
Development Process of Topology
Optimized Casted Components
Master’s Thesis in Applied Mechanics

NADINE KÅMARK

Department of Industrial and Materials Science
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2018





Master’s thesis 2018

Development Process of Topology
Optimized Casted Components

NADINE KÅMARK

Department of Industrial and Materials Science
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2018



Development Process of Topology Optimized Casted Components
NADINE KÅMARK

© NADINE KÅMARK, 2018

Master’s Thesis 2018
Department of Industrial and Materials Science
Division of Material and Computational Mechanics
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover:
Illustrative picture of a topology optimized design getting transferred into a casting sim-
ulation result.

Gothenburg, Sweden 2018

iv



Development Process of Topology Optimized Casted Components
Master Thesis in Applied Mechanics
NADINE KÅMARK
Department of Industrial and Materials Science
Chalmers University of Technology

Abstract
Both weight optimization and casting as a manufacturing method is widely used in the in-
dustry today. Topology optimization, as a weight optimization approach, is used to design
lighter and more competitive components. Meanwhile, casting is a time and cost-efficient
manufacturing method with the capacity to create complex shapes. Today, castability
is not taken into account until the end of the development process. When the design is
adjusted to become feasible to cast, mass is added which does not necessarily contribute
to improve the structural strength. Thus, the structure is no longer optimized. Casting
simulations assist in evaluating castability, but generally require animations and pictures
to be analyzed manually.

At Volvo Cars and within the Re-OPTIC project founded via LIGHTer, there is an interest
in finding methods to evaluate castability in the early phase of the development process.
The purpose of this thesis is therefore to find a way of evaluating castability numerically,
in order to be able to compare design concepts in the early phase of the development
process. A process where optimization results can be casting-simulated, without manually
realizing the design using CAD, is also presented in this thesis. Furthermore, the topology
optimization manufacturing constraints member size control and draw direction are evalu-
ated from a weight perspective, as well as a discretization improvement tool and the usage
of two design spaces. This thesis is only considering the casting solidification process. The
topology optimization work is carried out in the commercial software OptiStruct. The
casting simulations is obtained using the commercial software Click2Cast.

Keywords: Weight Topology Optimization Casting Castability Solidification Simulation
Development Process
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1| Introduction
1.1 Background
Both weight optimization and casting as a manufacturing method is widely used in the
industry today. Weight optimization is used by design engineers in the development pro-
cess to produce lighter and more competitive components. Meanwhile, casting is a time
and cost-e�cient manufacturing method which o�ers the opportunity to create complex
shapes with relatively simple tools [1].

Today, design engineers are not fully taking into account the cast manufacturing require-
ments and restrictions in the development process [1]. The casting simulation tools are
mainly used by the foundry engineers to predict the castability of a component. The
foundry engineers usually have to add material to make the weight-optimized component
feasible to cast. The added mass only bene�ts the casting process and does not improve
the structural strength of the component [2].

A schematic �owchart of today's development process is illustrated in Figure 1.1. As
shown, there is no iteration between the weight optimization and cast optimization pro-
cesses.

Figure 1.1: Schematic �owchart of the current development process of weight
optimized casted components.

Topology optimization is one of the structural optimization approaches that can be used
for weight optimization (see Section 2.1). In particular topology-optimized results become
di�cult to cast since the topology-optimized structure becomes very complex, especially
if no manufacturing constraints are considered.

This master thesis is based on a previous master thesis "Methodology for Topology and
Shape Optimization: Application to a Rear Lower Control Arm (RLCA)" by Robin Lars-
son [2]. The RLCA is one of the parts in the rear wheel suspension of a Volvo car. The
RLCA is today manufactured using casting with a sand core and about �ve casting in-
gates and are made in aluminum [2]. More information about the current development
process of the RLCA can be found in Robins thesis [2]. The Optimized Design became
22:5% lighter compared to the Current RLCA (see Figure 1.2).

Figure 1.2: Picture of the Optimized Design (left) and the Current RLCA (right).
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