

Design Flaws as Security Threats
Master’s thesis in Computer Science and Engineering

Danial Hosseini
Kyriakos Malamas

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY AND UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2017

Master’s thesis 2017:06

Design Flaws as Security Threats

A Master Thesis in Software Engineering

DANIAL HOSSEINI
KYRIAKOS MALAMAS

Department of Computer Science and Engineering
Software Engineering and Technology

Chalmers University of Technology and University of Gothenburg
Gothenburg, Sweden 2017

Design Flaws as Security Threats
A Master Thesis in Software Engineering
Danial Hosseini
Kyriakos Malamas

© Danial Hosseini, Kyriakos Malamas 2017.

Supervisor: Riccardo Scandariato, Computer Science and Engineering.
Examiner: Jan-Philipp Steghöfer, Computer Science and Engineering

Master’s Thesis 2017
Department of Computer Science and Engineering
Software Engineering and Technology
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Typeset in LATEX
Printed by [Chalmers University of Technology and University of Gothenburg]
Gothenburg, Sweden 2017

iv

Design Flaws as Security Threats
A Master Thesis in Software Engineering
Danial Hosseini - danialh@student.chalmers.se
Kyriakos Malamas - malalas@student.chalmers.se
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Current practices used to evaluate security in the architecture, usually involve threat
modeling activities. These activities, however, often require a significant amount of
resources, in terms of time and effort, to achieve complete threat coverage. Other ap-
proaches focus on identifying design flaws early on and usually involve the definition
of a rule set and the creation of detailed models to check against these rules which
require a significant amount of effort and expertise. This study proposes a manual
approach in the form of a catalog of design flaws along with detection guidelines
in order to detect design flaws related to security threats. A descriptive study is
conducted to evaluate the effectiveness and productivity of the approach, as well as
how the detected flaws can be related to threats identified by STRIDE. Finally, fur-
ther investigation is done to understand how the approach can complement existing
threat modeling techniques.

Keywords: Catalog of design flaws, Design flaws, Security, Secure architecture,
Threat modeling.

v

Acknowledgements
We would like to thank our supervisors Riccardo Scandariato and Katja Tuma from
Chalmers University of Technology, for their valuable time and input along with
their expertise that assisted us in completing this research. In addition, we are also
immensely grateful to Atul Yadav and Christian Sandberg at Volvo Group Trucks
Technology for offering their insights and the necessary resources to complete this
research. Finally, we would also like to thank the students from Chalmers University,
as well as the practitioners from Volvo Group Trucks Technology for participating
in the study and taking the time to answer our questionnaire.

Danial Hosseini and Kyriakos Malamas, Gothenburg, June 2017

vii

Contents

List of Figures x

List of Tables xi

1 Introduction 1
1.1 Research questions . 2
1.2 Scientific contribution . 2
1.3 Methodology . 3
1.4 Thesis outline . 3

2 Considering Security in Design 5
2.1 Software design and design flaws . 5

2.1.1 Design Principles . 5
2.1.2 Design and Security Patterns 6
2.1.3 Design Flaws . 7

2.2 Current research approaches on identification of design flaws 8
2.3 Threat Modeling and Risk Assessment Methods 10

2.3.1 STRIDE and DREAD . 10
2.3.2 TRIKE . 11
2.3.3 Use Cases and Misuse Cases 11
2.3.4 OCTAVE . 12
2.3.5 PASTA . 13
2.3.6 TVRA . 13
2.3.7 EVITA - THROP . 14
2.3.8 HEAVENS Security Model . 15

3 Compiling the Catalog 16
3.1 Defining the scope of design flaws . 17
3.2 Data collection . 17

3.2.1 Threat and Vulnerability Taxonomies 17
3.2.2 Vulnerability Databases . 19
3.2.3 Other Resources . 19
3.2.4 Related Work Regarding Catalogs of Design Flaws 20

3.3 Deriving a list of most common threats and weaknesses. 21
3.4 Compile the catalog of design flaws. 22
3.5 Defining detection guidelines. 23

ix

Contents

4 Evaluation of the Catalog 25
4.1 Preparation for the evaluation . 25

4.1.1 Selected measurements and metrics 25
4.1.2 Pilot run . 26

4.2 Evaluation with students . 27
4.2.1 Experimental object . 27
4.2.2 Participants . 27
4.2.3 Task . 27
4.2.4 Establishing a Baseline . 28

4.3 Relating design flaws to threats . 29
4.4 Evaluation at Volvo Group Truck Technologies 29

5 Results 31
5.1 Results from students . 31
5.2 Relating design flaws to threats derived from STRIDE 33
5.3 Results from Volvo . 36

6 Discussion 38
6.1 Effectiveness of the catalog . 38
6.2 Productivity of the analyst using the catalog 38
6.3 How the catalog can complement threat modeling techniques 39
6.4 Using the catalog in the automotive industry context 39
6.5 Similar Studies . 40
6.6 Threats to Validity . 40

6.6.1 Construct Validity . 40
6.6.2 Internal Validity . 41
6.6.3 External Validity . 42

6.7 Future Work . 42

7 Conclusion 43

References 45

A Catalog of Design Flaws I

B Results from students XII

C STRIDE threat comparison with design flaws baseline XIV

D Questionnaire XXIV

E Documents provided in the lab package XXVIII
E.1 HomeSys Domain Problem Description XXVIII
E.2 HomeSys Requirement Specification XXXIX
E.3 HomeSys Architectural Description LII

x

List of Figures

1.1 The software development lifecycle and its different phases. 1
1.2 Steps of the methodology throughout the study. 3

2.1 OCTAVE Phases . 13
2.2 Workflow of HEAVENS security model 15
2.3 HEAVENS Security Level (SL) . 15

3.1 Overview of the process to compile the catalog. 17

5.1 Number of flaws detected in HomeSys per catalog entry. 32

xi

List of Tables

2.1 Design Principles presented by Saltzer and Schroeder 5
2.2 Design Principles presented by Viega and McGraw 6
2.3 Element types mapped to STRIDE threat categories. 10

3.1 Part of threats and weaknesses collected in step 3 and related CWE
entries. 21

3.2 Design flaws to be included in the catalog. 23

4.1 Baseline of flaws for HomeSys. 29

5.1 Student results and measurements . 31
5.2 Threats from STRIDE analysis and related flaws in the baseline . . . 34
5.3 Number of design flaws in baseline and student results associated with

each threat . 35
5.4 Number of threats for which associated flaws were found. 36
5.5 Results from Volvo. 37

B.1 Baseline of flaws for HomeSys. XIII

xii

1
Introduction

The importance of integrating security has emerged as a leading factor for many
worldwide organizations. As software systems increase in size, complexity, and new
technologies surface, security is becoming all more important [1]. The potential cost
connected with security incidents and the continued operational costs associated
with keeping up to date with security patches requires organizations to take action
and give more consideration on how to address potential security threats [1]. Cur-
rently, most organizations focus on addressing software security in later stages of the
software development lifecycle (SDLC). This is usually performed in the implementa-
tion phase Figure 1.1, where static analysis tools are used to identify vulnerabilities.
Although this approach can help diminish vulnerabilities, performing security activ-
ities later can lead to increased costs, since the longer a vulnerability lies dormant,
the more expensive it can be to fix [2], [3].

Figure 1.1: The software development lifecycle and its different phases.

A vulnerability in a system can be introduced through different sources, as it can be
caused by design weaknesses, implementation errors, and system configuration er-
rors, however, a large part of the vulnerabilities are caused by decisions made earlier
in the SDLC [1]. Empirical data claim that 50% of the vulnerabilities are caused by
architectural design flaws, which means that security needs to be considered earlier
in the SDLC [1]. A design flaw can be an incorrect design decision that does not
comply with the best practices or design principles normally used to tackle with
recurring problems [4], [5]. A design flaw represents an error in the architecture and
tends to be harder to eliminate if discovered too late in the SDLC, they also take
more time and resources to resolve [1].

Commonly used practices for evaluating security in architecture, usually involve

1

1. Introduction

threat modeling activities during the architecture and design phases. However,
these activities are usually difficult to perform during early design stages, when spe-
cific implementation technologies have not been chosen yet [6]. Other approaches,
focus on identifying design flaws early on and usually involve the definition of a rule
set and the creation of detailed models to check against these rules, such the ones
proposed by Berger et al. [7] and Almorsy et al. [8]. Although these approaches
aim towards automating the process, they rely on the creation of a knowledge base
of rules and elaborate models, which require a deep understanding of the domain
and security as well as a significant amount of time and effort to create these models
and capture all the required information.

Thus, our approach is aimed towards creating a catalog of design flaws along with
detection guidelines to identify architectural design flaws in early design phases that
can lead to security threats, therefore the primary focus will be on design flaws
related to high abstraction levels of the architecture. The aim of the approach is
not to replace any of the existing techniques, but rather to be used as a complemen-
tary method for practitioners to detect flaws related to security threats and mitigate
those threats by addressing these flaws. The catalog of design flaws will be evaluated
in a practical environment by students from Chalmers University of Technology and
practitioners at Volvo Groups Trucks Technology.

This study was done in collaboration with Volvo Groups Trucks Technology under
the scope of HoliSec (Holistic Approach to Improve Data Security) project. The
goal of HoliSec is to develop integration-ready security development processes that
are aligned with existing safety processes, verification and validation methods that
address security, investigate security mechanism properties, and look at methods to
secure both wired and wireless communication. This can be achieved by making sure
security requirements are visible and influence all steps in the development chain,
all the way from early development to late testing phases [9].

1.1 Research questions
For the purpose of this study the following research questions have been defined:

– RQ1: What is the effectiveness of the approach?
– RQ2: What is the productivity of the analysts using the approach?
– RQ3: How can this approach complement current knowledge-based threat
modeling techniques?

1.2 Scientific contribution
This study proposes a catalog of design flaws that are related to security threats, to
be used in the evaluation of system’s architecture in early stages. Each flaw listed
in the catalog can be detected by following the provided guidelines. Unlike other

2

1. Introduction

approaches, it doesn’t require elaborate models or expertise in the security domain
to be able to use it. The approach is evaluated in a practical environment, by stu-
dents and practitioners, in terms of effectiveness and productivity. Additionally, the
study investigates how such an approach can complement existing threat modeling
activities.

1.3 Methodology
The methodology for this thesis is described in Figure 1.2. The first step in the pro-
cess starts by identifying and understanding the problem to establish the objective
of the study. The second step in our methodology was to gather relevant data from
different sources that could be used to form the catalog. The sources include threat
and vulnerability taxonomies, online resources from related organizations such as
Open Web Application Security Project (OWASP) Top 10 projects 1 and SANS 25
2, databases such as Common Weakness Enumeration (CWE) 3 and any related
work. A more detailed description on the resources used will be provided in section
3.2. The next step was to use the gathered data and compile the catalog of existing
design flaw along with description and detection guidelines that assist in the iden-
tification of architectural design flaws. The fourth step involves the evaluation of
the proposed catalog of design flaws with students from Chalmers and practitioners
at Volvo. At the final step of the process, all results were documented and further
work was discussed.

Figure 1.2: Steps of the methodology throughout the study.

1.4 Thesis outline
The remaining of this report is structured as follows. Chapter 2 summarizes exist-
ing definitions and terminologies for design principles, security patterns, and design
flaws along with an overview of the existing approaches on identifying design flaws
and threat modeling techniques. In Chapter 3 an overview of the process to compile
the catalog is presented along with the data sources used to gather relevant data.
Chapter 4 describes the planning of the evaluation along with the task given to stu-
dents from Chalmers University of Technology and practitioners from Volvo Group

1OWASP Top 10 presents critical security issues existing in web applications in a yearly basis.
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project

2SANS 25 presents the most dangerous software errors. https://www.sans.org/
top25-software-errors/

3CWE maintains a collection of common software security weaknesses. https://cwe.mitre.
org/data/index.html

3

https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.sans.org/top25-software-errors/
https://www.sans.org/top25-software-errors/
https://cwe.mitre.org/data/index.html
https://cwe.mitre.org/data/index.html

1. Introduction

Trucks Technology (GTT). Chapter 5 describes how the results were processed as
well as observations made during the evaluation. Chapter 6 discusses the results
and how these can be used to answer the research questions in the study, along with
threats to validity and suggestions for future work. Finally, Chapter 7 summarizes
the findings of the study.

4

2
Considering Security in Design

2.1 Software design and design flaws
This section presents definitions and terminologies for design principles, security
patterns, and design flaws according to literature.

2.1.1 Design Principles
Design principles are specific guidelines that can be followed in order to design a
secure system. The principles demonstrate what to consider in order to enhance
security as well as to aid in the development of a new system. This section provides
an overview of the design principles proposed in the literature.
In 1975, Saltzer and Schroeder [10] presented a series of design principles for secure
systems, which apply especially to protection mechanisms. The following design
principles were proposed and can be seen in Table 2.1

Design Principle Description

Economy of mechanism A simpler design is easier to test and therefore
the design should be as simple and small as possible.

Fail-safe defaults Access should be denied by default and only
be permitted when explicit permission exists.

Complete mediation Every access to every object must be checked
for authority.

Open design The security of a mechanism should not depend
on the secrecy of its design or implementation.

Separation of privilege
Access should be granted based on more than one
piece of information. Protection mechanism that
requires two keys are more robust and flexible.

Least privilege Every process and user should be given the least
set of privileges that it needs in order to complete its task.

Least common mechanism The protection mechanism should be shared as little
as possible among users.

Psychological acceptability The protection mechanism should be easy to use.

Table 2.1: Design Principles presented by Saltzer and Schroeder

Aiming towards improving secure software development Viega and McGraw [1]
present their own set of design principles, which has similarities to those proposed

5

2. Considering Security in Design

by Saltzer and Schroeder [10]. Table 2.2 refers to the design principles introduced
by Viega and McGraw [1]

Design Principle Description

Secure the weakest link The level of security is only as strong as the
weakest link in the system.

Practice defense in depth Use multiple complementary security mechanisms,
so that a failure in one does not mean total insecurity.

Fail securely Design the system so it fails in a secure manner.

Follow the principle of least privilege
Only the minimum access necessary to perform an
operation should be granted, and that access should
be granted only for the minimum amount of time.

Compartmentalize
Segment a system into multiple components that
are protected independently to reduce the damage
of an attack.

Keep it simple Avoid unnecessary complexity by keeping the
system as simple as possible.

Promote privacy Promote privacy for the users and the system.

Remember that hiding secrets is hard This principle assumes that even the most
secure systems are amenable to inside attacks.

Be reluctant to trust Instead of making assumptions that need to
hold true, you should be reluctant to extend trust.

Use your community resources Use well-known community resources that
have been widely scrutinized and used.

Table 2.2: Design Principles presented by Viega and McGraw

Kenneth and Van Wyk [11] proposed an extensive list of 30 security architecture
principles that are based on previous work by [10] and [1]. The collection ranges
from specific principles, for example “fail safely” and "build in multiple layers of
defense" to more generic design guidelines such as “remember to ask, what did I
forget?”.

The collection of design principles often overlaps each other, and may not always
be helpful when it comes to concrete design problems. However, they can further
the understanding of which aspects are relevant to secure software development.
Additionally, they convey the message that security should not be ignored since it’s
an important factor of today’s software development [12].

2.1.2 Design and Security Patterns
Design patterns propose a generic solution to recurring design problems within a
given context in software engineering. The concept of patterns was first used by
Christopher Alexander in buildings architecture and similarities could be seen within
software architecture resulting in further study and publications of patterns. Design
Patterns are widely used in today’s software development and further research has
been done in many domains, including the security domain [12].

6

2. Considering Security in Design

Schumacher and Roedig provide the following definition: “A Security Pattern de-
scribes a particular recurring security problem that arises in specific contexts and
presents a well-proven generic scheme for its solution. A Security Pattern System
is a collection of security patterns, together with guidelines for their implementation,
combination and practical use in security engineering.” [13]. Their understanding is
similar to the definition found at [14].

One of the first papers that addressed security patterns was published by Yoder
and Baralow [15], with the focus on building secure software by proposing seven
security patterns. Anand et al. provide a categorisation of security patterns and
correlate them with vulnerability types [16]. Alvi and Zulkernine [17] proposed a
classification scheme for security patterns based on the natural cause of security
breaching in software applications. Hafiz et al. [18] provide different categorizations
for security patterns that they applied while developing a pattern language. Alvi
and Zulkernine [19] provide a comparison of the several classifications of security
patterns and finally, Kienzle et al. [20], present a repository of security patterns.

2.1.3 Design Flaws
Apart from the term design flaw, there are a number of terms defined in the litera-
ture. It can also be referred to as architectural bad smells [21], design pattern defect
[22] or architectural flaw [23].

Garcia et al. [21] define architectural bad smell as "a commonly used set of archi-
tectural design decisions that negatively impacts system lifecycle properties, such as
understandability, testability, extensibility, and reusability". They also mention that
architectural smells are analogous to code smells, since they both represent common
solutions which are not necessarily wrong but can still have a negative effect on the
overall quality of the software [21].

Moha et al. [22] define design pattern defects as occurring errors in the design of
software that come from the absence or bad use of patterns. They distinguish be-
tween the defects as distorted, deformed, missing or excess design patterns.

According to Mirakhorli [23], an architectural flaw is a result of using inappropriate
design choices in earlier stages of software development, incorrect implementation
of security patterns or degradation of security architecture over time.

Andrade et al. [24] describe that architectural smells are structural attributes that
can affect lifecycle properties, such as testability, understandability, and reusabil-
ity. They can also affect quality properties, such as reliability and performance.
According to Garcia et al. [21], this can occur by "applying a design solution in
an inappropriate context, mixing combinations of design abstractions that have un-
desirable emergent behaviors, or applying design abstractions at the wrong level of
granularity".

7

2. Considering Security in Design

By examining the definitions mentioned, we can conclude that a design flaw can
affect the quality properties of the system and can be caused by an incorrect im-
plementation (or omission) of a design pattern or failure to apply design principles
properly. It can also be due to design solutions applied, that although tested be-
fore, they are not applicable in a specific context. Finally, as a system evolves, its
architecture tends to degrade if its not designed in a way to consider future changes.

2.2 Current research approaches on identification
of design flaws

According to Almorsy et al. [8] existing efforts to assess and evaluate the security
of software architecture can be classified into two main categories, scenario based
architectural analysis and metrics-based approaches. While scenario based analysis
is focusing on generating a set of evaluation scenarios which is based on security re-
quirements, metrics-based approaches focus on developing metrics that can be used
to assess the software architecture. Examples of scenario based approaches, such as
misuse cases or Data Flow Diagrams (DFDs) for use case scenarios, are [7], [25] and
[26], while for metrics-based [27].

Almorsy et al. [8] introduce an automated risk analysis approach that uses architec-
tural security scenarios and metrics. They use OCL to formalize attack signatures
and to specify security metrics, in order to assess the security and architecture of
the system. These OCL rules are then applied to the two UML models they create,
System Description Model (SDM) and Security Specification Model (SSM) with the
help of a tool. The knowledge-base of rules is based on CAPEC [28] and is limited
on detecting 4 specific types of attacks in the system under analysis, listed below
[8]:

• Man In The Middle (MITM) Attacks: The attacker intercepts communication
between two components and makes independent connections with them relay-
ing the messages, while the components think they communicate directly. The
signature of this attack is insecure communication channels or communication
in an untrusted zone.

• Denial of Service (DoS) Attacks: The goal of this attack is to make a system
or a critical resource of the system unavailable to its legitimate users. This
is usually done by overwhelming the system with requests, targeting pub-
licly accessible components that lack proper authentication or data validation
mechanisms.

• Data Tampering Attacks: This attack refers to tampering with the data at
rest, transit or even during processing. This can be the result of the data
being stored or transmitted in insecurely (in plaintext format), processing
occurring in an untrusted environment or if authorization policy and access
control allows unauthorized people to access data.

• Injection Attacks: If a system doesn’t have a proper input validation mecha-
nism, it is vulnerable to these types of attacks. The goal is to pass malicious
input to a system to gain higher privileges, tamper with data or even cause a

8

2. Considering Security in Design

system crash.

As mentioned in [8], developing security scenarios to be used in architecture evalua-
tion is a very complicated task and requires deep knowledge of the security domain.
Although their approach achieves a precision rate of 90% and a recall rate of 89%,
according to them, the results of the analysis tool depends on the soundness of the
metrics and scenario specified in OCL.

Another similar approach is proposed by Berger et al. [7] where they automatically
extract threats from Extended Data Flow diagrams (EDFDs). In order to achieve
this, they use EDFDs, which cover all concepts of traditional DFDs but allow the
use of additional semantics, and they create a knowledge base of rules and prede-
fined patterns that will be checked against the EDFD using a rule checker in order
to produce a threat model. Their approach supports 25 security related rules which
mostly consist of entries from CWE [29] and CAPEC [28]. Their focus is not only
in architectural issues, as according to [7] they also include rules concerning im-
plementation issues, such as buffer overflow. More importantly, the creation of the
knowledge-base requires security expertise and the EDFD needs to be done by a
system expert.

Both of the approaches mentioned above aim towards an automated analysis of the
architecture. In order to achieve these, both require detailed models to be con-
structed and a knowledge base of rules to be defined. However, defining security
scenarios and metrics is a rather complex task and often requires a deep knowledge
of the security domain. Additionally, the effectiveness of such tools is dependent on
the knowledge base of rules and how often it is updated. Even then, only currently
known attacks and vulnerabilities are covered.

Other approaches, such as the ones presented by D’Ambros et al. in [27] and Bunke
and Sohr in [30], involve reverse engineering of the source code using detection
strategies derived from design rules, guidelines and heuristics, in order detect design
flaws. However, these design flaws mostly refer to OOP flaws and are not necessar-
ily related to security. In [30], UML diagrams are derived from the source code in
order to detect security patterns used. Although, this approach could be useful for
maintenance, it is not in the scope of our study, since our focus is on how to detect
any design flaws in the design phase and not after the development of the system.

The International Organization for Standardization is currently working on ISO/IEC
PDTS 19249 [31] with the intention of publishing a catalog of architectural and
design principles for secure products, systems, and application [31]. During the
time our research was conducted, the standardization was still under development,
and therefore conclusions could not be drawn.

9

2. Considering Security in Design

2.3 Threat Modeling and Risk Assessment Meth-
ods

Threat modeling is considered as one of the important activities a security analyst
can perform during the software development lifecycle to identify, quantify and
address security threats associated with the system [1]. In this section, a number of
threat modeling and risk assessments methods are presented.

2.3.1 STRIDE and DREAD
STRIDE is a threat modeling technique developed by Microsoft that supports eval-
uation of security throughout several activities [32]. The threat modeling process
starts by modeling a Data Flow Diagram (DFD) to present how the data travels in
the system. The DFD consists of elements, which are distinguished in data flows
(DF), data stores (DS), process nodes (PN) and external entities (EE) [32]. The
DFD is then reviewed, and threats based on the types of elements is organized
according to the STRIDE threat categorization:

– Spoofing refers to an attacker impersonating another user or process.
– Tampering refers to when an attacker illegally modifies data in transit or rest.
– Repudiation refers to the absence of logged activities.
– Information disclosure refers to exposure of confidential information to those
without access.

– Denial of service refers to a threat making the system temporary or perma-
nently unavailable.

– Elevation of privilege refers to when an attacker obtains higher privileges that
they are not entitled to.

The element types in the DFD can be mapped to more than one STRIDE catego-
rization, as shown in Table 2.3.

S T R I D E
EE x x
DF x x x
DS x x x
PN x x x x x x

Table 2.3: Element types mapped to STRIDE threat categories.

For each mapping between a generic threat and a DFD element type, STRIDE pro-
vides a hierarchical threat tree that consists of concrete threats that need to be
considered. Currently, 15 threat trees are provided where each leaf represents a
threat that can realize the root node [32].

STRIDE was often used in conjunction with DREAD, a risk assessment model
created by Microsoft to quantify, compare and prioritize the risk presented by each
evaluated threat. The DREAD acronym is formed from the first letter of each
category:

10

2. Considering Security in Design

– Damage Potential - How much damage will be done if the threat is exploited?
– Reproducibility - How easy is it to reproduce the threat exploit?
– Exploitability - How hard is it to exploit the threat?
– Affected users - What users will be affected if the threat is exploited?
– Discoverability - How easy is it to discover this threat?

A given threat is assessed using DREAD, each category is assigned a number between
0-10, higher numbers, indicate greater risk. Finally, the risk value for each threat is
computed by calculating the average of all five categories. The decision to retire the
DREAD model was made in 2008 by Microsoft since they discovered that the ratings
lacked consistency and that DREAD was not an enough detailed risk methodology.

2.3.2 TRIKE
TRIKE is an open source threat modeling framework that started during 2006 and
is still under development [33]. TRIKE is used to satisfy the security auditing pro-
cess from a risk management perspective. The initial step of TRIKE is to compose
a requirements model that is designed to provide an overview of what the system is
intended to do and what assets are associated with the actions taken by the actors.
The requirement model is used to ensure the level of risk assigned to each asset is
classified as acceptable.

The next step of the methodology is to create a implementation model by modeling
a DFD and specifying more implementation details for each element type, such as
what libraries, platform, protocols and what type of data stores are used [33]. The
implementation model is then examined to identify potential threats that are cate-
gorized into two different categories, either denial of service or elevation of privilege.
The denial of service threat is when a privileged user is prevented from executing
its intended actions. Elevation of privilege refers to when a user performs an ac-
tivity beyond the initial permissions specific to that user. These threats are then
used to build an attack graph to see what steps an attacker could take to realize a
threat. Finally, countermeasures are suggested, and a risk model is generated based
on assets, roles, actions and threat exposure [33].

