
An algorithm for determining in which
public transport vehicle a passenger is
traveling
Master’s thesis in Computer Science and Engineering

MIKI SWAHN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master's thesis 2019

An algorithm for determining in which public
transport vehicle a passenger is traveling

MIKI SWAHN

Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Gothenburg, Sweden 2019

An algorithm for determining in which public transport vehicle a passenger is
traveling
MIKI SWAHN

© MIKI SWAHN, 2019.

Supervisor: Carl-Johan Seger, Department of Computer Science and Engineering
Advisor: Jonas Williamsson, Consat AB
Examiner: Graham Kemp, Department of Computer Science and Engineering

Master's Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Gothenburg, Sweden 2019

iv

An algorithm for determining in which public transport vehicle a passenger is trav-
eling
MIKI SWAHN
Department of Computer Science and Engineering
Chalmers University of Technology

Abstract

This thesis presents an algorithm, that can determine in which public transport
vehicle a passenger is traveling. The algorithm makes use of data such as Global
Positioning System (GPS) location, vehicle length, bearing, speed, acceleration,
Wi-Fi Positioning System (WPS) and planned itinerary. The algorithm collects the
passenger location every few seconds, and queries all the nearby vehicles. Every
vehicle is given a vote based how well the data match the data of the passenger.
After a series of iterations the vehicle consistently appearing as a likely candidate
will be returned. Tests show that the algorithm successfully can determine in which
vehicle a passenger is traveling, in less than 1 minute. These tests were performed
on an implementation of the algorithm that only uses GPS data. It can thus be
concluded that the idea for the algorithm is sound.

Keywords: telematics, public transport, moving objects, GPS, matching passenger
and vehicle, trip planner, public transport payment system, privacy.

v

Acknowledgements

I would like to thank my academic supervisor Carl-Johan Seger for his commitment
to helping with my thesis. He has o�ered his time generously and been a great
support in prioritizing for both short- and long term goals. I would also like to
thank my company supervisor Jonas Williamsson for the chance to elaborate on
ideas and the ability to reach out to the right people. Finally, I want to thank
everyone at Consat for the time with the company, and Anna Edin for making the
thesis happen and introducing me to the company. Thank you.

Miki Swahn, Gothenburg, June 2019

vii

Contents

List of Figures xi

List of Tables xiii

1 Introduction 1

2 Background 3
2.1 De�ning the Algorithmic Problem . 3
2.2 Applications of the Algorithm . 4
2.3 Di�cult Cases . 6
2.4 Limitations . 7

3 Main Idea 9
3.1 The Algorithm . 10
3.2 The Voting System . 11

4 Detail 15
4.1 Implemented Algorithm . 16
4.2 Passenger Data . 17
4.3 Vehicle Data API . 17
4.4 Fetch Nearby Vehicles . 18
4.5 Architecture . 19

5 Test Results 21
5.1 Successful Tests . 23
5.2 Failed Tests . 26
5.3 Key Performance Indicators . 28

6 Discussion 29
6.1 Sources of Error . 30

6.1.1 Passenger Data Errors . 30
6.1.2 Vehicle Data API Errors . 33

6.2 Kinds of Data . 36
6.2.1 GPS Location . 36
6.2.2 Vehicle Length . 36
6.2.3 Bearing . 37
6.2.4 Speed . 38

ix

Contents

6.2.5 Acceleration . 39
6.2.6 Planned Itinerary . 39
6.2.7 Wi-Fi Positioning System . 40

6.3 Feasibility and Ethical Discussion . 40
6.3.1 Ethical Discussion . 41
6.3.2 Market Demand . 42

6.4 Future Work . 43

7 Related Work 45
7.1 Voronoi Diagrams . 45
7.2 Interpolation . 46
7.3 Map Matching . 46
7.4 Dead Reckoning . 47

8 Conclusions 49

A Source Code - Java Implementation I

x

List of Figures

2.1 Vehicles in a junction with di�erent directions and velocities. 6
2.2 Vehicles in a queue, driving at the same speed in the same direction

close to each other. 7

3.1 The main idea for the algorithm. 9

4.1 The App in an initial phase, displaying some recorded data about the
passenger while traveling by bus. 16

4.2 An API bounding box in blue, surrounding a passenger 18

5.1 Picture of the �nal implementation of the app, taken from just before
journey 10. 22

5.2 Journey 10, Friday May 17, 17:06. The trip went through the most
central junction, Brunnsparken, during evening rush hour. 24

5.3 Given that GPS errors average around 5-8 meters, there must be
another explanation why the nearby vehicles so frequently are missing
in the API response. 27

