeing linearizability [54]. If a client is not required to wait
for replies from all servers, but only from a majority, it means that a subset of the
servers are allowed to crash while still allowing the clients to be served. However, if
only required to wait for less than a majority, there can be inconsistencies, including
violation of linearizability. For example, suppose the clients only need to wait for
replies from a quarter of the servers. Then client c1 can query and write to one
quarter, while client c2 can query and read from another quarter, with no intersection
between them. This means that c2 can miss out on writes that c1 has performed,
which is unwanted inconsistency. With majorities, the above cannot happen, since
all majorities of servers intersect. This means that there would be at least one server
that c1 writes to that also c2 reads from, making the above inconsistency impossible.

The server-side. The server-side of Algorithm 4 appears in lines 61-70. When a
WRITE or INFORM message arrives (lines 65 and 68), the server simply updates
its locally stored pair if the received pairJ is greater than pair (line 66 and 69).
For all three types of messages, the server the responds with an acknowledgement
containing its locally stored pair (lines 64, 67 and 70).

A.2 Self-stabilizing unbounded MW-ABD

Algorithm 5 is a self-stabilizing (but still unbounded) version of Algorithm 4 that
has been created by us. The boxed lines mark the changes compared to Algorithm
4. The major difference between Algorithm 4 and 5 is that the latter includes
gossiping and some changes to the query mechanism, which are needed for recovery
from arbitrary transient faults. Let us now describe these changes in more detail.

Gossiped values are stored in the new local array variable gossip (line 86), and
gossip messages are sent and received in line 99 and 97, respectively. The array
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Algorithm 5: Self-stabilizing unbounded MW-ABD. Code for node pi. The
boxed lines mark code added compared to Algorithm 4.

84 Server-side:
85 local variables: pair = 〈tag, value〉, where tag = 〈counter, id〉;
86 gossip array with one entry for each server;
87 upon QUERY( rw ) arrival from pj begin
88 if rw = ’r’ then send QUERYack(pair) to pj ;
89 if rw = ’w’ then send QUERYack(max({pair.tag} ∪

⋃
k∈all servers gossip[k])) to pj ;

90 upon WRITE(pairJ) arrival from pj begin
91 if pairJ.tag > pair.tag then pair ← pairJ ;
92 send WRITEack(pair) to pj ;
93 upon INFORM(pairJ) arrival from pj begin
94 if pairJ.tag > pair.tag then pair ← p;
95 send INFORMack(pairJ) to pj ;
96 upon GOSSIP(tagJ, tagI) arrival from pj begin
97 (gossip[i], gossip[j])← (max{gossip[i], pair.seq, tagI}, max{gossip[j], tagJ});

98 do forever begin
99 foreach server pj do send GOSSIP(max{gossip[i], pair.seq}, gossip[j]) to pj ;

100
101 Client-side:
102 function read() begin
103 send QUERY( ’r’ ) to all servers and wait for a majority of replies;
104 let maxPair be the pair with the largest pair.tag received in the previous line;
105 send INFORM(maxPair) to all servers and wait for a majority of replies;
106 return maxPair.value;
107
108 function write(v) begin
109 send QUERY( ’w’ ) to all servers and wait for a majority of replies;
110 let maxPair be the pair with the largest pair.tag received in the previous line;
111 let newPair := 〈〈maxPair.tag.counter + 1, i〉, v〉;
112 send WRITE(newPair) to all servers and wait for a majority of replies;

gossip has an entry for each other server, where pi stores the tag the respective
server has gossiped. Gossip messages are sent in line 99, where pi sends to pj the
maximum of its own gossip entry, gossip[i], and pair.tag, as well as the tag it stores
about pj. The former is for pi to inform other servers what pi stores in pair.tag, and
the latter is for pj to make sure that no other server stores a larger value about pj

than pj itself. This becomes evident in line 97, where gossip messages are received.
There, pi ensures that gossip[i] is at least as large as what pj stores about it. It also
updates gossip[j] if the received value is larger.

Gossiping solves the following arbitrary transient fault: a single server pk gets its
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pair corrupted so that it contains a very large tag. When clients read and write,
it might happen that they only communicate with majorities excluding pk. But
if a read suddenly gets a reply from pk, the tag returned is greater than all other
servers’ tags, and the read returns the value pk stores. This value is not necessarily
the same as what was most recently written, which is a violation of linearizability,
which MW-ABD should provide. But with gossiping, every server stores pk’s tag in
their gossip array. This means that in line 89, even the large tag of pk is returned,
and in line 111, the client makes sure its write gets a tag larger than pk’s. Thus, the
previously outlined scenario can no longer happen, and linearizability is preserved
even after arbitrary transient faults have occurred.