2.3.3 Use Cases and Misuse Cases
Use cases are derived from requirements and specify the normal behavior and usage
of the system usually in the form of structured scenarios, diagrams or stories. In
addition, use cases are used at the concept phase to define the interaction between
the actors and the system [34]. Misuse cases also referred as abuse cases or negatives
scenarios is a well-known threat modeling technique with the primary objective of
identifying undesirable behaviors between the system and actors via brainstorm-
ing of security experts to elicit security requirements. The brainstorming session
involves the creation of misuse case diagrams together with the corresponding use
case diagram containing the sequence of actions that can be performed to harm the
system and the actors that could potentially initiate the attack [35]. Sindre and
Opdahl [34] propose the following steps to elicit security requirements:

11

2. Considering Security in Design

1. Identify critical assets in the system
2. Define security goals for each asset
3. Identify threats to each of these security goals, by identifying the stakeholders

that may want to cause harm to the system
4. Identify and analyze risks for the threats, using risk assessment techniques
5. Define security requirements for the risks.

Although misuse cases have proven to be easy to understand and use in different
fields, the identification of threats is limited by the creativity and knowledge of the
security experts involved in the brainstorming sessions [35].

2.3.4 OCTAVE
Operationally Critical Threat, Asset and Vulnerability Evaluation (OCTAVE) is a
risk-based strategic assessment and planning technique for security [36]. Instead of
targeting technological risk and focusing on tactical issues, OCTAVE is targeted on
organizational risk and focuses on practice-related issues.

The technique captures the current state of security practice within an organization
based on the knowledge of its people regarding the security-related practices and
processes. Since it involves people from different parts of the organization, not only
from IT departments, the technique can assist an organization to balance the three
key aspects: operational risk, security practices, and technology.

The approach is driven by two of these aspects, operational risk and security prac-
tices. Technology is only examined to refine the view of the current security prac-
tices. OCTAVE is self-directed, meaning that the organization is required to manage
the evaluation process and make decisions to address the protection of information
[36]. To achieve that, the analysis team, consisting of people both from operational
and IT units of the organization, follows an asset-driven evaluation approach which
involves the following steps [36]:

1. identify information-related assets (e.g., information and systems) that are
important to the organization

2. focus risk analysis activities on those assets judged to be most critical to the
organization

3. consider the relationships among critical assets, the threats to those assets,
and vulnerabilities (both organizational and technological) that can expose
assets to threats

4. evaluate risks in an operational context - how they are used to conduct an
organization’s business and how those assets are at risk due to security threats

5. create a practice-based protection strategy for organizational improvement as
well as risk mitigation plans to reduce the risk to the organization’s critical
assets

The organizational, technological, and analysis aspects of an information security
risk evaluation are complemented by a three-phase approach which enables organi-
zational personnel to assemble a comprehensive picture of the organization’s infor-
mation security needs. An overview of the phases is presented in Figure 2.1.

12

2. Considering Security in Design

Figure 2.1: OCTAVE Phases

2.3.5 PASTA
Process for Attack Simulation and Threat Analysis (PASTA) is threat modeling
methodology introduced by Marco Morana and Tony UV to assist an organization
in managing technical and non-technical risks caused by threats seeking to exploit
vulnerabilities in the application [37]. The process begins by defining the business
objectives, security and compliance requirements, along with a business impact anal-
ysis. Similar to other threat modeling techniques, a Data Flow Diagram (DFD) is
modeled to identify threats and vulnerabilities using abuse cases, threat trees, and
a scoring system [37]. The final step involves calculation of risk and business impact
and adaptations of countermeasures to reduce the impact of threats. To summarize,
PASTA provides an attacker-centric view of threats in combination with risk and
impact analysis that can help organizations establish an asset-centric approach, not
only focusing on technical threats [37].

2.3.6 TVRA
Threat Vulnerability and Risk Analysis (TVRA) is an assessment method developed
by the European Telecommunication Standards Institute (ETSI) [38], used to iden-
tify assets and their associated weaknesses, vulnerabilities with their corresponding
threats and their negative impact on the security attributes, namely confidentiality,
integrity, availability, authenticity, and accountability (CIAA).

The threats are then classified under one of the following categories: Interception,
Manipulation, Denial of service, Repudiation of sending, Repudiation of receiving.
A risk value is then calculated depending on the impact and likelihood of the eval-
uated threats, and a set of countermeasures are derived.

Finally, a cost-benefit analysis is performed to select the most suitable countermea-
sures to reduce the likelihood of the threat to occur and its potential impact [38].

13

2. Considering Security in Design

Integrating a countermeasure adds assets to the Target of Evaluation (TOE) and
could introduce new vulnerabilities. Therefore, it’s crucial that the TVRA method
is performed until all risks are at an acceptable level. An overview of the TVRA
process is provided below [38]:

1. Identification of the Target of Evaluation (TOE) resulting in a high level de-
scription of the main assets of the TOE and the TOE environment and a
specification of the goal, purpose and scope of the TVRA.

2. Identification of the objectives resulting in a high level statement of the security
aims and issues to be resolved.

3. Identification of the functional security requirements, derived from the objec-
tives from step 2.

4. Inventory of the assets as refinements of the high level asset descriptions from
step 1 and additional assets as a result of steps 2 and 3.

5. Identification and classification of the vulnerabilities in the system, the threats
that can exploit them, and the unwanted incidents that may result.

6. Quantifying the occurrence likelihood and impact of the threats.
7. Establishment of the risks.
8. Identification of countermeasures framework (conceptual) resulting in a list of

alternative security services and capabilities needed to reduce the risk.
9. Countermeasure cost-benefit analysis (including security requirements cost-

benefit analysis depending on the scope and purpose of the TVRA) to identify
the best fit security services and capabilities amongst alternatives from step
8.

10. Specification of detailed requirements for the security services and capabilities
from step 9.

It is recommended to document the assets, threats, vulnerabilities, weaknesses and
countermeasures found during the process in case the analysis needs to be repeated
whenever the design or the environment changes [38].

2.3.7 EVITA - THROP

Threat and Operability analysis (THROP) method is part of the E-Safety Vehicle
Intrusion Protected Applications (EVITA) project. The method considers poten-
tial threats for a particular feature from a functional perspective, using attack trees
to define the potential threats regarding the functionality of the analyzed feature.
THROP first identifies the primary functions of the feature, then applies guide-words
to identify potential threats so that it can determine potential worst-case scenario
outcomes from the potential malicious behavior [39].

The risk level determination is adopted from ISO 26262 (ASIL determination) [40]
based on a combination of severity, attack probability, and controllability measures,
which are mapped to a qualitative risk level (R0 to R7 and R7+) for classification
of the security threats. The severity classification separates different aspects of the
consequences of security threats (operational, safety, privacy, and financial) [39].

14

2. Considering Security in Design

2.3.8 HEAVENS Security Model
The primary objective of the HEAVENS security model is to derive security re-
quirements for the target of evaluation (TOE), similar to the notion of deriving
functional safety requirements as described by ISO 26262 [41], [40]. To achieve that,
HEAVENS security model analyses threats using STRIDE and then ranks accord-
ing to their security level (SL), which is based on the threat level (TL) and impact
level (IL), in order to derive security requirements. An overview of the HEAVENS
security model workflow is presented in Figure 2.2 below.

Figure 2.2: Workflow of HEAVENS security model

The threat level (TL) is determined based on the expertise of the attacker, his
knowledge of the TOE, the window of opportunity and the equipment required to
facilitate the attack. Each of these parameters are assigned a value between 0 and
3, corresponding to none, low, medium and high. The summation of these values is
used to define the threat level which can be 0 for none, 1 for low, 2 for medium, 3
for high and 5 for critical [41].

In a similar way, the threat impact level (IL) is derived based on the impact the
threat will have on each of the 4 security objectives adopted by HEAVENS, safety,
financial, operational, and privacy and legislation. For each of the security objectives
mentioned, a value is assigned and then the sum is calculated to derive the IL [41].
Finally the security level (SL) can be derived by combining the TL and IL as shown
in Figure 2.3.

Figure 2.3: HEAVENS Security Level (SL)

15

3
Compiling the Catalog

Before compiling the catalog, it was necessary to define the scope of design flaws,
examine available resources and databases as well as define a process for the search,
filtering and selection of the entries. An overview of the process of compiling the
catalog is presented in Figure 3.1. It consists of the following steps:

1. Define the scope of design flaws. Flaws related to specific technologies,
protocols or implementation level details are not considered relevant for our
study. For instance, flaws of TCP/IP protocol or Object Oriented Program-
ming (OOP) design flaws such as god class or feature envy which are not
directly related to security are out of scope.

2. Collect data. In this step the available resources were reviewed in order to
collect the data which will be the base for the catalog. The resources reviewed
are the following:

2.1 Review collections design flaws available in the literature or previous
work.

2.2 Review threat taxonomies for different fields and domains to identify
the most common threats. These threats were then filtered, so that only the
ones related to design flaws were kept. STRIDE threat trees are also included
in this step.

2.3 Review the entries of CWE, OWASP top 10 and SANS 25 to identify
weaknesses, threats and vulnerabilities related to design flaws.

3. Derive a list of threats and weaknesses from the data collected in the
previous step. This means that the most common entries were grouped and
and filtered in order to remove duplicate or similar entries.

4. Compile a catalog of design flaws. For each of the entries in the list derived
from step 3, examine what are the underlying issues that cause them. For
example, STRIDE and several threat taxonomies define spoofing identity as a
threat, but this is usually the result of how credentials are managed (storage,
transferred through channels) or insufficient authentication mechanisms (in
some cases single factor authentication may be insufficient). The catalog of
design flaws will be comprised of these causes.

5. Define detection guidelines for each of the flaws in the catalog. For each
entry, steps were defined to help identify the relevant elements in the archi-
tecture along with a set of questions for each of these elements. This way,
depending on how these questions are answered, a flaw can be detected.

6. Present the catalog that contains design flaws along with guidelines on how
to detect them in an architecture. Identifying and addressing each of these
flaws can potentially prevent one or more threats.

16

3. Compiling the Catalog

Figure 3.1: Overview of the process to compile the catalog.

3.1 Defining the scope of design flaws
As mentioned in section 2.1.3, there are a number of terms found in the literature
when referring to design flaws. Additionally, depending on the study, the design flaws
identified can be on different abstraction levels of the architecture. For example,
design flaws such as "god class" or "feature envy" can be found in studies on OOP
systems. Other studies are focused on identifying flaws in communication protocols
or specific technologies. However, since the primary goal of this study is to identify
design flaws early on, where the architecture is not very detailed, flaws such as the
ones mentioned above are considered out of scope. This also allows for the resulting
catalog to contain design flaws that can be present in different types of systems, not
restricting it to a single domain.

3.2 Data collection
In order to collect the data, that the catalog is based on, related work regarding
catalogs of design flaws, knowledge bases of threats, weaknesses and design or se-
curity patterns, as well as threat taxonomies were reviewed. The remaining of this
section presents these resources.

3.2.1 Threat and Vulnerability Taxonomies
This section presents taxonomies considered during our literature review and used
as a source for data collection phase. The main focus was on studying taxonomies
of security threats, however these usually included attacks and vulnerabilities or-
ganized under generic threat categories. Additionally, taxonomies of vulnerabilities
often include design flaws, so certain vulnerability taxonomies were also considered.

Igure and Williams [42] provide a comprehensive view on taxonomies of attacks and
vulnerabilities, in the form of a review covering taxonomies presented from 1974
until 2006. They analyze the effectiveness of these taxonomies for use in security
assessment processes. The important properties of the various taxonomies are also

17

3. Compiling the Catalog

summarized to provide a framework for organizing information regarding known
attack and vulnerabilities. Although a large number of the taxonomies reviewed
refer to operating system flaws and implementation level vulnerabilities, the study
provides a useful overview of the most common security issues occurring in different
fields. Finally, they argue that a taxonomy has to be system specific for it be of use
[42].

Joshi et al. [43] present a comparison of classification methods for 25 taxonomies
of vulnerabilities. Their study covers taxonomies from 1974 until 2014 and the au-
thors point out that no taxonomy can be complete and that it is necessary to update
taxonomies in order for them to be useful with respect to security issues associated
with today’s software products and attack mechanisms [43].

Tripathi and Singh [44] provide an overview of proposed taxonomies of vulnerabili-
ties in literature and point out the need for a single unified taxonomy that will be
updated constantly in order for it to be useful. They claim that although there are
several taxonomies proposed throughout the years, most of them are now outdated
and they follow different classification schemes. Tripathi and Singh conclude that
there is a need for standardization regarding information security taxonomies which
contribute in improving the security and risk assessment of information systems.

Uzunov and Fernandez [45] propose an extensible two-level pattern-based taxon-
omy of security threats for distributed systems. Each threat in this taxonomy is
encapsulated in an abstract software pattern (threat pattern) that can be special-
ized for other systems and technologies. This way the taxonomy can be extended
through specialization. The first level of the taxonomy organizes threats into 8
classes, which are identity attacks, network communication attacks, network proto-
col attacks, passing illegal data, stored data attacks, remote information inference,
loss of accountability and uncontrolled operations [45]. The second level organizes
threat patterns in 4 meta security threat classes, which are cryptographic attacks,
countermeasure design, configuration/administration and network protocol attacks.
Although not all of the threats can be attributed to design flaws, since the majority
of the threats are quite abstract, several of the entries were considered during data
collection phase [45].

Babar et al. [46] provide an overview of the objectives in the field of IoT (Inter-
net of Things) and summarize the key properties, challenges and high level security
requirements in the field. They also propose a taxonomy of the major security
challenges of 6 categories which are identity management, communication threat,
storage management, dynamic binding, embedded security and physical threat. Fi-
nally, they propose a 3-dimensional security model for IoT (cube structure) to depict
the convergence of security, trust and privacy. The taxonomy contains of high level
threats such as spoofing or authentication issues which was used as part of the data
collected for the creation of our catalog [46].

Silva et al. [47] present a taxonomy of security threats in the web ecosystem di-

18

3. Compiling the Catalog

vided in 3 domains (service, service consumer and social engineering), each of which
contains a subset of the total of 21 attack vectors. These attack vectors can be
described as high level threats such as missing authentication and a number of them
was included in the initial data collected for the catalog.

Tsipenyuk et al. [48] propose a taxonomy of software security errors which is di-
vided in “7 plus 1” kingdoms. Each kingdom contains a number of coding errors,
referred to as phylum. Although the taxonomy contains coding errors, some of them
can be attributed to design flaws. Of particular interest is the “Security features”
kingdom which refers to coding errors regarding least privilege violation, credentials
management etc.

3.2.2 Vulnerability Databases
This section provides a short description of the various databases available, that
contain information regarding vulnerabilities and weaknesses. These databases were
examined during the data collection phase of our study.

Common Vulnerabilities and Exposures (CVE) was launched in 1999 and
is the largest and most updated vulnerability database. CVE is maintained by the
MITRE corporation and provides a reference-method for publicly known information-
security vulnerabilities and exposures. Every vulnerability has a unique ID and most
other databases have links to CVE based on those IDs [49].

Common Weakness enumeration (CWE) is a community-developed list of
common software security weaknesses. CWE aids developers and security practi-
tioners since it serves as a common language for describing security weaknesses in
architecture and implementation. It also provides different mitigation and preven-
tion techniques that could be used to eliminate weaknesses. CWE contains around
1005 weaknesses and each entry is cross referenced with different taxonomies, CVE
and attack databases such as CAPEC [29]. Additionally, CWE provides a number
of views, which include categorization of the entries based or taxonomies in the lit-
erature, research concepts, time of introduction to the system etc.

3.2.3 Other Resources
This section lists resources that are made available by organizations such as OWASP
and SANS institute. The resources provided are in the form of top 10/25 lists which
are updated every couple of years and provide information regarding the most com-
mon vulnerabilities. These resources were also examined during the data collection
phase.

The Open Web Application Security Project (OWASP) provides informa-
tion about risks associated with the most common Web application security flaws
and provides recommendations for dealing with those flaws. The OWASP publishes

19

3. Compiling the Catalog

the flaws in a form of popular Top Ten list every year and was founded 2001 as a
not-for-profit charitable organization [50].

SANS top 25 This is a list of the most widespread and critical errors that can lead
to serious vulnerabilities in software. The list is the result of collaboration between
the SANS Institute, MITRE, and many top software security experts in the US and
Europe. It combines knowledge gained during the development of SANS Top 20
attack vectors and MITRE’s Common Weakness Enumeration (CWE) [51].

Preliminary List of Vulnerability Examples for Researchers (PLOVER)
PLOVER is a report by Christey PLOVER [52] aimed to assist in the creation of the
Common Weakness Enumeration (CWE) initiative. The report provides an informal
taxonomy and presents concepts for a general "vulnerability theory", identification
of research gaps, discussion of terminology, and a mapping from PLOVER categories
to 1500 CVE names, including an index of hard-to-classify examples [52].

STRIDE Threat Trees
STRIDE is currently one of the most commonly used techniques when it comes to
threat modeling. Microsoft has also created a tool which is based on STRIDE. Its
acronym defines a threat classification which consists of Spoofing, Tampering, Re-
pudiation, Information disclosure, Denial of service and Elevation of privilege. In
[32], Adam Shostack presents 15 threats trees where each leaf is a threat that can
realize the root node.

3.2.4 Related Work Regarding Catalogs of Design Flaws

Previous work regarding compilation of catalogs of design flaws can be found in [3],
[53], and [54]. In [3], Da Silva Santos shifts through the entries of CWE and col-
lects those that refer to weaknesses that are attributed to design flaws. The result
is a new catalog, CAWE, which contains 384 architectural weaknesses, however, it
doesn’t provide any guidelines on how to detect these flaws. At the time our study
was conducted, access to this catalog was not possible, so we cannot make any con-
clusions about the relevance to our work.

Terkelsen [53] follows a similar approach, were a subset of the CVE entries is ex-
amined. Then these entries are filtered based on a decision tree, whether they are
design flaws or not, and are classified based on a classification scheme. Similar to
[3], it provides no guidelines on how to detect these flaws.

The most recent work is presented in [54]. This document was published by IEEE
CSD and lists the 10 most common design flaws. The flaws listed there however have
a broad scope and can be broken down to a number of erroneous design decisions.
Thus, each flaw listed in the document can be considered as a category of flaws.

20

3. Compiling the Catalog

3.3 Deriving a list of most common threats and
weaknesses.

After reviewing the resources described in section 3.2, a number of threats, weak-
nesses and vulnerabilities were collected from each resource. These were then cross-
referenced and merged to eliminate any duplicates and similar entries, resulting in
a list that would be used as the base for the catalog. A part of the list derived at
this step is presented in Table 3.1 along with related CWE entries.

Threats Related CWE Entries
1 Missing Authentication 287, 306, 862
2 Authentication Bypass using an alternate path 288, 592
3 Authentication Bypass using a spoofed identity 290
4 Authentication Bypass by Capture Replay Methods (Session hijacking) 294, 592, 300
5 Authentication Bypass by Assuming Data Stored on Client are Immutable 302, 471
6 Relying on Single Factor Authentication 308, 654
7 Not Setting appropriate Session Timeout 384, 613
8 Session Hijacking 384
9 Not Re-authenticating Before Critical Operation 306
10 Relying on shared resources for authentication 291, 350
11 Downgrade Authentication (providing multiple authentication mechanisms) 757
12 Weak Change Management 261, 262, 263, 521,522,549
13 Use of Key Distribution Center (KDC) 264
14 Credentials Stored in Client 522
15 Credentials Stored in Server 522
16 Missing Authorization 862
17 Execution of External Programs 829, 830
18 Missing Access Check 638, 284, 285, 272, 280, 269
19 Not Using Complete Mediation 638
20 Not considering Context when authorizing 270
21 Not revoking authorization 299, 672
22 Credentials not Encrypted while Stored or in Transit. 319, 201, 209
23 Sensitive Data not Encrypted in Storage or in Transit 319, 201, 209, 315
24 Communication Channels are Not Properly Encrypted 300, 940, 941, 923
25 Channel Accessible by Non-Endpoint (’Man-in-the-Middle’) 300
26 Use of Custom/Weak Encryption Algorithms. 327, 326, 325
27 Absence of well established Trust Boundaries 501, 485, 269
28 Not validating data from Untrusted sources 20
29 Incoming data from untrusted source don’t have an upper bound 130
30 Use of untrusted APIs or Libraries 648
31 Insufficient auditing 778
32 Unlimited resource usage 400, 770
33 Acceptance of Extraneous Untrusted Data With Trusted Data 349
34 Clean cached/temp files 377
35 Behavioral change in new versions or environment 439
36 Containment Errors (Container Errors) 216

Table 3.1: Part of threats and weaknesses collected in step 3 and related CWE
entries.

21

3. Compiling the Catalog

3.4 Compile the catalog of design flaws.
Once a list of common threats was created, the next step was to analyze the threats
and identify the underlying causes for each one. In some cases the threat was di-
rectly connected to a design flaw, such as "Missing Authentication". In other cases,
however, the threats can be attributed to one or more design flaws in the architec-
ture. For example, "Authentication Bypass using a spoofed identity" can be caused
by a number of factors such as communication through an insecure channel which
allows for sniffing packets, along with not proper management credentials or a weak
authentication scheme. Another example would be "Session Hijacking" which can
be caused by non-secure communication channels, exposure or guessing of session
identifier as well as not invalidating a session after logout or timeout.

In order to be able to link the threats and weaknesses to design flaws, CWE was
used as a common ground. CWE provides mapping to threat taxonomies in the
literature and is also mapped to CVE and CAPEC databases as well as OWASP
and other online resources1. It also provides a categorization of the weaknesses in
a class hierarchy and provides several views of the enumeration based on different
research or development concepts. Furthermore, for each weakness CWE provides,
among other things, a description, potential mitigations and relationships to other
entries.
For each threat or weakness, in order to identify the underlying cause, the following
steps were taken:

1. Examine the description of the threat/weakness.
2. Identify the related CWE entry. This was mostly for threats, since the

weaknesses were derived from CWE already. For threats that only offered
related CVE, CAPEC or OWASP top ten links, these were used to trace the
CWE entry. In the rare case that a threat was not linked to any of these
resources, based on the description of the threat and any provided examples,
it would be mapped to an attack pattern from CAPEC and then to CWE or
to a CWE entry directly if possible. Finally, since threat taxonomies aim for
completeness, they usually contain entries such as “other threat” or abstract
threats regarding future extensions of the system and considerations about the
users. These are usually difficult to define though, so they were not considered.

3. Check for parent classes in CWE. Once all the threats and weaknesses
were connected to CWE entries, the next step was to examine the parent
classes of these entries. This allowed to move to a higher layer of abstraction,
since some of these entries were for specific technologies. At this point, all the
CWE entries are introduced during “design and architecture” phase, so they
can be considered as design flaws.

4. Group the entries. Since many entries were regarding the same concepts,
these were grouped as a single entry in the catalog of design flaws, since it
would allow an analyst to consider this concept for the overall system. For
example, entry 4. Insufficient Session Management is the result of flaws related
to the session ID management, session timeout, session fixation etc. However,

1Some of these mappings can be found here : https://cwe.mitre.org/data/index.html

22

https://cwe.mitre.org/data/index.html

3. Compiling the Catalog

it is easier to consider all these issues altogether when examining the sessions
in an architecture, rather than having multiple entries regarding this concept.

5. Compile the catalog. This is the final step in this process which resulted in
the entries of catalog as presented in Table 3.2 below.

Design Flaw
1 Missing authentication
2 Authentication Bypass using an alternate path
3 Relying on Single Factor Authentication
4 Insufficient Session Management
5 Downgrade Authentication
6 Insufficient Cryptographic keys management
7 Missing Authorization
8 Unmonitored Execution of External Applications
9 Missing Access Control
10 Not Re-authenticating Before Critical Operation
11 Not considering Context when authorizing
12 Not revoking authorization
13 Insecure data storage
14 Insufficient credentials management
15 Insecure data exposure
16 Use of Custom/Weak Encryption Algorithms.
17 Not validating input/data
18 Insufficient auditing
19 Uncontrolled Resource Consumption

Table 3.2: Design flaws to be included in the catalog.

Examining the entries in Table 3.2 one can notice that certain entries may appear to
be less specific. For example, the entry referring to cryptographic key management
involves the generation, distribution, storage, usage as well as destruction of the
keys in the system. As already mentioned, although these could be documented as
separate entries, it may be easier for a practitioner to consider the overall lifecycle
of keys in the architecture, rather that going through multiple entries. Instead
detection guidelines in this entry are defined for each part of the lifecycle.

3.5 Defining detection guidelines.
To detect these design flaws, it is important to determine the elements in the archi-
tecture that are relevant for each flaw. For example, for the entry "Insecure data
storage", if the type, importance/sensitivity level, location and allowed access is de-
termined, then a set of questions can help identify any possible issues.

