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Abstract
Consumer-oriented IoT devices, or smart home devices as they are also called, are
getting more common. Projections suggest there will be more than 75 billion of
these devices in people’s homes by 2025. Given the location of these devices and the
nature of the data they collect, this raises questions about how the user’s privacy
can be protected.

Given this background, this thesis investigates relevant security concepts and the
feasibility of some of their software implementations as privacy tools. Moreover,
smart home devices are also compared in regards to privacy based on brand recog-
nition, which market they are aimed for and which device category they belong to.
This is done in order to be able to draw conclusions about these properties’ impact
on privacy.

The comparison is made using a testbed where traffic from the smart home devices
is analysed in relation to the properties above as well as to a threat model devel-
oped based on privacy threats found in the literature. The software Princeton IoT
Inspector and Snort in combination with the ELK stack are used and compared in
regards to both how well each manage to identify and highlight privacy threats but
also their applicability to different user groups. Furthermore, we also design a proof
of concept for the viability of a cloud solution. For this we simulate a third party
developing rules, based on user-generated Snort logs, which a user can subscribe to.

The results show that the properties mentioned above have a significant impact on
how the devices behave. That is, they affect which endpoints the devices connect to,
which cloud provider they rely on and also the shape of their traffic to a large extent.
Furthermore, the results also show that a cloud solution is possible, although the
size of the logs quickly becomes an issue. Thus further study on how to optimize
the logs is needed while avoiding proprietary solutions.

None of the investigated software solutions succeeds in striking a perfect balance
between usefulness and user-friendliness. Future work needs to be done on multiple
levels, ranging from how to increase user awareness, involve community and third
party initiatives as well as to investigate what role legislation might play. This will
not be an easy undertaking, although a necessary one in order to protect the privacy
in our own homes.

Keywords: Smart Home, IoT, Privacy, Data collection, Packet sniffing, IPS/IDS,
Cloud developed rules, Community, Third party, Legislation.
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CHAPTER1
Introduction

The Internet of Things (IoT) is on the rise and quickly so. The number of devices
has seen a signi�cant increase in the last few years, and just by the year 2019 alone,
more than 800 million additional devises were estimated to enter the market [1].
Moreover, by the year 2022, more than half of the Internet tra�c is expected to be
generated from IoT devices and approximately half of this volume is expected to
come from consumer oriented IoT devices [1].

The diversity of consumer IoT devices, ranging from smart bulbs to smart speakers,
o�er a wide range of functionality to the user and help to increase everyday con-
venience. A house that contains a communication network that connects di�erent
IoT devices and allows them to be remotely controlled, monitored and accessed,
is often called a smart home [2]. This has resulted in IoT devices designed to be
used in the home to be calledsmart home devicesto distinguish them from other
kinds of IoT devices (such as devices associated with Industry 4.0, smart hospitals,
driverless cars, etc.). Given that smart home devices typically are connected to the
Internet and designed to be integrated in our daily lives, this raises questions about
convenience versus privacy.

1.1 The Smart Home and User Privacy

There is not much ambiguity in how important user data is for businesses today.
Today the world's largest companies in terms of market capitalization primarily
work with information technology, a development that has been intensi�ed the last
decade [3]. These companies, often referred to asThe Big Five; Apple, Alphabet,
Microsoft, Facebook and Amazon, heavily depend on user data [4]. In contrast to
these companies wanting user data, the everyday user is worried about their data
collected by third parties without their knowledge. According to a study by Pew
Research Center, a majority of Americans were concerned about the way their data
is being used by companies (79%) or the government (64%). Most also felt they
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have little or no control over how these entities use their personal information [5].

Due to the general placement of smart home devices, i.e. in our homes, these concerns
might be especially valid for data generated by smart home devices. For instance,
some data might be particularly sensitive, such as data generated from medical smart
home devices. It is also possible that the user is never informed about what data is
being collected and shared, and when these policies change. An example of the latter
would be the incident back in 2016 when it was revealed that four manufacturers
of �tness wristbands violated rules regarding the collecting and selling of data [6].
Such incidents might further increase the general public's unease regarding data
collection.

This imbalance of the interest of companies in user data and the users' lack of aware-
ness could be considered problematic. Smart home data collection raises questions:
What information is being shared? To what extent is the information being shared
and with whom is it being shared? Furthermore, is there a di�erence between dif-
ferent manufacturers or product categories (where some categories could arguably
be considered to be more intrusive)? Does privacy-related legislation a�ect the way
smart home devices collect data? These question might be even more relevant as in-
expensive smart home devices, often o�ered by less known companies, are becoming
increasingly popular.

Besides user data collection, there are other ways user privacy could be compromised
in the smart home. For instance, many of the devices are constantly connected to
the Internet in order to be able to communicate with their back-end services. As
such, they are more susceptible to draw attention from people with malicious intent.
Furthermore, the lack of encryption by certain devices might unintentionally expose
information to eavesdroppers. This further highlights the complexity of privacy and
that some aspects of security and privacy are to a high degree intertwined.

There is research conducted on IoT devices that suggests that privacy concerns are
justi�ed, such as the research from Moghaddam et al. [7] and Ren et al. [8]. It
highlights the need for increased user awareness regarding what information he or she
is (voluntarily) sharing. Nevertheless, many solutions are arguably inaccessible for a
majority of users due to lack of either hardware, software or knowledge requirements.
For that reason, legislation plays a key role for making sure that the general public's
privacy is being protected.

1.2 Privacy and the General Data Protection Reg-
ulation

Since user data plays an increasingly important role for businesses today, di�erent
legislative measures have been implemented in the EU in the last few decades to
increase the protection of its citizens' privacy. One such legislation is the ePri-
vacy Directive which requires companies to get consent from users for non-essential
tracking cookies [9]. Another, more recent legislation, is the General Data Protec-
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tion Regulation (GDPR). It is by some argued to be the most challenging security
and privacy law as of today [10]. GDPR governs how companies are allowed to pro-
cess and store personal data on EU individuals [11]. Personal data consists of many
di�erent types of information such as name or email address but also location data
that are tied to an individual [12]. It covers all EU citizens if they reside in the EU
no matter where the site the user might visit resides. This forces large businesses to
respect the law, although they might have business in other parts of the world [10].
Breaking this law can have severe consequences since the �nes can be signi�cant.
For instance, Google has been �ned for 50M¿ on lack of consent to advertisement
[13].

1.3 Aims

Given the context described in previous sections, this thesis has the following four
aims:

I. Find a consensus of privacy threats against consumer-oriented IoT devices, or
a uni�cation of threats identi�ed in the research literature if a consensus can
not be found.

II. Investigate if there are di�erences in regards to privacy between consumer IoT
devices from well known compared to less known brands aimed for the EU
market, as well as between those devices and devices aimed for markets not
covered by the GDPR.

III. Explore di�erent commercially available programs that are used to detect sus-
picious network tra�c to see how e�cient they are at detecting privacy threats
to the smart home. They will also be considered from the perspective of ease
of use for the average consumer.

IV. Investigate how third party services might improve the privacy protection for
the smart home in the future.

1.4 Scope and Limitations

Previous research has shown that privacy is a real concern regarding many smart
home devices [7][1][8]. This thesis' main contribution to the scienti�c community
originates from doing privacy comparisons between di�erent products aimed for the
GDPR market as well as between those products aimed for markets not covered by
the GDPR legislation. The main reason for doing this is twofold. Firstly, GDPR is a
signi�cant legislation a�ecting both companies and citizens within the EU. Focusing
on its potential e�ect on smart home devices behaviour in regards to privacy can
arguably be considered important. Secondly, regional comparisons have not been
that prominent in research we have been exposed to, which further makes this thesis'
comparisons even more important.
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The second area of contribution is investigating ways a user can apply di�erent
protection mechanisms as used in the di�erent experiments throughout this thesis.
Moreover, and based on this, the thesis also discusses the di�erent level of protection
and what role users, community, service providers and legislation might play in the
future. Although similar discussions have been made in other research, this thesis
gives a more hands-on approach to how third parties might be incorporated to help
increase user privacy protection.

Nevertheless, in order to make the scope of the thesis manageable, several limitations
have been made. First and foremost, we had to consider how many vendors/brands,
regions, devices and device categories to choose in order to create a representative
set. The choices in regards to these aspects were carefully considered.

We also limited the scope by not focusing on di�erent privacy legislation in the
regions being compared. Instead, we assumed that the GDPR ought to have an
impact on device behaviour and thus work as a good baseline. If no apparent
behavioural di�erence is detected between the regions, that can be the result of
good privacy legislation in other regions unknown to us, although unlikely.

Finally, there is always a trade-o� in regards to time and e�ort between theory and
experiments when there are time constraints to consider. In this thesis, we believe a
reasonable balance has been struck between conducting experiments and obtaining
results and relating these to the current knowledge within the �eld by dividing the
time between the two somewhat equally.

1.5 Thesis Structure

The thesis has the following structure:

Chapter 1 introduces the research topic and puts it in context. Furthermore, in
this chapter, the aims of the thesis are declared along with a description of its scope
and limitations.

Chapter 2 presents previous research with respect to privacy in smart homes in
order to highlight the �ndings of current research. A motivation is also given to
why particular research papers were chosen for the literature study. Moreover, this
chapter also states what this thesis' contribution is in relation to previous research
and sets the target threat model.

Chapter 3 describes what constitutes a smart home as well as introduces some of
the protocols it relies on and that are of particular interest in terms of privacy and
IoT. These are also essential for understanding the di�erent experiments conducted
in later chapters. It also presents some of the concepts that are fundamental to
smart homes today, such as the role of back-end services.

Chapter 4 is dedicated to concepts that can be used for privacy protection. Some
of the concepts introduced in this chapter are also essential for understanding the
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di�erent software solutions used for the experiments in the thesis.

Chapter 5 features the design of the experiments. It begins with a description of
the purpose of the experiments and how they map to the di�erent aims. This is
followed by a discussion on the segmentation (why certain devices belong to a certain
test group) and on why some devices were chosen instead of others. The chapter
concludes with a description of the software used for the di�erent experiments, which
are based on some of the concepts previously presented in Chapter 4.

Chapter 6 describes the implementation of the experiments. It explains the testbed
and the execution of the three experiments in greater detail. It discusses how the
tra�c and the logs are captured, stored, sent, and analysed throughout the di�erent
experiments.

Chapter 7 presents the results from the experiments. It begins with showing
the results from the smart home devices in relation to the threats in the threat
model presented in Chapter 2 and concludes with a section dedicated to the main
observations from the cloud solution in the �nal experiment.

Chapter 8 begins with discussing the interpretation of the results from Chapter 7.
This is followed by a discussion on technical limitations throughout the experiments
as well as ethical issues and sustainability. The chapter concludes with a dedicated
section to future work.

Chapter 9 summarises the main �ndings and general conclusions of the thesis.
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CHAPTER2
Related Work

This chapter covers some of the current research in regards to privacy and smart
homes in order to give context to the thesis, and by doing so, highlight its contri-
bution.

It begins with a section dedicated to the results from previous studies conducted
on consumer IoT devices and is concluded with a subsection discussing why it is
di�cult to detect privacy threats to consumer IoT devices in the �rst place.

The �nal section in the chapter highlights this thesis' contribution by discussing the
aims of the thesis. Furthermore, the threat model used throughout the thesis is also
de�ned in this section. The threat model is signi�cant as it serves as the model to
which the di�erent software solutions, as well as device behaviour, are evaluated.

2.1 Data Collection from the Smart Home

This section presents some of the major �ndings from four recent and quite diverse
studies conducted on smart home devices.