6.1 GPS locations from journey 3, displayed on a map. 31
6.2 How the API veri�caton test was performed. 34
6.3 From the location of the vehicle, the direction of travel and the length

of the vehicle, a bounding box surrounding the vehicle can be obtained. 37

7.1 An example of a Voronoi diagram. 46

xi

List of Figures

xii

List of Tables

5.1 Journey 10, Friday May 17, 17:06. Successful output from algorithm
in 40 seconds when traveling with bus 55. 23

5.2 Journey 8, Friday May 17, 14:06 . 24
5.3 Journey 9, Friday May 17, 14:11 . 25
5.4 Journey 11, Monday May 20, 09:42 26
5.5 Journey 7, Friday May 17, 10:59 . 26
5.6 Journey 6 Thursday May 16, 16:46 27

6.1 The data from journey 3. 32
6.2 API veri�cation result summary. 35
6.3 onlyRealtime=yes . 35
6.4 onlyRealtime=no . 35

xiii

List of Tables

xiv

1
Introduction

The thesis is about designing an algorithm, that can determine in which vehicle in
public transport a given passenger is traveling. The solution utilizes the passenger's
smartphone to collect data such as Global Positioning System (GPS) location, and
match it with data collected from the vehicles in a tra�c management system.
To understand why the problem is relevant, let us explore potential applications
for the algorithm. One application is a payment system, that as automatically
as desired will handle the payments based on when, how and where a passenger
travels. Another application is a trip planner, which suggest new routes in real time
in case of tra�c delays, since it knows which vehicle the passenger is on board. As
opposed to common positioning problems of putting entities on maps, this problem
is characterized by inferring which vehicle a passenger is traveling with. There is
not much research in the area, and the novelty of the study lies in the ability to
detect that two objects are moving together.

Envision the following scenario:A person looks up an itinerary in the trip planner
app. He or she hops on board a vehicle, and within a minute the app pops up with
the information "You are on board bus 11, but in the wrong direction. Get o� at the
next stop, within 3 minutes you can take bus 11 headed towards South Bank instead."
Or perhaps: "There is a tra�c jam on your route. If you choose to get o� at the
next station, and catch train 431 at 17:42, you will get to Preston Road faster."

The di�culty of the study lies in the inaccuracy of GPS locations. Thus, a key part
is to evaluate what additional kinds of data can be incorporated. The other key part
is how the computation itself can be performed such that the output is reliable. An
automatic payment system requires high accuracy such that the correct payments
can be made, even in corner cases where several vehicles are close to the passenger.
In addition, for a trip planing application to be useful, the algorithm has to have
a short response time to detect the vehicle, or else the passenger can reschedule
themselves faster.

1

1. Introduction

2

2
Background

The aim is to devise an algorithm that takes a passenger as input and outputs the
vehicle they are on board. The interest arise from the public transport domain
where passengers demand hassle-free payment systems and trip planners. Likewise,
transport providers demand information about when and where passengers travel.
This chapter will de�ne the problem and motivate why the study is carried out. To
begin, let us introduce the research questions of the project:

Research questions:

ˆ Is it possible to create an algorithm that solves the problem, and what Key
Performance Indicator (KPI) values (Section 2.1) will it have?

ˆ What kinds of data are suitable?

ˆ What are the passenger privacy concerns versus the passenger value of such
an application, and could there be a demand on the market?

2.1 De�ning the Algorithmic Problem

The algorithmic problem can be de�ned as follows.

Given:

ˆ A target passengerp and for that passenger:

� A set of snapshots, where each snapshot is a pairing of a timestampt and
a GPS location with longitudex and latitude y in WGS 84 [1]

ˆ A set of vehicles:V : f v0; :::; vng, and for eachvi

� A set of snapshots, where each snapshot is a pairing of a timestampt and
a GPS location with longitudex and latitude y in WGS 84 [1]

It is possible to collect the snapshots in real time for both the passenger and vehicles.
Other than GPS, it could be possible to have other kinds of data, such as the
momentary speed.

3

2. Background

Find:

The vehicle that the passenger is on board.

Key Performance Indicators:

The scope of the thesis is the feasibility of solving the problem itself. The goal is
thus an algorithm that can match a passenger with their vehicle. To verify whether
the algorithm has been successfully developed the following KPI:s will be used as
measurements.

ˆ Average response time

ˆ Time complexity

ˆ Accuracy of the output, as a percentage of the performed tests

2.2 Applications of the Algorithm

The study is motivated by the applications the algorithm can be used for. The
development of applications is not a part of the project, but they are important as
they determine some speci�cations for the algorithm and make it relevant.