A.3 Self-stabilizing bounded MW-ABD using
Global Reset

Algorithm 6 is a bounded version of Algorithm 5, and uses the global reset algorithm
by Georgiou et al. [51]. The boxed lines mark code added compared to Algorithm
5. Our modifications follow how [39] created a bounded variation.

The first difference between Algorithm 6 and Algorithm 5 concerns how the server-
side handles incoming messages when pair.tag.counter has reached MAXINT. We
see that in lines 117, 121 and 125, the server replies with a BUSY message instead
of an acknowledgement if MAXINT has been reached. This is because if MAXINT
has been reached, the server must reset counter to 0 before new client requests can
be served. We also see that if a client receives a BUSY message, the client sleeps
backOffTime and then restarts the read() or write() operation from the beginning
(lines 138, 140, 144 and 147). The operation must start from the beginning since
maxPair (line 139) or maxTag (line 145) might contain a value close to MAXINT.
Also, if between lines 138 and 140 (or 144 and 147), the servers reset counter to
0, a value close to MAXINT is immediately sent by the client again in lines 140 or
147, which means that a second reset happens in very close succession. To prevent
this, clients sleep backOffTime, which is an upper bound on the time it takes for
the servers to reset.

The second difference between Algorithm 6 and Algorithm 5 concerns lines 132 and
134. The former line checks that if all servers store MAXINT, this server calls
propose(pair.value) in order to initiate a global reset, proposing to store its own
value after the reset. The latter line handles the call to localReset(value) that [51]
makes. The line sets all entries in gossip to the smallest possible tag and sets the
server’s own pair to the value localReset() was called with and the smallest possible
tag.
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Algorithm 6: Self-stabilizing bounded MW-ABD. Code for node pi. The boxed
lines mark code added compared to Algorithm 5.

113 Server-side:
114 local variables: pair = 〈tag, value〉, where tag = 〈counter, id〉;
115 gossip array with one entry for each server;
116 upon QUERY(rw) arrival from pj begin
117 if pair.tag.counter ≥ MAXINT then send BUSY to pj else
118 if rw = ’r’ then send QUERYack(pair) to pj ;
119 if rw = ’w’ then send QUERYack(max({pair.tag} ∪

⋃
k∈all servers gossip[k]))

to pj ;

120 upon WRITE(pairJ) arrival from pj begin
121 if pair.tag.counter ≥ MAXINT then send BUSY to pj else
122 if pairJ.tag > pair.tag then pair ← pairJ ;
123 send WRITEack(pair) to pj ;

124 upon INFORM(pairJ) arrival from pj begin
125 if pair.tag.counter ≥ MAXINT then send BUSY to pj ; else
126 if pairJ.tag > pair.tag then pair ← pairJ ;
127 send INFORMack(pair) to pj ;

128 upon GOSSIP(tagJ, tagI) arrival from pj begin
129 (gossip[i], gossip[j])← (max{gossip[i], pair.seq, tagI}, max{gossip[j], tagJ});
130 do forever begin
131 foreach server pj do send GOSSIP(max{gossip[i], pair.seq}, gossip[j]) to pj ;
132 if ∀pk : gossip[k] ≥ MAXINT then [51].propose(pair.value);

133 upon localReset(value) called by [51] begin
134 foreach server pj do gossip[j]← 〈0, 0〉; pair ← 〈〈0, 0〉, value〉;

135
136 Client-side:
137 function read() begin
138 send QUERY(’r’) to all servers and wait for a majority of replies,

or if BUSY received, sleep backOffTime, then restart from line 138 ;
139 let maxPair be the pair with the largest pair.tag received in the previous line;
140 send INFORM(maxPair) to all servers and wait for a majority of replies,

or if BUSY received, sleep backOffTime, then restart from line 138 ;
141 return maxPair.value;
142
143 function write(v) begin
144 send QUERY(’w’) to all servers and wait for a majority of replies,

or if BUSY received, sleep backOffTime, then restart from line 144 ;
145 let maxTag be the largest tag received in the previous line;
146 let newPair := 〈〈 maxTag .counter + 1, i〉, v〉;
147 send WRITE(newPair) to all servers and wait for a majority of replies,

or if BUSY received, sleep backOffTime, then restart from line 144 ;
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