2.1.1 Paper Collection Methodology

Section 2.1 is, to a large extent, based on a number of research papers. The reasons
as to why these particular papers were chosen are several. First and foremost,
all papers are current (as in being published at the earliest in 2019). Secondly,
they di�er from one another in some key aspects. For instance, two of the papers
conduct their studies on testbeds, whereas the other two are done on real-world
tra�c generated by regular users participating in the studies. This arguably gives
more credibility to the idea of �nding general patterns of privacy threats to the
smart home since they analyse di�erent environments.

Furthermore, since most tra�c today is encrypted, analysing actual payload requires
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a signi�cant undertaking and understanding of the platform one is analysing. Thus,
papers that deal with analysis of payload tend to cover a smaller range of devices. For
that reason, some of the papers presented below will cover fewer product categories
although in more depth, whereas others span a wider range of products. As such,
we considered it important to include both kinds of papers.

Finally, since one of the focus areas of this thesis is to investigate how legislation
impacts technology by comparing products from di�erent regions, we also include a
study that covers regional comparisons between the UK and the US.

2.1.2 Research on Streaming Devices and Payload

Recent studies show that many smart home devices expose or share information
with third-party sources and advertisers [7][1][8]. For instance, when analysing In-
ternet tra�c from over-the-top (OTT) streaming devices, Amazon Fire Stick and
Roku TV speci�cally, Moghaddam et al. found that a majority of the apps/channels
on both platforms contacted third parties [7]. Furthermore, they also found cases
of persistent identi�ers being collected. As they point out, the collecting of such
identi�ers, like MAC addresses, is problematic since they can not be reset by the
user to avoid further tracking [7]. Moreover, some channels even shared personal
data like email addresses or zip codes with third parties [7].

OTT streaming devices have relatively complex operating systems compared to de-
vices such as smart plugs or thermometers and o�er the user a variety of channels
to choose from. Moghaddam et al. chose to divide the channels into di�erent cat-
egories to investigate if there are any di�erences between the categories in regards
to privacy [7]. As it turned out, the channels contacting the most tracking domains
belonged to the news category, where some channels contacted almost as many as
60 tracker domains [7]. They also looked into what content was being shared, and
it turned out that titles were leaked to third parties, particularly so amongst news
channels [7]. Recalling the Cambridge Analytica scandal in 2018 [14], this could
be considered problematic given the nature of the content. Moreover, since some
companies such as Google and Amazon et al. are present on many platforms, i.e.
not isolated to the world of IoT, this consolidation of data by a few actors might
further enhance similar future risks. As Kumar et al. also highlights in their study,
despite there being approximately 14 000 di�erent vendors within IoT, about 90%
of the devices worldwide are produced by merely 100 companies [15].

Another disconcerting discovery from the study conducted by Moghaddam et al. is
the somewhat widespread use of unencrypted communication, where a signi�cant
majority of channels on both platforms use unencrypted communication for at least
one request [7]. Other studies have shown similar concerns regarding the use of
HTTP and the lack of encryption for IoT devices [1][8].
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2.1.3 Research on Real-World Tra�c

In contrast to the study by Moghaddam et al., Mazhar et al. conducted a study
in 2018 on real-world tra�c from American households and collected data on more
than 1000 di�erent devices [1]. Of these devices, 66 were classi�ed as unique IoT
devices, i.e. many users had the same type of device and a signi�cant portion of the
devices consisted of laptops, smartphones, etc., which is not considered to be IoT
devices.

In the study by Mazhar et al. no payload tra�c was analysed [1], which means that
they could not investigate the content of the messages between the device and the
back-end servers. Nevertheless, what they did �nd out regarding the shape of the
tra�c was that there was a clear di�erence between devices that relied on user input
and those that did not [1]. The former primarily generated tra�c when the user was
at home/using the devices whereas the latter (smart cameras, sensors, etc.), instead
displayed a more regular pattern [1]. Moreover, as Mazhar et al. highlight, given
the size of the packet �ows, one could also conclude what kind of data a certain
�ow contains. For instance, more than 25 % of the packet �ows from smart cameras
were larger than one megabyte [1]. This indicates that a cunning person could draw
conclusions on what kind of interactions certain �ows are associated with based on
their time and size patterns. Similar concerns are raised by Ren et al. based on the
results from their study [8].

Another large IoT security study by Kumar et al., done on 83 million devices from
16 million households across the world in collaboration with Avast, an anti-virus
company, showed that there are large variations in terms of what types of smart
home devices are being used in di�erent parts of the world [15]. For instance,
they show that Internet-connected TV:s or streaming devices are common in the
US, whereas they constitute just a small percentage in regions such as South Asia.
Instead, surveillance cameras are much more common in this region [15]. Kumar et
al. also found that devices from the same manufacturer, aimed for di�erent markets,
sometimes had di�erent security postures in terms of default passwords [15]. This
highlights the heterogeneity of smart homes and why it is a complex domain to
study.

However, as Mazhar et al. highlight, although the frontend for smart home devices
is heterogeneous, the back-end is highly centralised [1]. They claim that many of the
back-end services are hosted on just a few cloud platforms. For instance, for smart
TVs, smart speakers, smart assistants, and home automation devices, Google Cloud
and Amazon Web Services (AWS) account for somewhere between 60-90% of the
tra�c from those device categories [1]. Worth noting though is that both Google
and Amazon are major actors in some of these product segments, which most likely
impact those numbers.

Furthermore, Mazhar et al. found that six out of the eight product categories in
their study accessed hostnames associated with either ad servers or trackers. This
shows that tracking or advertisement delivery is occurring for a variety of smart
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home equipment, at least to some extent [1]. The study also highlights that most
device categories, particularly prominent among smart assistants, had devices that
accessed public DNS servers [1]. There are arguments for using public DNS-servers
however. For instance, as Mazhar et al. mention, it avoids having to rely on the
ISP supplying a correctly con�gured DNS, as well as helps to protect geolocation
sensitive data [1]. Nevertheless, they point out that this limits the user's ability to
block tra�c on a network level [1], making software solutions such as Pi-hole [16]
pointless.

As in the case of the OTT devices, the study of Mazhar et al. showed that all device
categories in their study, except for smart cameras, used the HTTP protocol to at
least some extent [1]. For some device categories, HTTP was used instead of HTTPS
for almost as much as 20% of the tra�c [1]. They argue that one of the reasons for
why this is still being used for smart home devices, despite its obvious disadvantage
to HTTPS, could be related to compatibility with third parties [1]. Moreover, in
their study, advertisers and trackers were proportionally highly represented in their
statistics of the HTTP tra�c [1]. However, in a study conducted by Ren et al. where
the actual payload was studied, minimal personal identi�able information (PII) was
sent in plaintext [8], which is at least somewhat reassuring.

2.1.4 Research on Regional Di�erences

Ren et al. studied smart home devices from two di�erent regions, one test envi-
ronment located in the UK and another in the US [8]. Similar to Moghaddam et
al., they also found that devices such as Smart TVs and OTT streaming devices
contacted many third party sources [8]. This category of devices contacted the most
third party sources of all the device categories in their study [8].

Furthermore, they also found that a majority of the tra�c from both the UK and
the US devices in their testbeds terminated in the US [8]. Moreover, most of the
tra�c that did not terminate in either the EU, the UK or the US, terminated in
China. They argue that this is related to the fact that many Chinese devices host
their services on the Alibaba Cloud [8]. Ren et al. also highlight the fact that AWS
and Google are contacted by a large number of devices in their study and that
signi�cant outsourcing to cloud providers for computations took, which they claim
partly explains the high proportion of tra�c to non-�rst parties [8].

Furthermore, regarding regional di�erences and endpoints, they report that US de-
vices tend to contact third parties to a higher degree compared to the UK devices.
They argue that this discrepancy might be related to di�erences in legislation [8].
Interestingly enough, they did not observe any major change in this regard when us-
ing VPN [8] which might indicate that the di�erence is in the device itself (possibly
in �rmware).

However, they did �nd quite big di�erences between di�erent products segments
regarding encryption, where cameras were the worst performers and audio devices
the best [8], a striking di�erence compared to the results in the study of Mazhar
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et al. where cameras performed the best in this regard. Ren et al. argue that
this might be explained by the fact that the audio devices in their testbeds were
produced by large companies such as Google and Amazon which are associated with
solid security standards [8]. They also found di�erence in the unencrypted tra�c
between devices, although they argue that this discrepancy had more to do with the
actual device rather than which category it belonged to [8]. Nevertheless, despite
that unencrypted tra�c only constituted a minority of the observed tra�c, it was
still present across all devices and categories in both of their testbeds [8].

Regarding strange device behaviour, they found evidence of a camera being triggered
and recording video although it was not triggered by human actions. As they point
out, it could be due to background noise, but could also be that it intentionally
captures video without being triggered [8]. This highlights the di�culty of de�ning
and then detecting unexpected behaviour amongst consumer IoT devices.

2.1.5 The Di�culty of Detecting Privacy Threats

One of the main di�culties in trying to detect and defend against privacy threats
has to do with the complexity of de�ning/labelling "misbehaviour". How to we
distinguish acceptable behaviour from an IoT device? One attempt to tackle this is
the Manufacturer Usage Description (MUD), an IETF protocol that aims to de�ne
how a non-general purpose devices is expected to work. This, as IETF express,
would amongst other bene�ts, help reduce the number of attack surfaces on the
device [17].

Furthermore, Ren et al. discuss the role of machine learning and statistical tech-
niques in order to be able to draw conclusions on what is normal device behaviour
from what is not [8]. However, machine learning algorithms tend to be CPU inten-
sive, and as the number of IoT devices are expected to grow in the coming years,
this might not be a feasible solution for a typical smart home user, at least not
regarding running it locally.

In recent years, a software called Princeton IoT Inspector has been developed by
Huang et al. [18]. It is a tool that helps to visualise the tra�c of smart home devices
and does so by requiring little to no technical knowledge from the user. Furthermore,
by using this software, the user contributes to the scienti�c community by allowing
the developers of the software (i.e. the researchers) to gather data on the devices
which in turn helps them to better map the behaviour of smart home devices [19].
More on this software, which also is an essential tool used in the experiments in
later chapters, can be read in Section 5.4.1.

2.2 Our Contribution

Given the threats presented in Section 2.1, many of them reoccur in a majority of the
studies. However, it might be an exaggeration to talk about a consensus of privacy
threats due to the diversity of smart home devices and environments. Instead, one
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could argue that it would be more suitable to discuss privacy threats in terms of
�nding a uni�cation rather than a consensus. Although by no means a complete list
of privacy threats to the smart home, the elements in Table 2.1 summarises some of
the most prominent privacy threats presented in the previous section.

Privacy Threats to IoT Devices Found in the Literature

ˆ Lack of encryption

ˆ Third party tracking

ˆ Collection of PII

ˆ Unexpected device behaviour

ˆ Shape of tra�c (might reveal information)

ˆ Enforced public DNS usage (primarily smart speakers)

ˆ Concentration of cloud providers (outsourcing computational capabilities)

ˆ Concentration of market shares by a small fraction of companies

ˆ Concentration of geographical endpoints (politically troublesome)

ˆ Weaker privacy laws in certain parts of the world

Table 2.1: Some of the identi�ed privacy threats to consumer IoT devices found
in the literature.

Although this list does not say anything about the extent nor severity of the di�erent
threats, it arguably answers the �rst aim of the thesis - to �nd a uni�cation of privacy
threats to the smart home. However, the �rst aim does not necessarily contribute
with anything new to the scienti�c community. Instead, the remaining aims serve
this purpose (but are grounded in the list above).

