
Beyond Debug Information:
Improving Program Reconstruction in LLDB
using C++ Modules

Master’s Thesis in Computer Science and Engineering

RAPHAEL ISEMANN

Department of Computer Science and Engineering
CHALMERS UNIVERSITY OF TECHNOLOGY
UNIVERSITY OF GOTHENBURG
Gothenburg, Sweden 2019

Master’s thesis 2019

Beyond Debug Information:
Improving Program Reconstruction in LLDB

using C++ Modules

Raphael Isemann

Department of Computer Science and Engineering
Chalmers University of Technology

University of Gothenburg
Gothenburg, Sweden 2019

Beyond Debug Information: Improving Program Reconstruction in LLDB using
C++ Modules

Raphael Isemann

© Raphael Isemann, 2019.

Supervisor: Thomas Sewell, Department of Computer Science and Engineering
Examiner: Magnus Myreen, Department of Computer Science and Engineering

Master’s Thesis 2019
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: The LLVM logo, owned by and royality-free licensed from Apple Inc.

Typeset in LATEX
Gothenburg, Sweden 2019

iv

Beyond Debug Information: Improving Program Reconstruction in LLDB using
C++ Modules

Raphael Isemann
Department of Computer Science and Engineering
Chalmers University of Technology and University of Gothenburg

Abstract
Expression evaluation is a core feature of every modern C++ debugger. Still, no
C++ debugger currently features an expression evaluator that consistently supports
advanced language features such as meta-programming with templates. The under-
lying problem is that the debugger can often only partially reconstruct the debugged
program from the debug information. This thesis presents a solution to this problem
by using C++ modules as an additional source of program information. We devel-
oped a prototype based on the LLDB debugger that is loading missing program
components from the C++ modules used by the program. With this approach, our
prototype is able to reliably reconstruct more components than other widely used
C++ debuggers such as GDB, Microsoft Visual Studio Debugger and LLDB itself.
However, our prototype was slower than LLDB and could only improve program
reconstruction for components which are defined in a C++ module.

Keywords: compilers, debuggers, C++ , LLVM, C++ modules, Clang, LLDB

v

Acknowledgements
I would like to thank Magnus Myreen and my supervisor Thomas Sewell for giving
me a chance to work on this topic. I would also like to thank the LLVM community,
especially Frédéric Riss, Adrian Prantl, Shafik Yaghmour, Jim Ingham and Davide
Italiano, for all the feedback, explanations, code reviews and support. Finally, I
would like to thank my fellow students and my friends for their support during my
time at Chalmers and this thesis.

Raphael Isemann, Gothenburg, June 2019

vii

Contents

List of Figures xi

1 Introduction 1
1.1 Aim . 2
1.2 Problem formulation . 2
1.3 Limitations . 4
1.4 Thesis outline . 4

2 Background 5
2.1 The ISO C++ programming language 5
2.2 Templates in C++ . 5
2.3 C++ modules . 7

2.3.1 A brief history of C++ modules 7
2.4 Debuggers . 10
2.5 The DWARF debugging file format 10
2.6 LLVM, Clang and LLDB . 11

2.6.1 The Clang compiler . 13
2.6.2 C++ modules in Clang . 13

2.7 The LLDB debugger . 15
2.7.1 Expression evaluation in LLDB 15

3 Integrating C++ modules into LLDB 19
3.1 The standard library module prototype 19

3.1.1 Approach . 20
3.1.2 Module discovery . 20
3.1.3 Module building . 21
3.1.4 Embedding modules in the expression evaluator 22

3.1.4.1 Clang is requesting additional information 23
3.1.4.2 LLDB is copying requested AST nodes 25

3.1.5 Manual reconstruction of templates instantiations 25
3.2 The generic module prototype . 27

3.2.1 Module discovery process . 28
3.2.2 Module building . 28
3.2.3 Integration into the expression evaluator 29

4 Evaluation 31
4.1 Evaluation setup . 31

ix

Contents

4.1.1 Standard libraries . 32
4.2 Reliability of expression evaluation 32

4.2.1 Selection of the benchmark data 32
4.2.1.1 Allowed workarounds in LLDB 33
4.2.1.2 Testing unused and used declarations 33

4.2.2 Evaluating the standard library prototype 34
4.2.2.1 A short introduction to GDB’s Xmethods 34
4.2.2.2 Sequence containers 35
4.2.2.3 Smart pointers . 35
4.2.2.4 Associative containers 38
4.2.2.5 Standard library algorithms and functions 42
4.2.2.6 Generic module declarations 43

4.3 Expression evaluator performance . 43
4.3.1 Performance when calling vector member functions 45
4.3.2 Performance for trivial expressions 46

5 Discussion 49
5.1 Review of results . 49

5.1.1 Xmethods as an alternative to C++ modules 49
5.1.2 Potential problems with synchronizing debug information and

modules . 50
5.2 Revisiting the initial problem formulation 50
5.3 Future work . 52

6 Related work 53
6.1 C++ modules in ROOT and Cling 53
6.2 Module debugging in Clang . 54

7 Conclusion 57

Bibliography 59

A Appendix 1 - std module evaluation I

B Appendix 1 - general evaluation XXVII

x

List of Figures

1.1 Examples of declarations and the problematic expressions referencing
them. 3

2.1 Two templates describing a generic function for adding two values
and a generic container holding a value and a flag if the value is set. . 6