In order to define these guidelines, a number of resources were reviewed, such as
OWASP, CWE, NIST special publications and security checklists. As mentioned
in the previous section, all the entries of the catalog are linked to CWE, CVE and

23

3. Compiling the Catalog

CAPEC entries. All these databases provide suggestions for potential mitigation for
each entry. These can be either referring to certain design patterns, design principles
or suggestions for the design based on best practices. If some of these were related
to a specific technology they were filtered out.

Furthermore, OWASP provides guidelines for several concepts in the form of "Cheat-
sheets" 2, to assist practitioners to secure systems against the most common security
threats, as those are listed in the OWASP top 10 projects. In a similar way, NIST
provides a series of special publications, which provide guidelines, recommendations
and reference material for practitioners3.

These resources were examined in order to form the questions in the quidelines for
each entry. First, a checklist for each entry was formed, based on the suggestions
for potential mitigation in CWE, which was then extended to include guidelines and
recommendations from OWASP and NIST resources. The result of this process was
the final catalog of design flaws, where each entry has a description and detection
section. During this process, there was continuous feedback from our academic
supervisors at Chalmers, as well as our industrial supervisors at Volvo. The full
catalog is included in Appendix A.

2OWASP Cheat Sheet Series: https://www.owasp.org/index.php/OWASP_Cheat_Sheet_
Series

3NIST special publications series: http://csrc.nist.gov/publications/PubsSPs.html

24

https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
https://www.owasp.org/index.php/OWASP_Cheat_Sheet_Series
http://csrc.nist.gov/publications/PubsSPs.html

4
Evaluation of the Catalog

This section describes the evaluation process for the catalog of design flaws pro-
posed in this paper. To gather the necessary data to answer the research questions,
a descriptive study was done to evaluate the use of the catalog.

According to Grimes and Schulz [55], descriptive studies are "concerned with and de-
signed only to describe the existing distribution of variables, without regard to causal
or other hypotheses." Since the catalog differentiates from existing approaches in
the literature, this study focuses more on how the catalog can perform rather than
comparing it to other approaches. Additionally, a descriptive study allows for obser-
vations to be made on how the approach can be improved. Alternatively, controlled
experiments could be conducted instead. These focus more on specific variables,
measures and how these relate [56]. However, this would require the formulation of
hypotheses, which would be difficult in this case, since there were no expectations
regarding the effectiveness and productivity of the approach.

The evaluation took place in two different environments. The catalog was evalu-
ated by students from Chalmers University of Technology, in the form of a task
as this is described in section 4.2.3, as well as in a professional environment with
two practitioners at Volvo Group Trucks Technology, using an architecture provided
by them. Prior to the evaluation, a pilot test was done with a student to assess
the overall process, get an indication of the time required to complete the task and
obtain feedback on the catalog. After completion of the task, the participants were
asked to fill in a short questionnaire, containing questions regarding the process.

4.1 Preparation for the evaluation
This section describes the steps taken to prepare for the evaluation of the approach.
This includes the selection of measurements, a pilot run to get initial feedback on
the task, the catalog and an estimation for the time required to complete the task,
as well as how a baseline was established in order to process the participants answers
in order to obtain the necessary measurements.

4.1.1 Selected measurements and metrics
The first research question (RQ1) examines the effectiveness of the catalog, which
can be described in terms of precision (P) and recall (R). These can be determined

25

4. Evaluation of the Catalog

by measuring the number of correct (true positives), incorrect (false positives) and
overlooked (false negatives) design flaws detected using the approach.

The second research question (RQ2) examines the productivity of the analyst using
the approach. This can be determined by measuring the overall time and number
of correct design flaws (true positives) per unit of time (hour).

The third research question (RQ3) examines how this approach can complement
existing knowledge-based threat modeling techniques. This can be determined by
analyzing the design flaws identified by the participants and determine if these flaws
could be the potential cause of one or more threats. By examining this, a conclusion
can be drawn to see if identifying design flaws and addressing them early on can
potentially mitigate threats discovered using a threat modeling technique.

In order for the research questions of the study to be answered, the following mea-
surements were selected.

• Time: The time required to complete the task, excluding breaks.
• True Positives (TP): These are the flaws detected by the participants that are

correct flaws and are also included in the baseline.
• False Positives (FP): These are the flaws detected by the participants that are

incorrect.
• False Negatives (FN): These are the flaws overlooked by the participants,

meaning flaws that are included in the baseline but not detected by the par-
ticipants.

• Precision (P): The percentage of detected flaws that are correct. This can be
calculated by using the following formula: P = TP/(TP+FP)

• Recall (R): The percentage of the existing flaws, based on the baseline, that
are detected. This can be calculated by using the following formula: R=
TP/(TP+FN).

• Productivity: The amount of true positives found per unit of time (hour).

4.1.2 Pilot run
Prior to the evaluation, a pilot run took place with a student to get an initial as-
sessment of the process as well as feedback. The student was given the task and
documents that would be used for the students. Although these results are not taken
into consideration for this study, the authors received valuable feedback regarding
both the catalog and the process. Before conducting the pilot run, some of the ques-
tions in the detection guidelines couldn’t be answered with a yes or no. This way
the participant would have to consider the answers given for the entry and decide
whether or not it is a flaw. This also allowed for some things to not be answered
clearly. As the student that did the pilot run pointed out, this could easily lead to
frustration and perhaps make the process harder and more time consuming.

This lead to the restructuring of some of the questions in the catalog, so that all the
questions now would be answered with yes/no and no would suggest the presence

26

4. Evaluation of the Catalog

of this flaw. The pilot run also provided an estimation of what would be the time
required to complete the task. This helped planning the meetings with the rest of
the participants and informing them about the estimated duration of the task so
that any implications would be avoided.

4.2 Evaluation with students

4.2.1 Experimental object
The Home Monitoring System – HomeSys was selected as an experimental object.
The system was introduced during the DAT220 Advanced Software Architecture
course in the Software Engineering MSc program at Chalmers University of Tech-
nology. Homesys is a remote platform for monitoring and managing of residential
apartments and houses. The platform is a cloud-based system that prompts its cus-
tomer with notification during critical events such as an intrusion, fire, water leak
or any other notification that can be configured by the customer.

The participants were provided with the documentation of the system, consisting of
the following documents:

• Home Monitoring System (HomeSys) - Requirements
This document provides the functional and non-functional requirements for
the system in the form of use cases.

• Home Monitoring System (HomeSys) - Description of the problem
domain
Contains the description of the system, the problem space, the stakeholders
involved and the additional constraints in the domain.

• Home Monitoring System (HomeSys) - Architectural description
Contains a context diagram, component diagrams for the main components of
the system along with description of the functionality of their sub-components
and a deployment diagram. The architecture has been designed based on the
domain analysis, the requirements and the priorities of these requirements.

4.2.2 Participants
A total of 4 students participated in the study. The participants were selected
among the students that had successfully completed the course. This means that
they were already familiar with the system used for the study, as well as basic
security concepts, design patterns and threat modeling techniques (STRIDE) that
were introduced during the course. In spite of that, the participants were given the
documentation of the system a week before, so that they would have the time to
read the documents and prepare for the task.

4.2.3 Task
Each participant was given a set of documents including the system’s documen-
tation, the catalog of design flaws and a form to document their findings. The

27

4. Evaluation of the Catalog

participants were asked to go through each entry in the provided catalog, use the
guidelines to detect flaws in the system’s architecture and document every instance
of each flaw they find properly.

For each entry in the catalog, the participants would have to identify certain el-
ements in the architecture and then for each of these elements answer a series of
questions. Answering one or more of these questions with a No would suggest that
this particular flaw is likely to be present in the architecture. The participants were
encouraged to read through the entirety of the provided documentation to collect
the necessary information to answer these questions.

In case the information required to follow the guidelines was not provided in the
documentation, or was not clearly specified, they participants were instructed to
consider this as a flaw. If they thought a particular entry was not applicable in the
system under examination due to some restrictions or regulations in the domain,
they were instructed to mark that entry as not applicable. They were allowed to use
any part of the documentation and create additional UML diagrams if they found
it necessary, as long as they would provide those along with their answers.

The instructions for the task were given to the participants in text, in the form
of a task description, and then repeated by the authors. They were also informed
that during the tasks, the authors would not answer any questions regarding the
content of the catalog or the guidelines. The only questions that were answered were
regarding the procedure. The participants were also informed that there is no time
limit and were encouraged to be as thorough in their analysis as possible. Since the
task was time consuming, they were encouraged to take short breaks, but asked not
to discuss the results.

4.2.4 Establishing a Baseline

To be able to assess the answers given by the participants, a baseline was created.
The baseline represents the idealistic result obtained by thoroughly examining the
system, using the catalog of design flaws. In order to create the baseline, each of
the authors did an initial analysis of the system separately and then compared the
results. In most cases the two analyses were in agreement. For any differences,
there was a discussion regarding the assumptions made and the reasons why it is
considered a flaw or not, until a consensus was reached. The outcome of this process
was a list of 49 design flaws identified in HomeSys architecture and is presented in
Table 4.1 below.

28

4. Evaluation of the Catalog

Flaw Instance CatalogEntry
1 Mote with MicroPnP component 1. Missing authentication
2 Gateway connecting to Cloud 1. Missing authentication
3 Gateway Mgmt interacting with GWFacade 1. Missing authentication
4 GWFacade interacting with DBMonitor 1. Missing authentication
5 NotificationHandler with DBMonitor 1. Missing authentication
6 NotificationController with CustomerDB 1. Missing authentication
7 Customer Mgmt with DBMonitor 1. Missing authentication
8 Operator Mgmt with DBMonitor 1. Missing authentication
9 Operator Mgmt with CustomerDB 1. Missing authentication
10 Customer client to Customer Façade 2. Authentication Bypass using alternate path
11 Operator Client to Operator Façade 2. Authentication Bypass using alternate path
12 Gateway to Cloud 2. Authentication Bypass using alternate path
13 Mote to MicroPnP 2. Authentication Bypass using alternate path
14 Password for customer/operator 3. Relying on single factor Authentication
15 Customer client to Customer Façade 4. Insufficient Session Management
16 Operator Client to Operator Façade 4. Insufficient Session Management
17 Keys management not specified. 6.Insufficient Cryptographic Key Management
18 Customer - no authorization 7. Missing Authorization
19 Operator - no authorization 7. Missing Authorization
20 Gateway - no authorization 7. Missing Authorization
21 Mote - no authorization 7. Missing Authorization
22 Access control mechanism not specified 8. Missing Access Control
23 UC4 Associate GW to Customer - no reauthentication 9. Not reauthenticating before critical operation
24 UC9 Rules Reconfiguration - no reauthentication 9. Not reauthenticating before critical operation
25 UC14 Changing SLA- no reauthentication 9. Not reauthenticating before critical operation
26 UC15 Unregister Customer- no reauthentication 9. Not reauthenticating before critical operation
27 Customer when unregistering - authorization not revoked 12. Not revoking authorization
28 Gateway when customer unregisters - authorization not revoked 12. Not revoking authorization
29 Operator when leaving company- authorization not revoked 12. Not revoking authorization
30 Customer Mgmt for configuring rules, SLA change, Deactivating account 12. Not revoking authorization
31 SensorData in MainDB 13. Insecure Data Storage
32 SensorData in GWDB 13. Insecure Data Storage
33 Profile info in Customer/Operator DB 13. Insecure Data Storage
34 Logs in LogDB 13. Insecure Data Storage
35 Customer/Operator credentials storage, encryption, change mgmt 14. Insufficient Credentials management
36 Sensor Data from Mote to GW 15. Insecure data exposure
37 Sensor Data/Alarms from GW to GWFacade 15. Insecure data exposure
38 Sensor Data/Alarms from GWFacade to MainDB 15. Insecure data exposure
39 Sensor Data, Customer Info, View Logs from Customer/Operator Facade to Clients 15. Insecure data exposure
40 No encryption algorithms specified 16. Use of Custom/Weak Encryption Algorithms
41 Mote data used for alarms/events and stored in Main DB not validated 17. Not validating input/data
42 Gateway facade does not validate data from GWs 17. Not validating input/data
43 Logs have no back-up 18. Insufficient auditing
44 Motes to Gateway channel - no monitor, throttling or notification 19. Uncontrolled Resource Consumption
45 Gateway to Cloud channel - no monitor, throttling or notification 19. Uncontrolled Resource Consumption
46 NotificationController Channels - no monitor, throttling or notification 19. Uncontrolled Resource Consumption
47 CustomerClient to Customer Facade channel - no monitor, throttling or notification 19. Uncontrolled Resource Consumption
48 OperatorClient to Operator Facade channel - no monitor, throttling or notification 19. Uncontrolled Resource Consumption
49 GW DB capacity - no monitor or notification, possible to deplete 19. Uncontrolled Resource Consumption

Table 4.1: Baseline of flaws for HomeSys.

4.3 Relating design flaws to threats
After the completion of the evaluation with the students and the processing of
the results, the next step was to associate the design flaws found with the threats
derived from STRIDE analysis. The STRIDE analysis was performed by 4 groups of
student within the scope of Advanced Software Architecture course. It was ensured
that these students did not overlap with the participants for the study. The results
were processed and provided by our academic supervisors. These results were then
analyzed in regards to how they can be linked to the design flaws detected by the
catalog, as described in section 5.2.

4.4 Evaluation at Volvo Group Truck Technolo-
gies

A similar task was given to practitioners at Volvo Group Truck Technologies (GTT).
Two practitioners were made available to the authors to complete a similar task, as

29

4. Evaluation of the Catalog

the one that was given to the students, but on an architecture provided by Volvo, in
the form of an ECU topology. The practitioners performed the task as a pair, since
one of them was software oriented and the other towards mechanical engineering.
Due to the size of the system, initially the goal was to select a smaller part of the
architecture to analyze. However after consideration, the participants decided to
use the whole system architecture, since this way they would be able to cover the
entirety of the catalog in their analysis.

30

5
Results

This section presents the data collected from the evaluation process and describes
how these were processed in order to calculate the measurements required to answer
the research questions.

5.1 Results from students
Once the students completed the task, the forms they were given to document the
flaws were collected. Along with the documentation of the system as well as the copy
of the catalog were also collected. Although the students were specifically asked to
document each flaw properly, in some cases there were references to figures in the
architecture or the checkboxes for the questions in the catalog.

Gathering all these information was helpful in understanding the reasoning behind
each flaw they documented. In cases where the answer was unclear or the student
answered one of the questions without defining a specific element, this was considered
as a false negative (overlooked flaw), while if the answer pointed towards a flaw that
wasn’t present in the baseline, it was considered a false positive (incorrect flaw).
After carefully considering each answer, the correct, incorrect and overlooked flaws
were counted and the precision and recall were calculated for each student as well
as the mean and standard deviation for the sample. A summary of the results is
presented in Table 5.1 below.

Student TP FP FN Precision Recall Time (mins) Productivity (TP/h)
1 25 2 24 0.93 0.51 146 10.27
2 28 3 21 0.90 0.57 166 10.12
3 9 4 40 0.69 0.18 201 2.69
4 20 4 29 0.83 0.41 191 6.28
mean 20.5 3.25 28.5 0.84 0.42 176 7.34
s 8.35 0.96 8.35 0.11 0.17 24.83 3.61

Table 5.1: Student results and measurements

According to the data presented in Table 5.1, the number of correct design flaws
(TP) detected by the students on average is 20.5 with a standard deviation of 8.35,
while for incorrect design flaws (FP) the average is 3.25 with a standard deviation
of 0.96. The average precision (P) of the students is 0.84 with a standard deviation

31

5. Results

of 0.11.

The average of overlooked design flaws (FN) is 28.75 with a standard deviation of
8.38, while average recall (R) is 0.42 with a standard deviation of 0.17.

Finally, the average time spent by the students to complete the task is 176 mins
with a standard deviation of 24.83 while the average productivity of the students is
7.34 correct flaws per hour (TP/Hour).

Although the precision of the approach is high, meaning that most of the flaws
detected were correct, recall average of 42% suggest that there was a substantial
number of flaws overlooked. The chart in Figure 5.1 provides an overview of the
number of flaws detected for each entry as well as how many each student detected.

Figure 5.1: Number of flaws detected in HomeSys per catalog entry.

Based on the data presented in Figure 5.1 it appears that the highest number of
overlooked flaws is for entries 1, 7, 12, 13, 15 and 19 in the catalog. Considering the
elements in the architecture the students were required to identify for those entries
as well as the specific flaws they overlooked, the following observations can be made:

• 1. Missing authentication: Most of the overlooked flaws were regarding pro-
cesses not authenticating with Database component, which is in a different
part of the system.

• 7. Missing authorization: Based on the flaws identified by the students, most
of the overlooked flaws are regarding the part of the system concerning the
Gateway and the Motes. In other words, students mostly focused on HomeSys

32

5. Results

Cloud and considered authorization mostly for users (customers and opera-
tors).

• 12. Not revoking authorization: Similarly to the first entry, students didn’t
consider the processes.

• 13. Insecure data storage: Students didn’t consider the local DB in gateway,
even though it stores sensitive data and can be considered as a high-value
asset.

• 15. Insecure data exposure: Although they made the assumption that no
channels are secure in the system, in most cases students didn’t identify the
communication channels through which sensitive data would be transferred.

• 19. Uncontrolled resource consumption: Another case where the main focus
was on HomeSys Cloud. The students didn’t regard the channels and DB in
the Gateway as critical resources, even though they are.

Based on observations made during the task, the students mostly focused on the
components diagrams provided in the documentation, while a substantial amount
of information is provided in the rest of the documents as well. Also there was no
indication that the students identified the security objectives of the system in order
to determine the high-value assets or the critical operations regarding those.

Furthermore, a substantial amount of the overlooked flaws were regarding processes.
These would potentially be easier to detect in a behavioral model rather than struc-
tural models, as the ones provided in the documentation of HomeSys, since it would
allow for the participants to have a better view of the interactions between the dif-
ferent components.

Finally, based on the data collected by the questionnaire, although it appears that
the documentation provided sufficient information to complete the task, the respon-
dents would prefer to have a model organizing all this information better. This
could potentially make it easier to collect the required information to detect a flaw
and improve the recall rate, as well as the overall productivity.

5.2 Relating design flaws to threats derived from
STRIDE

In order to relate the design flaws to threats, the design flaws detected using the
catalog were checked against the threats identified using STRIDE. Among the threat
modeling techniques, STRIDE was chosen for the reasons listed below:

• STRIDE is one of the most widely used threat modeling techniques.
• The participants in our study were familiar with the technique, as it was

introduced in the Advanced Software Architecture course.
• Results from STRIDE analysis from 4 different groups of students on HomeSys

were available to us.
The analysis of each group contained a Data Flow diagram (DFD), along with a
list of the correct threats each group identified. Since there were many similarities

33

5. Results

between the threats listed among the 4 groups, these were merged in a single list
and the duplicates removed. During this process, special attention was given to the
different DFDs that were created from the groups, to ensure that the similar threats
were indeed duplicates. In one case, a threat listed by a group, although it was
correct based on the DFD, they hadn’t modeled the accountability component in
the DFD. This meant that the threat would not be possible if the architecture and
the DFD were in agreement. This resulted in this threat being removed from the
list. This resulted in a list of 34 unique threats.

ID ThreatName Related Flaw ID in Baseline
1 Corrupt Mote -
2 Spoofing mote 1, 13
3 Overflowing the gateway with requests 36, 44
4 Spoofing the gateway 2, 12
5 Disable the watchdog -
6 Disable the periodic scheduler -
7 Tampering with GW DB -
8 False rules -
9 Spoofing the DB Monitor -
10 DoS on Primary DB -
11 Accessing sensitive info from DBs -
12 Tampering with DS (enabled by spoofing the monitorDB) -
13 Spoofing the customer 10, 14, 15, 35, 39
14 Spoofing the operator 11, 14, 16, 35, 39
15 Spying on customers 11, 14, 16, 35, 39
16 Customer elevating privilages 18, 22, 25, 33
17 Generating login requests 15, 16, 39, 47, 48
18 Sniffing the credentials 10, 11, 15, 16, 35, 39
19 SQL injection on client side -
20 Disable logging operator actions -
21 Generating view sensor data requests -
22 Tampering with customer data -
23 Fill up the Event/Alarm queue -
24 Fill up the sensor queue -
25 Sniff the sensor data 37, 38
26 Sniff events 37, 38
27 Generate gateway connections 45
28 Attacking logs 43
29 Tamper with sensor data before it reaches cloud 37
30 Tamper with configuration in transit 37
31 Spoofing the cloud 2, 3, 12
32 Reveil sensor data or tamper with rules -
33 Block/redirect data to cloud 37
34 Blocking notification channels 46

Table 5.2: Threats from STRIDE analysis and related flaws in the baseline

Once a list of unique threats was established, each threat was checked against the
design flaws detected by using the catalog, as these are listed in the baseline. In
order to relate each threat to detected design flaws, each threat was analyzed to
identify which elements of the DFD it involved, what were the preconditions for
the threat to be applicable and how this could be realized. Then each flaw was

34

5. Results

considered to decide whether addressing this flaw would mitigate the threat.

As an example, one of the threats in the list is "Spoofing Mote". According to the
description provided for the threat, it is possible to connect to the gateway posing
as a Mote by sniffing its IP. This is possible since there is no authentication between
the Mote and the MicroPnP component in the Gateway. Additionally, according to
STRIDE threat tree regarding spoofing an entity, one of the leafs of the tree in "No
Authentication". The baseline (Table 4.1), contains two flaws regarding the lack of
authentication between motes and gateways (flaws number 1 and 13 in the baseline)
as shown in Table 5.2. Similar process was followed for the rest of the threats. The
analysis of all 34 threats is presented in Appendix C.

While some threats can only be associated with one flaw, others can be linked to
multiple. Table 5.3 provides an overview of the number of associated flaws each
student found for each threat.

ID ThreatName Baseline Student 1 Student 2 Student 3 Student 4
1 Corrupt Mote - - - - -
2 Spoofing mote 2 2 2 2 2
3 Overflowing the gateway with requests 2 - 1 - -
4 Spoofing the gateway 2 1 - 1 2
5 Disable the watchdog - - - - -
6 Disable the periodic scheduler - - - - -
7 Tampering with GW DB - - - - -
8 False rules - - - - -
9 Spoofing the DB Monitor - - - - -
10 DoS on Primary DB - - - - -
11 Accessing sensitive info from DBs - - - - -
12 Tampering with DS (enabled by spoofing the monitorDB) - - - - -
13 Spoofing the customer 5 3 3 2 3
14 Spoofing the operator 5 3 3 2 2
15 Spying on customers 5 3 3 2 2
16 Customer elevating privilages 4 4 4 1 2
17 Generating login requests 5 4 4 2 1
18 Sniffing the credentials 5 3 3 2 2
19 SQL injection on client side - - - - -
20 Disable logging operator actions - - - - -
21 Generating view sensor data requests - - - - -
22 Tampering with customer data - - - - -
23 Fill up the Event/Alarm queue - - - - -
24 Fill up the sensor queue - - - - -
25 Sniff the sensor data 2 - - - -
26 Sniff events 2 - - - -
27 Generate gateway connections 1 1 1 - -
28 Attacking logs 1 1 1 - -
29 Tamper with sensor data before it reaches cloud 1 - - - -
30 Tamper with configuration in transit 1 - - - -
31 Spoofing the cloud 3 1 - 1 3
32 Reveil sensor data or tamper with rules - - - - -
33 Block/redirect data to cloud 1 - - - -
34 Blocking notification channels 1 - - - -

Table 5.3: Number of design flaws in baseline and student results associated with
each threat

Overall, the design flaws listed in the baseline were associated with 18 out of 34
threats from STRIDE. Table 5.4 presents an overview of the number of threats that
could be linked to the baseline and the student results. For the threats that a design
flaw could not be associated, this was in most cases due to the prerequisites of the

35

5. Results

threats or their close relation to implementation issues. For example, the threat
regarding DoS on primary DB has as a prerequisite the spoofing of DBMonitor,
which is the mechanism supposed to manage and monitor the DB according to the
documentation. While the catalog can detect flaws regarding resource monitoring
and consumption, this is based on the existence of a monitoring mechanism. If this
mechanism is compromised, then there is no way to prevent DoS.

Similarly, several threats require an Elevation of Privilege (EoP) attack to occur in
order to be applicable, especially regarding the operator. However, in the documen-
tation it is mentioned that the operator has access to the whole system. So in order
to detect flaws regarding the authorization levels and access control it would require
to make assumption about the system and authorization policies, which would be
out of scope. Finally, for threats that require physical access to compromise a device,
there is little to be done from an architecture perspective.

Baseline Student 1 Student 2 Student 3 Student 4
Number of threats 18 11 10 9 9

(%) 53 32.4 29.4 26.5 26.5

Table 5.4: Number of threats for which associated flaws were found.

As Table 5.4 shows, the design flaws listed in the baseline could be associated with
about 53% of the overall threats identified using STRIDE. Also, it is important to
note that even though the recall rate of the students ranged from 18% to 57% the
number of threats associated to the flaws they found ranges from 9 to 11. This is
due to the fact that a threat can be linked to multiple design flaws and a design flaw
can contribute to a number of threats, which is why it is not clear whether these
threats could be eliminated or just mitigated by addressing the design flaws.

Another aspect that can be examined is the time required to prepare for using
the catalog to detect flaws. Unlike several threat modeling techniques, using the
catalog does not require any expertise or creation of specific UML diagrams, such
as DFDs or elaborate models, such the ones described in [7] and [8]. However, the
observations made during the study, as well as the answers of the participants in
the questionnaire, suggest that the effectiveness of the approach could benefit from
a more organized documentation or model to be used as input.