The second aim of the thesis is twofold. Firstly, we investigate if there are any
di�erences between devices of well-known brands compared to less known brands
aimed for the market a�ected by the GDPR, i.e. the EU. Secondly, we compare all
of these to devices aimed for other markets, outside the EU. Based on the literature
we have read, not as much research has been conducted in this regard. For instance,
with the exception of Ren et al. [8] who studied di�erences between devices from
the UK and the US, Kumar et al. [15] focused on the security posture of IoT devices
(although with a focus on regional di�erences). Both Moghaddam et al. [7] and
Mazhar et al. [1] studied American household and/or speci�c devices. For that
reason, we believe this comparison is of importance.
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The third aim deals with exploring di�erent commercially available software that can
help the user to visualise and protect the smart home from privacy threats. This will
give valuable hands-on insights into how well some of the more modern solutions
such as Princeton IoT Inspector [20], and Snort [21] perform on IoT devices in
regards to privacy. However, since no baseline exists, their performance will have to
be evaluated in relation to each other rather than any kind of baseline. Nevertheless,
this will raise relevant questions regarding usability, expandability and e�ectiveness.

Furthermore, the fourth and last aim is about investigating what role third parties
might play in order to improve privacy solutions such as those used in the previous
experiments. For instance, we will investigate the feasibility of developing rules on
the cloud and subscribing to these. This in itself is not a new concept nor a new
research question. However, given the setting it is applied in, we believe this proof-
of-concept will highlight certain important aspect of using third parties for privacy
protection. For instance, it will raise questions such as how best to send the data
(with or without payload), at what frequency and at what privacy cost. This will
lead to a general discussion about the viability of delegating responsibility of privacy
protection to di�erent parties, ranging from users all the way to legislation.

Finally, these devices and software solutions somehow needs to be compared and
benchmarked against each other. In order to do so a threat model has to be de�ned.

2.2.1 Threat Model

The threat model can be seen in Table 2.2 and is based on the list of privacy threats
identi�ed from previous research.

Threat Model

ˆ Lack of encryption

ˆ Third party tracking

ˆ Unexpected device behaviour

ˆ Shape of tra�c (might reveal information)

ˆ Concentration of cloud providers (outsourcing computational capabilities)

ˆ Concentration of geographical endpoints (politically troublesome)

Table 2.2: Our threat model.

From the threat model one can see that the analysis primarily will focus on metadata
(data about data) rather than threats related to payload. The goal is to see if any
patterns emerge and if there are any di�erences between the devices in regards to
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these threats. Moreover, this model also serves as the basis for the evaluation of the
performance of the di�erent software solutions used throughout the experiments,
which are presented in later chapters.
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CHAPTER3
The Smart Home

This chapter introduces the reader to what characterises a smart home, ways users
can interface with their smart home devices and some of the diversity of protocols
that are part of the smart home universe. Moreover, certain protocols within the
TCP/IP model are presented in more detail as they are either more problematic
in regards to privacy and IoT and/or crucial to the experiments presented in later
chapters.

The chapter concludes with a section dedicated to a few of the concepts and technolo-
gies behind the trend towards cloud solutions/cloud computing which also impacts
the �eld of consumer IoT.

3.1 Characteristics of the Smart Home

This is the de�nition of the smart home according to the UK Department of Trade
and Industry:

�A dwelling incorporating a communications network that connects the key electrical
appliances and services, and allows them to be remotely controlled, monitored or
accessed.� [2]

From this we can surmise that there are three main things a home needs to make it
smart. They need the following:

1. An internal and external communication network � this can be wired or wireless.
Simply put, the devices in the home need to be connected to each other, but also
to the Internet for external control.

2. The possibility of remote control � some sort of gateway to manage the systems.
There has to be an intelligent way to control the system. Examples could be apps
on a smartphone or a central gateway.
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3. Home automation � products within the homes and links to services and systems
outside the home.

There are three main types of technologies present in a smart home - sensors, a
control centre and actuators [22]. Sensors provide information about the real-world
environment and sends the information to the control centre. Secondly, the con-
trol centre makes a decision, based on user preference, and sends a command to
an actuator that then act upon this information. As an example, a temperature
reader measures the temperature at a set interval and sends this information to the
command centre. If the current temperature is too high compared to the preferred
temperature (as de�ned by the user), the control centre starts the air conditioner to
make it cooler.

Smart home devices often have restrictions in their resources, especially regarding
power supply and in CPU, memory or bandwidth [23]. These restrictions create
challenges that are not present for general-purpose devices like workstations and
laptops, such as communication and computational issues.

A communication problem in a smart home can, for example, be that battery-
operated devices periodically go o�ine in order to save power. This can result
in another device wanting to communicate with a device that is currently o�ine.
This creates a need to be able to combine data since it cannot always be trans-
mitted instantaneously. Another challenge for communication between devices in
the smart home is the need to communicate with many di�erent devices at di�er-
ent ranges, capabilities and that are made by di�erent manufacturers. This keeps
communication from being straightforward and creates a need for new or updated
communication protocols where transmission only happens during speci�c periods
with concatenated packets. These protocols will be discussed further in Section 3.2.

The restrictions on CPU and memory are the source of the computational chal-
lenges. Limited CPU resources may make traditional solutions for computation and
security impossible to implement. For example, some cryptographic functions need
a substantial amount of CPU resources to be fast enough to be practical. This
means that there are speci�c design requirements for smart home devices in order
to ensure that communication is possible.

Furthermore, the user needs to be able to interact with the devices in a smart
home. There are multiple ways to design the smart home interface for the user. If
the devices are WiFi-enabled then they are often provided with an accompanying
smartphone app to control them. The apps are usually focused around being easy
to use in order to be accessible for everyone. Smart home devices from the same
manufacturer tend to be compatible with each other. This means they do not
generally need separate applications to control them. Though, if a user gets devices
from di�erent manufactures, this often means di�erent applications per device.

These days the building itself can have an integrated smart home systems built-in.
It can include support for air-conditioning and surveillance. When the system is
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built into the house, the interface is often a physical device, like a dedicated touch
screen. The control panels communicate with a central control system that controls
the di�erent connected devices.

Some companies on the market, such as Google and Amazon, have cloud-based
support and provide an API that other manufacturers can use. They provide an
interface, in this case Google Home Assistant and Amazon Alexa respectively, which
enables the user to connect their devices to the interface if they are supported.
Another bene�t is that this allows for cross-compatibility between di�erent brands
without having to create multiple interfaces for the end-user. The user can then
often control all the devices through a single application on their smartphone.

The �nal type of interaction mode is a hub-based system that has a central unit. This
unit connects all the supported devices to a common interface, much like the cloud-
based system. Another purpose of the hub is to behave as an interpreter or translator
between the devices. It collects and translates various protocol communications
from di�erent devices in order to facilitate communication between, for example,
a smartphone application and a smart lock. This is needed if the smart lock use
protocols that are not native to a smartphone, i.e. protocols that are not Wi-Fi or
Bluetooth. The bene�t of a hub-based system over the cloud-based one is that the
devices do not have to communicate over the Internet. The drawback in comparison
is that since this architecture requires a physical hub it is more expensive.

3.2 Protocols

The Internet of Things has required the development of new communication proto-
cols since IoT devices bring challenges like resource restrictions. An example would
be that many IoT devices broadcast their wireless tra�c on lower frequencies since
such tra�c penetrate walls better [24]. However, IoT devices communicate using a
variety of protocols, ranging from simple unidirectional protocols to WiFi.

A technology speci�cally designed for IoT devices is Zigbee [25]. It is designed to
be used in smart homes and is energy e�cient due to relatively low transmission
rates. The broadcasting frequencies are either on 2.4GHz or 900MHz. It is a non-
proprietary protocol, which was developed by the Zigbee Alliance, and it is based
on the IEEE 802.15.4 standard.

Another common IoT protocol is Z-Wave [26], which broadcasts on frequencies
around 900MHz. The Z-wave protocol, much like Zigbee, focuses on low latency
and reliability rather than maximizing data throughput. However, it is a propri-
etary protocol, owned by the Z-Wave Alliance, which means there has not been
much open research performed regarding its security aspects. Though, in 2016 the
Z-Wave Alliance issued the S2 standard and decided that all devices using Z-wave
had to follow that security standard to get a Z-Wave certi�cate.

Finally, WiFi is frequently used in smart home devices since it makes the devices
compatible with smartphones and other already existing equipment. This makes it
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easy for the user to get started without any additional gateway or similar products.

Despite there being a variety of di�erent protocol stacks developed and used in
smart home environments, all with their own advantages and disadvantages, this
thesis will solely focus on TCP/IP tra�c and protocols that are part of the TCP/IP
protocol stack (such as ARP, DNS, WiFi, etc.). The following section will introduce
the TCP/IP protocol and some of the many protocols it includes that are vital for
understanding privacy threats to the smart homes today and/or the experiments
conducted in later chapters.

3.2.1 TCP/IP

TCP/IP, or the Transmission Control Protocol/Internet Protocol, is a suite of com-
munication protocols that is used to interconnect network devices on the Internet or
devices on a private network (see Figure 1 for an overview of TCP/IP). It functions
as an abstraction layer between network applications and the routing/switching
fabric. It speci�es how data is exchanged over the network by providing communi-
cation protocols that identify how it should be broken into packets and segments,
addressed, transmitted, routed and received at the destination.

Figure 1: The TCP/IP Model which includes many well-known network
protocols (not showing all protocols). Figure inspired by [27].

TCP/IP consists of several layers. The top layer, known as the Applications layer,
contains a large variety of application protocols, including well-known ones such as
DNS, HTTP/HTTPS and SSH but also encryption protocols such as TLS/SSL.
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At the next layer, the Transport layer, we �nd the TCP and UDP protocols. These
are responsible for opening, closing and managing a session between end-user appli-
cation processes. The major di�erence between the two is that UDP is a so called
unreliable protocol in contrast to TCP which instead is designed to make networks
reliable, with the ability to automatically recover from the failure of any device
on the network. TCP de�nes how applications can create channels of communica-
tion across a network. It also manages how a message is disassembled into smaller
packets, so-calledsegments, before they are then transmitted over the Internet and
reassembled in the right order at the destination address. None of the two transport
protocols are superior to the other but instead serves di�erent purposes, depending
on how important reliability is compared to throughput.

At the Internet layer, the IP protocol de�nes how to address and route each packet
to make sure it reaches the right destination. A router checks a packet's head-
ers to determine where to forward the packet next which is also known as packet
forwarding.

At the fourth and �nal layer, the Ethernet and the IEEE 802.11 (WiFi) protocols
are found. It is at this layer a device determines whether a frame is destined for it
or not.

Many consumer IoT devices natively support protocols that belong to TCP/IP,
which makes them able to communicate with existing network infrastructure without
the need for a central unit/hub. However, not all devices do. If not, they require
a central unit/hub that can encapsulate the data from one protocol into a TCP/IP
compatible format that can be routed on the network.

As seen, TCP/IP consists of many di�erent protocols. However, some of these are
more susceptible to privacy threats than others. The following subsections will focus
on some of the protocols that are either more problematic in regards to privacy and
IoT or crucial for the experiments in later chapters.