2.2 The templates from the example in Figure 2.1 expanded for the type
int. 6

2.3 Template and a specialization for the float type that ensures that
the zero check is still correct even for floating point types. 7

2.4 A C++ source file including a header file. 8
2.5 Preprocessor output of main.cpp from Figure 2.4. 8
2.6 Demonstrating the context-sensitive nature of the include directive. 9
2.7 A C++ program and the corresponding DWARF debug information. 12
2.8 Example debugging session in the interactive LLDB command line

frontend. 15
2.9 Example usage of LLDB’s expression command. 16
2.10 Wrapper code generated for the expression argc + 1. 16
2.11 Overview of the expression evaluation process in LLDB. 17

3.1 LLDB displaying the contents of vector ‘v’ to the user. 20
3.2 DWARF tags and attributes for the C++ module std.vector. 21
3.3 Wrapper code generated for an expression that requests the build of

the std and hoge modules. 22
3.4 Loading of external AST nodes in LLDB. 24
3.5 Loading of external AST nodes in LLDB with C++ modules. 24
3.6 Example scenario where LLDB would request more information about

the variable ’f’. 25
3.7 A template specialization that is not in the C++ module. Manually

instantiating S with the type char to reconstruct the type S<char>
would lead to a wrongly reconstructed declaration. 26

3.8 A header that compiles differently depending on whether it was com-
piled with Streaming SIMD Extensions (SSE) support enabled or not. 29

4.1 Expression reliability when evaluating member functions of unused
sequential containers from the standard library. 36

4.2 Expression reliability when evaluating member functions of used se-
quential containers from the standard library. 37

xi

List of Figures

4.3 Expression reliability when evaluating member functions of unused
smart pointers from the standard library. 39

4.4 Expression reliability when evaluating member functions of used
smart pointers from the standard library. 39

4.5 Expression reliability when evaluating member functions of unused
associative containers from the standard library. 40

4.6 Expression reliability when evaluating member functions of used as-
sociative containers from the standard library. 41

4.7 Implementation of our custom data type A that can be used as a key
in both ordered and unordered associative containers. 42

4.8 Expression reliability when evaluating different kinds of expressions.
We divide the expressions into expressions using templates and ex-
pressions that do not use templates. 44

4.9 Expression performance when evaluating expressions. The expression
that is evaluated is listed on the x-axis. 45

4.10 Number of instructions in the generated LLVM IR when evaluating
certain expressions. The expression that is evaluated is listed on the
x-axis. 46

4.11 Expression performance when evaluating expressions. The expression
that is evaluated is listed on the x-axis. 47

4.12 Number of instructions in the generated LLVM IR when evaluating
certain expressions. The expression that is evaluated is listed on the
x-axis. 48

6.1 Debug information organization without Module debugging. 55
6.2 Debug information organization with Module debugging. 56

xii

1
Introduction

Debuggers are an important tool when developing software. They allow stopping a
running program and inspecting its internal state, which can give important insights
to developers on why the program behaves the way it does. This makes it easier
and faster to resolve bugs and to improve software.

One aspect of debugging is to evaluate expressions inside the target program.
This means that a developer can provide a piece of code to the debugger, which will
then be executed as if it was part of the debugged program. Expression evaluation
allows a user to easily inspect and change the state of the target program.

Even though it is an important feature, debuggers do not always feature a fully
functional expression evaluator. One reason for this is that some programming
languages make it difficult to implement expression evaluation. For example, in
the C++ programming language, expression evaluation is usually complicated by
the fact that the running program has already been translated and compiled into
machine code. The original source code is sometimes no longer available at this
point and needs to be reconstructed by the debugger. This reconstruction process is
often error-prone and sometimes even impossible if the compiler has not emitted the
necessary debug information into the executable. Even if the original source code
is available, parsing and loading it would be too slow to be viable for interactive
debugging.

With the following example we try to illustrate the current state of expression
evaluation in C++ debuggers. The given program is creating an empty vector and
then returning the last element of the vector. As the vector is empty, the program
will crash when trying to retrieve the last element which does not exist. To fix
this, we try to evaluate the simple expression v.push_back(1) when the execution
reaches line 7:

1 #include <vector>
2

3 int main() {
4 // Creates an empty vector.
5 std::vector<int> v;
6 // We set a break point here and evaluate `v.push_back(1)`.
7 return v.back();
8 }

The expected result of our expression is that our vector now has one element and
the program will now behave correctly. However, all three major C++ debuggers,

1

1. Introduction

Microsoft’s Visual Studio debugger, GDB and LLDB, fail to evaluate the example
expression and return an error instead. There are several possible reasons for why
the evaluation of the expression fails. The most likely reason in our example is that
the function push_back() was unused in the original program and therefore not
emitted into the executable by the compiler. Because of this, the debugger can not
call the compiled function when we later debug the program. As the function body
is not part of the debug information, the function can not be reconstructed and
compiled by the debugger.

To reconstruct the missing parts of the program that are not in the debug infor-
mation, we need to find another source of information about the original program.
One such source are C++ modules, which are an upcoming technology for efficiently
loading C++ program contents. In this thesis we use C++ modules to provide this
missing information to the debugger and implement a C++ expression evaluator that
can evaluate expressions like the one in our example.

1.1 Aim
The goal of the thesis is to improve the C++ expression evaluation in the LLDB de-
bugger by integrating C++ modules into the expression evaluator. After the project
is done, LLDB should be able to evaluate new kinds of expressions that were previ-
ously rejected with an error.