A trip planner is the most important application. Passengers already use such
applications to get an itinerary from point A to B. However, if the app knows when
a passenger is on board a vehicle, it can combine that with the information of tra�c
delays. If a passenger is stuck in tra�c, and will miss their connection, the app can
suggest a new itinerary as it might be faster to take another route. Likewise, if the
connecting vehicle is delayed, the passenger can be informed and o�ered another
connection. The trip planner would also be able to help a passenger who boarded
the wrong line or in the wrong direction. Likewise reschedule someone who missed
their departure, or managed to catch an earlier one.

Another application is a payment system , which if it knows the passenger's
itinerary, could be as automatic as desired. It is however unlikely that a fully
automated system would be a success on the market, since people like to be in con-
trol of payments they make and since the algorithm would not be 100% accurate in
its output. Instead, let us imagine a payment system that serves the passenger the
right options, but leaves the execution of any payment in the hands of the passen-
ger. Imagine the following scenario:The passenger activates the app when traveling
with public transport. When the trip has ended the app can prompt them "You have
travelled from Central Station in Zone 1 to Alexandra Park in Zone 2. Do you want
to pay for this trip ($4)?", with options "Yes, pay $4", "No" or "Details are incorrect.
Edit trip".

To get information on how passengers travel is a third application, which is
incredibly useful for the public transport providers. If a passenger-vehicle pairing

4

2. Background

application reaches a critical mass of users, it would open up for optimization on
a city scale. Public transport companies generally only have a limited amount of
information on where journeys begin and end. Today, it is possible to know how
many passengers are on board at a given time via sensors in the vehicles. However,
it cannot determine where each passenger travels to or from. It can merely con�rm
that more people travel in the city center than at the end of the lines. One might
think that existing trip planers can tell where people travel, but they are mainly used
by those making unusual trips, and not commuters, thus not being representative
for all passengers. By instead gathering data when passengers board a vehicle and
when they get o�, it is possible to optimize which lines operate at what times, as
well as what stops should be included on a line. This is possible if such a trip planner
or payment system is used by a critical amount of passengers.

Yet another application ispre-hospital solutions similar to eCall services in cars,
but for public transport. If a vehicle is in an accident it is useful to know what
passengers are involved. The public transport company could have access to a set
of anonymous passenger ID:s that were on board the crashed vehicle. It could then
send an alert to their apps, and if the passenger has activated the functionality,
a message could be sent to their In Case of Emergency contact. Such a system
protects passenger integrity by storing their information locally on their phones, at
the same time as it enables the rescue operation to be e�ectively coordinated. A
research project at Chalmers University of Technology has resulted in the motorcycle
app Detecht which analyze driving behaviour and identify if a serious accident has
occurred [2]. That algorithm collects information from the smartphone sensors for
velocity, g-force and rotation and connect to the Swedish emergency service SOS
Alarm [3]. From bus data alone it is hard to tell if a passenger is seriously injured,
but using a smartphone carried on their person it might be clear if they remained
seated with their seat belt, or if they (or their phone) �ew out the window because
they were standing up. With the algorithm of this thesis project, in combination
with the Detecht algorithm, passengers involved in an accident, can provide their
medical information as well as how serious the accident was to their family, the public
transport company or emergency services. This will allow for the right amount of
ambulances to be sent to the site of the accident, or perhaps just a taxi.

Lastly, other applications can instead pair passengers with each other if they
travel with the same vehicle. Friends who happen to take the same bus can enjoy
each others company. Beyond that, there are other applications outside the public
transportation sector. Since the algorithm collects standard positional data it could
also match autonomous vehicles traveling in a similar pattern, which could be used
to increase the capacity of a highway by creating convoys, known as platooning.
It could even be used for tra�c planning, for instance, by creating �green waves�
through a series of tra�c lights if a cluster of vehicles are detected to travel together.

These suggested applications showcase the variety of possibilities of an algorithm
that matches moving objects travelling together. For these applications to be feasible
one must �rst design an algorithm that determines which vehicle a passenger travels
with. The scope of this project are not the applications, but simply the matching

5

2. Background

algorithm itself.