3.2.1.1 DNS

The domain name system (DNS) is a system for mapping domain names to IP
addresses and vice versa. As described in the previous section, the Internet is based
on the concept of IP-addresses in order to be able to locate speci�c machines/servers.
However, IP-addresses are generally hard to memorize for us as humans, much in the
same way as phone numbers are, and thus domain names make it more convenient
(similar to memorizing the name of a contact in the phone instead of his or her
phone number). The system is distributed around the world, stored on so-called
domain name servers that all communicate with each other on a regular basis to
provide updates and redundancy. With more than 350 million domain names listed
at the end of the third quarter of 2019, storing all those records on a single server
would not be feasible [28].

Another reason for why the DNS system is distributed is related to latency. It would
simply take too long to get a response when making a request if there was only one
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location for the DNS database. To get around this issue DNS information is not
only distributed and replicated among many servers, but is also cached locally on
client computers.

Moreover, the system is also hierarchical, which means that a particular server only
has the responsibility to know about the level below itself. An examples of this is
that root servers (the top layer) know only where the top-level domain (TLD) servers
resides, such as .com, .org, etc. TLD servers then know only where the domain name
servers are, such as Google or Facebook and so on. This leads to multiple server
lookups for a simple request such as www.google.com since it requires the root
servers to �nd the .com-server, the .com-server to �nd the Google domain server
and the Google domain server to �nd Google's web server (www).

The query can be done using iterative or recursive resolvers. For both types of
resolvers, the DNS server will attempt to �nd the website in question in its local
cache. The main di�erence is how it continues if the �rst query did not result in
�nding the website. If it is an iterative query, it will return with a message to query
another server and give the address of that DNS server. As for a recursive request,
it will query other DNS servers until it �nds the address.

The domain name information is stored publicly, but the transactions performed
by the hosts are not. This includes the speci�c information being queried and the
identity of the nodes that queried the DNS. Unfortunately, there is no inherent
mechanism in the DNS protocol to ensure encryption for these transactions. This
means that the information can be logged by those who operate DNS name servers
and resolvers. It can also be eavesdropped on by unwanted third parties. The DNS
information might leak at multiple levels [29]. The di�erent attack surfaces are
represented in Figure 2 with di�erent colour codings:

I. The communications links and devices between the stub resolver and the re-
cursive resolver (blue)

II. The recursive resolver (green)

III. The communications links and devices between the recursive resolver and the
authoritative DNS servers (red)

IV. The authoritative name servers (orange)

It is possible for an entity to passively collect all or part of the DNS transactions if
they have access to the recursive resolver and the authoritative servers, or if they
have access to the communication links or devices between the stub resolver and the
recursive resolver [29].
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Figure 2: An example of how a typical DNS request might look. The colours in
the �gure highlight the di�erent attack surfaces to the system.

As DNS lookup requests can be logged and reveal which endpoint a certain IP
requested, one can argue that it is of importance which provider one chooses to
rely on for DNS resolutions. Some well known public DNS revolvers are Google's
8.8.8.8 or Cloud�are's 1.1.1.1. As seen in Chapter 2, it is not uncommon for smart
home devices to have prede�ned/hard-coded DNS addresses which can not (easily)
be modi�ed. This could arguably be considered problematic in terms of privacy.

A resolver can also �lter unwanted DNS-requests. One such �ltering technique is by
using a so called DNS sinkhole, where unwanted requests are redirected to sink-holes
and thus prevented.

3.2.1.2 ARP

The hardware/physical/link layer address of a NIC is known as the Medium Access
Control (MAC) address. When a NIC is manufactured, it is allocated a globally
unique 6-byte link address (stored in a PROM). This is the link source address used
by an interface when sending messages. When a computer then sends IP packets,
it also includes its link address in the frame part of the message. This enables it
to receive all packets that match the same hardware address in the destination �eld
(or one, or more, pre-selected broadcast/multicast addresses).
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The address resolution protocol (ARP) is an IPv4 protocol for mapping the hardware
address associated with a speci�c IP-address to that IP-address. The device that
wants to know the physical address associated with a speci�c IP-address sends a
broadcast ARP message to the nodes in the same broadcast domain, requesting
information about who has the speci�c IP-address. In the message, the physical
address and the IP-address of the sender are both included. This helps the receiver
know where to send the reply as a unicast message.

This means that a link layer address is dependent on the interface card that is used
on the device. In contrast, IP operates at the Internet layer and is not dependent on
the link addresses of individual nodes. This is why the address resolution protocol
(ARP) is used to translate between the two types of addresses.

In order to reduce the number of address resolution requests, a client typically
caches resolved addresses for a short period. The ARP cache is of �nite size and
is periodically �ushed of all entries. This also removes any unsuccessful attempts
to contact computers that are not currently running. The ARP cache can be used
by other hosts to detect that a host changes what IP address it associates with a
certain MAC addresses since an entry will be deleted and a fresh ARP message will
be sent to establish the new association.

Since a smart home contains devices that communicate with each other, their manu-
facturers and third-party service providers, it can be valuable to monitor the network
activity. It can be done by exploiting the design of the ARP protocol and using a
technique known as ARP spoo�ng. This concept is discussed in Chapter 4 and plays
a crucial role in the experiments conducted in later chapters.

3.3 Back-end Services

When the user asks something out of their IoT device, this request will sometimes
require the device to forward the request along to back-end servers. This is because
IoT devices generally have a comparably low CPU performance and thus have to
delegate more complex calculation, for example encryption or data analysis, to other
entities. These entities usually reside on the cloud for more computational ability
and to be able to service a large number of devices at once.

However, many IoT device manufactures and software developers will rent this server
space from other big companies in order to not have to worry about the required
infrastructure themselves. Examples of these large server companies would be Ama-
zon and their Amazon Web Services [30] and Microsoft with Azure [31]. They o�er
three di�erent models of cloud service: Platform, Software and Infrastructure as a
Service (SaaS, PaaS and IaaS, respectively). The features of these services can be
seen and compared in Figure 3.

This section thus aims to describe what these services are and highlight what role
they have within the �eld of smart homes in regards to privacy.
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Figure 3: The di�erence between SaaS, PaaS and IaaS, inspired by [32].

3.3.1 Software as a Service

Software as a Service is the most commonly used cloud service option for busi-
nesses [33]. It uses a web delivery model to distribute applications to the user while
allowing third parties to manage the applications. Most SaaS applications will be
run through the user's web browser, so they do not need to be downloaded and
installed by the client. This also means that the third-party vendors will handle any
technical issues on top of handling the data storage and servers. Since this removes
most of the responsibility from the manufacturer of the device or developer of the
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software, it creates a streamlined experience for them.

On the other hand, SaaS solutions also mean that the control of both the service's
performance and security is handed over to the cloud provider. This is not limited
to the software, meaning how it is updated, but also the data collected by the
applications. Moreover, large volumes of data may need to be exchanged to the
data centres that host the software. This means that sensitive information can be
sent to public cloud-based SaaS services.

3.3.2 Platform as a Service

The idea behind PaaS is similar to that of SaaS. Except PaaS provides a platform
for software creation, rather than o�ering software [34]. It enables the user to
access everything between simple apps to more sophisticated enterprise applications
on the cloud. The PaaS provider will host the software and hardware on its own
infrastructure. This makes it so that developers using PaaS do not have to worry
about getting any speci�c hardware or software themselves.

PaaS does not typically replace a business's entire IT infrastructure. Instead, it is
used to incorporate di�erent underlying infrastructure components with the busi-
ness own infrastructure, such as operating systems, databases and servers. These
functions are owned and maintained by the PaaS provider. Another bene�t of PaaS
from the developer's perspective is that it provides additional resources, like pro-
gramming languages and libraries but also database management systems.

In regards to the privacy concerns for the user of any PaaS model it is the same as
it was for SaaS since the data is still stored on third-party web servers.

3.3.3 Infrasturcture as a Service

Infrastructure as a Service provides the same capabilities as a traditional data centre
without forcing the user to physically maintain or manage it [35]. The customer can
still access their servers and storage directly, but it is all outsourced to the cloud
using virtualisation technology. It allows businesses to purchase resources as they
need them instead of buying the hardware. It is often provided to the customer
through a dashboard or an API.

In comparison to SaaS and PaaS, the customer is responsible for managing things
like applications, operating systems and middleware. However, IaaS providers man-
age the virtualisation, storage and servers. Sometimes providers also o�er services
beyond the virtualisation layer, message queuing and databases.

Security threats can still be sourced from the host even if the customer is in control
of the platform for the operating system, data and apps. System vulnerabilities
can expose data communication between the host infrastructure and the virtual
machines to unauthorised entities.
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CHAPTER4
Privacy Protection Concepts

This chapter explains some useful concepts for privacy protection: packet analy-
sers/sni�ers, ARP spoo�ng, intrusion detection/prevention systems as well as log
management and visualisation tools. Some of these concepts can however also be
used for malicious purposes, such as packet sni�ng and ARP spoo�ng, although, in
this context, they are discussed as protection concepts. Nevertheless, this chapter is
going to explain what their purpose is and how they di�er from one another, which
means that this section will not be about a speci�c software implementations of
the concepts, but rather about the underlying ideas di�erent software solutions are
based upon. This is used to provide a basis for the experiments presented in later
chapters.

4.1 Packet Analysers and Packet Sni�ers

A packet analyser or sni�er is a software or hardware tool that can be used to mon-
itor network tra�c and troubleshoot network issues. There is a semantic di�erence
worth noting between packet sni�ers and packet analysers even if the two terms are
often used interchangeably. A packet sni�er records packets observed on a network
interface, while an analyser looks at the packets and attempts to make some in-
ferences about what they contain. In practice, the most commonly used programs
perform both functions meaning that they both log and analyse the packets. Exam-
ples of this would be Wireshark [36], Snort [21] and Princeton IoT Inspector [20].

A packet sni�er is composed of two main parts: a network adapter to connect the
sni�er to the network the user wants to analyse and the actual software to provide
a way to see, log and analyse the collected data. A packet analyser can reveal how
the tra�c is shared between nodes and what the tra�c pattern is on the network.
It does this by intercepting, capturing and analyzing packets that �ow through the
network. The data is then presented in a form readable to the user for network
analysis.
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There are two main types of packet sni�ers: hardware and software packet sni�ers.
This thesis will solely focus on the software version since the hardware-based packet
sni�er is often single-purpose and require dedicated hardware. This means it is less
accessible to the average user, which is something we wanted to keep in consideration
throughout the thesis, as stated in our Aims (see Section 1.3).

A software packet sni�er is an application that is run on the host computer that
utilises the computer's network hardware to perform the packet capture. Typically, a
network interface card (NIC) is set to only be able to read packets that are destined
for itself, i.e. when the target IP address of the packet matches its IP address.
However, when a NIC is con�gured for network sni�ng the network card is set to a
con�guration mode commonly called promiscuous mode. This mode allows the NIC
to intercept and read any arriving network packet in its entirety. Once it is in this
mode, the packet sni�er can separate, reassemble, and log all packets that pass the
interface, regardless of their destination addresses.

The amount of information that can be captured by the sni�er depends on if the
sni�ng is done over a wireless or wired connection. If the former is used, and by
having set the NIC in promiscuous mode, it is able to capture any packets from
other wireless clients on the same network that are using the same channel [37].
The reason to this has to do with the nature of wireless signals, i.e. they propagate
in all directions and can thus be intercepted by anyone on the same network who are
listening on that channel (has their NIC in promiscuous mode). However, packet
sni�ers are usually limited to capturing one channel at a time. Though if the com-
puter the sni�ng software is running on has multiple wireless interfaces, this allows
for multi-channel packet capture. This could be relevant if the network in question
has multiple access points that transmit over di�erent channels.