The following is a list of problematic expressions alongside examples for them in
Figure 1.1.

1. Expressions with calls to functions that are inlined by the compiler, either
because the compiler optimized it by inlining or because it was explicitly re-
quested by the programmer to inline the function.

2. Expressions with calls to functions that are unused in the program and there-
fore not compiled and emitted into the executable.

3. Expressions with calls to templated functions that are not called with the same
templated parameters as in the program.

4. Expressions with calls to member functions in class templates that are not in-
stantiated at all or not with the same templated parameters as in the program.

5. Expressions referencing alias templates.
6. Expressions referencing macros.

1.2 Problem formulation
This thesis aims to answer the following questions:

• Is it feasible to import C++ modules into the expression evaluator of a C++

debugger?

2

1. Introduction

1 // 1. Function manually inlined by programmer.
2 // Example expression: f1()
3 inline __attribute__((always_inline)) int f1() { return 1; }
4

5 // 2. Unused function.
6 // Example expression: f2()
7 int f2() { return 1; }
8

9 // 3. Templated function. We call it with type 'int', but we use it
10 // with type 'float' in the expression evaluator.
11 // Example expression: twice(1.0f)
12 template<typename T>
13 T twice(T v) { return v + v; }
14

15 // 4. Member function in a templated class
16 // Example expression: c.f()
17 template<typename T>
18 struct class C {
19 int f() { return 1; }
20 };
21

22 // 5. Alias template.
23 // Example expression: IdAlias<int>(0)
24 template<class T>
25 using IdAlias = T;
26

27 // 6. Macro.
28 // Example expression: TWO
29 #define TWO 2

Figure 1.1: Examples of declarations and the problematic expressions referencing
them.

3

1. Introduction

• What are potential problems when trying to add C++ module support to a
C++ debugger?

• Is the debug information commonly emitted by C++ compilers enough to cor-
rectly configure the debugger for importing modules?

• What kind of declarations and expressions are better supported with C++

modules?
• How do C++ modules effect the performance of the expression evaluation?

1.3 Limitations
The work presented in this thesis is subject to the following limitations:

• Our project has the goal to make major improvements over the current state
of the art regarding expression evaluation. However, the project is not about
completely solving program reconstruction in C++ programs as this might not
be possible.

• There exists a multitude of C++ compilers and therefore also a multitude of
C++ module implementations. This project is limited to the C++ modules
implementation in Clang and LLDB.

• There also exists several kinds of different debugging formats which are sup-
ported by LLDB and Clang. This project is limited to the DWARF debugging
format.

1.4 Thesis outline
This thesis is separated into 7 chapters. The first chapter gives a brief introduc-
tion into the problem of expression evaluation and the motivation for improving
it with C++ modules. The second chapter provides background information about
the relevant technologies discussed in this thesis. The third chapter describes our
approach for integrating C++ into LLDB to improve expression evaluation. The
fourth chapter describes the reliability and performance results we got from our
finished implementation. The fifth chapter discusses the results and the alternative
approaches used by other debuggers. The sixth chapter reviews related work about
C++ modules and compares it to our work. The last chapter provides a conclusion
of this thesis.

4

2
Background

This chapter provides an overview of the technologies that are referenced in this
thesis: C++ , C++ modules, debuggers, DWARF debug information, and the LLVM-
based debugger LLDB which forms the foundation for this project.

2.1 The ISO C++ programming language
C++ is a programming language standardized by the International Organization for
Standardization (ISO). C++ is a general-purpose and supports multiple program-
ming paradigms such as generic, functional, procedural and object-oriented program-
ming. Originally C++ was an extension of C that added support for object-oriented
programming, but has since then developed into its own independent programming
language.

The C++ standard describes the language semantics that C++ implementations
have to follow. However, some parts of the language semantics are left up to the im-
plementations to decide and some parts of the language semantics are left undefined
by the standard. These undefined semantics are usually referred to as undefined
behavior and C++ programs are in general supposed to avoid making use of these
kinds of semantics.

The most recent C++ language standard released by the ISO is ISO/IEC 14882:2017[5].
For simplicity reasons, the different C++ standard versions are also informally named
after their release year (i.e., ISO/IEC 14882:2017 would be referred to as C++ 17
because it was released in 2017).

2.2 Templates in C++
A core feature of C++ is its template system which allows expressing generic data
structures and algorithms. As several parts of this thesis discuss template semantics,
we dedicate this section to explain some fundamental template semantics.

A template declaration in C++ usually consists of two parts. First, a num-
ber of template parameters which are usually types or integers. Second, a normal
function or struct/class declaration that makes use of these template parameters
in some form. A template declaration itself will never be compiled into some form
of executable code but only serves as a recipe for the compiler to create an actual
declaration.

5

2. Background

1 // Generic add function.
2 template<typename T>
3 T add(T a, T b) { return a + b; }
4

5 // Generic implementation of an 'Optional' value.
6 template<typename T>
7 struct Optional {
8 T value;
9 bool has_value;

10 };

Figure 2.1: Two templates describing a generic function for adding two values and
a generic container holding a value and a flag if the value is set.

The process of creating an actual declaration from a template is called template
instantiating[5, 17.8]. This is usually done automatically by the compiler once a
template is used with a specific type or integer parameter. During instantiation, all
occurrences of the template parameters in the template declaration are replaced by
the actual template parameter values. When instantiating the templates in Figure
2.1 with the type int, the compiler would generate the code seen in Figure 2.2. Of
course these generated declarations are never visible by the user but are inserted
into the AST by the compiler while instantiating the template.