2.3 Di�cult Cases

One can assume that the problem is trivial if there is only one vehicle in the vicinity
of the passenger. What makes the problem interesting are the di�cult cases where
more than one vehicle is a likely candidate. Some such cases are described below to
illustrate the complexity of the problem. In Västra Götaland region (which is the
basis of the thesis project, see Section 2.4), a tram is 30 meters long and a bus is
about 20 meters long [4]. Moreover, the GPS transmitter is situated in the front of
the vehicles, behind the driver's seat. This means that when a passenger it seated
in the back of a vehicle, they might be closer to the GPS transmitter of a vehicle
behind them.

Junction. In a large junction, or stop, a lot of vehicles can pile up close to each
other. The passenger might be seated such that the transmitters of other vehicles
are closer, than the transmitter of the vehicle they travel with. The hypothesis is
that bearing and speed will help determine which vehicle the passenger is on board.
Especially when vehicles are traveling in opposite directions, or stopping on opposite
sides of the street, the bearing should quickly be able rule out which is the wrong
vehicle and which is the right vehicle.

Figure 2.1: Vehicles in a junction with di�erent directions and velocities. Passenger
is in red and vehicle transmitters in green. Bearing and speed illustrated with orange
vectors.

Queue. If vehicles are in a queue, their bearing will be the same and their speed
will be similar. This is likely to hold at any given time while they are in a queue.
At the same time, a passenger seated in the back will be closer to the transmitter
of the vehicle behind them. This case is illustrated in Figure 2.2.

6

2. Background

Figure 2.2: Vehicles in a queue, driving at the same speed in the same direction
close to each other. Passenger is in red and vehicle transmitters in green. Bearing
and speed illustrated with orange vectors.

Walking inside the vehicle Another case is if the passenger walks towards the
back of the car, as the vehicle slowly drives forward. The passenger moves in the
opposite direction of the vehicle, and might even stay in the same geographical
location. This case is supposedly solved by querying for vehicles for a time period
longer than the time it takes to walk across the vehicle.

2.4 Limitations

The public transport system acting as reference for the project is the Västra Göta-
land region in Sweden. Assumptions about the public transport are based on this
region. However, as discussed in Section 2.2 about the applications, the general idea
of matching moving objects can be applied to any situation.

There are assumptions about the availability of input data. Only over ground trans-
portation, such as buses, trams, cars, boats, are in scope, unlike underground trans-
portation. Furthermore, the study is also only applicable in urban areas where there
is cellular reception. And �nally, it is assumed passengers have agreed to share their
data as input to the algorithm, and that they are connected to the internet. What
it means is only that the algorithm will only work if the data is available.

The validity of input data is however not assumed, but instead covered for in the
algorithm. Sensors are not perfectly reliable and will produce spurious data points
which the algorithm should tolerate.

An important limitation is that the problem de�nition is only concerned with the
initial pairing of a passenger to a vehicle. For most applications it is also of interest
to re-evaluate if the passenger is still on the same vehicle after some time has past,
as well as detecting if the passenger makes a change. This task is deemed trivial once
the initial pairing is done, since the problem is the same except there is additional
information including which vehicle the passenger was previously on board.

7

2. Background

8

3
Main Idea

The algorithm gets the location of the passenger every few seconds. It will then
query all the nearby vehicles. For every such vehicle, a number of points will be
awarded. The points can be awarded based on distance to passenger, or based on
other kinds of data collected. The algorithm will do a series of iterations with new
passenger locations, and for every iteration make a list of the top vehicle candidates.
Finally, it will return the vehicle that consistently has appeared as a likely candidate.

Figure 3.1: The main idea for the algorithm.

This solution is �exible in two ways. First, what kinds of data to incorporate can
be chosen based on the implementation and what data is available. Second, how the
points are awarded can be done in any way. For instance, one kind of data can be
weighted much lighter in the voting system than another depending on how reliable
it is.

9

3. Main Idea

3.1 The Algorithm

With only GPS location as input data, quite a lot can be done. In most cases a
passenger vehicle pairing can be found in less than a minute, as tests will show in
Chapter 5. In order to shorten the response time and increase accuracy, other kinds
of data than GPS must be included. Suggestions include vehicle length, bearing,
speed, acceleration, Wi-Fi position and planned itinerary. See Section 6.2 for more
on this. Below is a pseudo code implementation of the algorithm, that uses only
GPS location data, and awards points solely based on distance to passenger.