In contrast, on a wired network, a packet analyser will see di�erent things depending
on if the network is built using hubs or switches [38]. Hubs receive incoming packets
on one port and broadcast them to all other ports by default, meaning they are ideal
for promiscuous network monitoring/sni�ng. If the network uses switches instead,
things are not as trivial. For the packet sni�er to be able to capture the packets, the
switches need to manually be con�gured to allow port mirroring. Port mirroring is a
feature that allows the switch to redirect the tra�c that occurs on some or all ports
to a designated monitoring port. This monitoring port copies the network packets
that are detected on the designated ports and sends them to a network monitoring
connection on another switch port to which the sni�er is connected. The NIC on the
computer running the packet sni�er will operate as if it were in regular mode unless
the switches are con�gured to allow port mirroring. This means that if multiple
switches segment a network, they all need to be connected and have port mirroring
active to enable sni�ng of the entire network.
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4.2 ARP Spoo�ng

In computer networking, spoo�ng means that a party manages to be identi�ed as
another party by falsifying data to obtain an illegitimate advantage [39]. In regards
to ARP spoo�ng, it is a technique where the attacker sends falsi�ed ARP messages
over a local area network. It can only occur on local area networks that utilise the
Address Resolution Protocol (IPv4) and the attacker attempting to perform ARP
spoo�ng needs to have direct access to the LAN segment they wish to spoof. It
is done by exploiting the lack of authentication in the ARP protocol. In this case
the attacker exploits that if a unicast ARP reply is received by any NIC then it is
automatically cached regardless of if an ARP request has been sent in the �rst place.
The results of ARP spoo�ng is the linking of the attacker's MAC address with the
IP address of another legitimate computer or server on the network, for example the
default gateway. This means that the attacker is now pretending to be the default
gateway.

Once this is done, the attacker will begin receiving any data that is intended for
that IP address. It enables a third party to intercept, modify and even stop the
tra�c. Access to the LAN can be granted by either using a compromised host on
the LAN, or from the user's machine that is connected directly to the LAN they
wish to target.

It is possible to perform ARP spoo�ng after a MAC �ooding attack. In that case,
the method is slightly di�erent than the one described above. The attacker opens an
ARP spoo�ng software tool and sets the tool's IP address to match the IP subnet of
the target LAN. The attacker then scans for the IP and MAC addresses of hosts in
the target's subnet. The tool constructs a large number of forged ARP request and
reply packets to overload the ARP table belonging to the switch. This sets the switch
to forwarding mode and makes it send messages on all ports, making the switch act
more like a hub. The attacker can now pick a target and begins sending the forged
ARP packets across the LAN that contain the user's MAC address and the target's
IP address. Other hosts on the LAN then cache the spoofed ARP packets, adding
them to their own ARP table. This means the data that those hosts send to the
spoofed network will go to the attacker. This means that all packets on the network
will go through the user. These packets can only be read if the NIC used for the
spoo�ng is set in promiscuous mode, as mentioned in Section 4.1.

4.3 Intrusion Detection and Prevention Systems

An Intrusion Detection System (IDS) and an Intrusion Prevention Systems (IPS)
have many similarities. While both monitor and alert on suspicious network tra�c,
the main di�erence is that the IPS can be used to also prevent tra�c. Examples of
software that use these concepts are Snort and Suricata [40].

In order to decide if tra�c is malicious or not, they can either use signature-
based or anomaly-based detection. Signature-based detection uses a database of
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known threats for pattern matching, while anomaly-based detection instead looks
for anomalies in the tra�c that might indicate suspicious activity. Anomaly-based
detection can be based on machine learning algorithms which allow the detection
software to make judgement calls on unknown tra�c that is not yet de�ned. They
both have their drawbacks however.

A signature-based IDS/IPS requires constant attention and adaptation to its sig-
nature database to stay up to date, whereas an anomaly based IDS/IPS relies on
algorithms, data and computational power in order to be e�ective. Both might pose
a problem for a regular user, where lack of updates is common, and disinterest in
spending money on expensive equipment necessary for enabling anomaly based de-
tection could be a hindrance. This highlights the need to look for solutions that
would put less responsibility on the actual user. Signature and anomaly-based de-
tection are large topics on their own, which is why this thesis is only looking at
signature based solutions.

The placement of the IDS/IPS is also important. It can be placed di�erently in
relation to the �rewall depending on the use case (whether one is interested in
analysing internal or external tra�c). However, many IPS vendors even integrate
IPS systems with �rewalls that combine the functionality of the two into a single
unit.

4.4 Logging and Visualisation of Tra�c

If all tra�c is logged by the IDS/IPS, then the result might be noisy and hard
to interpret without the right tools. There is also the risk that one packet can
trigger multiple rules/matching multiple signatures, meaning that the resulting log
volume from the logged events might be even larger than the monitored tra�c data.
Though, even without packets triggering multiple rules, a typical IT environment
tends to generate large tra�c volumes. Thus, it would be a time-consuming task to
search through the resulting alert logs manually. Luckily, there are log management
and visualisation tools to assist in this task. By using such tools, it is easier for the
user, or a developer of IDS/IPS software, to get a bird's view perspective on the
tra�c and more easily distinguish threats.

Visualisation tools today range from terminal-based ones like tcpdump [41] to GUI
based like Wireshark [36]. Others are more suitable to large amount of data, like
Splunk [42] or Kibana [43]. This is why the user needs to consider what the visual-
isation tool will be used for speci�cally. For example, a versatile visualisation tool
can o�er di�erent visualisation options such as graphs and chart that can help in
getting a better understanding of the logs by presenting them in di�erent ways.
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CHAPTER5
Design of the Experiments

This chapter describes the design, methodology and motivation behind the di�erent
experiments presented in Chapter 6.

It begins with a section discussing the purpose of the experiments, how they align
with the aims introduced in Chapter 1 and relate to the concepts described in
Chapter 4. This is followed by a section describing the methodology behind the
comparisons, i.e. how and why di�erent devices were grouped together. The third
section presents which device categories were used throughout the experiments and
why certain categories/devices were chosen instead of others. Finally, the chapter
concludes with a discussion on and motivation to the software used in the experi-
ments.

5.1 Experiments: Purpose and Design

The purpose of the experiments was to answer the remaining aims of the thesis,
more speci�cally aim II - IV. In order to achieve this, three di�erent experiments
were conducted, each corresponding to at least one of the three remaining aims.

This section begins with a subsection dedicated to describing how the experiments
map to the di�erent aims of the thesis. It is followed by three separate subsections
discussing the general idea and design choices behind each of the three experiments.

5.1.1 Mapping the Experiments to the Aims

The di�erent experiments map to di�erent aims, which can be seen in Table 5.1.

From Table 5.1, one can see that the second aim was handled by the �rst two
experiments, where the tra�c from the di�erent smart home devices was logged and
analysed. Using two di�erent software solutions to analyse the tra�c also helped
with reducing the risk of missing privacy threats during the testing. The testing was
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Aim
Experiment Experiment

I
Experiment

II
Experiment

III

Aim II X X -

Aim III X X -

Aim IV - X X

Table 5.1: How the di�erent experiments map to the remaining aims of the thesis.

done for roughly twenty days (half of the time dedicated for devices aimed for the
EU market and another ten days for the other devices) and consisted of a mixture
of active and passive testing, much like a real smart home environment.

The third aim was also tackled by the �rst two experiments. Two quite di�erent
software solutions (based on two largely di�erent concepts) were chosen. This was
done in order to explore a wider range of software solutions and be able to reason
about their strengths and weaknesses as well as usability for di�erent kind of users.
However, since no baseline existed, the performance of the two software solutions
was evaluated by comparing them to one another.

The fourth and last aim was met with the second and third experiment where rules
were developed on the cloud and pulled on a regular basis by the server running
the local IPS. This was �nally tested in order to con�rm that the integration of the
cloud developed rules worked as intended.

5.1.2 Experiment I - ARP Spoo�ng

The �rst experiment used the concept of ARP spoo�ng to intercept the network
tra�c. By exploiting the lack of authentication in the ARP protocol, we could
spoof the IP address of the router and end devices on the network and intercept
the communication between them. This was done with the software Princeton IoT
Inspector in order to see how well it performed in identifying threats from the threat
model on the given tra�c (see Section 5.4.1 for further information about Princeton
IoT Inspector). An overview of the conceptual design behind the �rst experiment
can be seen in Figure 1.

The �rst experiment served two main purposes:

a) Explore how successful Princeton IoT Inspector is at recognising suspicious
tra�c in regards to privacy and IoT.

b) Contribute to the scienti�c community by sharing the data generated by the
devices in our testbed with the researchers at Princeton.
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Figure 1: The conceptual design of the �rst experiment. The red dashed lines in
the �gure indicates the a�ected �ow of tra�c.

5.1.3 Experiment II - Local IPS

The goal of the second experiment was partly to investigate another commercially
available software, based on a di�erent security concept than the one from the �rst
experiment, in order to see how well it performed compared to the �rst solution. For
that reason, the concept of an IPS was used in the second experiment. By placing
an IPS (inline) on the network, the tra�c was forced to pass through the IPS and
could thus be observed/logged/prevented. For the conceptual design of the second
experiment, see Figure 2.

There were several reasons why the second experiment used an IPS as the underlying
concept. First, its ability to block tra�c (even though that particular functionality
was not used in the second experiment) is an added bene�t for the regular user.
Secondly, an IPS is a concept quite di�erent from ARP spoo�ng. Thirdly, we re-
searched a few di�erent IPS and IDS solutions and concluded that they are typically
more customizable and expandable compared to Princeton IoT Inspector, which was
important for the third and �nal experiment. Thus, the second experiment served
two main purposes:

a) Explore how successful a modern IPS signature-based software is at detecting
(and theoretically preventing) suspicious tra�c in regards to privacy and IoT.

b) Work as a platform that can be improved in the third experiment (fetch rules
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from a third party to improve its signatures).

Figure 2: The conceptual design of the second experiment. A�ected �ow
compared to the �rst experiment is marked by red dashed lines.

5.1.4 Experiment III - Third Party Rules

The third experiment was designed as a proof of concept to try to emulate the
role that a centralized/cloud-based IDS solution might play for improving the ef-
fectiveness of a local IPS such as the one from the second experiment. By pushing
metadata of the data generated by the smart home devices on the local network
to the cloud, we simulated a user supplying a service provider with their own user
data. Next, rules could be developed on the cloud and pulled on a regular basis by
the local IPS. This emulated a user subscribing to a service while at the same time
supplying it with data. See Figure 3 for an overview of the conceptual design of the
third experiment.

The reason why only metadata were sent had to do with scalability. If actual payload
were to be included, it would have created a vast amount of tra�c. That would have
been particularly troublesome from a scalability perspective, given the predicted
growth rate of tra�c generated by smart home devices mentioned in Chapter 1.
Nevertheless, the metadata did include timestamps as well as information about the
size of the payload which made it possible to draw conclusions on the shape of the
tra�c.

Worth noting, the rules developed on the cloud IDS were based on data from a
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single network. In a commercial environment, the rules would instead be based on
multiple users' data. This is of importance to highlight, as the rules might otherwise
just as well have been implemented on the local machine directly. Nevertheless, the
advantage of using a centralized/cloud-based solution is twofold:

a) Rules can be developed based on data from a large number of users compared
to a single user (rules could be developed using statistical methods)

b) Rules could be developed by security/privacy experts that might otherwise be
hard, if not impossible, for a regular user to match (rules could be developed
using expertise)

Figure 3: The conceptual design of the third experiment. A�ected routes
compared to the second experiment are highlighted by red dashed lines.