5.3 Results from Volvo
Initially the goal was to obtain similar measurements as with the students, however
due to the fact that the architecture of the system was not made available to the
authors and could not be made public, a baseline could not be established in order
to compare the results. Additionally, since the project was at early stages, security
was not yet considered for the system. Thus, most of the flaws in the results were
due to the fact that a lot of things were not specified yet in the architecture. The

36

5. Results

answers provided by the participants are presented in Table 5.5 below.

Design Flaw Description
1. Missing Authentication Authentication not yet considered
2. Authentication Bypass using alternate path Authentication not yet considered. No Encryption
3. Relying on Single Factor Authentication Authentication Scheme not yet determined
4. Insufficient Session Management Session management unknown
5. Downgrade Authentication Authentication scheme not decided
6. Insufficient Cryptographic keys management Key management not yet decided
7. Missing Authorization Privileges not used. No policy for entire platform
8. Missing Access Control No access control policy
9. Not Re-authenticating Before Critical Operation No re-authentication policy decided
10. Unmonitored Execution of External Applications We will have mechanisms in place e.g. Hypervisor
11. Not considering Context when authorizing Not applicable yet considered
12. Not revoking authorization Not applicable yet considered
13. Insecure data storage Will be considered
14. Insufficient credentials management No credentials management policy yet
15. Insecure data exposure Not considered for external entities
16. Use of Custom/Weak Encryption Algorithms Not considered yet
17. Not validating input/data Payload data is to be validated by application
18. Insufficient auditing No auditing mechanism yet
19. Uncontrolled Resource Consumption Will be considered

Table 5.5: Results from Volvo.

Looking at the answers provided by the participants it is hard to draw any concrete
conclusions regarding the flaws detected, since they do not refer to specific elements
in the architecture. However, as one of the participants commented on the ques-
tionnaire, the catalog could also be used as a way to ensure that important aspects
have been taken into consideration in the architecture. In other words, the catalog
could also be used as a form of checklist during the design phase.

Additionally, based on the answers of both practitioners in the questionnaire, using
a model describing the software components and their interactions would be useful
in this case. This is in agreement with the observations we made based on the
results from the students. Many of the overlooked flaws in that case were related
to authentication of processes and revoking authorization. This is usually easier to
detect in a behavioral diagram.

Another interesting observation was that during the process the participants tried
to classify the flaws according to their impact on the system. However, to the best
of our knowledge, there is no risk assessment methodology for design flaws at the
time this study was conducted.

37

6
Discussion

This section discusses the results of the study and how the research questions can
be answered, comparison to similar approaches, discussion regarding the threats to
validity for the study and future work.

6.1 Effectiveness of the catalog
Using the data collected from the students, we can answer the first research question
regarding the effectiveness of the approach (RQ1). The precision of the students
participated in our study, ranged from 0.69 to 0.93 with an average of 0.84, which
means that for every 10 flaws a participant detected, 8 were correct flaws. The recall
rate of the students using the catalog ranged from 0.18 to 0.57 with an average of
0.42. This means that on average the participants found about 42% of the overall
flaws in the system.
It is also important to consider that the participants were not familiar with the
catalog before the task and that the information required to detect the flaws was
not organized in a single document. Providing the required information in a more
structured way and giving the participants an introduction to the approach could
potentially increase the recall rate. Finally, based on the nature of the overlooked
flaws, it appears that the use of behavioral models, apart from the structural models
provided in the documentation, could potentially decrease the amount of overlooked
flaws.

Compared to similar approaches, the tool proposed by Almorsy et al. in [8] has a
precision rate of 90% and a recall rate of 89%. However, their approach is based on
an automated tool, while ours is manual. Furthermore, they only look for 4 specific
types of attacks in the system, namely MITM, DoS, Data Tampering and Injection
attacks.

6.2 Productivity of the analyst using the catalog
Regarding the productivity using this approach (RQ2), the average time required for
the participants to complete the process was about 2 hours and 46 minutes. Their
productivity ranged from 2.69 to 10.27 with an average of 7.34 correct flaws identi-
fied per hour (TP/Hour). We notice that the deviation in the productivity as well
as the recall rate is quite high between the participants. This could be attributed to
a number of factors, including the type of models provided in the documentation,

38

6. Discussion

the familiarity of the participants with the system and its domain, as well as their
experience as analysts. However, based on the data collected during the study we
cannot make any conclusive arguments regarding these factors.

6.3 How the catalog can complement threat mod-
eling techniques

Regarding how the catalog can complement existing knowledge-based threat model-
ing techniques (RQ3), certain things need to be considered. Our data suggest that
the flaws detected using the catalog can be associated with threats derived from
STRIDE analysis. However, we cannot make a conclusive argument on whether
these threats would be eliminated or just mitigated to a certain degree. This pre-
vents us from making a conclusion on whether identifying the flaws related to these
threats would reduce the time and effort required for threat modeling.

To have conclusive results about this, the detected flaws associated with these threats
should be fixed in the architecture and STRIDE applied again in order to compare
the results. However, due to time restrictions, this was not possible during our study.

However, even if a threat is not eliminated by addressing the related flaws, it can
be mitigated to a certain degree. Identifying design flaws earlier in the development
process is usually less costly to fix. This could potentially reduce the overall cost
related to threat mitigation.

Additionally, since the approach doesn’t require any specific models or detail level
for the architecture, it can be used at different abstraction levels in different stages
of the design phase as a form of a checklist for issues to consider which can have an
impact on the security of the system. This, however, would probably require the
catalog and its guidelines to be refactored for use at different abstraction levels.

6.4 Using the catalog in the automotive industry
context

Although we were not able to gather any concrete data, regarding the effectiveness
and productivity of the catalog, in the study conducted with practitioners at Volvo,
some interesting observations were made. To begin with, the practitioners men-
tioned that in order for the catalog to be more effective, it should be more domain
specific. Since the catalog is based on most common threats collected from different
fields, some of its entries or guidelines may need to be adapted to a specific domain
in order to improve its effectiveness. Additionally, based on their comments, apart
from the ECU topology used, behavioral models describing the interactions between
the different components would be helpful for the analysis.

39

6. Discussion

Of particular interest was the observation that the practitioners were trying to assess
the impact of the design flaw while using the catalog and in some cases disregard
a flaw as non-important. Although most threat modeling technique involves risk
assessment for the threats found, we are not aware of any methodology for risk
assessment regarding design flaws.

6.5 Similar Studies
Scandariato, Wuyts and Joosen conducted a study in [6], where they evaluate
STRIDE in terms of productivity, correctness and completeness. The study in-
volved ten teams of students, with an average size of 4 members per team, with a
similar background to the ones that participated in our study. According to their
results, the average productivity of the students is 1.8 threats per hour, the average
precision is 0.81 and the average recall rate is 0.36 for a system similar in complexity
to the one we used for the study, but bigger in size.

We cannot make a direct comparison of the results from our study to the ones from
[6], since STRIDE identifies threats while our approach aims in detecting flaws and
as mentioned before, the connection between these two concepts is not very clear.
However, we can get an indication of what precision and recall rates are in other
manual approaches.

6.6 Threats to Validity
This section presents threats that may have an impact in the validity of the study.
These can be classified as construct, internal and external validity threats. Construct
validity refers to the measurements selected for the study and how well these measure
the effect we want to measure. Internal validity focuses on how certain we can be
that the treatment caused the outcome. In other words, how sure we can be that
the outcome wasn’t affected by factors not controlled in the study. Finally, external
validity refers to whether the results can be generalized outside the scope of the
study [57].

6.6.1 Construct Validity
Regarding construct validity, a possible threat would be the metrics selected for the
first and second research question, namely precision, recall and productivity. How-
ever, these measurements were selected based on the fact that most studies we found
in the literature examining similar approaches use them. This would also allow for
comparison of the findings of the study to other similar studies.

Another possible threat to construct validity could be the procedures followed to
obtain the measurements. Specifically, in order to measure the time required by the
participants to compete the task in our study, both authors measured it separately
and then compared the results. In most cases the differences were minor, about

40

6. Discussion

1 minute, which is negligible compared to the average time taken to complete the
task.

6.6.2 Internal Validity
Regarding the internal validity of the study, the process followed to compile the cat-
alog of design flaws as well as the guidelines could be considered a threat. In order
to mitigate this, the authors tried to connect all the threats to CWE which can be
considered a credible source, in order to provide a way to trace the steps taken to
derive the design flaws from threats. Similarly, for the guidelines for each entry,
resources such as CWE, CAPEC, OWASP and NIST were used. Finally, there was
regular feedback from both academic and industrial supervisors.

Since the task to be performed required a substantial amount of time, participants
could become exhausted in the process. To mitigate that threat, we informed the
participants beforehand, giving them an estimation of the time required to complete
the task, based on the pilot run. In addition, the participants were encouraged to
regularly take short breaks but asked not to discuss the result among each other.
Regardless, there was no case of 2 students taking a break at the same time.

Another threat to the internal validity was the student’s limited understanding and
familiarity of the Home Monitoring system. To mitigate this, the student were given
documentation of the system a week before the evaluation, and they were also re-
minded to read the documents two days prior to the task.

During the task, in order to avoid introducing bias in the process, the participants
were informed that any questions regarding the contents of the catalog would not
be answered. The only questions answered, were regarding the process.

In order to mitigate any threats to validity regarding the baseline, the authors did
a separate analysis and then compared the results. For any differences, a discussion
was made in order to reach a final decision. A similar process was followed for the
students results. Ideally, these results would be also examined by an independent
party, but due to time restrictions, this was not possible.

The threats from STRIDE analysis done by the groups of students within the scope
of DAT220 Advanced Software Architecture course were processed and provided to
us by a PhD student.

An additional threat to the internal validity could be that the authors mistakenly
merged different threats as duplicates during the processing of the STRIDE results.
However, both authors did an individual processing of the STRIDE results and com-
pared their results to detect any uncommon results.

Finally, during the analysis of each threat from STRIDE in order to relate it to
design flaws, there could be some mistakes. Although the analysis was repeated

41

6. Discussion

twice and there were minor differences, this could also be a threat to the validity of
the study.

6.6.3 External Validity
Regarding external validity, the applicability of catalog in different domains could
be considered a threat. However, during the process of compiling the catalog, we
considered a number of threat taxonomies and weaknesses from various fields. And
since the design flaws defined in our catalog are at an abstraction level where specific
technologies, implementation and protocols details are not of relevance, we believe
that the approach could be applicable in different domains.

Due to the nature of the task being time consuming, finding participants willing to
spend a few hours on a task was rather difficult. Therefore a convenience sample of
students was selected among classmates in the Software Engineering MSc program
in Chalmers University of Technology. Due to the limited time, randomization of
the sample was not possible. However, we made sure that the students selected had
no prior knowledge regarding our work and fulfilled the criteria of having completed
the DAT220 Advanced Software Architecture course. This, along with the fact that
the overall sample size is small and not necessarily representative of the population,
makes it difficult to generalize the results of our study.

Finally, the system used for the evaluation task (HomeSys) has a relatively small
size and complexity. Using our approach in systems larger in size and complexity
could yield different results. However, doing that would require a significant amount
of time and was not possible in our study.

6.7 Future Work
The results of our study show that using our approach, design flaws related to
security threats can be identified in early phases. However we cannot provide a con-
clusive answer on whether these threats are eliminated or not. Further work needs
to be done on this part, to investigate whether addressing these flaws in the archi-
tecture can reduce the amount of threats identified later on using threat modeling
techniques.

In addition, the catalog proposed in the study can be further extended and refined to
cover more threats from different domains. It would also be interesting to examine
how easily it can be adapted for use in specific domains.

Another interesting point to consider for future work would be to investigate how
the impact of such design flaws can be determined. Although there are several risk
assessment methodologies regarding threats, to the best of our knowledge, there is
no methodology for risk assessment regarding design flaws.

42

7
Conclusion

This study proposes a manual approach, in the form of a catalog of design flaws
along with detection guidelines, to aid practitioners in the identification of architec-
tural design flaws that can lead to security threats. Compared to existing research
approaches and current threat modeling techniques, our approach doesn’t require
elaborate models, implementation details or particular expertise to use. The ap-
proach is aimed to be used by practitioners while designing the system, utilizing
existing models, without requiring a deep security knowledge. The catalog of design
flaws was compiled by examining threat taxonomies and weaknesses in different do-
mains, and filtering out the ones related to design flaws. In order to simplify the
detection of these flaws, guidelines following an algorithmic approach were defined
for each entry in the catalog.

To evaluate the effectiveness and productivity of the approach, a descriptive study
was conducted involving students examining a small sized system. The identi-
fied flaws were then compared against threats derived from the same system us-
ing STRIDE, to investigate how the flaws detected can be related to these threats.
Overall, the participants using approach had an average precision of 0.84 while the
average recall rate was 0.42, with the average productivity of the participants reach-
ing 7.34 correct flaws per hour (TP/h). Based on the observations made throughout
the study, the precision, recall and productivity appears to be influenced by a number
of factors such as the type of models used for the analysis (structural or behavioral),
the experience of the analysts as well as their familiarity with the system under
analysis and the catalog.

The catalog was also tested by practitioners from Volvo Group Trucks Technology
(GTT) to investigate how it can perform in an industrial setting. Although the data
collected during the process were not sufficient to make any conclusions regarding
the effectiveness and productivity of the catalog in an industrial context, valuable
observations were made regarding the applicability of the approach in different do-
mains as well as how this can be further extended in order to be used as a checklist
for security aspects to consider at different abstraction levels.

In addition, the study examines how the approach can complement current threat
modeling activities taking place in early phases of the development process. Due
to time limitations, the exact nature of the relation between the threats and the
detected flaws could not be determined. This study, however, can serve as a base
for further research on the topic.

43

7. Conclusion

Additional points to consider for future work include an investigation of the relation
of design flaws with security threats, whether these can be eliminated by addressing
these flaws and how this can affect the time and effort required for threat modeling
activities.

Finally, the impact these flaws can have on the security properties of a system, to
the best of our knowledge, cannot be captured by any of the currently used risk
assessment methodologies.

44

References

[1] Gary McGraw. Software security: building security in, volume 1. Addison-
Wesley Professional, 2006.

[2] Brian Chess and Gary McGraw. Static analysis for security. IEEE Security &
Privacy, 2(6):76–79, 2004.

[3] Joanna Cecilia da Silva Santos. Toward establishing a catalog of security ar-
chitecture weaknesses. 2016.

[4] Mehdi Mirakhorli, Yonghee Shin, Jane Cleland-Huang, and Murat Cinar. A
tactic-centric approach for automating traceability of quality concerns. In Soft-
ware Engineering (ICSE), 2012 34th International Conference on, pages 639–
649. IEEE, 2012.

[5] Jilles Van Gurp, Sjaak Brinkkemper, and Jan Bosch. Design preservation over
subsequent releases of a software product: a case study of baan erp. Journal
of Software Maintenance and Evolution: Research and Practice, 17(4):277–306,
2005.

[6] Riccardo Scandariato, Kim Wuyts, and Wouter Joosen. A descriptive study of
microsoft’s threat modeling technique. Requirements Engineering, 20(2):163–
180, 2015.

[7] Bernhard J Berger, Karsten Sohr, and Rainer Koschke. Automatically extract-
ing threats from extended data flow diagrams. In International Symposium on
Engineering Secure Software and Systems, pages 56–71. Springer, 2016.

[8] Mohamed Almorsy, John Grundy, and Amani S Ibrahim. Automated software
architecture security risk analysis using formalized signatures. In Proceedings
of the 2013 International Conference on Software Engineering, pages 662–671.
IEEE Press, 2013.

[9] Holisec security proposal ver. 2.0,.
[10] Jerome H Saltzer and Michael D Schroeder. The protection of information in

computer systems. Proceedings of the IEEE, 63(9):1278–1308, 1975.
[11] Mark Graff and Kenneth R Van Wyk. Secure coding: principles and practices.

" O’Reilly Media, Inc.", 2003.
[12] Ronald Wassermann and Betty HC Cheng. Security patterns. In Michigan

State University, PLoP Conf. Citeseer, 2003.
[13] Markus Schumacher and Utz Roedig. Security engineering with patterns: ori-

gins, theoretical models, and new applications, volume 2754. Springer, 2003.
[14] It security pattern. http://www.opensecurityarchitecture.org/cms/

definitions/security_patterns. (Accessed on 04/04/2017).
[15] Joseph Yoder and Jeffrey Barcalow. Architectural patterns for enabling appli-

cation security. Urbana, 51:61801, 1998.

45

http://www.opensecurityarchitecture.org/cms/definitions/security_patterns
http://www.opensecurityarchitecture.org/cms/definitions/security_patterns

References

[16] Priya Anand, Jungwoo Ryoo, and Rick Kazman. Vulnerability-based security
pattern categorization in search of missing patterns. In Availability, Reliability
and Security (ARES), 2014 Ninth International Conference on, pages 476–483.
IEEE, 2014.

[17] Aleem Khalid Alvi and Mohammad Zulkernine. A natural classification scheme
for software security patterns. InDependable, Autonomic and Secure Computing
(DASC), 2011 IEEE Ninth International Conference on, pages 113–120. IEEE,
2011.

[18] Munawar Hafiz, Paul Adamczyk, and Ralph E Johnson. Growing a pattern
language (for security). In Proceedings of the ACM international symposium
on New ideas, new paradigms, and reflections on programming and software,
pages 139–158. ACM, 2012.

[19] Aleem Khalid Alvi and Mohammad Zulkernine. A comparative study of soft-
ware security pattern classifications. In Availability, Reliability and Security
(ARES), 2012 Seventh International Conference on, pages 582–589. IEEE,
2012.

[20] Darrell M Kienzle, Matthew C Elder, David Tyree, and James Edwards-Hewitt.
Security patterns repository version 1.0. DARPA, Washington DC, 2002.

[21] Joshua Garcia, Daniel Popescu, George Edwards, and Nenad Medvidovic. To-
ward a catalogue of architectural bad smells. In International Conference on
the Quality of Software Architectures, pages 146–162. Springer, 2009.

[22] Naouel Moha, Duc-loc Huynh, Yann-Gaël Guéhéneuc, and Ptidej Team. A
taxonomy and a first study of design pattern defects. STEP 2005, page 225,
2005.

[23] Ieee software blog: Common architecture weakness enumeration (cawe). http:
//blog.ieeesoftware.org/2016/04/common-architecture-weakness.
html. (Accessed on 04/05/2017).

[24] Hugo Sica de Andrade, Eduardo Almeida, and Ivica Crnkovic. Architectural
bad smells in software product lines: An exploratory study. In Proceedings of
the WICSA 2014 Companion Volume, page 12. ACM, 2014.

[25] Dianxiang Xu and Joshua Pauli. Threat-driven design and analysis of se-
cure software architectures. Journal of Information Assurance and Security,
1(3):171–180, 2006.

[26] Adam Shostack. Experiences threat modeling at microsoft. InModeling Security
Workshop. Dept. of Computing, Lancaster University, UK, 2008.

[27] Marco D’Ambros, Alberto Bacchelli, and Michele Lanza. On the impact of
design flaws on software defects. In Quality Software (QSIC), 2010 10th Inter-
national Conference on, pages 23–31. IEEE, 2010.

[28] Capec - common attack pattern enumeration and classification (capec). https:
//capec.mitre.org/. (Accessed on 04/04/2017).

[29] Cwe - common weakness enumeration. https://cwe.mitre.org/. (Accessed
on 04/04/2017).

[30] Michaela Bunke and Karsten Sohr. An architecture-centric approach to detect-
ing security patterns in software. In International Symposium on Engineering
Secure Software and Systems, pages 156–166. Springer, 2011.

46

http://blog.ieeesoftware.org/2016/04/common-architecture-weakness.html
http://blog.ieeesoftware.org/2016/04/common-architecture-weakness.html
http://blog.ieeesoftware.org/2016/04/common-architecture-weakness.html
https://capec.mitre.org/
https://capec.mitre.org/
https://cwe.mitre.org/

References

[31] Iso/iec pdts 19249 - catalogue of architectural and design principles for secure
products, systems, and applications. https://www.iso.org/standard/64140.
html. (Accessed on 05/02/2017).

[32] Adam Shostack. Threat modeling: Designing for security. John Wiley & Sons,
2014.

[33] E:_trike_trike_v1_methodology_document-draft.dvi. http://www.
octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf.
(Accessed on 05/02/2017).

[34] Guttorm Sindre and Andreas L Opdahl. Eliciting security requirements with
misuse cases. Requirements engineering, 10(1):34–44, 2005.

[35] Raimundas Matulevicius, Nicolas Mayer, and Patrick Heymans. Alignment
of misuse cases with security risk management. In Availability, Reliability and
Security, 2008. ARES 08. Third International Conference on, pages 1397–1404.
IEEE, 2008.

[36] Christopher Alberts, Audrey Dorofee, James Stevens, and Carol Woody. Intro-
duction to the octave approach. Pittsburgh, PA, Carnegie Mellon University,
2003.

[37] Application threat modeling. http://www.isaca.org/chapters5/Ireland/
Documents/2013%20Presentations/PASTA%20Methodology%20Appendix%
20-%20November%202013.pdf. (Accessed on 05/02/2017).

[38] TS ETSI. 102 165-1:" telecommunications and internet converged services and
protocols for advanced networking (tispan). Methods and protocols, pages 2011–
03.

[39] Georg Macher, Eric Armengaud, Eugen Brenner, and Christian Kreiner. A
review of threat analysis and risk assessment methods in the automotive con-
text. In International Conference on Computer Safety, Reliability, and Security,
pages 130–141. Springer, 2016.

[40] Iso26262 - road vehicles — functional safety. https://www.iso.org/
standard/43464.html, Nov 2011. (Accessed on 04/04/2017).

[41] M. Islam and A. Lautenbach. Heavens deliverable d2.0 - security models, ver.
2.0, Mar 2016.

[42] Vinay M Igure and Ronald D Williams. Taxonomies of attacks and vulnerabil-
ities in computer systems. IEEE Communications Surveys & Tutorials, 10(1),
2008.

[43] Chanchala Joshi, Umesh Kumar Singh, and Kapil Tarey. A review on tax-
onomies of attacks and vulnerability in computer and network system. Inter-
national Journal, 5(1), 2015.

[44] Anshu Tripathi and Umesh Kumar Singh. Towards standardization of vulner-
ability taxonomy. In Computer Technology and Development (ICCTD), 2010
2nd International Conference on, pages 379–384. IEEE, 2010.

[45] Anton V Uzunov and Eduardo B Fernandez. An extensible pattern-based li-
brary and taxonomy of security threats for distributed systems. Computer
Standards & Interfaces, 36(4):734–747, 2014.

[46] Sachin Babar, Parikshit Mahalle, Antonietta Stango, Neeli Prasad, and Ramjee
Prasad. Proposed security model and threat taxonomy for the internet of things

47

https://www.iso.org/standard/64140.html
https://www.iso.org/standard/64140.html
http://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf
http://www.octotrike.org/papers/Trike_v1_Methodology_Document-draft.pdf
http://www.isaca.org/chapters5/Ireland/Documents/2013%20Presentations/PASTA%20Methodology%20Appendix%20-%20November%202013.pdf
http://www.isaca.org/chapters5/Ireland/Documents/2013%20Presentations/PASTA%20Methodology%20Appendix%20-%20November%202013.pdf
http://www.isaca.org/chapters5/Ireland/Documents/2013%20Presentations/PASTA%20Methodology%20Appendix%20-%20November%202013.pdf
https://www.iso.org/standard/43464.html
https://www.iso.org/standard/43464.html

References

(iot). In International Conference on Network Security and Applications, pages
420–429. Springer, 2010.

[47] Carlo Silva, Ricardo Batista, Ruy Queiroz, Vinicius Garcia, Jose Silva, Daniel
Gatti, Rodrigo Assad, Leandro Nascimento, Kellyton Brito, and Pericles Mi-
randa. Towards a taxonomy for security threats on the web ecosystem. In
Network Operations and Management Symposium (NOMS), 2016 IEEE/IFIP,
pages 584–590. IEEE, 2016.

[48] Katrina Tsipenyuk, Brian Chess, and Gary McGraw. Seven pernicious king-
doms: A taxonomy of software security errors. IEEE Security & Privacy,
3(6):81–84, 2005.

[49] Cve - common vulnerabilities and exposures (cve). https://cve.mitre.org/.
(Accessed on 04/04/2017).

[50] Category:owasp top ten project - owasp. https://www.owasp.org/index.php/
Category:OWASP_Top_Ten_Project. (Accessed on 04/04/2017).

[51] Sans institute - cis critical security controls. https://www.sans.org/
critical-security-controls/. (Accessed on 04/04/2017).

[52] Steve Christey. Plover: Preliminary list of vulnerability examples for re-
searchers. In NIST Workshop Defining the State of the Art of Software Security
Tools, 2005.

[53] Harald Terkelsen. Data collection on security flaws caused by design errors.
Master’s thesis, 2006.

[54] Iván Arce, Kathleen Clark-Fisher, Neil Daswani, Jim DelGrosso, Danny
Dhillon, Christoph Kern, Tadayoshi Kohno, Carl Landwehr, Gary McGraw,
Brook Schoenfield, et al. Avoiding the top 10 software security design flaws.
Technical report, IEEE Computer Societys Center for Secure Design (CSD),
2014.