Algorithm 1 Matchmaking algorithm

1: list topVehicleCandidates
2: list result
3: iterations 0
4:

5: loop forever:
6:

7: iterations ++
8: x; y getPassengerLocation ()
9: boundingBox getBox (x, y)

10: vehicles fetchNearbyVehicles (boundingBox)
11: for every vehiclev 2 vehiclesdo
12: distance distanceBetween (v, x, y)
13: points getPoints(distance)
14: if v 2 topVehicleCandidatesthen
15: v:points v:points + points
16: else
17: topVehicleCandidates.add (v)
18: v:points points
19:

20: bestCandidate getBest(topVehicleCandidates)
21: for every vehiclev 2 result do
22: if v 50% worse thanbestCandidate, or more then
23: result .remove (v)

24: for every vehiclev 2 topVehicleCandidatesdo
25: if v 50% worse thanbestCandidate, or more then do nothing
26: else result .add (v)

27: if (result .length () = 1 && iterations > 10) then
28: Break
29:

30: return result

Remembering the problem de�nition, for the passengerp there is a set of snapshots,
where each snapshot is a pairing of a timestamptp, a longitude xp and a latitude

10

3. Main Idea

yp. There is also a set of vehicles:V : f v0; :::; vng, and for eachvi a set of snapshots
with tvi , xvi and yvi . When the algorithm has retrieved the nearby vehicles, for each
vehicle it should also check that the timestamps for the snapshots re�ect the same
time. The following time condition should be checked, wheret in UNIX Epoch time
and with a suitable value for the delayL in milliseconds:

Ctime (tvi ; tp) = jtp � tvi j � L (3.1)

As for the GPS locations, the below points function can be used for awarding points
to the vehicles based on distance.D is the maximal Euclidean distance between the
passenger GPS location and their vehicle GPS location. It should be de�ned based
on the typical error in GPS locations. According to a 2011 empirical study the
median error is 5 to 8.5 meters for smartphones [5], and very similar for the vehicles
(E. Lundin, Consat Telematics, Personal interview, February 4 2019).D should also
be de�ned based on the length of a vehicle, such that a passenger sitting far away
from the GPS transmitter still can be considered to be on board that vehicle.

distance(tvi ; tp) =
q

(xp � xvi)2 + (yp � yvi)2 (3.2)

points(tvi ; tp) = (distance(tvi ; tp) �
1
3

D �! 10)

^ (distance(tvi ; tp) �
2
3

D �! 7)

^ (distance(tvi ; tp) � D �! 4)

(3.3)

What is considered to be a consistently likely candidate can also be decided rather
�exibly depending on the implementation. Here, the condition is that the resulting
candidate should have at least 50 % more points than any other candidate. Also,
there must be 10 iterations before any candidate can be deemed to be superior. A
similar condition is that a vehicle should have accumulated at least a certain number
of points to be considered the correct one. In case two vehicles are likely candidates
for a long period of time, such as if the vehicles are in a queue, yet another condition
is needed to ensure the algorithm terminates. Such a condition is that if a vehicle
has been the top candidate for 15 iterations, it will be returned as the result.

3.2 The Voting System

The bene�t of the voting system is that no data �ltering is needed. Unless an error is
consistent, minor noise will have no e�ect on the total vote for any vehicle. If during
one iteration the correct vehicle GPS location jumps to an erroneous location, such
as a river 200 meters from the road, the only e�ect is that the vehicle will not get

11

3. Main Idea

any points from that particular iteration. Nevertheless, it can still accumulate a
high vote from all other iterations and become the resulting candidate. Likewise, if
the passenger location is wrong during an iteration, the e�ect is simply that some
points will be awarded incorrectly. Some incorrect points will not matter since the
total vote is based on several iterations. The resulting candidate will have to be
consistently close to the passenger.

Another bene�t is that the various kinds of data can be given di�erent importance,
or weight, in the voting system. The weight of each kind of data should be based
on how reliable that data is, both in terms of data validity and in terms of how
suitable it is for matching two moving objects. For example, GPS data can weigh
heavier than speed, since if a vehicle is 5 meters from the passenger it probably says
more than if they both move at 20 km/hour. And so, if passenger and vehicle GPS
locations are close, the vehicle will get a high vote, say 10 points. If they also move
at similar speed the vehicle will get an additional small vote, say 2 points. By using
the voting system, the result can be made more accurate by incorporating several
sources of data and weighing them appropriately.

In Algorithm 3 is an implementation of a voting system. Points are awarded to every
vehicle in the bounding box. The implementation gives many points to vehicles that
are closely nearby, and bonus points if the bearing and speed are similar. Bearing
is an angle in relation to true north, a compass direction. The vehicle will not be
awarded any points if the snapshots have timestamps that di�er too much.