1 int add(int a, int b) { return a + b; }
2

3 struct Optional {
4 int value;
5 bool has_value;
6 };

Figure 2.2: The templates from the example in Figure 2.1 expanded for the type
int.

Besides letting the compiler instantiate a template, there is also the possibility
to specialize a template in the source code. Template specializations are manually
written template instantiations for certain types. These are useful in cases where a
template instantiation itself does not produce correct code. For example, in Figure
2.3 we implement an isThree function that would incorrectly directly compare
IEEE 754 floating point numbers to 3 when being used with the float type. This
can be corrected by introducing a template specialization that correctly handles the
precision problems with floating point numbers.

6

2. Background

1 // Generic check if value is equal to 3.
2 template<typename T>
3 bool isThree(T v) { return v == 3; }
4

5 // Specialized check for floating point precision.
6 template<>
7 bool isThree<float>(float v) { return v < 3.01 && v > 2.99; }
8

9 int main() {
10 // Correct check because it uses template specialization.
11 return isThree(3.0f);
12 }

Figure 2.3: Template and a specialization for the float type that ensures that
the zero check is still correct even for floating point types.

2.3 C++ modules
C++ modules are a modern way of making library interfaces. The C++ module
system replaces the preprocessor-based system of textually including header files
that was inherited from C.

C++ modules have several advantages compared to the currently used header
files, most notably faster compilation times and better isolation of code.

2.3.1 A brief history of C++ modules
C++ inherited C’s header files approach for making code reusable between files.
Header files rely on the preprocessor of a compiler to insert code from one file into
another. The preprocessor step in a C or C++ compiler is the first compilation stage
before the actual parsing, where simple preprocessor directives are executed and
macros are expanded.

Header and source files make use of the #include directive which commands
the preprocessor to replace the directive with the contents of the specified file. For
example, in the source file in Figure 2.4 we have an #include directive that tells
the preprocessor to include the header.h file contents.

7

2. Background

header.h
1 struct Foo { void doSomething(); int i; };

main.cpp

1 #include "header.h"
2

3 void doSomethingWithFoo(Foo &F);

Figure 2.4: A C++ source file including a header file.

After the preprocessor has processed main.cpp it will output the source code
seen in Figure 2.5. The output is equal to the original file contents besides the fact
that the #include directive has been replaced with the file contents of header.h.
This preprocessor output is then sent to the actual parser of the compiler.

1 struct Foo { void doSomething(); int i; };
2

3 void doSomethingWithFoo(Foo &F);

Figure 2.5: Preprocessor output of main.cpp from Figure 2.4.

In Figure 2.5 the file contents of header.h contained the declaration of the Foo
struct that is referenced in main.cpp. The purpose of header files like header.h is to
share their declarations with different source files. However, implementation details
like the definition of the doSomething function are not contained in the header file
but are written in a separate source file. Each actual source file is compiled on its
own by the C++ compiler in a separate invocation. All code that is parsed in a single
compiler invocation is usually referred to as translation unit.

This header system has a few advantages, such as being straightforward to imple-
ment and allowing a highly parallelized build. However, it is also causing redundant
parsing of header files and does not isolate source files well.

The inefficiency of header files comes from the fact that each translation unit has
to re-parse the contents of all included header files, therefore leading to redundant
parsing work when building a software project. This became a bigger and bigger
problem over time, as the code inside header files became bigger and more compli-
cated. One reason for this growth is the increased popularity of templated code,
which requires that all templated declarations are fully defined within the header.

The lack of code isolation with header files is owed to the way the #include
directive works. It replaces the directive with the file contents and then expands any
macros in the inserted code. As these macros can be defined in the including source
file, an identical #include directive can lead to different inserted code depending
on the previously defined macros.

8

2. Background

The example in Figure 2.6 demonstrates this by defining a macro before the
inclusion of our header. As we defined Foo to expand to Bar, all following Foo
tokens were replaced.

content of main_macro.cpp

1 // Here we define a macro replacing the 'Foo' token.
2 #define Foo Bar
3 #include "header.h"
4

5 void doSomethingWithFoo(Foo &F);

preprocessor output of main_macro.cpp

1 struct Bar { void doSomething(); int i; };
2

3 void doSomethingWithFoo(Bar &F);

Figure 2.6: Demonstrating the context-sensitive nature of the include directive.

The lack of code isolation and the inefficiency due to redundant reparsing of
headers are connected issues. The redundant parsing could be solved by caching
the part of the AST that is generated by the include, but the fact that includes are
context-sensitive makes this impossible without changing the language semantics.

This necessary change to the language was done in the upcoming C++ 20 stan-
dard, where a replacement for the header file system was announced, namely C++

modules. The #include directive still has the same semantics as in previous C++

standards, but there is now a new import statement that does not have the afore-
mentioned problems.

The import statement allows specifying a module that should be imported into
the current translation unit. The semantics of import state that the imported code
is no longer dependent on any previously defined macros in the importing code. The
references module also will be generated from a standalone parsable set of source
files which contain declarations. This allows C++ compilers now to cache the AST
of these source files and just attach their AST as a sub tree of the currently parsed
AST.