[55] David A Grimes and Kenneth F Schulz. Descriptive studies: what they can
and cannot do. The Lancet, 359(9301):145–149, 2002.

[56] Victor R Basili. The role of controlled experiments in software engineering
research. In Empirical Software Engineering Issues. Critical Assessment and
Future Directions, pages 33–37. Springer, 2007.

[57] Robert Feldt and Ana Magazinius. Validity threats in empirical software engi-
neering research-an initial survey. In SEKE, pages 374–379, 2010.

48

https://cve.mitre.org/
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.owasp.org/index.php/Category:OWASP_Top_Ten_Project
https://www.sans.org/critical-security-controls/
https://www.sans.org/critical-security-controls/

A
Catalog of Design Flaws

1. Missing authentication

Description
This refers to the absence of an authentication mechanism in the system.
Apart from external entities, like users or other systems the system may in-
teract with, authentication may be necessary within the system between pro-
cesses/components/datastores that are located in different trust boundaries.

Detection
• Consider the external entities(users/subsystems) that interact with the

system and which assets of the system they can access.
• Determine the processes that interact with high-value assets in the sys-

tem.
• For each interaction examine:

� If it is an entity: Does the entity go through an authentication point
in order to access the asset?

� If it is a process: Is the identity of a process accessing datastores
or processes in a different part of the system (trust boundaries –
requires different privilege levels) verified?

I

A. Catalog of Design Flaws

2. Authentication Bypass using an alternate path

Description
This refers to the case where although there is an authentication mechanism
in place, it does not cover all possible entry points to the system. This can
be due to the fact that there is a remote access point to the system aiming
towards support or maintenance, a possible backdoor. Additionally, a system
may make a call to invoke functionality of an external application. In such
case, the external application can have access to resources and data of the
system if not contained properly.
Detection

• Determine the entry points to the system.
• For each entry point examine:

� Does it go through an authentication point?
� What kind of assets are accessible through this path? Are their

security objectives still achieved?
� Is the system protected against MITM and session hijacking attacks?

Are the communication channels used encrypted?
� Does the system invoke functionality from third party applications?

Are these applications subject to proper access control (regarding the
resources and data they have access to)?

3. Relying on Single Factor Authentication

Description
Although single factor authentication schemes, like password, can be efficient
and sufficient for many systems, using a multifactor authentication scheme
is recommended if the system handles sensitive data or operations, like bank
transactions. Even if a strong password management policy is in place, this
can be obtained by malicious parties in several ways. For example, many
users are used to typing their password whenever they are prompted, so they
might accidentally input their password in a form induced by the attacker.
Additionally, if the authentication is based on shared resources, like IP address
or MAC, these can be easily spoofed or altered leaving the system vulnerable.
Such resources can be effective if they are used as part of an authentication
scheme, but not as the sole factor for authentication.

II

A. Catalog of Design Flaws

Detection
• Determine what factors are used for the authentication scheme.
• For each factor consider:

� Does this factor provide sufficient level of security? Is it hard to
brute-force, guess or forge it?

� Are there any known issues regarding this authentication scheme? If
yes, are these properly handled?

� Is the use of shared resources like IP address as a sole factor for
authentication avoided?
If it is based on password:
� Is there a strong password management policy enforced?
� Is the password change management secure? How can the user

change/reset credentials. Is he/she notified in such case?

4. Insufficient Session Management

Description
Not managing a session properly throughout its lifecycle can leave the system
vulnerable to session hijacking attacks. Session management involves creation
(the session should be established through a secure channel and session iden-
tifier should be encrypted), the time frame the session is active (an attacker
might attempt to reuse the session ID to gain access) and its destruction/in-
validation (proper session invalidation should take place when the user logs
out or session timeout. Not terminating sessions can also lead to resource
depletion).

Detection
• Determine which sessions are established in the system and between

which endpoints.
• For each session examine:

� Is the session established through a secure channel?
� Is the session ID encrypted when in transit?
� Is the session ID hard to guess?
� Is the use of session ID as a parameter in URLs prevented?
� Is the session ID validated on server side?
� Are secure cookies used?
� Is the session ID tied to other user properties like IP, SSL session ID?
� Can the same session be accessed simultaneously from two endpoints?

Should it?
� Is session timeout set? Is it the minimum possible value?
� Is the session invalidated on logout?
� Is the session ID renewed in the event of privilege change?
� Is there a mechanism to monitor the creation/destruction and at-

tempts to connect to a session?
� Is the user required to re-authenticate after a period of inactivity?

III

A. Catalog of Design Flaws

5. Downgrade Authentication (providing multiple authentication mech-
anisms)

Description
The system provides a number of authentication schemes for the user to choose.
This may also be connected to different versions of the software/technologies or
protocols (i.e. HTTP supports Basic, Digest as well as more complex schemes
such as Kerberos, NTLM and OAuth). In order to support older versions
where a different authentication scheme was used, the system provides multiple
authentication options. This, however, means that the attacker can choose
the most vulnerable authentication scheme to attack and at the same time
increases the complexity of the system.
Detection

• Determine which authentication schemes are available to the users and
why.

• For each authentication scheme examine:
� Is the presence of this authentication scheme necessary?
� Does it provide sufficient level of security?
� Can it be used by all the different type of users? Should it?

6. Insufficient Cryptographic keys management

Description
This refers to the generation, distribution and storage of the cryptographic
keys in the system. A compromise of a key means that every piece of infor-
mation encrypted with this key is compromised. If there is no mechanism to
replace a key or any auditing to aid in recovering, this can lead to serious
compromise of the system.

Detection
• Determine where cryptographic keys are created, stored, used and how

they are distributed.
• Identify the mechanisms in place to replace a key.
• Track where the keys are used, for which purpose and who has access to

them.
• For each key examine:

� Is it generated within a cryptographic module isolated from the rest
of the system?

� Does the Random Number Generator (RNG) comply with latest
standards?

� Is the time the key is in plaintext format minimized?
� Is the access to it during that time restricted only to authorized

parties?
� Are the keys distributed through secure channels?
� Is the key stored securely?

IV

A. Catalog of Design Flaws

� If the key is stored locally in devices/clients, is it encrypted with Key
Encryption Key (KEKs)?

� Is the key integrity ensured?
� Is the key used only by processes within the cryptographic module?
� Is there a secure backup of the datastore that stores the keys?
� Is all access to the key in plaintext format logged?
� Is a key only used for a single purpose? (For example only for en-

crypting data but not other keys)
� Is the key destroyed after it is no longer needed?
� Is there a mechanism in place to renew/replace the keys in case they

are compromised?

7. Missing Authorization

Description
This refers to the absence of an authorization mechanism. This results to users
or processes having permissions to access data or functionality in the system
that is not intended.

Detection
• Determine the different stakeholders that interact with the system (users,

admins etc.).
• Determine the external entities that interact with the system (subsys-

tems, sensors, gateways etc.).
• For these examine:

� Is there a policy for assigning privileges? For example policies based
on roles (RBAC), assets (MAC), users (DAC).

� Is there a mechanism to authorize the actors based on that policy?

8. Missing Access Control

Description
User might be properly authenticated and authorized and there is a policy
regarding the privileges each users has, but there is no mechanism to enforce
this policy. This means that a user can log-in and have access to all the func-
tionality of the system, while he is not supposed to.

Detection
• Determine how access control to assets or functionality is enforced.
• Identify the different access paths throughout the system.

� Is there a mechanism in place to check if user has privileges before
accessing an asset or process?

� Are all data elements or access paths protected by this mechanism?

V

A. Catalog of Design Flaws

9. Not Reauthenticating Before Critical Operation

Description
For certain operations, like online bank transactions or or changing password,
or when accessing a protected resource the system should ask the user to
re-authenticate. This is important since after the initial authentication of
the user, the session could be hijacked or the client might be left unattended.
Additionally, critical operations should require elevated privileges which should
be assigned during that operation and revoked right after its completion.
Detection

• Determine the operations that involve high-value assets.
• Identify the confidentiality objectives regarding those operations.
• For each operation consider the following:

� Does the system require re-authentication before a critical operation
occurs?

� Is re-authentication required when there is a change in privilege level?
� Is re-authentication required when sensitive data are accessed or al-

tered?

10. Unmonitored Execution of External Applications

Description
Execution of external applications can result in a compromise of the system if
not handled properly. This can be due to abusing the privileges of the caller,
not limiting its access to data and resources and can serve as a way to bypass
authentication.

Detection
• Determine the components or processes that make calls to external ap-

plications.
• Consider the privilege level of these components and what data or func-

tionality is accessible by them.
• For each case examine:

� Does the external application have the least privileges required to
perform the operation?

� Is its access to data and system resources limited by access control
mechanisms?

� Is the access to system resources like CPU or memory usage moni-
tored?

� Is the access to system resources or data provided through explicit
interfaces?

� Can it only invoke functionality required for the operation it was
called?

VI

A. Catalog of Design Flaws

11. Not considering Context when authorizing

Description
Considering environment, time and other factors when authorizing. Although
a user/process might have permissions to do a specific task, these depend on
certain conditions like time, location or other factors. For example during an
intrusion on the system or heavy load, should a user be authorized to invoke
certain functionality?
Detection

• Determine for which assets or processes additional conditions need to be
fulfilled to be accessed.

• Consider in which situations normal permissions and access control should
not apply.

• For each case examine:
� Are the additional conditions, like location or time, considered before

authorization is granted?
� Consider the circumstances under which authorization should not

be granted. Are these considered by the authorization policy?(like
during an intrusion, or a critical state of the system)

12. Not revoking authorization

Description
In certain cases an application may require elevated privileges to perform a
certain operation. After this operation is completed the elevated privileges
need to be revoked. The same applies with account termination when for ex-
ample an employee leaves a company.

Detection
• Determine in which cases authorization needs to be revoked, for example

when a user account needs to be deactivated.
• Determine which external entities require elevated privileges.
• Identify the processes that require elevated privileges to perform a critical

operation.
• For each external entity (users, subsystems etc) consider:

� What operation does the user need the elevated privileges for? Are
these revoked after completion of this operation?

� Are permissions revoked after account termination?
• For each process examine:

� Are any external processes/API called during the time the privilege
level is elevated? Do these require the elevated privileges?

� Are these privileges revoked after the completion of the action?

VII

A. Catalog of Design Flaws

13. Insecure data storage

Description
Data stored on system are not sufficiently protected. This involves data stored
in a resource, which could be a database, memory, temporary files, cookies etc.,
that are stored in cleartext format or can be accessed by users or processes
that should not have permissions to do so. Additionally, sensitive data may
be stored along with the rest of the data in one place.
Detection

• Determine the sensitive data stored in the system.
• Locate where these data are stored.
• Determine the actors and processes that can access them.
• For each case examine:

� Are these data deleted when they are no longer needed?
� Are these data encrypted while stored?
� Is there an access control mechanism in place to prevent unauthorised

access?
� Is any data that come from computations or processing of sensitive

data protected as well?
� Is access to data logged? (actor, timestamp etc)
� Is there a backup for sensitive data?
� Are the backups stored in different physical devices?
� Is data separated according to their sensitivity level?

14. Insufficient credentials management

Description
This entry refers to the storage, transfer and creation/change management of
credentials. If the credentials are not encrypted while stored they can easily
be stolen, or sniffed if they are sent over an insecure channel. Additionally, if
the policy in place to generate the credentials (such as strong passwords) or
to reset/change them is not secure, it can lead to a compromise of the system
and leave it vulnerable to spoofing threats.

Detection
• Determine where the credentials are stored in the system.
• Track how these are transmitted (through which channels) throughout

the system.
• For each case examine:

� Are the credentials encrypted in rest?
� Are they encrypted in transit?
� Is access to the credentials in cleartext logged?
� Is there a secure mechanism in place to change or reset credentials?
� Is any change in credentials logged?
� Is the user notified if a change in the credentials occurs?

VIII

A. Catalog of Design Flaws

15. Insecure data exposure

Description
Data is not transferred in a secure way. For example web application uses
HTTP instead of HTTPS. This leaves the channel vulnerable to eavesdrop-
ping, Man In The Middle (MITM) attacks etc.

Detection
• Locate the valuable information in the model.
• Track them through the architecture to determine where and how they

are transferred.
• At each step examine the following:

� Is the reuse of packets prevented (Replay attacks)?
� Is there any form of timestamping, message sequencing or checksum

in the exchanged packages?
� Is the traffic over an encrypted channel (SSL/TLS)?

16. Use of Custom/Weak Encryption Algorithms

Description
Using a custom or weak cryptographic algorithm can lead to a serious compro-
mise of the system. Even if it is not easy to decrypt the data, information can
be inferred by analysing certain patterns like packet transmission, metadata
for connection or processing time. Additionally, although an algorithm may
be well vetted, it may not be suitable for the purpose it is used or the key size
does not provide sufficient degree of security.

Detection
• Determine the cryptographic algorithms used in the system.
• Identify for which purposes they are used.
• For each case examine:

� Is the algorithm suitable for the encryption of that particular re-
source?

� Is the key size sufficient?
� Are the keys used, managed properly?

17. Not validating input/data

Description
Not properly validating data that are received from external sources, can lead
to a number of issues, including injection attacks. In certain cases trusted
data may be mixed with untrusted data as well. Even data originating from
trusted sources might have to be validated, such as session identifiers or pro-
tocol headers.

Detection

IX

A. Catalog of Design Flaws

• Identify the external sources that the system receives data from.
• Locate where this data is used or stored.
• For each case examine:

� Is there is a validation step in between.
� Is there sufficient validation for the data, for example protocol head-

ers etc?

18. Insufficient auditing

Description
Access to critical resources or operations is not logged. This can lead to re-
pudiation issues and possibly makes it more difficult to recover after an attack.

Detection
• Determine for which events or operations it is important to log informa-

tion in the system
• For each case examine:

� Is the access to sensitive data and operations logged?
� Are changes in privileges logged?
� Are failed attempts to authenticate or access a resource logged?
� Do the logs keep information about time, IP, ID when an actor per-

forms an operation?
� Is the information logged sufficient to trace where/when an issue

occurred and what was altered/corrupted?
� Are these logs stored securely?
� Is there any backup of the logs in case they are erased by the attacker?

19. Uncontrolled Resource Consumption

Description
This entry refers to not properly controlling the use of resources within the
system. Not limiting cpu usage, storage, memory, sessions etc can lead to ex-
haustion of critical resources to the system which can result in denial of service.
An increase in workload can also lead to failure and performance degradation
when its processing thresholds are exceeded, therefore it’s important to bal-
ance and limit the resources.

Detection
• Determine which are the critical resources in the system.
• Analyse how each one can be exhausted.
• Consider what assets or operations are accessible to unauthenticated

users. For example a site can allow an unauthorised user to browse parts
of it.

• For each of these resources examine:
� Is there a mechanism to monitor these resources?

X

A. Catalog of Design Flaws

� If a resource reaches a critical threshold, does the system have a
throttling mechanism?

� If a critical resource is depleted, is the system placed in a safe state?
� Are the appropriate parties notified?

XI

B
Results from students

XII

B. Results from students
#

F
la
w

In
st
an

ce
C
at
al
og

E
nt
ry

St
ud

en
t
1

St
ud

en
t
2

St
ud

en
t
3

St
ud

en
t
4

1.
M
iss

in
g
au

th
en
tic

at
io
n

1
Fa

lse
Po

sit
iv
e

1
M
ot
e
w
ith

M
ic
ro
Pn

P
co
m
po

ne
nt

1.
M
iss

in
g
au

th
en
tic

at
io
n

Fo
un

d
Fo

un
d

Fo
un

d
Fo

un
d

2
G
at
ew

ay
co
nn

ec
tin

g
to

C
lo
ud

1.
M
iss

in
g
au

th
en
tic

at
io
n

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
Fo

un
d

3
G
at
ew

ay
M
gm

t
in
te
ra
ct
in
g
w
ith

G
W

Fa
ca
de

1.
M
iss

in
g
au

th
en
tic

at
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
Fo

un
d

4
G
W

Fa
ca
de

in
te
ra
ct
in
g
w
ith

D
BM

on
ito

r
1.

M
iss

in
g
au

th
en
tic

at
io
n

N
ot

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
Fo

un
d

5
N
ot
ifi
ca
tio

nH
an

dl
er

w
ith

D
BM

on
ito

r
1.

M
iss

in
g
au

th
en
tic

at
io
n

N
ot

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
Fo

un
d

6
N
ot
ifi
ca
tio

nC
on

tr
ol
le
r
w
ith

C
us
to
m
er
D
B

1.
M
iss

in
g
au

th
en
tic

at
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
Fo

un
d

7
C
us
to
m
er

M
gm

t
w
ith

D
BM

on
ito

r
1.

M
iss

in
g
au

th
en
tic

at
io
n

N
ot

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
Fo

un
d

8
O
pe

ra
to
r
M
gm

t
w
ith

D
BM

on
ito

r
1.

M
iss

in
g
au

th
en
tic

at
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
Fo

un
d

9
O
pe

ra
to
r
M
gm

t
w
ith

C
us
to
m
er
D
B

1.
M
iss

in
g
au

th
en
tic

at
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
Fo

un
d

2.
A
ut
he
nt
ic
at
io
n
By

pa
ss

us
in
g
al
te
rn
at
e
pa

th
1
Fa

lse
Po

sit
iv
e

10
C
us
to
m
er

cl
ie
nt

to
C
us
to
m
er

Fa
ça
de

2.
A
ut
he
nt
ic
at
io
n
By

pa
ss

us
in
g
al
te
rn
at
e
pa

th
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
11

O
pe

ra
to
r
C
lie
nt

to
O
pe

ra
to
r
Fa

ça
de

2.
A
ut
he
nt
ic
at
io
n
By

pa
ss

us
in
g
al
te
rn
at
e
pa

th
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
12

G
at
ew

ay
to

C
lo
ud

2.
A
ut
he
nt
ic
at
io
n
By

pa
ss

us
in
g
al
te
rn
at
e
pa

th
N
ot

Fo
un

d
N
ot

Fo
un

d
Fo

un
d

Fo
un

d
13

M
ot
e
to

M
ic
ro
Pn

P
2.

A
ut
he
nt
ic
at
io
n
By

pa
ss

us
in
g
al
te
rn
at
e
pa

th
Fo

un
d

Fo
un

d
Fo

un
d

Fo
un

d
14

Pa
ss
wo

rd
fo
r
cu
st
om

er
/o
pe

ra
to
r

3.
R
el
yi
ng

on
sin

gl
e
fa
ct
or

A
ut
he
nt
ic
at
io
n

Fo
un

d
Fo

un
d

Fo
un

d
Fo

un
d

15
C
us
to
m
er

cl
ie
nt

to
C
us
to
m
er

Fa
ça
de

4.
In
su
ffi
ci
en
t
Se
ss
io
n
M
an

ag
em

en
t

Fo
un

d
Fo

un
d

Fo
un

d
Fo

un
d

16
O
pe

ra
to
r
C
lie
nt

to
O
pe

ra
to
r
Fa

ça
de

4.
In
su
ffi
ci
en
t
Se
ss
io
n
M
an

ag
em

en
t

Fo
un

d
Fo

un
d

Fo
un

d
N
ot

Fo
un

d
17

K
ey
s
m
an

ag
em

en
t
no

t
sp
ec
ifi
ed
.

6.
In
su
ffi
ci
en
t
C
ry
pt
og
ra
ph

ic
K
ey

M
an

ag
em

en
t

Fo
un

d
Fo

un
d

Fo
un

d
N
ot

Fo
un

d
18

C
us
to
m
er

-n
o
au

th
or
iz
at
io
n

7.
M
iss

in
g
A
ut
ho

riz
at
io
n

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
Fo

un
d

19
O
pe

ra
to
r
-n

o
au

th
or
iz
at
io
n

7.
M
iss

in
g
A
ut
ho

riz
at
io
n

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
Fo

un
d

20
G
at
ew

ay
-n

o
au

th
or
iz
at
io
n

7.
M
iss

in
g
A
ut
ho

riz
at
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
21

M
ot
e
-n

o
au

th
or
iz
at
io
n

7.
M
iss

in
g
A
ut
ho

riz
at
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
22

A
cc
es
s
co
nt
ro
lm

ec
ha

ni
sm

no
t
sp
ec
ifi
ed

8.
M
iss

in
g
A
cc
es
s
C
on

tr
ol

Fo
un

d
Fo

un
d

Fo
un

d
N
ot

Fo
un

d
9.

N
ot

re
au

th
en
tic

at
in
g
be

fo
re

cr
iti
ca
lo

pe
ra
tio

n
1
Fa

lse
Po

sit
iv
e

23
U
C
4
A
ss
oc
ia
te

G
W

to
C
us
to
m
er

-n
o
re
au

th
en
tic

at
io
n

9.
N
ot

re
au

th
en
tic

at
in
g
be

fo
re

cr
iti
ca
lo

pe
ra
tio

n
Fo

un
d

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
24

U
C
9
Ru

le
s
R
ec
on

fig
ur
at
io
n
-n

o
re
au

th
en
tic

at
io
n

9.
N
ot

re
au

th
en
tic

at
in
g
be

fo
re

cr
iti
ca
lo

pe
ra
tio

n
Fo

un
d

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
25

U
C
14

C
ha

ng
in
g
SL

A
-n

o
re
au

th
en
tic

at
io
n

9.
N
ot

re
au

th
en
tic

at
in
g
be

fo
re

cr
iti
ca
lo

pe
ra
tio

n
Fo

un
d

Fo
un

d
N
ot

Fo
un

d
Fo

un
d

26
U
C
15

U
nr
eg
ist

er
C
us
to
m
er
-n

o
re
au

th
en
tic

at
io
n

9.
N
ot

re
au

th
en
tic

at
in
g
be

fo
re

cr
iti
ca
lo

pe
ra
tio

n
Fo

un
d

Fo
un

d
N
ot

Fo
un

d
Fo

un
d

10
.
U
nm

on
ito

re
d
Ex

ec
ut
io
n
of

ex
te
rn
al

A
pp

lic
at
io
ns

(T
hi
rd

pa
rt
y)

1
Fa

lse
Po

sit
iv
e

1
Fa

lse
Po

sit
iv
e

11
.
N
ot

co
ns
id
er
in
g
co
nt
ex
t
w
he
n
au

th
or
iz
in
g

1
Fa

lse
Po

sit
iv
e

1
Fa

lse
Po

sit
iv
e

1
1
Fa

lse
Po

sit
iv
e

12
.
N
ot

re
vo

ki
ng

au
th
or
iz
at
io
n

1
Fa

lse
Po

sit
iv
e

27
C
us
to
m
er

w
he
n
un

re
gi
st
er
in
g
-a

ut
ho

riz
at
io
n
no

t
re
vo
ke
d

12
.
N
ot

re
vo

ki
ng

au
th
or
iz
at
io
n

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
N
ot

Fo
un

d
28

G
at
ew

ay
w
he
n
cu
st
om

er
un

re
gi
st
er
s
-a

ut
ho

riz
at
io
n
no

t
re
vo
ke
d

12
.
N
ot

re
vo

ki
ng

au
th
or
iz
at
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
29

O
pe

ra
to
r
w
he
n
le
av
in
g
co
m
pa

ny
-a

ut
ho

riz
at
io
n
no

t
re
vo

ke
d

12
.
N
ot

re
vo

ki
ng

au
th
or
iz
at
io
n

N
ot

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
N
ot

Fo
un

d
30

C
us
to
m
er

M
gm

t
fo
r
co
nfi

gu
rin

g
ru
le
s,

SL
A

ch
an

ge
,D

ea
ct
iv
at
in
g
ac
co
un

t
12
.
N
ot

re
vo

ki
ng

au
th
or
iz
at
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
13
.
In
se
cu
re