12

3. Main Idea

Algorithm 2 Get Points
1: points 0
2: distance input
3: speedVehicle input
4: speedPassenger input
5: bearingVehicle input
6: bearingPassenger input
7: timeVehicle input
8: timePassenger input
9:

10: if jtimeV ehicle � timePassengerj � someT imeDelay then
11:

12: if (distance� 15 meters) then
13: points = 10
14: else if (distance� 30 meters) then
15: points = 7
16: else if (distance� 45 meters) then
17: points = 4
18:

19: if jspeedVehicle� speedPassengerj � someThresholdthen
20: points = points+ 2
21:

22:

23: if jbearingVehicle� bearingPassengerj � someOtherThresholdthen
24: points = points+ 1
25:

26: return points

Comment: All numbers, distances in meters as well as points, are just examples.
They will need to be con�gured for the implementation, i.e. by learning from per-
formed tests in the relevant public transport system.

13

3. Main Idea

14

4
Detail

To verify the functionality of the algorithm, an app for matching passengers with
vehicles has been developed. It collects passenger data and queries nearby vehi-
cles through an API. It is an android app written in Java in the Android Studio
development environment1. The choice was made based on the low threshold for
starting implementation and to get an app up and running on a mobile device for
free. Moreover, within the project there is prior experience in such development.

An early version of the app can be seen in Figure 4.1. The data captured by the
app, such as passenger longitude and latitude and the nearby vehicles, is saved to a
txt-�le such that tests can be re-run by inputting the same data to the algorithm,
and such that the results can be analyzed. The hardware where the app is running,
is a Huawei Nexus 6P smartphone manufactured in 2015, where the CPU is a 2.0
GHz octa core 64-bit ARMv8-A. This is the hardware where all tests have been
performed.

1Android Studio: https://developer.android.com/studio/

15

4. Detail

Figure 4.1: The App in an initial phase, displaying some recorded data about the
passenger while traveling by bus.

4.1 Implemented Algorithm

The app follows the code in Algorithm 1, Section 3.1. The passenger GPS location
is collected every third second, using the Android Location library [6]. The GPS
system use the WGS84 standard for the coordinates around the globe [1]. All vehicles
inside a bounding box, of120� 120meters centered around passenger, are queried
via the Reseplaneraren v2 LivemapAPI, provided by the Västra Götaland public
transport company; Västtra�k [7]. The box was made slightly larger than necessary
such that all nearby vehicles would be included in the response. Unfortunately, the
API cannot supply timestamps for when a GPS location was recorded, and thus no
validation is made to ensure that no time delay a�ects the output.

Points are awarded solely on GPS distance, 5 points for vehicles within 30 meters, 4
points for within 40 meters, and 1 point for within 50 meters. The lowest threshold,
30 meters is based on the length of the longest vehicle[4]. It was chosen such that
when a passenger is seated in the back of a vehicle and there is another vehicle
behind, the vehicle behind should not get a higher point than the passenger vehicle,
even if GPS transmitters are in the front of vehicles (E. Lundin, Consat Telematics,
Personal interview, February 4 2019). It was also chosen such that a passenger in the
back of a vehicle shall have equal chances of getting a correct output as a passenger

16

4. Detail

in the front. The drawback of this threshold is that the distance is measured in any
direction, meaning e�ectively that a vehicle is considered to have their potential
passengers anywhere within 30 meters from the GPS transmitter. A solution to this
is suggested in section 6.2.2, namely to include the length of vehicles in the input
data, along with the direction of travel. Furthermore, the 40 meter threshold is based
on a GPS error of 5 meters for both passenger and vehicle in opposite directions.
Finally, the 50 meter threshold is based on the maximal Euclidian distance between
a passenger and a vehicle, i.e. if both GPS errors are 9 meters and the vehicle length
30 meters.

4.2 Passenger Data

The passenger GPS location and time is obtained using Android's Location library[6].
The passenger location is mainly obtained from GPS. Additionally, the Android Lo-
cation library might fuse GPS data with cellular triangulation and Wi-Fi positioning
system to provide more accurate locations, yet the exact sources cannot be declared.
The validity of the passenger location data is discussed in Section 6.1.1. The error
was measured between1:4 and 10:8 and found to average between1:9 and 7:7 meters
(mean error � standard deviation).