5.2 Segmentation

In order to be able to more easily reason about privacy di�erences in regards to
brands and regions, a conceptual segmentation of the di�erent devices was bene�cial
to develop. The segments and comparisons in the di�erent experiments were partly
based on brands, where one segment consisted of well-known and another one of
lesser-known brands aimed for the EU1 market. Furthermore, we also divided the

1We chose to include UK devices in the EU segment. The reason for this is that we assume
that those devices behave similarly to other EU devices as the UK relatively recently left the EU
and that their market still is strongly intertwined with other EU countries' markets.
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devices into three regional segments: EU, North America and Asia. The North
American segment consisted of products from the United States, the EU segment
of products from Sweden, the UK and Germany and the Asian of products from
China. The reason why these particular countries were selected had to do with the
fact that the United States and China can be considered to be the most in�uential
countries in their respective regions. Sweden, the UK and Germany were chosen for
reasons of easy access (either easy market access or already owned devices). For an
overview of the di�erent segments, see Figure 4.

(a) Brand comparisons

(b) Region comparisons

Figure 4: The segmentation in regards to well known and less known devices
within the EU (left) as well as to regions (right).

As previous research has indicated, there can sometimes be di�erences in behaviour
between the same product aimed for di�erent markets. For this reason, the products
were primarily bought from marketplaces/websites located in the respective region
in order to try to account for this.

5.3 Testbed Devices

As mentioned in Chapter 2, the smart home is highly heterogeneous, and there are
many di�erent device categories to choose from. The chosen categories and how they
correlate to the di�erent segments described in Section 5.2 can be seen in Table 5.2.
For a detailed list of all devices and hardware used throughout the experiments, see
Appendix A.

The main reasons for why these particular categories were chosen instead of others
were either or both of the following:

a) They can be considered to be some of the most intrusive categories in regards
to privacy since they do contain microphones and/or optics/cameras.
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Segments
Categories Streaming

devices
IP-

Cameras
Home

automation
Smart

speakers
EU: Well-known Brand X X X X

EU: Less known Brand - X X -

EU X X X X

North America X - - X

Asia - X X -

Brand Comparison - X X -

Regional Comparison X X X X

Table 5.2: The device categories being used throughout the experiments, which
segments they belonged to and which comparisons were done.

b) They have a wide user base or stood out in previous research (see Section 2.1).

5.4 Software

There is a wide variety of information security programs to choose from and given
the nature of the di�erent experiments, several aspects needed to be considered
before deciding on which ones to use. In this section, we will present the software
solutions that were chosen, give an overview to how they work and explain for what
reason those particular solutions were chosen.

5.4.1 Princeton IoT Inspector

For the �rst experiment, we needed a software that was able to capture all the tra�c
on the network while still being easy to use. Initially, we looked at Snort in packet
sni�er mode since our literature review resulted in many papers that used Snort as
a tool for packet sni�ng. However, while it is well known, documented and has all
the functionalities needed for this task, it is not the most intuitive software for the
inexperienced user. Since our �rst experiment was not solely focused on analysing
the problem, but also doing so in a user-friendly way, we needed a solution that was
more simplistic and included a graphical user interface (GUI), which Snort did not.

While looking for other options we came across Princeton IoT Inspector, which met
the requirements above. We perceived it as being user friendly and suitable to use
even for users with little to no experience in network security.

Princeton IoT Inspector is an open-source network tra�c analyser software devel-
oped by researchers in the United States and Europe [18] that uses ARP spoo�ng
(see Section 4.2) to monitor network tra�c [19]. However, a requirement for using
the software is to allow it to collect the tra�c from the participants' smart home
devices for research purposes. It collects a variety of data like tra�c statistics,
scrambled MAC-addresses, etc. Nevertheless, no payload data is being collected,
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except for DNS, DHCP Request, and TLS Client Hello [19]. It also allows the user
to download all the collected data in JSON format.

The software o�ers the user the option to get a detailed look into which endpoints
the devices connect to. It also helps the user to visualise the shape of the tra�c.
For instance, it shows how frequently certain devices are active as well as the size
of the packets in their communications. Moreover, the software also o�ers the user
to see if the communication was sent encrypted or not and if any device connects to
known trackers or advertisement servers.

With the software it is easy to get an overview of how the IoT devices behave on the
network. By doing so, anomalies in network tra�c can be detected. For example,
a signi�cant amount of tra�c to third parties could be detected but also signs of
devices being hijacked when there is activity when none is expected.

Nevertheless, what Princeton IoT Inspector does not o�er is a means to get infor-
mation about what data is actually being sent. As an example, if a microphone
transmits a non-initiated recording, whether the message simply consists of a sim-
ple keep-alive message or not could be considered signi�cant in regards to privacy.
However, since it displays the shape of the tra�c, one could likely �gure this out by
looking at the size of the packets.

5.4.2 Snort

For the second experiment we required an IPS software. This made the selection
straightforward since we already considered using Snort for the �rst experiment.
While we had picked Princeton IoT Inspector because of its user-friendliness and
the fact that it was based on the concept of ARP Spoo�ng, we chose Snort for its
dissimilarity to Princeton IoT Inspector. Snort is a bit more complex than Princeton
IoT inspector but instead allows for a higher degree of customisation.

Snort is a well known and free open source IDS and IPS software [44]. These days
it is developed by Cisco [45]. There is a lot of unpaid community support from
the user base and a set of community rules that the user can download so they do
not have to set it up themselves [46]. Since it is developed by Cisco, it has the full
support of Cisco's di�erent data centres and �le reputation system. For example,
the Cisco Talos Intelligence Group supplies Snort with a large database of tra�c
signatures that are common network attacks or other forms of malicious activity
and compares all incoming tra�c to that database automatically. This team are the
authors behind both the o�cial Snort Rule Set [47] and the Snort Subscriber Rule
Set [48]. Both require licenses, but the latter is a paid service where your Snort
rules get updated by those written by the Talos group as soon as they are added.
There is also a free community ruleset available, which is a subset of the subscriber
ruleset, that one can use without the need of any license [49]. This is the ruleset
that is used in this thesis and referred to ascommunity rulesthroughout the thesis.

Snort can perform real-time tra�c analysis and packet logging on IP networks and
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has the ability to perform protocol analysis, content searching and matching. It
can be con�gured in di�erent modes to act as either a sni�er, packet logger or to
perform network intrusion detection/prevention. In the latter mode, Snort can also
perform a speci�c action based on what has been con�gured in its rule �le.

In our experiments we used the third con�guration mode to allow it to monitor
network tra�c, analyse it against rule sets de�ned by both us and the community
and to (theoretically) block undesired tra�c. Moreover, there are also di�erent
versions of the software available. Although in beta (spring 2020), we chose to
use Snort version 3 since it has native support for JSON as an output format.
This proved to be a convenient format when using Snort in combination with other
software solutions.

Snort also o�ers plugins focused on the application layer such as the OpenAppID. It
is an open, application-focused detection language and processing module designed
speci�cally for Snort by Cisco, and it enables users to create, share, and implement
application detection.

When it comes to the Snort rule language, it is highly �exible. The rules are eval-
uated in a predetermined order in regards to actions, rather than in the order that
they appear in the snort rule �les [50].

By default, the order of the actions are:

ˆ Pass rules: Snort ignores the packet.

ˆ Alert rules: Snort generates an alert using the alert method.

ˆ Log rules: After generating an alert, Snort then logs the packet.

Though this predetermined order only determines order between rule groups (pass
or alert, for example). Within those rule groups, the rules are read in order and
executed accordingly [50].

In our experiment we were conscious of the fact that we needed to look at a large
number of packets. However, Snort does not come with any GUI. Furthermore,
the default output method writes the capture information to a �le and consistently
updates the �le when something new is detected. Going through this manually
afterwards would be cumbersome. This meant that we needed a better way to
visualise the logs.

5.4.3 Elasticsearch, Logstash and Kibana (ELK)

In order to determine what tools to use for visualising the logs and alerts from Snort,
di�erent articles were read on the topic to see if there was a consensus about how to
best visualise the data [51][52]. Based on this research, we decided to use the ELK
stack [53].
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ELK is an acronym for three open source projects: Elasticsearch [54], Logstash [55]
and Kibana [43]. The three of them work together to become a software stack
that focuses on log management and data analysis. It can monitor modern applica-
tions and IT infrastructures which is useful since these are often highly distributed,
dynamic and noisy environments and is not limited to Snort logs exclusively.

Elasticsearch is the scalable search and analytic engine that stores the data. It
is based on the Apache Lucene search engine [54]. Logstash is a server-side data
processing pipeline, or log aggregator, that collects data from various input sources,
executes di�erent operations on the data and then sends it to various supported
destinations. In the case of ELK, this means Elasticsearch. Finally, Kibana is
a visualisation layer that works on top of Elasticsearch, providing users with the
ability to visualise and analyse the data.

Initially, we were mainly interested in the visualisation part of ELK, meaning
Kibana. However, after looking into Elasticsearch and Logstash we realised they
would also be bene�cial to our log management. Logstash assists in determining
how the data looks and can be used for further queries like querying for geodata
and domain name resolutions based on the IP addresses in the logs. Moreover,
Elasticsearch indexes the data which enables quick searches in the database, this is
increasingly important as the number of logs increase.

One of the main reasons to why Kibana was the choice of preference was related to
its many ways to visualise the data. Moreover, another good trait of Kibana is its
ability to �lter the data by di�erent metrics, for example, by time. As long as the
logs contain timestamps, one can choose to look at smaller or larger time intervals.

Finally, another reason for why Kibana is useful when studying Snort logs is that
it has an easy way of looking at individual logs. Given that one of the threats in
the threat model was to investigate unexpected device behaviour, we also needed to
be able to inspect the tra�c in more detail. Being able to �nd and isolate speci�c
entries proved to be useful.

5.4.4 Cron

For the last experiment it was necessary to automate the process of sending parsed
logs to the cloud, fetching the latest cloud rules and restarting Snort on a regular
basis. In UNIX there is a utility called Cron that is designed for this purpose, i.e.
to automate repetitive tasks, which was used in the third experiment.
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CHAPTER6
Implementation of the
Experiments

This chapter features the implementation of the three experiments whose designs
were discussed in the previous chapter. It begins with a description of the usage
of Princeton IoT Inspector in the �rst experiment. This is followed by a section
discussing the use of Snort and the ELK Stack in the second experiment. The
chapter is concluded with a section dedicated to the third experiment, which presents
the di�erent Python scripts that were developed and automated in order to improve
the setup from the second experiment.

6.1 Experiment I - Princeton IoT Inspector

The �rst experiment consisted of capturing packets by using the Princeton IoT
Inspector on a Windows 10 machine. As mentioned in the previous chapter, this
software utilises the concept of ARP spoo�ng to capture the packets. By doing so,
all tra�c to and from the devices passed through Princeton IoT Inspector before
it reached its target. However, the software does not modify the data in any way,
which means that the process is transparent to the devices. The packets that were
captured could then be visualised through a web GUI that was provided with the
Princeton IoT Software. An overview of how the �rst experiment was setup can be
seen in Figure 1.
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Figure 1: The testbed was designed to support running all three experiments in
parallel. Non-essential equipment in regards to the �rst experiment have been

greyed out in the �gure.

6.2 Experiment II - Snort & The ELK Stack

The second experiment used Snort in IPS mode to capture the packets. However,
its blocking capabilities were not used in this experiment. Instead, it rather ran as if
it was an IDS. The IPS mode was chosen primarily to support the third experiment
(cloud rules) as well as for the fact that it can be considered a more viable option for
regular users. For an overview of the setup for the second experiment, see Figure 2.