D
at
a
St
or
ag
e

1
Fa

lse
Po

sit
iv
e

31
Se
ns
or
D
at
a
in

M
ai
nD

B
13
.
In
se
cu
re

D
at
a
St
or
ag
e

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
N
ot

Fo
un

d
32

Se
ns
or
D
at
a
in

G
W

D
B

13
.
In
se
cu
re

D
at
a
St
or
ag
e

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
33

Pr
ofi

le
in
fo

in
C
us
to
m
er
/O

pe
ra
to
r
D
B

13
.
In
se
cu
re

D
at
a
St
or
ag
e

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
N
ot

Fo
un

d
34

Lo
gs

in
Lo

gD
B

13
.
In
se
cu
re

D
at
a
St
or
ag
e

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
14
.
In
su
ffi
ci
en
t
C
re
de
nt
ia
ls

m
an

ag
em

en
t

1
Fa

lse
Po

sit
iv
e

35
C
us
to
m
er
/O

pe
ra
to
r
cr
ed
en
tia

ls
st
or
ag
e,

en
cr
yp

tio
n,

ch
an

ge
m
gm

t
14
.
In
su
ffi
ci
en
t
C
re
de
nt
ia
ls

m
an

ag
em

en
t

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
Fo

un
d

36
Se
ns
or

D
at
a
fro

m
M
ot
e
to

G
W

15
.
In
se
cu
re

da
ta

ex
po

su
re

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
37

Se
ns
or

D
at
a/
A
la
rm

s
fro

m
G
W

to
G
W

Fa
ca
de

15
.
In
se
cu
re

da
ta

ex
po

su
re

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
38

Se
ns
or

D
at
a/
A
la
rm

s
fro

m
G
W

Fa
ca
de

to
M
ai
nD

B
15
.
In
se
cu
re

da
ta

ex
po

su
re

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
39

Se
ns
or

D
at
a,

C
us
to
m
er

In
fo
,V

ie
w

Lo
gs

fro
m

C
us
to
m
er
/O

pe
ra
to
r
Fa

ca
de

to
C
lie
nt
s

15
.
In
se
cu
re

da
ta

ex
po

su
re

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
40

N
o
en
cr
yp

tio
n
al
go
rit

hm
s
sp
ec
ifi
ed

16
.
U
se

of
C
us
to
m
/W

ea
k
En

cr
yp

tio
n
A
lg
or
ith

m
s

Fo
un

d
Fo

un
d

Fo
un

d
Fo

un
d

41
M
ot
e
da

ta
us
ed

fo
r
al
ar
m
s/
ev
en
ts

an
d
st
or
ed

in
M
ai
n
D
B

no
t
va
lid

at
ed

17
.
N
ot

va
lid

at
in
g
in
pu

t/
da

ta
Fo

un
d

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
42

G
at
ew

ay
fa
ca
de

do
es

no
t
va
lid

at
e
da

ta
fro

m
G
W
s

17
.
N
ot

va
lid

at
in
g
in
pu

t/
da

ta
Fo

un
d

N
ot

Fo
un

d
N
ot

Fo
un

d
Fo

un
d

18
.
In
su
ffi
ci
en
t
au

di
tin

g
1
Fa

lse
Po

sit
iv
e

1
Fa

lse
Po

sit
iv
e

43
Lo

gs
ha

ve
no

ba
ck
-u
p

18
.
In
su
ffi
ci
en
t
au

di
tin

g
Fo

un
d

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
44

M
ot
es

to
G
at
ew

ay
ch
an

ne
l-

no
m
on

ito
r,

th
ro
tt
lin

g
or

no
tifi

ca
tio

n
19
.
U
nc
on

tr
ol
le
d
R
es
ou

rc
e
C
on

su
m
pt
io
n

N
ot

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
N
ot

Fo
un

d
45

G
at
ew

ay
to

C
lo
ud

ch
an

ne
l-

no
m
on

ito
r,

th
ro
tt
lin

g
or

no
tifi

ca
tio

n
19
.
U
nc
on

tr
ol
le
d
R
es
ou

rc
e
C
on

su
m
pt
io
n

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
N
ot

Fo
un

d
46

N
ot
ifi
ca
tio

nC
on

tr
ol
le
r
C
ha

nn
el
s
-n

o
m
on

ito
r,
th
ro
tt
lin

g
or

no
tifi

ca
tio

n
19
.
U
nc
on

tr
ol
le
d
R
es
ou

rc
e
C
on

su
m
pt
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
47

C
us
to
m
er
C
lie
nt

to
C
us
to
m
er

Fa
ca
de

ch
an

ne
l-

no
m
on

ito
r,
th
ro
tt
lin

g
or

no
tifi

ca
tio

n
19
.
U
nc
on

tr
ol
le
d
R
es
ou

rc
e
C
on

su
m
pt
io
n

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
N
ot

Fo
un

d
48

O
pe

ra
to
rC

lie
nt

to
O
pe

ra
to
r
Fa

ca
de

ch
an

ne
l-

no
m
on

ito
r,

th
ro
tt
lin

g
or

no
tifi

ca
tio

n
19
.
U
nc
on

tr
ol
le
d
R
es
ou

rc
e
C
on

su
m
pt
io
n

Fo
un

d
Fo

un
d

N
ot

Fo
un

d
N
ot

Fo
un

d
49

G
W

D
B

ca
pa

ci
ty

-n
o
m
on

ito
r
or

no
tifi

ca
tio

n,
po

ss
ib
le

to
de
pl
et
e

19
.
U
nc
on

tr
ol
le
d
R
es
ou

rc
e
C
on

su
m
pt
io
n

N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d
N
ot

Fo
un

d

T
ab

le
B
.1
:
Ba

se
lin

e
of

fla
w
s
fo
r
H
om

eS
ys
.

XIII

C
STRIDE threat comparison with

design flaws baseline

The analysis for each STRIDE threat is provided below. For each threat, the name,
description, category, prerequisites, related flaws in the baseline and notes are in-
cluded.

1. Threat Name: Corrupt Mote
Description: Plug in a Mote that sends non-disruptive or no data to the gate-
way
Category: S
Prerequisites: Physical access to house to install or compromise Mote
Related Flaws: none
Notes: We cannot prevent threats where attacker has physical access or if a
device is compromised.

2. Threat Name: Spoofing mote
Description: Attacker sniffs IP and sends data to GW.
Category: S
Prerequisites: Sniff mote IP (channel), Access to internal network
Related Flaws:

• 1. Missing authentication -> Mote to MicroPnP component
• 13. Authentication Bypass using alternate path -> Mote to MicroPnP

Notes: Even if internal network is secured, Mote IP can still be obtained using
a network auditing tool. Since the Mote does not authenticate it is easy to pre-
tend to be a mote. STRIDE Spoof external entity tree (No authentication leaf)

3. Threat Name: Overflowing the gateway with requests
Description: The attacker could overload the gateway with infinite number of
requests to connect a new mote and cause a DoS for other already functioning
motes.
Category: DoS
Prerequisites: Access to internal network
Related Flaws:

• 36. Insecure data exposure -> Sensor Data from Mote to GW
• 44. Uncontrolled Resource Consumption-> Channel bandwidth Mote to

GW

XIV

C. STRIDE threat comparison with design flaws baseline

Notes: Traffic is not encrypted in the network between motes and GW. At-
tacker can easily capture a package and replay it. Domain description states
that current limit for this network is 26 packets/second. There is no mech-
anism to monitor this or any throttling mechanism. No direct notification
either. The gateway will fail to send updated data to the cloud so this will
eventually trigger a notification to the customer and call center operators.

4. Threat Name: Spoofing the gateway
Description: If the attacker sniffs the gateway IP and is able to send data to
the cloud. This threat leads to others!
Category: S
Prerequisites: Sniff GW IP, access to internal network
Related Flaws:

• 2. Missing authentication -> GW to GWFacade(Cloud)
• 12. Authentication Bypass using Alternate Path -> GW to Cloud

Notes: Communication channel between GWs and GWFacade is not encrypted
(not specified in documentation). Even if it is though, IP can still be obtained.
Since GWs do not go through an authentication point when connecting with
HomeSys cloud this attack is possible. This threat is captured by flaws 2,12.
STRIDE Spoof external entity threat tree (No authentication leaf).

5. Threat Name: Disable the watchdog
Description: The watchdog is initialized upon startup and keeps information
about which sensors are connected. By removing the sensors from its list, the
gateway watchdog would not expect heartbeats from it, and therefore it would
fail to trigger an alarm if the sensor is not responding.
Category: T
Prerequisites: GW spoof or Elevation of Privilege
Related Flaws: none
Notes: List of motes in watchdog is not considered high value asset to us. In
order to achieve this threat, it requires to either spoofing the gateway, com-
promise it or launch an EoP attack in its internal processes. These are not
captured by the catalog, except for the spoofing of GW, but it is not exactly
defined here.

6. Threat Name: Disable the periodic scheduler
Description: If the component is corrupted, the cloud would not be synchro-
nized accordingly. However, this would be detected directly by the customer
and could be reported quickly.
Category: T/DoS
Prerequisites: GW spoof or Elevation of Privilege
Related Flaws: none
Notes: similar as previous threat.

7. Threat Name: Tampering with GW DB
Description: If the attacker is able to write to Gateway DB and modify the

XV

C. STRIDE threat comparison with design flaws baseline

data store from the sensors, the rules will evaluate over false data and the
cloud would receive false information, making it possible to hide alarms.
Category: T
Prerequisites: GW spoof or Elevation of Privilege
Related Flaws: none
Notes: This depends on how exactly the GW is spoofed, meaning which inter-
nal process is spoofed in the gateway. As for elevation of privilege, it is not
captured by the catalog in this case, since attacker would have to elevate the
privileges of a certain process in the GW, which means that the device would
be compromised. Such an EoP attack would probably be due to implementa-
tion level bugs (buffer overflow, input validation etc). Could be captured by
32. Insecure Data Storage -> SensorData in GWDB

8. Threat Name: False rules
Description: The rule engine managing the rules could be tampered with.
Category: S/T
Prerequisites: GW spoof or Elevation of Privilege
Related Flaws: none
Notes: similar to previous threat.

9. Threat Name: Spoofing the DB Monitor
Description: The attacker would be able to change configurations of customers
and effect the integrity of the copied secondary storage.
Category: S
Prerequisites: Elevation of Privilege (gain admin rights)
Related Flaws: none
Notes: Although Catalog captures missing authentication of processing re-
garding access to mainDB, since the prerequisites determine that attacker has
system admin rights, there is nothing that we can do. According to documen-
tation, operators pretty much have authorization to do anything in the system.

10. Threat Name: DoS on Primary DB
Description: If the attacker has spoofed the DB Monitor first, they would be
able to overwhelm the primary DB with requests and cause a DoS.
Category: DoS
Prerequisites: Spoof DBMonitor
Related Flaws: none
Notes: Notes: According to the documentation, the system is hosted in cloud
and the DBMonitor along with the primary DB and the hot spare are place
within the backend (assume same trust boundary). Since it is hosted on the
cloud we assume storage capacity and network bandwidth are hard to deplete.
Regardless, although entry 19. Uncontrolled Resource Consumption could
capture the flaw, if DBMonitor, which is the mechanism supposed to monitor
the DBs, is compromised, then there is nothing to do.

XVI

C. STRIDE threat comparison with design flaws baseline

11. Threat Name: Accessing sensitive info from DBs
Description: The attacker may attempt to expose private information of sen-
sor data in primary DB, secondary DB, customer DB or operator DB about
customers.
Category: I
Prerequisites: Elevation of Privilege
Related Flaws: none
Notes: 7. Missing Authorization and 8. Missing Access Control could capture
this threat. However again if attacker elevates privileges to operator he can
do anything. Similar to previous threat.

12. Threat Name: Tampering with DS (Sensor data storage DB)
Description: Tamper with the primary SensorData DB and alter data.
Category: T
Prerequisites: EoP
Related Flaws: none
Notes: Notes: same as above.

13. Threat Name: Spoofing the customer
Description: If the attacker pretends to be the customer, it can modify all
configurations.
Category: S
Prerequisites: Steal secrets, MITM, Session hijacking
Related Flaws:

• 10. Authentication Bypass using alternate path-> CustomerClient to
CustomerFacade

• 14. Relying on single factor Authentication-> Password easy to brute
force

• 15. Insufficient Session Management-> Customer client to Customer
Façade

• 35. Insufficient Credentials management -> Customer/Operator creden-
tials Storage,encryption, change etc

• 39. Insecure data exposure-> Sensor Data, Customer Info, View Logs
between Customer/OperatorFacade and Clients

Notes: Overall, although session ID is secure and the auth token hard to guess
based on the documentation, there is no limit on failed attempts to login, no
session timeout, no session invalidation on logout mentioned etc. Password can
be brute-forced since there is no limit in failed attempts. Channel encryption
not specified, which means system is open to a number of MITM and session
hijacking attacks.

14. Threat Name: Spoofing the operator
Description: If the attacker pretends to be the operator, it can modify all
configurations of clients.
Category: S
Prerequisites: Steal secrets, MITM, Session hijacking

XVII

C. STRIDE threat comparison with design flaws baseline

Related Flaws:
• 11. Authentication Bypass using alternate path-> OperatorClient to Op-

eratorFacade
• 14. Relying on single factor Authentication-> Password easy to brute

force
• 16. Insufficient Session Management-> Operator client to Operator-

Façade
• 35. Insufficient Credentials management -> Customer/Operator creden-

tials Storage,encryption, change etc
• 39. Insecure data exposure-> Sensor Data, Customer Info, View Logs

between Customer/Operator Facade andClients
Notes: Same as previous threat

15. Threat Name: Spying on customers
Description: The attacker can either be a valid operator and spy on customers,
or an external attacker that has overtaken an identity of the operator. Even
though actions of operators are recorded, this is a threat to privacy of cus-
tomers.
Category: I
Prerequisites: Obtain credentials of a user/operator
Related Flaws:

• 11. Authentication Bypass using alternate path-> OperatorClient to Op-
eratorFacade

• 14. Relying on single factor Authentication-> Password easy to brute
force

• 16. Insufficient Session Management-> Operator client to Operator-
Façade

• 35. Insufficient Credentials management -> Customer/Operator creden-
tials Storage,encryption, change etc

• 39. Insecure data exposure-> Sensor Data, Customer Info, View Logs
between Customer/Operator Facade andClients

Notes: Notes: similar as above (spoofing operator)

16. Threat Name: Customer elevating privileges
Description: This threat relates to either: elevating privileges from regular
customers to premium customers, any type of customer to operator privileges,
or higher - system administrator
Category: EoP/I
Prerequisites: The attacker needs to gain access to the DBs (customer or op-
erator) and be able to modify type of account.
Related Flaws:

• 18. Missing Authorization -> Customer
• 22. Missing Access Control-> no mechanism specified
• 25. Not reauthenticating before critical operation-> Changing SLA
• 33. Insecure Data Storage-> profile info in Customer/Operator DB

XVIII

C. STRIDE threat comparison with design flaws baseline

Notes: Documentation doesn’t specify the policy to assign privileges and al-
though an access control mechanism is mentioned at some point there is no
further clarification in the architecture. So we assume there isn’t any autho-
rization or access control mechanism specified. Changing SLA is considered
a critical operation since it can have an impact on the customer profile (high
value asset) and the sensor data(history and how long they are stored changes).
Additionally, the profile info in the customer and operator DBs is not securely
stored.

17. Threat Name: Generating login requests
Description: The attacker can cause a denial of service for a customer or op-
erator by generating infinite login requests
Category: DoS
Prerequisites: -
Related Flaws:

• 15. Insufficient Session Management-> Customer client to Customer
Façade

• 16. Insufficient Session Management-> Operator Client to Operator
Façade

• 39. Insecure data exposure-> Login, Sensor Data, Customer Info, View
Logs between Customer/Operator Facade and Clients

• 47. Uncontrolled Resource Consumption-> CustomerClient to Cloud
(Customer Facade)

• 48. Uncontrolled Resource Consumption-> OperatorClient to Cloud
(Operator Facade)

Notes: There is no mechanism to monitor session creation/destruction or any
limit to how many endpoints can be connected to a session. Packets can be
replayed in the channel between the clients and facades, and there is no mech-
anism specified to monitor the incoming connections or any throttling for that
matter.

18. Threat Name: Sniffing the credentials
Description: The attacker can try to sniff the traffic and steal the credentials
(preparation for spoofing)
Category: I
Prerequisites: -
Related Flaws:

• 10. Authentication Bypass using alternate path-> Customer client to
Customer Façade

• 11. Authentication Bypass using alternate path-> Operator Client to
Operator Façade

• 15. Insufficient Session Management-> Customer client to Customer
Façade

• 16. Insufficient Session Management-> Operator Client to Operator
Façade

• 35. Insufficient Credentials management-> Customer/Operator creden-

XIX

C. STRIDE threat comparison with design flaws baseline

tials Storage,encryption, change etc
• 39. Insecure data exposure-> Login, Sensor Data, Customer Info, View

Logs between Customer/Operator Facade and Clients
Notes: Communication channels are not secure, credentials are not encrypted
in rest or in transit. If session ID is used as a URL parameter not specified.

19. Threat Name: SQL injection on client side
Description: -
Category: T
Prerequisites:
Related Flaws:
Notes: SQL injection is technology specific. It is out of scope for the catalog.

20. Threat Name: Disable logging operator actions
Description: The operator can attempt to harm the accountability controller
and disable logging of actions.
Category: T
Prerequisites: Operator is authorized
Related Flaws: none
Notes: Since operator according to documentation has full access, we cannot
prevent that. The only case would be to have back-ups of the logs that would
not be accessible to operators. (43. Insufficient auditing-> Logs have no Back-
up)

21. Threat Name: Generating view sensor data requests
Description: The attacker can try to overwhelm the cloud by generating a lot
of view data request, where a heavy load of sensor data has to be displayed.
Category: DoS
Prerequisites: he operator is authorized.
Related Flaws: none
Notes: According to our assumptions, since the system is hosted in the cloud,
processing capacity shouldn’t be an issue. Even then DBMonitor is supposed
to monitor the DBs and handle this operation.

22. Threat Name: Tampering with customer data
Description: The operator can attempt to modify customer configuration with-
out their request.
Category: T
Prerequisites: Operator is authorized
Related Flaws: none
Notes: Missing authorization and Missing access control could capture this,
but again operator has full access according to documentation.

23. Threat Name: Fill up the Event/Alarm queue
Description: The attacker can attempt to send infinite event/alarms to the
queue to overwhelm it so that it can’t receive any more valid events/alarms.

XX

C. STRIDE threat comparison with design flaws baseline

Category: DoS
Prerequisites: The attacker needs to know how to publish to the queue. Al-
ternatively, the attacker is an insider and creates rules that always evaluate,
but this depends on the system implementation and queue response time.
Related Flaws: none
Notes: This threat depends heavily on implementation. Regardless, alarms
are triggered in the gateways and are sent from the cloud. So this could be
captured in a way from 45. Uncontrolled Resource Consumption-> Gateway
to Cloud (Gateway Facade) but this is only based on assumptions.

24. Threat Name: Fill up the sensor queue
Description: Attempt to overwhelm the sensor data queue
Category: DoS
Prerequisites: The attacker needs to know how to publish to the queue.
Related Flaws: none
Notes: Same as previous threat

25. Threat Name: Sniff the sensor data (GW to DBMonitor)
Description: The attacker can attempt to sniff the traffic and retrieve private
sensor data packages over the internet.
Category: I
Prerequisites: The attacker needs to redirect data in the network (e.g. DNS
poisoning)
Related Flaws:

• 37. Insecure data exposure-> Sensor Data/Alarms from GW to GWFa-
cade

• 38. Insecure data exposure-> Sensor Data/Alarms from GWFacade to
MainDB

Notes: These channels are not secure and packets easily sniffed.

26. Threat Name: Sniff events
Description: Same as above
Category: I
Prerequisites: The attacker needs to redirect events in the network (e.g. DNS
poisoning)
Related Flaws:

• 37. Insecure data exposure-> Sensor Data/Alarms from GW to GWFa-
cade

• 38. Insecure data exposure-> Sensor Data/Alarms from GWFacade to
MainDB

Notes: Same as previous threat

27. Threat Name: Generate gateway connections
Description: Attempt to generate fake connections to overrun the available
capacity of connected gateways to the cloud.
Category: DoS

XXI

C. STRIDE threat comparison with design flaws baseline

Prerequisites: The attacker would have to spoof the gateway or connect a
corrupt device.
Related Flaws:

• 45. Uncontrolled Resource Consumption-> Gateway to Cloud (Gateway
Facade)

Notes: There is no mechanism to monitor connections to GWFacade or any
throttling mechanism.

28. Threat Name: Attacking logs
Description: The attacker spoofs the process of logging all actions, or is able
to tamper with the log files in order to hide malicious activity.
Category: S
Prerequisites: Compromise system to get access rights to logs
Related Flaws:

• 43. Insufficient auditing-> Logs have no back-up
Notes: If process is spoofed then this can possibly be an issue, but if logs are
tampered with, although DB storing logs is secure, there is no back-up.

29. Threat Name: Tamper with sensor data before it reaches cloud
Description: If the sensor data is sent in plain, the attacker can try to modify
it not to raise any alarms or events.
Category: T
Prerequisites: The attacker needs to perform a MIM attack.
Related Flaws:

• 37. Insecure data exposure-> Sensor Data/Alarms from GW to GWFa-
cade

Notes: DFD shows GW to Cloud so we assume GW façade. Channel is not
encrypted, MITM is possible.

30. Threat Name: Tamper with configuration in transit
Description: The attacker may attempt to intercept the traffic and tamper
with the rules before they are store in the data base of the customer.
Category: T
Prerequisites: The attacker needs to perform a MIM attack.
Related Flaws:

• 37. Insecure data exposure-> Sensor Data/Alarms from GW to GWFa-
cade

Notes: same as previous threat

31. Threat Name: Spoofing the cloud
Description: Attempt to imitate take over the identity of the cloud and send
false configuration data (rules), or not react upon alarms and events
Category: S
Prerequisites: The attacker would have to authenticate to the gateway as the
cloud service and hide all its activity to the actual cloud (not to raise suspicion)
Related Flaws:

XXII

C. STRIDE threat comparison with design flaws baseline

• 2. Missing authentication->Gateway connecting to Cloud
• 3. Missing authentication->Gateway Mgmt interacting with GWFacade
• 12. Authentication Bypass using alternate path->Gateway to Cloud

Notes: No authentication between GWs and cloud, or the process handling the
rule configuration (Gateway Mgmt) with GWFacade

32. Threat Name: Reveil sensor data or tamper with rules
Description: The attacker may attempt to intercept the sensitive sensor data
being stored in the local DB or read from the local DB.
Category: I and T
Prerequisites: The attacker had to gain control over GW- spoofed it before.
Related Flaws: none
Notes: Similar to Threat number 7

33. Threat Name: Block/redirect data to cloud
Description: The alarm data is send from the gateway to the gateway facade
via the internet, which is generally insecure. Attacker may attempt to redirect
traffic to block the alarm data.
Category: DoS
Prerequisites: The attacker needs to perform a DNS poisoning, or spoofing
attack.
Related Flaws:

• 37. Insecure data exposure-> Sensor Data/Alarms from GW to GWFa-
cade

Notes: Channel from GW to Cloud is not secure and leaves system vulnerable
to MITM attacks, sniffing etc.

34. Threat Name: Blocking notification channels
Description: Attempt to disrupt the communication channels via SMS, email
or App push. Could also do so, by filling up the message queues capacity.
Category: DoS
Prerequisites: Fill message queue, compromise phone, sms protocol or redirect
emails
Related Flaws:

• 46. Uncontrolled Resource Consumption-> NotificationController Chan-
nels

Notes: No monitor mechanism, or throttling

XXIII

D
Questionnaire

Below the questionnaire given to the participants of our study to fill in after the
task is presented.

XXIV

Design Flaws as Security Threats Survey
*Required

1. How easy was the process to understand? *

Mark only one oval.

2 3 4 5

Difficult to understand O O O O O Easy to understand

2. Did the guidelines provide enough information to detect the flaw? *

Mark only one oval.

1 2 3 4 5

Little information O O O O O Sufficient information

3. Was any of the guidelines ambiguous? *

Mark only one oval.

O Yes

QNo

4. What type of models did you use throughout the process? *

5. Would you require another type of UML model? *

1/3

6. How easy was it to get all the information required by the architecture to follow the
guidelines? *

Mark only one oval.

1 2 3 4 5

Very hard O O O O O Very easy

7. Do you think the process required a lot of time? *

8. Do you have any suggestions to reduce the time required? *

9. How familiar were you with the architecture before using the catalog? *

Mark only one oval.

1 2 3 4 5

Very unfamiliar O O O O O Very familiar

10. How familiar are you with the domain and its constraints, regulations etc?*

Mark only one oval.

1 2 3 4 5

Very unfamiliar O O O O O Very familiar

11. Any suggestions for improving the detection guidelines?

2/3

12. Have you performed threat analysis with STRIDE before?

Mark only one oval.

O Yes

QNo

13. lf yes, compared to STRIDE, how would you rate this approach in terms of time and efficiency
and why?

14. What aspects of the approach did you like?

15. What aspects of the approach did you not like?

3/3

E
Documents provided in the lab

package

The documents presented in this Appendix are introduced in the course DAT220
Advanced Software Architecture in the Software Engineering MSc programme in
Chalmers University of Technology.

E.1 HomeSys Domain Problem Description

XXVIII

Home Monitoring System (HomeSys) – Description of the

problem domain

DAT220/DIT544 - Advanced Software Architecture

2016

This project requires the development of a smart home system code-named HomeSys. The
system consists of a smart home gateway that can communicate with plug and play sensors spread
around the house, and a cloud system that synchronizes with the smart home gateway.

This document describes the project, the problem space and the additional constraints. Sections
1 and 2 provide some background about the domain of smart home systems and a description of
how as we envision HomeSys. Section 3 lists the key stakeholders involved in the development of
this system, and Section 4 describes a number of additional constraints the system should comply
to. Finally, Section 5 elaborates on some more specific scenarios.

1 Context

Home automation

Home automation is the residential extension of building automation. It is automation of the home,
housework or household activity to provide improved convenience, comfort, energy efficiency and
security. Home automation may include centralized control of lighting, HVAC (heating, ventilation
and air conditioning), appliances, locks of gates and doors and other systems. The popularity of
home automation has been increasing greatly in recent years due to much higher affordability and
simplicity through smartphone and tablet connectivity. The concept of the“Internet of Things”
(IoT) has tied in closely with the popularization of home automation.

HomeSys
Cloud

Gateway

Sensors & actuators

Sensors & actuators

Sensors & actuators

Internet

End-userCustomer

Figure 1: HomeSys overview

Figure 1 provides a schematic overview of a typical home automation system. Sensors and
actuators are installed throughout the house and relay data to a cloud-based system via a Gate-
way. The cloud-based services are accessible to the customer via a tablet app or a browser and

1

provide the user with a management console as well as an information dashbord displaying the
historical data produced by the sensors in the house. The customer can both monitor his house as
well as control the actuators available (e.g., dim the lights, shut off the water supply). For certain
alarming events (e.g., in case smoke is detected) the user can get immediate notifications.