4.3 Vehicle Data API

The Västtra�k Reseplaneraren v2 LivemapAPI takes two longitudesxmin and xmax

and two latitudes ymin and ymax , and returns all vehicles enclosed in that bounding
box [7]. To get the bounding box corners, a passenger GPS locationxp; yp must
be o�set a certain amount of metersr . It can be done with Equation 4.1 [8] [9],
whereR is the earth radius (6363000 meters in the Västra Götaland region [8]). An
example of a bounding box is visualized in Figure 4.2. The API response contains
the current server time, and for each vehicle the real time GPS coordinates. It also
includes the name of the line and a trip id used for di�erentiating between multiple
vehicles of the same line. The drawback with the response is that all vehicles have
the same timestamp, such that it is impossible to tell when the GPS location was
registered in the vehicle.

ymin or max = yp �
180
�

�
r
R

xmin or max = xp �
180
� � r

R

cos(yp)

(4.1)

17

4. Detail

Figure 4.2: An API bounding box in blue, surrounding a passenger in red. Two
green marks indicate vehicle GPS transmitters.Source: Google Developers, Google
Maps, https://www.google.com/maps/about/ 2019.

Vehicle locations are updated on server at every turn the vehicle makes, at every stop
the vehicle makes, and within a time interval of about a minute (E. Lundin, Consat
Telematics, Personal interview, February 4 2019). The location data is then �ltered
from noise and is map matched to the road network. It ensures every location where
the vehicle has been is recorded, consequently, the vehicle locations are presumed
to be accurate. This is further discussed in Section 6.1.2.

4.4 Fetch Nearby Vehicles

The implementation makes use of an API for querying nearby vehicles, as mentioned
above in Section 4.3. The API already returns the vehicles in a certain area, and
thus this part of the implementation was already completed. However, as part of
the project it is discussed here how this part can be implemented.

One could make use of a naive, linear time, algorithm for retrieving the vehicles
within a radius of a person. Such a brute force algorithm is described below in Al-
gorithm 3. The issue is that, despite being of linear time complexity, it will execute
too slowly due to the sheer amount of vehicles in a city (2000in the Västra Göta-
land region (E. Lundin, Consat Telematics, Personal interview, February 4 2019)).
Taking into account that such a system should be deployed and serve thousands of
users making queries every second, it's just not feasible.

18

4. Detail

Algorithm 3 Naive Fetch Nearby Vehicles

1: list vehicles all vehicles in town
2: list result
3: x; y Passenger location
4: radius e.g. 40 meters
5: for every vehiclev 2 vehiclesdo
6: distance distanceBetween (v, x, y)
7: if distance� radius then
8: result .add (v)

9: return result

Instead, there are state-of-the art solutions for databases of moving objects which
makes it quicker to query the nearest objects [10][11]. What makes it di�cult
to sort moving objects is that their locations constantly has to be updated which
requires new sorting. Otherwise Voronoi diagrams (described in 7.1) could be used.
Instead, Moving Object Databases frequently make use of dead reckoning (a method
explained in 7.4) and spatio-temporal databases to store locations such that they
can be e�ciently queried [12].

4.5 Architecture

The system architecture hugely in�uence the integrity of both passengers and the
public transport system. The main question is where data is stored and where
computations are performed; on the passenger phone or the public transport servers.
Beyond integrity, the architecture a�ects the power consumption and data usage
on passenger phone, as well as the computational power required on the servers.
Consequently, the architecture is very important for feasibility evaluation.

The chosen architecture collects and stores the passenger data only on their phone,
performs the major �ltering of vehicle data on the public transport servers, then
transmits it to the phone, where the algorithm is run. This architecture is chosen
because it is in the interest of the passengers to have their data privately stored on
their phone only, and for the major �ltering of vehicles to be done before transmitting
the data such that it consumes less cellular data. It is also chosen because it is in
the interest of the public transport company to not run the algorithm for every
passenger travelling with them, as it requires a lot of computational power.

19

4. Detail

20

5
Test Results

Tests are carried out to test the performance of the algorithm itself. The test are
performed using the implemented app, but some tests are disregarded due to the
input data to the algorithm being inaccurate. Invalid input data is is a �aw in the
implementation of the system, not the algorithm being tested. Since it is only of
interest to evaluate the algorithm itself, only test cases with valid input data are
included.

A test is performed by a passenger who travels by public transport and simultane-
ously use the app with the implemented vehicle matching algorithm. The algorithm
runs and predicts a matching vehicle for the passenger. The passenger documents
the name of the actual vehicle they traveled with. The algorithm output is then
compared to the correct vehicle, which determines if the test failed or passed.

21

5. Test Results

Figure 5.1: Picture of the �nal implementation of the app, taken from just before
journey 10. On the top line on the screen the person performing the test can see their
latest location and time. In the second section of lines, the latest API responses are
listed, i.e. the nearby vehicles. In the third section, the updated top list is printed
out after each iteration. The top list contains the top vehicle candidates and their
points. When the top list has a single vehicle and at least ten iterations have past,
the vehicle in the top list is returned as the algorithm output.