Thanks to the way Snort is designed, it is possible to include multiple rule �les,
which meant that we could separate and use both local rules (written by us) and
community rules (downloaded from the Snort community) as well as cloud rules
(written by us, simulating a service provider). The community rules are constantly
evolving; however, the rules used throughout this experiment were downloaded 2020-
05-07. The local rules were designed to ignore tra�c from non-IoT devices such as
laptops, desktops and smartphones. Furthermore, most common local tra�c such
as IPv4 and IPv6 multicast and link-local addresses were �ltered as well. All other
tra�c, that was not already being tagged as alerts by Snort, was then logged. See
Appendix B.2 for the local Snort rules developed for the second experiment.
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Figure 2: An overview of the second experiment. Non-essential equipment in
regards to the second experiment have been greyed out in the �gure.

However, as we decided to run Snort in IPS mode, and not as a simple packet sni�er,
we somehow needed to separate alerts from logs in order to be able to reason about
how well the detection features of Snort works in regards to privacy and IoT. There
are di�erent ways to approach this, but we decided to mark all packets as alerts but
attach a label, "LOG-MSG", in the message �eld of each packet that was not an
alert generated by Snort itself to distinguish them. Although this might not be the
intended way to log tra�c in Snort, we believe this did not a�ect the performance
of the IPS given the order the di�erent actions are processed (see subsection 5.4.2
for more details on the ordering of actions in Snort). Moreover, this solution also
made it easy to forward all data to Kibana for visualisation and to tell them apart
in that interface. All alerts with the message content of "LOG-MSG" will from now
on be referred to aslogs in the rest of the thesis.

As mentioned, in order to visualise the logs and alerts generated by Snort, Kibana
was used. This meant that the output from Snort somehow needed to be parsed in
such a way that Elasticsearch would be able to index the logs correctly for Kibana to
display. Indexing the �les in an e�cient manner is also important for performance
given the share amount of packets. By doing so, searches and general lookup are
performed much quicker. The software used for parsing the Snort output in a format
that Elasticsearch could process was Logstash. For a graphical representation of how
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these di�erent software were set up, see Figure 3.

Figure 3: The pipeline that was used in the second experiment.

Given that the logs from Snort were outputted in JSON format, not much con�gu-
ration had to be done in Logstash regarding parsing the original content of the alerts
and logs. Instead, the majority of time spent on con�guring Logstash was invested
into �nding useful plugins. There exists a vast diversity of plugins for Logstash, but
we decided to primarily focus on the DNS [56] and Geoip [57] �lter. The former adds
the functionality to do a reverse IP lookup, which proved to be useful in order to
better visualize the endpoints the di�erent devices contacted. The latter, the Geoip
�lter, instead translates IP to geographical location related data, which means that
the IP address can be associated with, for instance, a speci�c region like the EU,
Asia and so on. It is also able to provide more speci�c location related details such
as which country and city that IP address is associated with. Moreover, Geoip also
stores the translation as geographic coordinates (longitude and latitude) which can
be plotted in Kibana on a world map in order to draw conclusions on the �ow of
tra�c from a regional perspective.

6.3 Experiment III - Cloud Rules

Since the third experiment was a proof of concept, it was not exposed to the same
restrictions as the other two experiments. In the other two experiments, tra�c
was analysed during the same time span and with the same tra�c in order to be
able to fairly compare the two solutions to one another. In the third experiment,
however, no such considerations had to be made. Instead, the data was sent in the
later stages of the experiments (when we had a better idea of the size of the logs),
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but also restricted in terms of how many log �les we chose to upload, which meant
that the third experiment did not run in complete parallel with the other two. See
Figure 4 for an overview of which parts of the testbed were a�ected by the third
experiment.

Figure 4: An overview of the third experiment. Non-essential equipment in
regards to the third experiment have been greyed out in the �gure.

The idea behind this experiment, as mentioned in the previous chapter, was to
simulate a user subscribing to a third party service which they supply with data
and from which they pull updated rules. Ideally, this would be done on a regular
interval (which probably would be the case for a commercial solution), instead this
was done in the later stages of the experiments when we had a better idea of the
size of the data.

The �rst part of the experiment was to construct a parser that could parse the Snort
logs/alerts and extract only the metadata from the packets. This was done in order
to reduce the size of the data sent to the cloud. The parser was constructed in
Python, and it took a Snort log �le as input, �ltered out the payload portion of the
log, and piped the remaining parts of the log (the metadata) to a separate �le. Since
we had de�ned a 10 Megabytes limit on the log �les in Snort in order to keep the log
�le size manageable, and Snort always processes the current packets in a �le called
alerts_json.txt (already �nished logs had the format of alert_json.txt.xxxxxxxxxx),
it was easy to distinguish a �le that was being processed from one that had been
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completed. Nevertheless, since the parser did not run continuously (not essential
and thus not a good use of system resources) it needed to keep track of its state
(which logs it had processed already and which it had not). This was done by writing
the state information (name of the latest processed log �le and the number of last
parsed log �le) in a separate .txt �le right before the parser �nished its execution.

The second part was to create yet another Python script that was responsible for
shipping the parsed logs to the AWS server at regular intervals. This script took
all the available parsed logs and sent them via a HTTP POST request to the web
server located on AWS. Before deleting the parsed log �les, the shipper checked to
make sure that the HTTP response matched a success response. For the actual code
of the two Python scripts, see Appendix C.

The next part was to create cron jobs to automate the two scripts and managing
the restarting of Snort. Since there is no way to update rules dynamically in Snort,
it needed to be restarted in order to include the new rules. Thus, the two Python
scripts were automated to run some time before the restart of Snort. All of the cron
jobs were set to run during hours that would have less of an impact on a typical
user.

The Snort rules developed on the cloud were written manually and only served as
mockup rules, i.e. they had no other purpose than to con�rm that the concept
worked as expected. These rules were fetched automatically in the same fashion,
using a cron job. They included a timestamp of the date and time of when the rules
were downloaded in order to more easily be able to detect if there were any issues
with the automation process.

Finally, the cloud rules were tested and con�rmed working as expected by manual
observation in Kibana.
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CHAPTER7
Results

This chapter presents the �ndings from the experiments described in previous chap-
ters. It does so for both the di�erent device segments and the cloud solution. For
the device segments, the results are based on the observation of the threats found
in the threat model.

The chapter begins with three sections dedicated to the results from the di�erent
device segments. The �rst deals with the threats related to concentration of geo-
graphical endpoints and cloud providers as well as third-party tracking. The second
section primarily focuses on the threats related to the shape of the tra�c. The third
digs into the aspect of encryption, or lack thereof, as well as generally unexpected
device behaviour detected during the experiments.

The �nal section of the chapter presents the results from the cloud solution. It
describes how it could be con�rmed working as expected as well show some obser-
vations and metrics that are important for evaluating the solution's viability.

7.1 Endpoints

This section will present the results from the device segments in regards to the
threats in the threat model that relates to endpoints. That is: concentration of
geographical endpoints and cloud providers but also third party tracking.

It contains two subsections where the �rst presents the results from the well-known
and less-known brands segments. The latter instead focuses on these threats in rela-
tion to the regional segments, that is the EU, North American and Asian segments.
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7.1.1 Brand Comparison

Looking at the tra�c from a geographical perspective, most of the tra�c from the
well-known brands segment terminated in either the UK or the US as can be seen
in Figure 1. In the Figure, red colour coding indicates that a signi�cant share of
the tra�c terminated in that country. Correspondingly, orange indicates relatively
high and yellow comparatively low termination rates.

Figure 1: The �gure shows where in the world the tra�c from the well-known
brands segment terminated.

Worth mentioning, regarding the tra�c from the devices in the less-known brands
segment, much of it was sent to a network-attached storage (NAS) unit owned by
one of the authors of the thesis. This happened despite the fact that the NAS
resided on a network separated from the testbed. This behaviour was not exclusive
to the devices in the less-known brands segment but also occurred for some of the
other segments, although to a lesser extent. One possible explanation to how the
devices knew about the existence of the NAS in the �rst place could be related to
application privileges, i.e. that they got the information from one of the Android
phones used during the experiments. For this reason, there are two di�erent maps
(see Figure 2) for depicting how the tra�c from the devices from the less-known
brands segment terminated in regards to geographical locations. Nevertheless, from
now on, all maps, graphs and tables in this chapter will include the tra�c to the
NAS unless stated otherwise, as this was what was observed.

The tra�c from the less-known brand segment mainly terminated in either the EU,
China or the US. This can be observed in Figure 2.
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(a) Including tra�c to the NAS. (b) Excluding tra�c to the NAS.

Figure 2: The �gure shows where in the world the tra�c from the less-known
brands segment terminated.

Based on the knowledge of in which parts of the world the tra�c from the di�erent
segments terminated, it was relevant to take a closer look into which speci�c regions
and cities the tra�c terminated in. Figure 3 shows this.

Worth noting, the Geoip �lter in Logstash was not always able to translate the
coordinates to all levels of details, as seen in Figure 3. For instance, by looking at
the tra�c from the less-known brands segment, much tra�c terminated in Hesse
(in line with the observations from the world map). However, looking at the same
tra�c from a city perspective, the tra�c to German cities is too low. This probably
indicates that the �lter is able to resolve the coordinates on a regional level but not
on a city level. Despite these limitations in the �lter, this geographical representa-
tion still gives a relatively clear view of how the two segments di�er in regards to
geographical endpoints.

Taking a closer look at Figure 3, one can observe that Mountain View and Dublin
stands out as the termination points for the devices in the well-known brand seg-
ment. The global headquarters of Google is located in Mountain View [58] and their
European headquarter is in Ireland [59]. Given that multiple Google devices were
represented in this segment, it might explain why so much tra�c terminated in these
speci�c regions.

For the less-known brands segment, when excluding the tra�c to the NAS, one can
see that a signi�cant potion of the tra�c terminated in China, both in Hangzhou
and to a lesser extent in Shenzhen. Although a device might be aimed for a certain
market, many are produced in China. However, that does not necessarily mean that
the vendor relies on back-end services in China. Nevertheless, for devices in this
segment, this seemed to be the case to a large degree.
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(a) S1: Destination Continents. (b) S2: Destination Continents.

(c) S1: Destination Countries. (d) S2: Destination Countries.

(e) S1: Destination Regions. (f) S2: Destination Regions.

(g) S1: Destination Cities. (h) S2: Destination Cities.

Figure 3: Di�erent level of details regarding where the tra�c terminated, ranging
from continent level down to city level. S1 corresponds to the well-known and S2

to the less-known brands segment.
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When analysing the threat related to the concentration of cloud providers, it was
necessary to take a closer look at the speci�c domains that the devices contacted.
While word clouds give a good bird's eye on the tra�c, Figure 4 and 5 list the top 20
domains for the two segments as well as show how many packets were sent to each
of those endpoints. Worth noting though, all of these graphs and tables says little
to nothing about the volume of the tra�c, only the frequency. For a thorough look
on the actual shape of the tra�c and the amount of data generated by the di�erent
devices and segments, see Section 7.2.

Figure 4: The top 20 destination domains for the devices in the well-known
brands segment.

From Figure 4, showing the top domains of the devices in the well-known brands
segment, a few things are apparent. Most of the domains contain either .1e100.net,
owned by Google [60], or .amazonaws.com, owned by Amazon, where the pre�x
right before .amazonaws.com reveals to which region that endpoint belongs [61].
These two companies are unsurprisingly dominant amongst the branded products,
although, interestingly enough, no Amazon products were used in that segment.