As C++ modules are not officially standardized yet, they are currently not offi-
cially supported in any C++ compiler. The adoption of C++ modules is therefore
currently limited to projects that are used to test C++ modules implementations.
When C++ modules are finally released as part of the C++ standard, the first li-
braries that will adopt it are most likely the standard libraries that are developed
alongside certain compilers. One example for this is LLVM’s libc++ implementa-
tion of the C++ standard library, which we will use later in this thesis as a basis for
our testing in this area.

9

2. Background

2.4 Debuggers
A debugger is software that assists developers with understanding why their pro-
grams behave the way they do. The reason why developers want to gain this under-
standing is usally to eliminate some form of bug in their program.

Debuggers usually support a set of basic operations. Richard Stallmann describes
in his overview of GDB[9] these four basic operations:

• Start the program with specified arguments.
• Stop the program on specified conditions.
• Examine the internal program state when it has stopped.
• Change the internal program state when it has stopped.

There exists a multitude of debuggers for various programming languages, but
in this thesis we only consider debuggers for the C++ programming language, such
as the GDB debugger or LLDB debugger. When debugging a C++ program, a
debugger is usually given a program in the form of a compiled executable. As most
of the program structure such as types or statements are lost during compilation,
C++ debuggers are usually tasked with reconstructing the original program.

The reconstructed program is used to translate the internal state of the program
back to the structure in the source code. For example, a debugger will usually allow
the user to display what value a variable currently has, even though the compiled
program has no notion of variable names and variable values. The debugger will
translate the relevant internal state for the user, which is for example just the
contents of a register, back to a variable with the correct name and the bytes inside
the register interpreted as the data type.

As mentioned, the compiled program lost most of the information about the
original program, which leaves the question where the debugger gets the necessary
information to reconstruct the program. The answer to this lies in the additional
data that is generated by the debugger when it compiled a program. This additional
data is usually referred to as debug information and contains the necessary data for
reconstruction. Debug information is optimized to be read by other programs and
usually not readable by humans. This optimization is necessary because debuggers
often have to quickly reconstruct large parts of the original program to understand
the current internal state.

As debug information is generated during compilation, the compiler can describe
in the debug information how it decided to compile certain parts of the program. For
example, it can describe how it decided to store a certain data structure in memory.
This information is necessary for the debugger to correctly read the internal state
of the program and can not be generated by the debugger itself.

2.5 The DWARF debugging file format
There are several formats for expressing debug information which are in use by mod-
ern compilers. One of these formats is DWARF[2][4], a debug informating format
mostly used on UNIX-based systems. DWARF is a format which is standardized

10

2. Background

by the DWARF Standards Committee and is supported in most major C and C++

debuggers.
The DWARF format uses in part a tree structure with every node representing

a Debugging Information Entry or DIE. Every DIE represents a certain language
construct in the original program such as a type, a function declaration or a class
declaration. Every DIE is describing what language construct it is representing by
having a certain tag. A tag can have values such as DW_TAG_variable which means
it describes a variable in the original program.

Figure 2.7 shows an example for the DWARF generated by the Clang C++ com-
piler for a given program. The debug information is visualized in its textual form,
where each line starting with DW_TAG represents a DIE and the indentation of each
DIE represents the tree structure. The attributes of each DIE are represented by
the lines starting with DW_AT. DIEs that represent a certain language construct in
the source code also have attributes designating the file and line number where the
declaration they represent is written. These attributes (i.e., file, line number and
column number) are usually referred to as declaration coordinates. The example also
illustrates how the DWARF debug information only contains necessary information
to understand the program but not everything. The class declaration contained in
the actual source code for example can not be found in the debug information as
the class is never actually used by any other code.

DWARF itself is no specific to any programming language but designed to be
used for expressing the debug information for a wide range of programming lan-
guages. Because of its language-independent nature, DWARF supports expressing
a wide range of language-specific constructs that might occur in a compiled pro-
gram. This problem is approached by DWARF by abstracting language constructs
into general concepts. For example the act of importing declarations from other files
into the current file (which is a concept in many programming languages), expressed
in DWARF by the single tag value DW_TAG_imported_declaration.

While this abstraction allows DWARF to support many different programming
languges, it also limits how precisely it can describe source programs. For example,
C++ ’s template parameter packs can’t be expressed in DWARF without vendor-
specific extensions. These imprecisions in DWARF can degrade the quality of the
reconstructed program which in turn degrades the functionality of the debugger
itself.

2.6 LLVM, Clang and LLDB
LLVM is an open source compiler infrastructure that is widely used in the industry
as a compiler backend. The LLVM umbrella project hosts the LLVM project itself
and a wide variety of related projects, such as the Clang C++ compiler, the libc++
standard library, the LLD linker and the LLDB debugger. These related projects
build upon LLVM as their compiler backend. They also make use of the data
structures and algorithms provided by LLVM.