Examples from the competitors

A number of commercial implementations for home automation systems are readily available on
the market.

NEST

Perhaps the most widely known implementation of the home automation systems is NEST which
has been acquired by Alphabet Inc. (the mother company of Google). NEST features a smart
thermostat, a smoke/CO2 sensor and a camera. All NEST devices connect directly to the home
WiFi router which serves as a gateway.

Philips Hue

Philips Hue is mainly focused on smart illumination. The sensors/actuators are in fact Philips
lightbulbs with integrated actuators. The Philips Hue gateway is called a “bridge”.

Belkin WeMo

Belkin WeMo mainly consists of lights and switches which are pluggable in various devices (e.g.,
the coffee maker). The Belkin gateway is in fact a wireless router Belkin produces.

Samsung Smart Things

Samsung Smart Things is probably the most extended implementation of home automation avail-
able today. The gateway here is referred to as the Smart Things Hub and it is interoperable with a
large number of existing smart objects like light bulbs, cameras, speakers, locks, and thermostats.

Positioning

In this assignment, we assume the point-of-view of a software company that will develop a home
automation gateway and its cloud-based services. The system is initially being built for the remote
monitoring of residential apartments and houses. However, it would be beneficial if the same system
could be easily extended for other purposes, e.g., monitoring of server centers, storage facilities,
etc. Our target customers are people who would like to keep an eye on their apartment or house.

Our goal is to sell the HomeSys gateway as a hardware device enabling smart home automation.
A basic cloud-based subscription will be offered with the device, free of charge. However, the basic
subscription will only allow the customers to have data history (from sensors’ data) up to 1 month
and the gateway-cloud communication might be delayed (i.e., the sync will run every 15 minutes).
We will also offer a premium plan (for a yearly fee) which will include data history up to 1 year
and virtually a real-time communication between the gateway and the cloud services.

The main differentiation point with the existing technology providers will be twofold. First,
the HomeSys gateway will feature a 3G communication module, hence the module will be 100%
plug and play and it will not require any pre-existing infrastructure. Second, the gateway will be
designed with explicit focus on incorporating new types of sensors and actuators, in order to be
future-proof.

Technology stack

From a technical perspective, the HomeSys system leverages the following building blocks.

2

Figure 2: MicroPnP motes and sensors

MicroPnP mote (or just mote) is a hub where the sensors and actuators plugged onto and
installed throughout the house. The MicroPnP technology is developed by iMinds-DistriNet
(a research lab in Belgium)1. As presented in figure 2 motes are powered either by a battery
or they can be plug into an electrical or light socket. Each MicroPnP mote has 4 USB-like
ports where sensors and actuators can be plugged into. In figure 1 the sensors are represented
as the green printed circuit boards (PCBs) with antennas.

Sensor is a hardware device that produces measurements and sends them to the gateway via a
MicroPnP mote. The sensors are physically plugged into a mote (see figure 2).

Actuator is a hardware device that has one or more actions associated with it. For instance,
a camera features “take picture” and “take video” actions, while a switch has a “turn on”
and “turn off” actions. These actions are triggered by the gateway. The actuators are also
plugged into the MicroPnP motes.

Figure 3: HomeSys gateway

HomeSys gateway is a pluggable black-box device that requires no technical knowledge for the
installation. Figure 3 shows how the HomeSys gateway might look like. The gateway relays

1For more information on MicroPnP motes we refer to a very short video available on
http://www.micropnp.com/ipso/index.html

3

the sensor data to the cloud and manages the actuators. The gateway is a Linux platform
running software that our firm will develop. The gateway hardware is sufficiently powerful to
run a high-level execution environment (e.g., to run Java/Python programs) and a modern
database management server (e.g., MySQL). The gateway is typically installed at the front
door of an apartment or a house (the pink icon on figure 1). It connects to the HomeSys cloud
services via a 3G dongle (although connectivity via the home WiFi router is also feasible).

HomeSys cloud is a software system including a portal where the customers of our firm can log
in and view the information about their houses.

Sensors installed on motes are also immediately available to the gateway, which can communi-
cate with them using JSON messages. The MicroPnP supports four types of events.

1. Heartbeat. The motes send regular heartbeats to the gateway indicating that they are
alive.

2. Sensor plugged in. Whenever a new sensor is inserted in the mote, a message is sent to
notify the gateway that a new sensor was added.

3. Data. The motes send information from the sensors.

4. Sensor removed. Whenever a sensor is removed, the mote sends this information to the
gateway.

Only the HomeSys Gateway and the HomeSys Cloud services need to be designed
(as part of the assignment) as the remaining building blocks are provided by third
parties.

2 Description of the problem domain

2.1 Overall system goals

The main goal of the system is to provide the customers with the necessary tools to monitor their
home and to get prompt notifications upon critical events (e.g., smoke, low / high temperature,
etc.). Initially our firm will work with a fixed set of sensors, i.e., temperature, humidity, smoke/gas,
motion, open/closed doors and windows. However, in the future new types of sensors and actuators
can be plugged in so that the customers can have much more thorough information about their
home. For instance, water leak sensors, valves to turn on/off the water supply, actuators to turn
on/off electrical devices, and so on.

In order to achieve the primary goals, HomeSys should realize (at least) the following objectives.

• Home monitoring. All sensor data should be synchronized (i.e. relayed) to the HomeSys
Cloud where the customers can view all the information relevant to their home (possibly, in
a summarized way).

• Home management. Customers should be able to manage their actuators as well as con-
figure actuator actions depending on certain sensor value readings.

• Usability and user friendliness. HomeSys should be completely plug and play requiring
no configuration2.

The remainder of this section zooms in on these objectives.

2In case of the WiFi connectivity, the configuration to make the HomeSys gateway connect to the home WiFi
network will be required though.

4

2.1.1 Home monitoring

The HomeSys gateway should store the sensor data internally and synchronize with the HomeSys
Cloud system regularly. It is essential that the synchronization protocol works correctly in the
presence of non-reliable communication network. The 3G network could switch to Edge and that
would mean that the synchronization protocol could easily get timeouts or network errors. While
basic sensor data (e.g., temperature, humidity readings) can be packaged in very small units of
transfer, image data coming from the camera could be fairly large. Aside from simply syncing the
sensor data, the HomeSys gateway should also monitor the health status of each sensor. Sensors
could break or they could start sending faulty data. MicroPnP motes that are working on a battery
could run out of battery and stop sending data. All this status information should be monitored
by the HomeSys gateway and in case of problems the customer should get an alarm. For a more
detailed description regarding alarms we refer to the next subsections. All the monitoring data will
be available for the customers to consult at any time via the cloud-based services. For instance,
the customer should be able to look at the last pictures taken by the cameras, or view the graph
of the temperatures in the house rooms during the previous days (i.e., historical data).

2.1.2 Home management

We would like to allow the customers to easily create specific events of interest they would like to
be notified about. These events are in fact based on specific sensor data values. Some examples of
events are a temperature value that goes above 35 degrees, motion detected at night, an opened
door, etc. So the customer should be able to receive notifications when these events are detected
by the gateway and they should be able to define rules in the HomeSys cloud about how to handle
the events (e.g., taking a picture when motion is detected).

Aside from simply defining events the customer should be able to indicate that some events
are alarming (e.g., smoke sensor indicating smoke, very high or very low temperatures, very high
or very low humidity values, etc.). Alarms should be handled faster than regular sensor data and
notifications. Customers should be notified immediately upon alarms.

As mentioned, the MicroPnP motes also can have actuators (e.g., buzzer, camera, on/off
switch). Each actuator type has a set of actions/states that it can take. These actions/states
are pre-defined. For instance, a buzzer has “on” and “off” actions, a camera has a “take pic-
ture” action. Customers should have the possibility to define rules that link events to actuator
actions/states. For instance the event “motion is detected” could be linked to the camera “take
picture” action, or “door open” could be linked to a light switch “on” action.

All these rules are managed by the customer on the HomeSys cloud and synchronized to the
gateway regularly.

All notifications are handled by the HomeSys cloud. This means that notifications and alarms
are sent by the gateway to the cloud. The cloud then will notify the customer.

Actuators always have a certain lag before their state changes. While some actuators are pretty
much instant (e.g., buzzer on / off), others may require some time before they complete the action
(e.g., camera shutter speed). This means that an action will be acknowledged twice, i.e., once
when received and once when successfully completed. The gateway will need to make sure that
successive actions are queued and do not interfere with each other.

2.1.3 Usability and user friendliness

Existing systems similar to HomeSys require a relatively complex installation procedure. Some-
thing that most elderly people who are rich enough to have a second home are unwilling to accom-
plish. Thus the PnP goal has three dimensions:

• As soon as HomeSys gateway is plugged into the electrical socket it immediately connects to
the Cloud and starts sending data.

• As soon as a new MicroPnP mote is powered up it is instantly recognized by the HomeSys.

• Sensors that are plugged in (or out) into the MicroPnP motes should also appear instantly
within the HomeSys.

5

These goals are completely feasible from the technological point of view. For instance a 3G
module allows HomeSys to require no configuration to get online. MicroPnP motes broadcast
information as soon as they are powered. The broadcasted information contains both meta infor-
mation regarding the sensors that are available, as well as sensor data. The only step the customer
will have to do is a registration procedure on the HomeSys cloud and a linking of the gateway to
the customer account.

For simplicity reasons we currently assume that each HomeSys gateway and its MicroPnP
motes do not interfere with other HomeSys environments. This means that you don’t have to
worry about two neighbours each having a HomeSys gateway at home.

2.2 Sensors and Actuators

In this section, we briefly describe the sensors and actuators that we will use initially. Note that
in general there are two types of sensors, i.e., analog and digital. The analog sensors require an
explicit action from the MicroPnP mote (or the gateway) to get a value from the sensor. The digital
sensors trigger an event whenever they sense a new value (or a state change). Such a triggered
event is typically linked to what we refer to as callback. The callback is simply a low-level method
that implements the business logic of processing that specific type of sensor data.

Temperature and humidity sensor. This is an analog combined sensor that samples the en-
vironment temperature and humidity. The temperature reading has a range from -30C to
+85C. The humidity reading has a range from 0-100% relative humidity.

Smoke and CO2 sensor. This is a digital sensor that triggers an event in case of a smoke. Only
when a smoke / CO2 is detected the sensor will spring alive. It will also report when the
smoke/CO2 has stopped. It is possible to configure the sensitivity of this sensor. In the first
version this is done using a hardware screw. However, in the future we expect to work with
smoke sensors that will allow adjusting the sensitivity via the software (by sending actuator
commands).

Motion sensor. This is a digital sensor that invokes a callback when motion is detected and when
no motion has been detected after a motion. The motion detector operates on the Infrared
frequency (so light is not strictly necessary to detect motion). It is possible to configure the
sensitivity settings of the motion sensor.

Door/window sensor. This is a digital sensor that invokes a callback when the door/window
opens or closes. The door/window sensor typically consists of 2 magnets and a wire running
from one of the magnets all the way to the sensor plugged into the MicroPnP mote.

Camera actuator. This is a camera that can take pictures or video’s on request. The request to
take a picture, for instance, is not blocking. It means that the camera will callback when the
picture or video is ready. The camera will give an error if two processes try to simultaneously
take a picture or a video.

Buzzer actuator. This is an actuator that takes two commands, i.e., start and stop the buzzer.

Switch actuator. This is an actuator that can be hooked up to a variety of devices and turn
them on and off using the appropriate commands.

2.3 Service Level Agreements

Our firm offers a Service Level Agreement (SLA) enclosed as a part of the provided support towards
our customers. This agreement stipulates certain quality requirements (in terms of performance
and availability). For example, there should be an upper limit in the time it takes for a notification
to reach its recipient. Evidently the upper limit for alarm notifications should be much more strict
than for normal notifications (e.g., 95% of alarm notifications should reach the recipient within 30
seconds, and 95% of event notifications should reach the recipient within 5 minutes).

Aside from the notification/alarm SLA, our firm will also provide different SLAs for customers.
For instance, SLA level 1 will allow customers to access their data only for the past month. The

6

synchronization of data between the gateway and the cloud will take place every 15 minutes. SLA
level 2 customers will be able to access the data for the past 6 months. The synchronization of data
between the gateway and the cloud will take place every 5 minutes. SLA level 3 customers will be
able to access their data for the past years. The synchronization of data between the gateway and
the cloud will happen every minute. Customers can easily move from one SLA level to another.
Hence, the SLA information should be synchronized to the gateway as well.

Also, our company has to negotiate a number of service level agreements with several third
parties, like the telecom operators, to ensure the desired degree of remote monitoring module
connectivity.

3 Main stakeholders

This section provides an overview of the main stakeholders in our system and their point of interest.

Customers. The customers’ main stake in the system is that they would like to have a tool to
monitor their home, define events of interest in a user-friendly fashion, get prompt notifications
upon these events and link these events to specific actions. They would also like to add to plug new
sensors/actuators to their HomeSys installation. Obviously, security and privacy related concerns
are of the utmost importance to them.

MicroPnP mote manufacturer. The MicroPnP motes will be hubs for plugging multiple
sensors and actuators. These motes will be linked to the HomeSys gateway via a mesh-up.

HomeSys call center. The HomeSys call center employs HomeSys operators that should follow
up on various tasks. The operators take on every sort of question about the system from the
customer’s side and help them tackle any issues with the installation and configuration. The call
center is a service offered by our company.

HomeSys system administrator. The HomeSys system administrator monitors the cloud
system for its correct working. They are responsible for the scalability of the cloud system. They
are notified in case of any alarming events.

Telecom operators. Telecom operators provide means for the gateways to communicate with
the cloud and vice versa. A service level agreement between our company and the telecom operators
determines the capabilities of these communication channels.

Cloud providers. The cloud providers provide virtual servers on the cloud that will be used
to deploy the HomeSys cloud services. A service level agreement between our company and the
cloud providers determines the server uptime constraints as well as the reaction time in case of
problems.

Market researchers and statisticians. Given that the HomeSys produces a vast amount of
data, this data could be used in various types of market research and the generation of certain
statistics. For instance, it might be of interest to know the average temperature in houses around
the year. This data will be sold by our firm in an anonimized format.

4 Additional constraints

4.1 Legal constraints

As the HomeSys gateway will feature a 3G connectivity it is essential to ensure all regulations
regarding the SIM card that will be installed on the gateway. End customers will have to
explicitly agree to terms and conditions regarding the use of the SIM card. This will make sure
that the end users are liable for any misuse of the SIM cards. Our firm is also likely to consider

7

to use SIM cards from the cheapest mobile operators across EU (as the roaming costs are likely to
be dropped after 2017). This might also have some legal implications regarding the end customer
private information (such as, social security number and address).

Further, the privacy of the customer personal data as well as the sensor data need to be
preserved in order to avoid leaks. This information needs to be transmitted confidentially, stored
securely and preserved from unauthorized access. The customers also need to agree to the privacy
policy of our firm.

4.2 MicroPnP constraints

The MicroPnP motes are constraint by the trade-off between latency, energy and bandwidth.
Certain MicroPnP motes are battery operated which means that they sleep most of the time. The
lower the latency of the motes, the higher the energy consumption. MicroPnP motes have a mesh
network topology (i.e., data could be relayed through intermediary motes that are sometimes only
used as intermediaries). This has an impact on the bandwidth that is currently limited to roughly
26 packets per second. The lower the latency of the motes the less the bandwidth.

5 Scenarios

In this section, we present a set of concrete scenarios concerning the typical installation and usage
of the gateway and the cloud services. The presented scenarios involve a representative customer
named John Appleseed who has a summer house in Marstrand, on the seaside of western Sweden.

5.1 HomeSys gateway installation

John buys in a store a HomeSys 3G gateway. John plugs the gateway into an electrical outlet
somewhere in his house. Once the gateway is powered, it immediately connects to the cloud and
sends information regarding its configuration. The cloud recognizes the HomeSys by its serial
number and saves the connection timestamp and the initial configuration.

5.2 Customer profile creation

John goes to the HomeSys cloud and creates an account. The account creation requires John to
enter the serial number of the HomeSys gateway. If the serial number is not found within the
HomeSys cloud the account creation is disallowed. Otherwise John’s account gets successfully
created and from this moment on John can log in into his account.

5.3 MicroPnP mote installation

Together with the gateway John also buys a MicroPnP mote. He plugs the MicroPnP mote in
his bedroom into the power socket. The mote immediately sends a broadcast notification which
is received by the gateway. The gateway stores the information and upon the next next data
transmission to the cloud includes the new mote information.

5.4 Sensor plugged in into MicroPnP mote

John buys temperature, humidity, smoke and motion sensors. He plugs them in one by one into
the installed MicroPnP mote. The mote immediately recognizes the new hardware and sends this
information to the gateway. The gateway stores the new sensor information and synchronizes this
information to the cloud as well.

5.5 Actuator plugged in into MicroPnP mote

John buys a second MicroPnP mote which he installs above his house entrance door (see scenario
5.3). John buys a camera, a light switch and a buzzer. He plugs them in one by one into the newly
installed MicroPnP mote. The mote immediately recognizes the new hardware and sends this

8

information to the gateway. The gateway stores the new actuator information and synchronizes
this information to the cloud as well.

5.6 Sensor moved

John decides to move the smoke sensor from the bedroom to the entrance door mote. So he plugs
the smoke sensor out of the MicroPnP mote in the bedroom. The mote immediately senses this
and notifies the gateway. The gateway will store this information and notify the cloud that the
smoke sensor is no longer used in the bedroom mote.
Then John plugs the smoke sensor in the mote above the entrance door (see scenario 5.4).

5.7 MicroPnP analog sensor data

Temperature and humidity sensors are analog sensors that periodically sample the environment
for temperature and humidity values. MicroPnP periodically invokes the temperature / humidity
sensors to sample the environment and sends this data to the gateway. The gateway stores this
data.

5.8 MicroPnP digital sensor data

Smoke and motion sensors are digital which means that whenever the sensor value changes (e.g.,
from no smoke to smoke, or from no motion to motion detected) the sensor invokes a callback on
the MicroPnP. The MicroPnP sends the new value to the gateway where this information is stored.

5.9 Normal sensor data transmission

At regular intervals the gateway (according to its configuration) sends data to the HomeSys cloud.
By data we mean the following:

• information on which motes are installed,

• information about the sensors that are installed on each mote,

• information about the actuators that are installed on each mote,

• the sensor data,

• the actuator states.

Note that it is up to you to decide which data to send and how. For instance, you may send all
this information on every transmission, or you could send only the new information. On every
transmission the cloud can also send data back to the gateway (e.g., configuration data).

5.10 Data viewing

John logs in into his account on the HomeSys cloud and gets a dashboard with all his sensor data.
For each sensor type he can request a more detailed view of the data.

5.11 Notification profile

John logs in into his account and configures an email address for all notifications and a mobile
phone number for all alams (see scenario 5.12).

5.12 Event configuration

John logs into his account and creates three event configurations. The first event is a simple
notification upon motion at night. The second event is a door opening that is then linked to the
camera to take a picture. Finally, the third event is a smoke alarm that is linked to the buzzer on
action. The last event is marked as an alarm event. This configuration data is sent to the HomeSys
gateway, e.g., when the gateway connects to transmit sensor data (see scenario 5.9). The gateway
receives this information and stores it.

9

5.13 Event notification transmission

A HomeSys gateway motion sensor records motion at 3AM and a notification is created and sent
within a specific timeframe to the cloud. The cloud receives this notification and sends an email
to the email address provided by John.

5.14 Alarm transmission

John’s dad couldn’t fall asleep and went for a smoke. Not knowing anything about the new gadget,
he lighted up a cigarette before leaving the house, which triggered the smoke alarm. HomeSys
gateway sends this info to the cloud. The cloud in turn saves this data and sends an SMS to John.

5.15 Actuator action

John has changed the configuration from the cloud so that his gateway will always take a picture
when the door is opened. Upon such an event the gateway triggers the camera to take a picture.
The camera picture is stored as sensor data and it is linked to the trigger event. When John checks
his data on the cloud (see Data viewing) he can see the picture linked to the door opening.

5.16 Actuator malfunctioning

The gateway sends a new actuator action to one of the MicroPnP motes to switch off the light.
The mote acknowledges that the command was correctly received, however after some time the
mote still fails to report that the command was successfully executed. The gateway tries again, but
after several failed attempts the actuator is flagged as malfunctioning and a new alarm is created
and sent to John (via the cloud).

10

E. Documents provided in the lab package

E.2 HomeSys Requirement Specification

XXXIX

Home Monitoring System (HomeSys) – Requirements

DAT220/DIT544 - Advanced Software Architecture

2016

Contents

1 Functional requirements 2
1.1 UC1 : Log in . 2
1.2 UC2 : Customer profile creation . 2
1.3 UC3 : Customer profile activation . 3
1.4 UC4 : Associate gateway to customer . 3
1.5 UC5 : Send configuration to gateway . 4
1.6 UC6 : Add a mote to the customer home . 5
1.7 UC7 : Plug in a sensore in a mote . 5
1.8 UC8 : Send sensor data to the cloud . 6
1.9 UC9 : Rule (re)configuration . 6
1.10 UC10 : Evaluate rules on gateway . 7
1.11 UC11 : Notify customer . 7
1.12 UC12 : View sensor data in the cloud . 7
1.13 UC13 : View events and alarms in the cloud . 8
1.14 UC14 : Changing of service level agreement . 8
1.15 UC15 : Unregister customer . 8
1.16 UC16 : Customer invoicing . 9

2 Quality requirements 10
2.1 QAS1 : HomeSys Cloud sensor data DB failure . 10
2.2 QAS2 : HomeSys Gateway not sending data to the Cloud provider 10
2.3 QAS3 : Timely notification of alarms . 11
2.4 QAS4 : Large number of Customers . 11
2.5 QAS5 : Authentication of Cloud users . 12
2.6 QAS6 : Users are accountable for their actions . 12

1

1 Functional requirements

1.1 UC1 : Log in

• Primary actor: Customer/Operator

• Interested parties:

– HomeSys Cloud: wants to authenticate its Customers/Operators for access control and
traceability.

– Customer/operator : wants to be able to use HomeSys Cloud.

• Preconditions:

– The Customer/Operator is registered into the system and has credentials to prove their
identity.

• Postconditions: The Customer/Operator has authenticated themself in HomeSys Cloud.

• Main scenario:

1. The Customer/Operator indicates they want to authenticate into HomeSys Cloud.

2. HomeSys Cloud asks them to provide their credentials (e.g., email and password).

3. The Customer/Operator provides their credentials.

4. HomeSys Cloud verifies that the provided credentials are correct and authenticates the
Customer/Operator.

• Alternative scenarios:

1. 4b. The provided credentials are incorrect, resume at step 2.

1.2 UC2 : Customer profile creation

• Primary actor: Customer

• Interested parties:

– HomeSys Cloud : wants its customers to create profile in order to monitor their home.

– Customer : wants to gain access to HomeSys Cloud.

• Preconditions:

– Customer needs to have the serial number of the HomeSys Gateway.

• Postconditions:

– The Customer is added to the HomeSys Cloud list of users and his profile is created.

– A HomeSys Gateway is now associated to a Customer.

• Main scenario:

1. The Customer indicates they wants to start the registration process.

2. HomeSys Cloud asks the Customer for the profile information. This includes at least:

(a) Primary email and password (credentials)

(b) Full name and address

(c) Cell phone number and e-mail address (for notifications)

(d) Type of subscription (e.g., gold, silver, bronze)

(e) Timezone of the customer

3. The Customer enters the requested information.

2

4. HomeSys Cloud creates the profile for the new Customer

5. HomeSys Cloud sends a confirmation to the Customer (e-mail or SMS, Include:. UC11:
Notify customer)

6. HomeSys Cloud marks the profile as ‘pending’ until a confirmation is received (cf. UC3:
Customer profile activation)

• Alternative scenarios:

1. 3b. The chosen username already exists. HomeSys Cloud asks the Customer to choose
a new username (step 2.)

2. 3c. The selected password is too short. HomeSys Cloud asks to choose a new password
(step 2.)

1.3 UC3 : Customer profile activation

• Primary actor: Customer

• Interested parties:

– HomeSys Cloud : wants to validate the email of the Customer.

• Preconditions:

– Customer has completed UC2: Customer profile creation.

• Postconditions:

– The Customer profile is active (i.e., no longer flagged as ‘pending’).

• Main scenario:

1. The Customer receives the notification of a profile being created for them.

2. The Customer confirms the profile creation (e.g., by clicking a link).

3. The HomeSys Cloud asks the Customer if they want to register a Gateway (Include:. UC4:
Associate gateway to Customer).

• Alternative scenarios:

1. 2b. The Customer did not confirm their profile creation within a certain time interval.
The confirmation link becomes invalid and the user must follow the “forgot password
procedure” to activate the profile. The registration of gateway will be initiated by the
Customer at a later time.

1.4 UC4 : Associate gateway to customer

• Primary actor: Customer

• Interested parties:

– Customer : wants the devices they bought to synchronise data with HomeSys Cloud.

• Preconditions:

– The Customer profile is already active in HomeSys Cloud (cf. UC3: Customer profile
activation).