22

5. Test Results

5.1 Successful Tests

Table 5.1: Journey 10, Friday May 17, 17:06. Successful output from algorithm in
40 seconds when traveling with bus 55.

Journey 10, Friday May 17, 17:06 The passenger was traveling with bus 55, and
seated in the front of the 10 meter long vehicle. The API returned a very accurate
representation of the nearby vehicles. The vehicles returned were always nearby,
and only a few were missing. The algorithm returned a successful output after 40
seconds. See the data in Table 5.2. The journey passed a busy, central area, as can
be seen in Figure 5.2.

23

5. Test Results

Figure 5.2: Journey 10, Friday May 17, 17:06. The trip went through the most cen-
tral junction, Brunnsparken, during evening rush hour.Source: Google Developers,
Google Maps, https://www.google.com/maps/about/, 2019.

Table 5.2: Journey 8, Friday May 17, 14:06

Journey 8, Friday May 17, 14:06 The passenger was traveling with bus 16,
and seated in the back of the 20 meter long vehicle. The API returned the correct

24

5. Test Results

passing vehicles and it also returned the passenger vehicle several times. Despite
the input data frequently claimed no vehicles were nearby (trivially the passenger
vehicle is always nearby), the algorithm still managed to output the correct vehicle.

Table 5.3: Journey 9, Friday May 17, 14:11

Journey 9, Friday May 17, 14:11 The passenger was traveling with bus 16,
and seated in the back of the 20 meter long vehicle. In Table 5.3 it is visible that
during the �rst two minutes the API was not representative and returned almost
no vehicles. In reality, there was both oncoming tra�c and vehicles in front and
behind at times. Fortunately, after the �rst two minutes the API returned a much
better representation of the nearby vehicles. Some of the other vehicles such asRosa
expressand Gron expresswere noted to be present during the test, and the passenger
vehicle was consistently in the response. It it therefore reasonable to disregard of the
initial 1 minute and 30 seconds of the test. The reason is that the algorithm itself is
tested, not the implemented system as a whole. During this initial period the API
falsely claimed there were no nearby vehicles, and there is no point in evaluating
the algorithm with inaccurate input data.

When the input data from time 14:13:12 and forward is fed as input to the algorithm,
the correct response would be returned in 40 seconds (after 10 iterations, i.e. at time
14:13:53). The test is thus deemed successful in 40 seconds instead of 1 minute 50
seconds. The output is successful in any case, but it is safe to not include the

25

5. Test Results

waiting time in the response time since it re�ects the quality of the API and not
the algorithm. When the algorithm is given accurate input, it also gives an accurate
output.

Table 5.4: Journey 11, Monday May 20, 09:42

Journey 11, Monday May 20, 09:42 The passenger was traveling with bus 16,
and seated in the middle of the 20 meter long vehicle. The API returned fairly
representative nearby vehicles, such as an oncoming bus 16 and the behind tram 3.
A successful output was returned after 1 minute.

5.2 Failed Tests

Table 5.5: Journey 7, Friday May 17, 10:59

Journey 7, Friday May 17, 10:59 The passenger was traveling with bus 58, and
seated in the back of the 12 meter long vehicle. The API included all present vehicles
(bus 58, bus 16 and bus 99). The issue is that the behind bus 99 was returned in
every API response, but the passenger vehicle bus 58 was only returned half of the
responses. Because of this, the algorithm returned the wrong output.

26

	List of Figures
	List of Tables
	Introduction
	Background
	Defining the Algorithmic Problem
	Applications of the Algorithm
	Difficult Cases
	Limitations

	Main Idea
	The Algorithm
	The Voting System

	Detail
	Implemented Algorithm
	Passenger Data
	Vehicle Data API
	Fetch Nearby Vehicles
	Architecture

	Test Results
	Successful Tests
	Failed Tests
	Key Performance Indicators

	Discussion
	Sources of Error
	Passenger Data Errors
	Vehicle Data API Errors

	Kinds of Data
	GPS Location
	Vehicle Length
	Bearing
	Speed
	Acceleration
	Planned Itinerary
	Wi-Fi Positioning System

	Feasibility and Ethical Discussion
	Ethical Discussion
	Market Demand

	Future Work

	Related Work
	Voronoi Diagrams
	Interpolation
	Map Matching
	Dead Reckoning

	Conclusions
	Source Code - Java Implementation