11

2. Background

The input program in the file dwarf.cpp

1 class A {};
2 int main() {
3 int i = 0;
4 }

Generated DWARF for dwarf.cpp in its textual representation

1 DW_TAG_compile_unit
2 DW_AT_producer ("clang version 8.0.0")
3 DW_AT_language (DW_LANG_C_plus_plus)
4 DW_AT_name ("dwarf.cpp")
5 DW_AT_comp_dir ("/home/")
6

7 DW_TAG_subprogram
8 DW_AT_frame_base (DW_OP_reg6 RBP)
9 DW_AT_name ("main")

10 DW_AT_decl_file ("/home/dwarf.cpp")
11 DW_AT_decl_line (2)
12 DW_AT_type (0x00000052 "int")
13 DW_AT_external (true)
14

15 DW_TAG_variable
16 DW_AT_location (DW_OP_fbreg -4)
17 DW_AT_name ("i")
18 DW_AT_decl_file ("/home/dwarf.cpp")
19 DW_AT_decl_line (3)
20 DW_AT_type (0x00000052 "int")
21

22 DW_TAG_base_type
23 DW_AT_name ("int")
24 DW_AT_encoding (DW_ATE_signed)
25 DW_AT_byte_size (0x04)

Figure 2.7: A C++ program and the corresponding DWARF debug information.

12

2. Background

2.6.1 The Clang compiler
Clang is a compiler for C-languages, which refers to languages that are either based
on C or closely resemble C’s syntax and semantics. Examples for this are C++ ,
Objective-C or OpenGL’s shader language. Clang was originally developed by Apple
when the use of GNU’s C and Objective-C compiler GCC become too impractical
for the use in Apple’s developer tools.

A fundamental design idea of Clang is that it is unlike GCC supposed to be used
as a library for compiling and analysing C-languages. This is made possible by two
implementation strategies.

First, Clang’s parsing and compiling pipeline is extensible. All parts of Clang
contains functionality to register callbacks that will be called for certain events.
In the parsing logic the callbacks are used to provide additional AST nodes that
can not be found in a source file (referred to in Clang as ExternalASTSource or
ExternalSemaSource). In the compilation logic the callbacks forward all parsed
AST nodes to a consumer. The default consumer for Clang is usually the code
generator which is creating LLVM IR (the LLVM intermediate representation).

Second, Clang’s Abstract Syntax Tree (AST) needs to be expressive and straight-
forward to use by different clients. As an AST in its traditional form is usually not
very easy to understand by a client (e.g., because they do not directly see in the
AST what type an expression returns), the AST in Clang looks very different to the
AST in other compilers. The AST is actually a graph because some nodes have a
link to their parent node or link to related declarations (e.g., an expression links to
the type that it evaluates to). This makes the AST simple to traverse and analyze
for external tools. As resolving types is obviously in contrast to the idea of keeping
the AST only focused on syntax and not semantics, Clang’s AST is also in this
regard not conforming to the normal approach to ASTs. In fact, Clang’s AST is an
intermediate representation of the source code rather than an actual abstract syntax
tree.

For the rest of the thesis we keep referring to Clang’s AST as just AST as it is
the only compiler we discuss in detail. We will also refer to Clang’s concept of an
ASTContext or just context which is essentially an AST bundled with its associated
information such as types or language options.

Since its release Clang has been used for several tools that support C-languages.
These Clang-based tools range from source code formatters like clang-format to
whole debuggers like LLDB.

2.6.2 C++ modules in Clang
In Section 2.3 we described C++ modules in general. In this chapter we want to
revisit the topic from the point of view of a C++ compiler. As there exists several
C++ compilers that are used in practice, there are also several C++ modules im-
plementations in development. In this paper we only consider Clang’s C++ module
implementation as Clang is the compiler used in LLDB for C++ functionality.

Clang already shipped some form of module functionality since 2013. This was
mostly to support Objective-C’s modules feature, which had a similar goal and
approach as the upcoming C++ modules.

13

2. Background

This functionality in Clang was then extended to support the C++ language. As
no language changes were standardized yet, Clang made its module feature avail-
able to non-modular C++ code by automatically translating #include directives
into import statements. The decision whether an #include directive can be safely
rewritten into an import statement was based on external configuration files that
were placed alongside the header files (so-called modulemaps). The feature was re-
leased under the name implicit modules and is currently the most common way to
use C++ modules (e.g., Clang/LLVM use this mode to build themselves).

With implicit modules every encountered module is compiled by Clang when it
is needed for the first time. All following uses of the module just load the compiled
module from disk. Due to this the build system does not need to know which modules
are needed to compile certain files, as any missing modules are build implicitly by
Clang. However, this also means that the build system can not properly schedule the
compiler invocations and would cause a congestion. For example, if three source files
all need module A but the build system is not aware of this, the build system could
schedule the compilation of all three source files at the same time on a multithreaded
system. The first compiler invocation would then start building the module A while
the other two would just wait on the first compiler invocation to finish building the
module so that they can use it.

To fix this problem with having a build system inside the compiler, Clang in-
troduced explicit modules feature that actually uses the build system to build C++

modules before they are used[7]. With this the build system can properly sched-
ule the Clang invocations while building the program and prevent congestion by
scheduling Clang jobs so that they do not depend on the same module.

Finally, Clang also supports the standardized C++ modules as proposed in C++

20. However, as C++ 20 is not released yet, we will only mention it here for com-
pleteness.

To summarize, there are four different module implementations in Clang:

• Objective-C modules, which implement Objective-C’s module system.
• Implicit modules, where Clang automatically translates #include directives

into import statements.
• Explicit modules, where Clang requires that all used modules are passed to

the compiler before compilation.
• The standardized C++ 20 modules.

All module implementations in Clang share the same binary data format on disk
for storing the AST nodes. The data format is designed to be memory-mapped
by the reader and already contains all data fields in a format that Clang also uses
internally in its AST (e.g., an 4-byte integer is also stored as a 4-byte integer with the
same byte order on disk). Since the data is stored in the same way as Clang’s internal
AST data structures, the data format is also inherently unstable and not compatible
between different Clang versions. This means that a C++ module compiled by Clang
version 4 can not by read by Clang version 5 and vice versa. This makes Clang
modules not a suitable format to store AST nodes for other tools or other devices
to use.