Regarding the less-known brands segment (see Figure 5), we see a di�erent picture
to a large extent. First and foremost, the cust.bredband2.com domain points to the
NAS mentioned earlier and thus explains the vast amount of packets to that domain
from this segment. Moreover, although Amazon can be found amongst the destina-
tion domains for this segment as well, many of the devices from this segment contact
domains most likely less familiar to a typical user. For instance, 47.91.88.40 as well
as 47.91.89.162 belongs to Alibaba.com, according to whatismyip.com [62]. Sim-
ilarly, 47.88.33.190, 119.23.131.217, 101.37.89.64, 116.62.56.164, 47.97.213.205 and
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119.23.151.201 belongs to Aliyun Computing Co. Ltd [62], also known as Alibaba
Cloud [63]. Others, like hwclouds-dns.com, are DNS servers owned by Huawei [64],
another big Chinese technology company. Although many of these companies are
Chinese, the location of the servers they use might vary. Simply put, that means
that looking at the geographical locations of the endpoints alone might not reveal
who the underlying cloud providers is and vice versa.

Figure 5: The top 20 destination domains for the devices in the less-known
brands segment.

For the curious readers, a more detailed description of which device contacted which
endpoints the most can be found in Appendix F. Moreover, for details about which
IP address is associated with what device, see Appendix E.

Finally, moving on to the last threat in the threat model regarding endpoints, we
take a closer look into reported tracker and/or advertisement domain contacted by
the di�erent devices. Princeton IoT Inspector has a built in tool for visualising this.
As seen in Figure 6, some of the devices from the well-known brands segment do
contact known ads or tracker domains, more speci�cally the Google Home Mini and
the Google Chromecast (192.168.0.107 and 192.168.0.109 respectively). Somewhat
surprisingly, no such behaviour was reported by Princeton IoT Inspector regarding
devices from the less-known brands segment.
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Figure 6: Tra�c from the well-known brands segment that Princeton IoT
Inspector recognised as being associated with advertisements servers and/or

trackers.

7.1.2 Region Comparison

From a geographical perspective, much of the tra�c from the EU segment termi-
nated in either the US, the UK, the EU or China, as seen in the previous section.
However, some tra�c also terminated in other parts of the world such as in Canada,
Russia or South America, although to a much lower extent. This can be seen in Fig-
ure 7, where tra�c from the EU segment, both including and excluding the NAS,
is presented.

(a) Including tra�c to the NAS. (b) Excluding tra�c to the NAS.

Figure 7: The �gure shows where in the world the tra�c from the EU segment
terminated.

In contrast, the devices from the North American segment terminated predominantly
in the US as well to some extent in the EU. Moreover, unlike the tra�c from the
devices from the EU segment, the endpoints were highly concentrated, i.e. not much
tra�c terminated in any other part of the world. See Figure 8.
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Figure 8: The �gure shows where in the world the tra�c from the North
American segment terminated.

Similar to the tra�c from the devices in the EU segment, the tra�c from the
devices in the Asian segment terminated primarily in China, the EU and the US.
Furthermore, some tra�c also terminated in countries such as Russia and Canada
as can be seen in Figure 9.

Figure 9: The �gure shows where in the world the tra�c from the Asian segment
terminated.

Figure 10 gives a complementary and more detailed look into which speci�c parts of
the world the tra�c from the di�erent regional segments terminated in. Although
it gives a good bird's view on the tra�c, this representation su�erers from the same
drawbacks regarding the Geoip translation as mentioned in the previous section.
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(a) S3: Destination
Continents.

(b) S4: Destination
Continents.

(c) S5: Destination
Continents.

(d) S3: Destination
Countries.

(e) S4: Destination
Countries.

(f) S5: Destination
Countries.

(g) S3: Destination
Regions.

(h) S4: Destination
Regions.

(i) S5: Destination
Regions.

(j) S3: Destination
Cities.

(k) S4: Destination
Cities.

(l) S5: Destination
Cities.

Figure 10: Di�erent level of details regarding where the tra�c terminated,
ranging from continent down to city level. S3 corresponds to the EU segment, S4

the North American segment and S5 the Asian segment.
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The geographical location of the endpoints from the devices in the EU segment
have already been presented in detail in the previous section and will thus not be
discussed in this section. Instead, looking at the tra�c from the devices in the
North American segment, it primarily terminated in the US and dominantly so in
Mountain View in California. Similar to the well-known brands segment, multiple
Google devices were present in North American segment, which probably explains
why so much tra�c terminated in this region.

Looking at the tra�c from the devices in the Asian segment, most of it terminated in
Germany, China and the US. More speci�cally, much tra�c terminated in Frankfurt
am Main in Hesse but also Beijing and multiple other less frequent endpoints in
China and the US.

Transitioning to the threat related to the concentration of cloud providers, Figure 11
shows the top 20 domains for the EU segment. Corresponding �gures for the North
American and Asian segments are shown in Figure 12 and 13. For details on the top
10 endpoints for each individual device from the di�erent segments, see Appendix F.

The top destination domains from the EU segment have already been discussed and
for details about these, see Section 7.1.1. Regarding the North American segment,
all but one of the top 20 domains are google domains such as 8.8.8.8 (dns.google),
bc.googleusercontent.com or .1e100.net. The remaining domain is instead owned by
Amazon (.amazonaws.com). This was not that surprising, as the North American
segment consisted exclusively of Google and Amazon devices.

For the devices in the Asian segment we also see a concentration of cloud providers,
although not of the same companies. For this segment, most tra�c was directed

Figure 11: The top 20 destination domains for the devices in the EU segment.
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Figure 12: The top 20 destination domains for the devices in the North
American segment.

Figure 13: The top 20 destination domains for the devices in the Asian segment.

towards domains owned by either Amazon (compute.amazonaws.com) or domains
that WhatIsMyIP.com recognized as belonging to Tencent Cloud Computing Co.
Ltd. [62]. Similar to the tra�c from the devices in the less-known brands segment,
one can see that the NAS mentioned in the previous section is also present in the
top 20 domains for the devices in the Asian segment (cust.bredband2.com).

55



7. Results

Finally, moving on to the threat related to third-party tracking, Princeton IoT
Inspector only recognised Google devices from the North American segment as con-
tacting known trackers and/or advertisement servers from the North American and
Asian segments, as can be seen in Figure 14. This might indicate that other devices
indeed do not contact trackers or ad servers but might just as well mean that Google
is the only manufacturer in the testbed whose devices contacts trackers and/or ad
domains known to Princeton IoT Inspector.

Figure 14: Tra�c from devices in the North American segment that Princeton
IoT Inspector recognised as being associated with ad servers and/or trackers.

7.2 Shape of the Tra�c

This section will present the results from the di�erent device segments in regards to
the threat in the threat model that relates to the shape of tra�c. It means that it
will focus on characteristics of the tra�c that might reveal what type of device the
tra�c originated from. Examples of properties that are of interest are: the amount
of tra�c sent, with what frequency and using which protocol. Similar to the previous
section, the focus in this section is on outgoing tra�c, although incoming tra�c will
brie�y be presented in the end of the section as well.

The �rst subsection presents the results from the well-known and less-known brands
segments. This is followed by a subsection dedicated to the results from the three
regional segments, meaning the EU, the North American and the Asian segments.

Both subsections use a mix of device names, product categories and IP addresses
when referring to the results from the di�erent devices. To �nd out which device is
associated with what IP address, see Appendix E.

7.2.1 Brand Comparison

The device that sent the most data of all devices in the EU segment was the IP
camera from the less-known brands segment (192.168.0.103), which can be seen in
Figure 15.
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Figure 15: The sum of the packet lengths (i.e. total bytes) per hour for all the
devices in the EU segment. The purple line in the �gure corresponds to the IP

camera from the less-known brands segment.

Looking speci�cally at the devices from the well-known brands segment, two de-
vices were more active than the others. One of these was the Google Chromecast
(192.168.0.109), which shows a spike of around 26 kB, while the other one, the
Google Home Mini (192.168.0.107), consistently sent tra�c of around 4 kB, as can
be seen in Figure 16.

Figure 16: The sum of packet lengths (i.e. total bytes) per hour for all the
devices in the well-known brands segment. The purple line corresponds to the
Google Chromecast (192.168.0.109) and the green line the Google Home Mini

(192.168.0.107).
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By looking at the size of the data sent from both segments, the total data sent
favours the IP camera from the less-known brands segment (192.168.0.103) which
sent around 1 GB of data. Out of the devices from well-known brands segment,
the devices that sent the most data was the Google Home Mini (192.168.0.107) that
sent 83.2 MB, followed by the Google Chromecast (192.168.0.109) that sent around
48.9 MB. Details on this can be found in Appendix G.

Comparing the two segments in regards to device categories, the two cameras
(192.168.0.101 and 192.168.0.103) both communicated with servers outside the net-
work as can be seen in Figure 17, although the camera from the less-known brands
segment sent noticeably more.

Figure 17: The tra�c from the IP cameras from the well-known (192.168.0.101)
and less-known (192.168.0.103) brands segments.

From Figure 17, it is clear that the IP camera from the less-known brands segment
sent much more data than the camera from the well-known brands segment, ap-
proximately 200 times as much. Furthermore, it is interesting to note that the vast
majority of the tra�c sent by the camera from the less-known brands segment was
sent using UDP while the camera from the well-known brands segment instead sent
the majority of its data using TCP which can be observed in Appendix G.

Another device category that could be compared across the two segments was home
automation devices. In Figure 18, one can see that the smart plug from the well-
known brands segment sent little tra�c after its initial con�guration in comparison
to the one from a less-known brands segment, which instead had a baseline of sending
about 20 KB and sometimes spiking up to 60 KB per hour.

58



7. Results

Figure 18: The tra�c from the smart plugs from the well-known (192.168.0.104)
and less-known (192.168.0.102) brands segments.

Besides the smart plugs, we also chose to include the Samsung SmartThings hub and
the IKEA gateway from the well-known brands segment for comparisons of tra�c
volumes between di�erent home automation devices, which can be seen in Figure 19.

Figure 19: The tra�c from the home automation devices from the well-known
and less-known brands segments: the smart plug from the less-known brands
segment (192.168.0.102), the smart plug from the well-known brands segment

(192.168.0.104), the IKEA "trådfri" gateway (192.168.0.105) and Samsung
SmartThings Hub (192.168.0.106).
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For a more in-depth comparison of the total amount of data sent by these devices,
see Appendix G.

7.2.2 Region Comparison

When comparing the tra�c from the di�erent regional segments, it is important to
clarify that the tra�c was captured during di�erent time periods for the di�erent
segments. The tra�c from the EU segment was captured earlier and will thus always
be to the left whereas the tra�c from the North American and Asian segments were
captured later, meaning that their tra�c will be further to the right when presented
in the same graphs.

Nevertheless, when comparing the di�erent regional segments, one can see that the
IP camera from a less-known brands segment stands out, as can be seen in Figure 20.
It sent large spikes of data compared to even the most talkative device from the
other two regional segments. Interestingly though, the most talkative device from
the latter two segments was also an IP camera (192.168.0.201).

Figure 20: The tra�c from the di�erent regional segments side by side. The
tra�c from the EU segment is to the left and the tra�c from the North American

and Asian segments is to the right in the graph.

In order to be able to get a better look at the shape of the outgoing tra�c of the
devices in the North American and Asian segments, see Figure 21. In this picture,
the IP camera from a less-known brand was removed due to how it scaled the graph.
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