• Postconditions: The HomeSys Cloud is accepting data from the Gateway.

• Main scenario:

3

1. The Customer indicates they wants to associate a newly-installed HomeSys Gateway to
the HomeSys Cloud.

2. The Customer enters the serial number of the gateway.

3. HomeSys Cloud validates that the provided serial number is valid (from a list of legit
gateways) and not already associated to some other Customer.

4. The HomeSys Cloud associates the Gateway with a default configuration, depending
on the Customer plan (e.g., gold, silver, bronze). The configuration will be sent to the
Gateway the first time it connects to the Cloud (Include: UC5: Send configuration to
gateway).

5. HomeSys notifies the Customer that the gateway is successfully registerd (Include: UC11:
Notify customer).

• Alternative scenarios:

1. 4b. The entered serial number is invalid or links to an already associated device. Home-
Sys Cloud signals this to the Customer. Return to step 3.

1.5 UC5 : Send configuration to gateway

• Primary actors: HomeSys Cloud

• Interested parties:

– Customer : wants his devices to operate correctly and according to his defined profile.

• Preconditions:

– The HomeSys Gateway is registered in HomeSys Cloud with a Customer.

– Configuration data has changed, e.g., the initial configuration is to be sent, the Customer
has changed their plan, a new alarm has been defined, etc.

– The Gateway has made contact with the Cloud (as no configuration can be pushed
without the Gateway contacting the Cloud first)

• Postconditions:

– The HomeSys Gateway has received and stored the configuration data.

– The HomeSys Gateway is synchronizing (and communicating) with the Cloud according
to the Customer profile.

• Main scenario:

1. HomeSys Gateway contacts the Cloud, which replies with a command to download a
new configuration

2. The HomeSys Gateway downloads the configuration data, stores it and processes it.

3. The HomeSys Gateway data sends a confirmation message to HomeSys Cloud.

4. HomeSys Cloud receives the confirmation message and records that the HomeSys Gate-
way has successfully received and processed the configuration data.

5. The Gateway runs the necessary reconfigurations

• Alternative scenarios:

1. 1b. After some time, the Gateway has still not received a command to download a new
configuration (which has been ready for a while).

2. 1c. HomeSys Cloud notifies the HomeSys Call Center, which will inform the Customer

3. 3b. Something went wrong and the HomeSys Cloud did not receive a confirmation
before the deadline. The HomeSys Cloud re-sends the configuration data: Continue
with step 1.

4. 3c. After N attempts, HomeSys Cloud still did not receive a confirmation message from
the device and notifies the HomeSys Call center.

4

1.6 UC6 : Add a mote to the customer home

• Primary actor: Customer

• Interested parties:

– Customer : wants to add a mote to enable the addition of new sensors/actuators.

• Preconditions: The HomeSys Gateway is powered up and is within physical reach for the
mote.

• Postconditions:

– HomeSys Gateway has stored the new mote information.

– HomeSys Cloud has stored the new mote information.

• Main scenario:

1. The MicroPnP mote broadcasts a heartbeat to the HomeSys Gateway.

2. The HomeSys Gateway receives the heartbeat and stores the new mote information in
the local database.

3. The HomeSys Gateway includes the mote information upon the next connection to the
Cloud.

4. The HomeSys Cloud stores the mote information in the database.

• Alternative scenarios:

1. 2b. The Gateway is too far from the mote to receive the data. The MicroPnP will keep
on broadcasting the data until it can reach the gateway.

1.7 UC7 : Plug in a sensore in a mote

• Primary actor: Customer

• Interested parties:

– Customer : wants to add a new sensor to his house.

• Preconditions: There is a MicroPnP with an available open sensor plug-in port.

• Postconditions:

– HomeSys Gateway has stored the new sensor information.

– HomeSys Cloud has stored the new sensor information.

• Main scenario:

1. The Customer plugs in the a sensor in the MicroPnP mote.

2. The mote recognizes the sensor and sends a POST request to the HomeSys Gateway to
notify that a new sensor has been plugged in.

3. The HomeSys Gateway stores the sensor information in its database.

4. The HomeSys Gateway sends the new sensor information to the Cloud.

5. The HomeSys Cloud stores the mote information in the database.

• Alternative scenarios:

1. 2b. The MicroPnP mote cannot recognize the mote and simply ignores it.

5

1.8 UC8 : Send sensor data to the cloud

• Primary actor: HomeSys Gateway

• Interested parties:

– HomeSys Cloud : wants to present sensor data to the paying Customers.

• Preconditions: The HomeSys Gateway has been registered and associated to the appropri-
ate Customer.

• HomeSys Gateway has new sensor data in store for the Cloud.

• Postconditions:

– HomeSys Cloud has stored and processed the sensor data.

• Main scenario:

1. The HomeSys Gateway sends the latest sensor data (after a fixed time interval).

2. The HomeSys Cloud confirms having received the transmission.

3. The HomeSys Cloud looks up the Customer associated with the Gateway sending these
sensor data.

4. The HomeSys Cloud stores the measurements in the database.

• Alternative scenarios:

1. 2b. The Gateway does not receive the confirmation from the Cloud and sends the data
again

2. 3b. The Gateway is not registered and the Cloud discards the sensor data

1.9 UC9 : Rule (re)configuration

• Primary actor: Customer

• Interested parties:

– Customer : wants to define event-handling rules. They might need to (i) define events
of interest they would be notified about, (ii) link events to actuators actions/states, (iii)
mark some events as alarming events.

• Preconditions: The Customer is logged in.

• Postconditions:

– HomeSys Cloud has updated the customer profile.

– HomeSys Cloud has prepared to reconfigure the Customer’s HomeSys Gateway accord-
ing to the customer profile.

• Main scenario:

1. The Customer indicates they wants to configure the rules in their profile.

2. HomeSys Cloud shows the current rules and details about available motes, sensors,
actuators and the actions associated with specific actuators.

3. The Customer provides the new rules for their profile and can delete/update existing
rules.

4. The HomeSys Cloud validates the Customer rules (e.g., to spot inconsistencies)

5. HomeSys Cloud stores the new profile and confirms this to the Customer.

6. HomeSys Cloud prepares to update the Gateway (Include: UC5: Send configuration
to gateway.).

6

1.10 UC10 : Evaluate rules on gateway

• Primary actor: HomeSys Gateway

• Interested parties:

– Customer : wants to be notified of certain events/alarms in the system.

• Preconditions: HomeSys Gateway has received new sensor data.

• Postconditions: The Customer has received the notification.

• Main scenario:

1. The HomeSys Gateway has processed some sensor data, which has activated a rule.

2. The Gateway performs the actuations if necessary (e.g., sending an action to an actua-
tor)

3. The Gateway immediately sends an event or alarm to the Cloud.

4. The HomeSys Cloud receives the event/alarm from the HomeSys Gateway.

5. The event/alarm is stored (e.g., for the benefit of the HomeSys Call Center).

6. The HomeSys Cloud notifies the Customer (Include: UC11: Notify customer.).

1.11 UC11 : Notify customer

• Primary actor: HomeSys Cloud

• Main scenario:

1. The HomeSys Cloud has to notify the Customer of an event or alarm.

2. The HomeSys Cloud looks up for the communication channel to use for the Customer.

3. HomeSys Cloud constructs the message for that specific communication channel.

4. HomeSys Cloud sends the message to the Customer.

5. The message is stored (e.g., for the benefit of the HomeSys Call Center).

1.12 UC12 : View sensor data in the cloud

• Primary actor: Customer

• Interested parties:

– Customer : wants to view the historical data about their home.

• Preconditions:

– The Customer is logged in.

– There is a HomeSys Gateway associated to the Customer.

• Main scenario:

1. HomeSys Cloud shows the list of sensors monitored by HomeSys Gateway for the Cus-
tomer.

2. The Customer selects the sensor for which they wants to view historical data.

3. The Customer chooses the desired period of consumption (within the limitations due to
the subscription plan).

4. HomeSys Cloud fetches the historical data and displays the data graphically.

7

1.13 UC13 : View events and alarms in the cloud

• Primary actor: Customer

• Interested parties:

– Customer : wants to view the historical data about their home.

• Preconditions:

– The Customer is logged in.

– There is a HomeSys Gateway associated to the Customer.

• Main scenario:

1. The Customer requests the list of past events triggered by rules

2. The HomeSys Cloud shows the list of notifications and alarms for the Customer so far
(according to the service level agreement).

1.14 UC14 : Changing of service level agreement

• Primary actor: Customer

• Interested parties:

– Customer : wants to be able to choose a different level of service.

– HomSys Cloud : wants to offer and sell additional services.

• Preconditions:

– The Customer has created a profile.

• Postconditions:

– The Gateway is updated.

• Main scenario:

– The Customer wants to change their plan (e.g., to get premium services for a higher
price)

– HomeSys Cloud offers possible agreement scenarios to the Customer.

– The Customer chooses and agrees on specific plan.

– The HomeSys Cloud updates the Customer profile

– The HomeSys Cloud logs the necessary info in order to be able to produce a correct and
fair invoice at the end of the payment period.

1.15 UC15 : Unregister customer

• Primary actor: Customer

• Interested parties:

– Customer : does not want to use HomeSys anymore.

• Preconditions:

– The Customer was registered to HomeSys Cloud.

• Postconditions:

8

– The Customer is unregistered from HomeSys Cloud. His profile is marked as inactive.

– HomeSys Cloud does not accept anymore the data sent by the Gateway.

– The final invoice is generated and the Customer is not charged anymore.

• Main scenario:

1. The Customer indicates they want to start the unregistration process.

2. HomeSys Cloud deactivates the Customer profile and unregisters their Gateway.

3. HomeSys Cloud removes all associated sensor data from the database.

1.16 UC16 : Customer invoicing

• Primary actor: HomeSys Cloud

• Interested parties:

– Customer : want to be charged with the correct amount.

• Preconditions:

– The scheduled monthly invoicing time has come.

• Postconditions:

– The Customer has received an e-invoice.

• Main scenario:

1. The HomeSys Cloud computes the charge for the Customer, according to the Customer
plan and the potential plan change the Customer has made during the invoicing period.

2. A notification is sent to the user with the payment details (amount, account, OCR) and
a breakdown of the costs.

9

2 Quality requirements

The quality requirements are documented in the form of quality attribute scenarios.

2.1 QAS1 : HomeSys Cloud sensor data DB failure

The internal database responsible for storing measurements fails/crashes.

• Source: Internal

• Stimulus: The database in HomeSys Cloud responsible for storing all sensor data fails or
crashes.

• Artifact: Internal subsystem

• Environment: Normal execution

• Response:

– The failure does not affect the availability of other types of persistent data, such as the
customer profiles, configuration data, invoicing data, etc.

– Detection:

∗ HomeSys Cloud is able to detect a problem with the database and goes into a
maintenance mode.

∗ The System Administrator is notified of this problem.

– Resolution:

∗ Once the database has crashed or failed the HomeSys Cloud switches to a replica
of the data automatically (no impact on the service continuity).

∗ The administrator replaces the failing database component.

∗ The replacement is synchronized with the replica.

∗ The system returns to normal mode.

• Response measure:

– A fully synced replica is available 100% ot the time on stand-by in a physically different
location.

– Detection of failures happens within 5 seconds.

– The System Administrator are notified within 1 minute.

– After a failure, the normal mode is restored within 2 hours.

– During maintenance mode, no new measurements are lost.

2.2 QAS2 : HomeSys Gateway not sending data to the Cloud provider

The Cloud provider stopped receiving data from a registered HomeSys Gateway.

• Source: Internal or External

• Stimulus:

– The external communication channel between the HomeSys Gateway and the HomeSys
Cloud operators is failing,

– HomeSys Gateway has failed, or

– an internal communication component in HomeSys Gateway has failed

• Artifact: external device, external communication channel(s) or internal communication
(sub)System(s)

10

• Environment: Normal mode

• Response:

– Detection:

∗ The HomeSys Cloud services is able to detect that the Gateway is not sending data
anymore.

∗ The HomeSys Gateway should be able to detect the failure of an internal component
related to the communication with the Gateways.

– Resolution:

∗ The HomeSys Cloud should log when sensor data from a Gateway did not arrive.

∗ After a grace period (which depends on the subscription plan of the Customer), the
HomeSys Cloud notifies the HomeSysCall Center about the problem.

∗ The Call Center contacts the customer during business hours to solve the problem.

∗ If the Gateways comes back online, the Call Center is notified and the problem is
flagged as solved.

• Response measure:

– The detection happens within 5 seconds after the grace period has expired.

– The HomeSys Call Center is notified within 1 minute.

2.3 QAS3 : Timely notification of alarms

Notification of the Customer (and possibly HomeSys Call Center) should be sent quickly and
according to given priorities.

• Source: E.g., smoke or humidity sensor / HomeSys Gateway

• Stimulus: The sensor data trigger a rule, resulting in an alarm.

• Artifact: System

• Environment: Normal mode

• Response:

– The notification of alarms must be prioritized over the processing of sensor data and
the notification of other (non-alarm) events.

– Certain alarms (e.g., smoke) have priority over other alarms (e.g., high humidity) and
the priorities are set centrally (in a system-wide manner) in the Cloud. The priorities
of alarms are defined as green, yellow and red. The assignment of alarms to priorities
and can be altered.

• Response measure:

– All notifications of alarms must be sent to the Customer within 10 seconds.

2.4 QAS4 : Large number of Customers

HomeSys should be hable to handle a successful business with several Gateways being sold.

• Source: Customer/Gateway

• Stimulus: A Customer has accessed their profile on the Cloud, or a Customer’s Gateway
has sent sensor data

• Artifact: The HomeSys Cloud

11

• Environment: Normal mode

• Response:

– The HomeSys Cloud replies to the service requests of the Customers, or processes the
data from the Gateways.

• Response measure:

– HomeSys should be able to able to deal with 100,000 Gateways and, accordingly, to
handle a large number of clients connected to the Customers.

2.5 QAS5 : Authentication of Cloud users

Any user-facing functionality of HomeSys should be only accessible to users with proper credentials
(Customer, System Administrator, or Call Center Operator).

• Source: Customer/System Administrator/Call Center Operator

• Stimulus: A Customer accesses their profile, or any other functionality of the Cloud (same
for other user types)

• Artifact: The HomeSys Cloud

• Environment: Normal mode

• Response:

– At the beginning of each session, the user has to log in with credentials (e.g., email and
password) and obtains a session ID (which serves the purpose of authentication token).

– The HomeSys Cloud checks that the user is using a valid and secure session ID.

• Response measure:

– No functionality is accessible without a valid authentication token.

– The authentication token is hard to guess.

2.6 QAS6 : Users are accountable for their actions

Any action initiated by a user should be logged securely.

• Source: Customer/System Administrator/Call Center Operator

• Stimulus: A Customer accesses their profile, or any other functionality of the Cloud (same
for other user types)

• Artifact: The HomeSys Cloud

• Environment: Normal mode

• Response:

– Before servicing any request, the request parameters (including the service name), the
customer identity, the time, and other contextual information are logged in a secure
DB.

• Response measure:

– No functionality is accessible without a valid trace.

12

E. Documents provided in the lab package

E.3 HomeSys Architectural Description

LII

Home Monitoring System (HomeSys) - Architectural description

DAT220/DIT554 - Advanced Software Architecture

2016

Abstract

HomeSys is used for remote monitoring of residential apartments and houses. The main goal
of the system is to provide the customers with the necessary tools to monitor their home and to
get prompt notifications upon critical events (e.g., smoke, low / high temperature, etc.).

This document describes an architectural design for the Home Monitoring System (HomeSys).
The final architecture has been designed based on the domain analysis, the requirements and the
priorities of these requirements.

Contents

1 Context diagram 2

2 Gateway component diagram 2

3 Cloud component diagram 3
3.1 Operator Facade decomposition . 4
3.2 Customer Facade decomposition . 4
3.3 Gateway Facade decomposition . 6
3.4 Database decomposition . 7

4 HomeSys deployment diagram 7

1

Figure 1: HomeSys context diagram

1 Context diagram

The context diagram of the HomeSys is given in Figure 1. As shown, three distinct external entities
communicate with the system:

• The mote is a hub where the sensors and actuators are plugged onto and installed throughout
the house. The mote sends sensor data to the gateway and can get actuations from the gateway.

• The operators use the appropriate operator interface, take on every sort of question about
the system from the customer’s side and help them tackle any issues with the installation and
configuration.

• The HomeSys Cloud services are accessible to the customer via the browser or a mobile app.
These services allow the user to manage the HomeSys as well as view all the historical sensor
data on the information dashboard.

2 Gateway component diagram

The HomeSys gateway is a hardware device that enables smart home automation. It relays the sensor
data to the cloud and manages the actuators. The decomposition of the Gateway component is
presented in Figure 2. As shown, the Gateway component is decomposed into six subcomponents: the
RuleEngine, the GatewayDB, the MicroPnP component, the GatewayWatchDog, the PeriodicScheduler
and the CloudComm.

RuleEngine is responsible for managing defined rules. The RuleEngine stores all the rules in the
GatewayDB. The new rules that are added by the customer on the cloud are synced to the RuleEngine
via the CloudComm. The GatewayDB is used by the MicroPnP to store the newly received sensor
data. The MicroPnP also notifies the RuleEngine to evaluate the rules when new data is received. If
required by the rules the RuleEngine will invoke the actuators via the MicroPnP and trigger alarms
and/or events via the CloudComm.

CloudComm is responsible for the communication between the Cloud services and the Gateway.
The CloudComm will periodically communicate to the Cloud to send sensor data (fetched from the
GatewayDB) and fetch new user configuration. The configuration can be new rules that are synced

2

Figure 2: HomeSys Gateway

with the RuleEngine or SLA stored in the GatewayDB. The CloudComm is triggered by the Period-
icScheduler component to start the Cloud synchronisation as well as by the RuleEngine to send any
alarm or event data.

GatewayWatchDog is used to detect if sensors are working properly. This component will retrieve
all information from the GatewayDB upon initial startup and will receive periodic sensor heartbeat
updates. If a heartbeat is missing this component will trigger an alarm by leveraging the CloudComm.

No further decomposition is provided for the Gateway subcomponents.

3 Cloud component diagram

The HomeSys cloud is a software system including a portal where the customers can log in and view
the information about their houses.

The decomposition of the Cloud component is presented in Figure 3. As shown, the Cloud com-
ponent is decomposed into five subcomponents: the GatewayFacade, the NotificationController, the
OperatorFacade, the CustomerFacade and the Database.

GatewayFacade is responsible for the communication between the gateway and the Cloud. It
receives sensor, event and alarm data from the Gateway and allows the Gateway to fetch the new
configuration data. The decomposition of the GatewayFacade component is presented in Section 3.3.

NotificationController sends notifications to customers via different communication channels (i.e.,
email, SMS or mobile app push) based on the configuration stored for the specific customer in the
Database.

OperatorFacade authenticates operators and allows them to manage practically everything to sup-
port the customers. The decomposition of the OperatorFacade component is presented in Section
3.1.

CustomerFacade authenticates customers and allows them to manage their profile, their HomeSys
settings and view the own data. The decomposition of the CustomerFacade component is presented

3

Figure 3: HomeSys Cloud

in Section 3.2.
Database component stores all relevant data. This component is further decomposed (see 3.4).

3.1 Operator Facade decomposition

OperatorFacade authenticates operators and allows them to support customers by managing their
data. The decomposition of the OperatorFacade is presented in Figure 4. As shown, the Oper-
atorFacade component is decomposed into three subcomponents: the OperatorLoginController, the
OperatorWorkbench and the AccountabilityController.

OperatorLoginController is responsible for authentication of operators (via username and pass-
word). This component will also validate the credentials (e.g., using a session ID) upon each request
handled by the OperatorWorkbench.

OperatorWorkbench provides operators with the necessary toolset to manage all customer data.
Upon every request to this component it will validate the operator credentials by using the Operator-
LoginController.

AccountabilityController records and stores all actions of operators.

3.2 Customer Facade decomposition

The CustomerFacade authenticates customers and allows them to manage their own profile and data.
The decomposition of the CustomerFacade is presented in Figure 5. As shown, the CustomerFacade
component is decomposed into four subcomponents: the AccountabillityControler, the CustomerLogin-
Controller, the DataVisualisation and the ProfileAndRules.

CustomerLoginController is responsible for the registration of customers as well as their authenti-
cation (via email and password). This controller will be always invoked (by the DataVisualization and
the ProfileAndRules) to validate the credentials of the customer (e.g., by checking a session ID).

DataVisualisation is used for the presentation of data on various customer devices. This component
will use the CustomerLoginController to validate the customer credentials.

4

Figure 4: Operator Facade

Figure 5: Customer Facade

5

Figure 6: Gateway facade

The ProfileAndRules provides customers with the necessary tools to manage their own data, set-
tings, rules, etc. This component will use the CustomerLoginController to validate the customer
credentials.

The AccountabillityControler records and stores all actions performed by the customers.

3.3 Gateway Facade decomposition

The GatewayFacade is responsible for communication between the gateway and the cloud. It receives
sensor, event and alarm data from the Gateway and provides the Gateway with configuration data.
The decomposition of the GatewayFacade is presented on figure 6. The GatewayFacade component is
decomposed into six subcomponents: the SensorDataQueue, the GatewayFactory, the CloudWatchDog,
the ConfigurationController, the EventQueue and the AlarmQueue.

The SensorDataQueue processes all the sensor data received from the gateway. This component
will (upon each sensor data connection) notify the CloudWatchDog that the gateway is alive. It will
also provide the GatewayFactory with information on new gateway connections that are still unknown
to the cloud.

The GatewayFactory is responsible for initialisation of the new HomeSys Gateways. The initial-
ization means that once a new gateway starts sending data it will be automatically added to the
database.

CloudWatchDog is notified every time a gateway has made a connection. This component will
fetch from the database the expected connection intervals and it will trigger an alarm when too many
connections have gone missing.

ConfigurationController enables the gateways to get the new configuration parameters. This com-
ponent simply fetches the configuration from the database and provides it to the HomeSys gateway.
Note that a confirmation is sent by the HomeSys gateway to confirm the receipt of the new configura-
tion.

EventQueue processes all events received from the gateway and stores them in the database.
AlarmQueue is similar to the EventQueue, however it is operating with strict deadlines in order to

notify the customers promptly.

6

Figure 7: Database

3.4 Database decomposition

The Database component stores all relevant data. The decomposition of the Database component is
presented in Figure 7. As shown, the Database component is decomposed into four subcomponents:
the DBMonitor, the DataDB, the OperatorDB and the CustomerDB.

The DBMonitor is used as a replication manager for the DataDB component, which contains sensor
data, events, alarms and gateway configurations. The idea is that the DBMonitor will regularly ping
the DataDB and if it fails the DBMonitor will immediately switch to the replica database (see also
Section 4).

OperatorDB component stores all the data that is relevant to operators.
CustomerDB component stores all the customer related data.

4 HomeSys deployment diagram

The Deployment diagram is shown in Figure 8. The components are deployed in three groups:

1. Front-end nodes hosting facades and supporting components. As shown in bottom part of
the figure, two nodes are connected to the outside world: the Operator Facade Node and the
Customer Facades Node.

2. Business nodes hosting the business logic. As shown in the left part of the figure, this group
includes: several Gateway Nodes (the physical gateway devices) and the Gateway Communication
Node (dealing with the communication with gateways from the cloud side).

3. Back-end nodes hosting the data. As shown in the right part of the figure, this group includes:
the Database Monitoring Node (used for pushing and pulling data to and from database), the
Primary Database Node and the Secondary Database Node.

7

Figure 8: HomeSys deployment diagram

8

	List of Figures
	List of Tables
	Introduction
	Research questions
	Scientific contribution
	Methodology
	Thesis outline

	Considering Security in Design
	Software design and design flaws
	Design Principles
	Design and Security Patterns
	Design Flaws

	Current research approaches on identification of design flaws
	Threat Modeling and Risk Assessment Methods
	STRIDE and DREAD
	TRIKE
	Use Cases and Misuse Cases
	OCTAVE
	PASTA
	TVRA
	EVITA - THROP
	HEAVENS Security Model

	Compiling the Catalog
	Defining the scope of design flaws
	Data collection
	Threat and Vulnerability Taxonomies
	Vulnerability Databases
	Other Resources
	Related Work Regarding Catalogs of Design Flaws

	Deriving a list of most common threats and weaknesses.
	Compile the catalog of design flaws.
	Defining detection guidelines.

	Evaluation of the Catalog
	Preparation for the evaluation
	Selected measurements and metrics
	Pilot run

	Evaluation with students
	Experimental object
	Participants
	Task
	Establishing a Baseline

	Relating design flaws to threats
	Evaluation at Volvo Group Truck Technologies

	Results
	Results from students
	Relating design flaws to threats derived from STRIDE
	Results from Volvo

	Discussion
	Effectiveness of the catalog
	Productivity of the analyst using the catalog
	How the catalog can complement threat modeling techniques
	Using the catalog in the automotive industry context
	Similar Studies
	Threats to Validity
	Construct Validity
	Internal Validity
	External Validity

	Future Work

	Conclusion
	References
	Catalog of Design Flaws
	Results from students
	STRIDE threat comparison with design flaws baseline
	Questionnaire
	Documents provided in the lab package
	HomeSys Domain Problem Description
	HomeSys Requirement Specification
	HomeSys Architectural Description