14

2. Background

Using Clang modules is very efficient. All data from a module is loaded on
demand when it is needed by Clang. When initially importing a C++ module into
Clang, it will barely modify the AST and only place hooks in the AST which trigger
the loading of their direct child nodes. Once these triggers have been activated,
Clang will load more AST nodes which in turn can trigger the loading of their
children. This implementation is done in a way that the AST automatically grows
when it is explored by Clang or a tool using Clang. Because of this design it is usually
not necessary to add any module-specific logic to most software that is using Clang
for parsing C++ code.

2.7 The LLDB debugger
LLDB is the debugger of the LLVM project. Like other LLVM umbrella projects,
LLDB makes use of LLVM’s libraries and uses LLVM as a compiler backend. LLDB
supports debugging programs written in C, C++ and Objective-C.

LLDB offers similar functionality to the GDB debugger from the GNU project
by offering an interactive command line frontend (see Figure 2.8). However, the
primary focus of LLDB is to be used as a debugging backend from an IDE or
interactive debugger. At the time of writing, LLDB is most prominently used as the
debugging backend in Apple’s Xcode IDE and Google’s Android Studio IDE.

1 (lldb) target create "helloworld"
2 Current executable set to "helloworld" (x86_64).
3 (lldb) b main
4 Breakpoint 1: where = helloworld main + 22 at helloworld.cpp:4:13
5 (lldb) r
6 Process 1469 stopped
7 * thread 1, name = "helloworld", stop reason = breakpoint 1.1
8 1 #include <iostream>
9 2

10 3 int main(int argc, char **argv) {
11 -> 4 std::cout << "Hello, World!\n";
12 5 }
13 (lldb) expr argc
14 (int) $0 = 1
15 (lldb)

Figure 2.8: Example debugging session in the interactive LLDB command line
frontend.

2.7.1 Expression evaluation in LLDB
LLDB comes with an expression evaluator which allows the user to run code within
the target program. An example for how this feature would be used from the

15

2. Background

command line interface can be seen in Figure 2.9. Usually the expression that needs
to be evaluated is passed to LLDB in textual form (e.g., 1 + 2). This means LLDB
is required to first parse the input. Afterwards the parsed AST of the expression is
compiled and executed within the target program. Figure 2.11 provides an overview
of this process in LLDB.

1 (lldb) r
2 Process 1469 stopped
3 * thread 1, name = "helloworld", stop reason = breakpoint 1.1
4 1 #include <iostream>
5 2
6 3 int main(int argc, char **argv) {
7 -> 4 std::cout << "Hello, World!\n";
8 5 }
9 (lldb) expr 3 * 3

10 (int) $0 = 9
11 (lldb) expr argv[0]
12 (char *) $1 = "/helloworld"

Figure 2.9: Example usage of LLDB’s expression command.

Parsing and compiling C++ in LLDB is handled by an embedded instance of
the Clang compiler. For each expression that needs to be evaluated, LLDB creates
a new Clang instance which is used to parse the expression. Before passing the
expression to Clang, LLDB wraps the expression inside a function to make it valid
C++ (see Figure 2.10), as the language does not support free-standing expressions
in the global scope.

1 void $__lldb_expr(void *$__lldb_arg)
2 {
3 /*LLDB_BODY_START*/
4 argc + 1;
5 /*LLDB_BODY_END*/
6 }

Figure 2.10: Wrapper code generated for the expression argc + 1.

The embedded Clang instance can now start parsing the wrapped expression
as its legal C++ syntax. However, the expression still has semantic errors as all
references to variables and types from the target program are not contained in the
wrapped expression. In the example above, the argc variable is not defined and
Clang does not know how to resolve the variable to the target program.

To solve this, LLDB attaches itself to Clang in the form of an ExternalASTSource,
which is a Clang API that allows external code to help resolve unknown references

16

2. Background

that are encountered while parsing. This API receives requests from Clang for every
unknown reference. LLDB tries to answer every one of these requests by searching
the debug information of the target program for the appropriate declaration and
then constructing the respective declaration in the AST of our expression. After-
wards Clang can use this constructed declaration to continue parsing the program.

After Clang has successfully constructed an AST from the expression, LLDB
will send the AST to Clang’s code generator which will generate executable code
that can be injected into the target. This injected code will be executed within the
target process. Afterwards, the result of the evaluated expression is read back and
displayed by LLDB to the user.

Clang
parser

Injected into

Running
process

Debug
information

Target

Clang
CodeGen

Expression
1 + x

Expression
AST

Expression
LLVM module

Requests
program data

Wrapped expression
 void expr() {
 1 + x;
 }

Figure 2.11: Overview of the expression evaluation process in LLDB.

17

2. Background

18

3
Integrating C++ modules into

LLDB

This chapter describes our integration of C++ into the LLDB expression evaluator
which is the centerpiece of this thesis.

This chapter is divided into two parts describing the two prototypes that were
created as part of the project. The first part describes the implementation of a
prototype that focuses on integrating the standard library C++ module. The second
part describes a more generic prototype that is capable of handling all modules that
are used within a target program.

3.1 The standard library module prototype
C++ comes with a standard library that provides a basic set of functionality and is
always available on every C++ implementation. The standard library is currently
provided by a set of header files, but will most likely be standardized as a C++

module named std. A central part of the C++ standard library is the standard
template library (STL), a set of templates for commonly used algorithms (e.g.,
sorting) and data structures (e.g., lists and maps).

Most of the functionality of the STL is unsupported in LLDB’s expression eval-
uators due to the way the STL is implemented. Many declarations in the STL are
templates, which means they are not actually compiled unless they are instantiated
by the user. Also, some implementations of the STL force the compiler to actually
inline many templated member functions such as std::vector::size. In both cases
there will be no compiled function inside the debugged executable that LLDB could
call from the expression evaluator.

This limits the possible interactions with STL container classes from within
LLDB. For example, developers currently can not reliably inspect the last element of
an STL list from within the expression command, as the necessary member functions
for this such as std::list::back are not callable from LLDB.

The current workaround for this in LLDB is to have custom code that supports
printing the whole contents of a STL container. This custom code is known as data
formatters and is provided by LLDB developers alongside LLDB. Data formatters
are activated by writing an expression that returns an STL container as a result,
which causes LLDB to display the textual representation of the container contents
to the user. This workaround however only solves part of the problem. For example,
looking up the n-th element of a list requires the developer to manually search the

19

3. Integrating C++ modules into LLDB

list for this element.

1 (lldb) p v
2 (std::vector<int, std::allocator<int> >) $0 = size=3 {
3 [0] = 1
4 [1] = 2
5 [2] = 3
6 }

Figure 3.1: LLDB displaying the contents of vector ‘v’ to the user.

As the STL is widely used in C++ programs and using the STL declarations in
the expression evaluator is an unsolved problem, we decided to focus our project first
on integrating only the std C++ module. Most of the std module’s contents are
stable as they are standardized by the language standard itself, so focusing on this
code base would also allow us to avoid most of the complexity of handling arbitrary
user code or user-defined build configurations.

3.1.1 Approach
The expression evaluation problems when interacting with the STL are mostly
caused by two specific problems:

1. Certain functions are not compiled into the executable and therefore not
callable from the debugger.

2. Some types are only partially reconstructed from the debug information and
cause unexpected errors when they interact with the compiler.

We can solve both problems with the help of C++ modules as follows. Problem 1
requires us to reconstruct the function body of a given function from a C++ module,
generate executable code for it and inject the generated code alongside the expression
into the process. Problem 2 means that we have to replace partially reconstructed
types from the debug information with their respective intact counterpart from a
C++ module. Also, before we can load any C++ module from LLDB, we first need
to identify all used C++ modules for a given executable and then build these C++

modules. The following sections describe these steps in more detail.

3.1.2 Module discovery
Before LLDB can load any C++ modules, it first needs to identify which modules are
available and used by the target program. This information is usually not contained
within the debug information of a program as C++ modules are not widely used or
implemented in compilers yet. The only way to have this information available in
the debug information is by compiling the program with Clang and allowing it to
emit LLDB specific debug information via the -glldb flag.

20

3. Integrating C++ modules into LLDB

With this flag Clang emits DW_TAG_module DWARF tags into the debug informa-
tion for every used module in a compilation unit (see Figure 3.2). These tags contain
information such as the module name, its child modules and custom attributes for
include paths and configuration macros that were used for building.

1 DW_TAG_module
2 DW_AT_name ("std")
3 DW_AT_LLVM_config_macros ("\"-DFOOBAR=1\"")
4 DW_AT_LLVM_include_path ("/usr/include/c++/v1")
5 DW_AT_LLVM_isysroot ("/")
6

7 DW_TAG_module
8 DW_AT_name ("vector")
9 DW_AT_LLVM_config_macros ("\"-DFOOBAR=1\"")

10 DW_AT_LLVM_include_path ("/usr/include/c++/v1")
11 DW_AT_LLVM_isysroot ("/")

Figure 3.2: DWARF tags and attributes for the C++ module std.vector.

As this information is in the debug information for each translation unit, LLDB
can create a list of modules by finding the translation unit in which the current stop
location is and then iterating over all DW_TAG_module tags.

3.1.3 Module building
Once LLDB has identified the modules that are used in the current translation unit,
LLDB still needs the respective compiled module files.

In theory, these files could already exist on the system, as all the module files
should have been generated when the executable was built. In practice, however, it
is not uncommon for users to delete modules in the module cache directory. Clang
itself even offers a prune functionality that automatically removes module files after
a certain period of time.

Loading the compiled module files that were used to build the executable is also
problematic for another reason. Clang’s module files have no stable layout and do
not support being loaded by any Clang version other than the one which generated
a module file. Because of this, LLDB can only load these module files if its internal
Clang version exactly matches the Clang version used to compile the used modules.
As this strict restriction on the supported build configurations would severely limit
the usefulness of module-enabled debugging, we decided not to use this approach
when implementing module loading.

The alternative that we use in our prototype is to rebuild all C++ modules that
we need for a certain expression. The compiled modules can be reused between
expressions and therefore should only be built once. If the referenced source files or
the build configuration changes, we rebuild the used module files.

Our implementation of this feature relies upon Clang’s implicit module build
mode. In this mode, Clang automatically builds module files when they are needed

21

3. Integrating C++ modules into LLDB

by the parsed source code. Clang’s implicit module build mode also has further
advantages that made it a good candidate for being the backend mechanism in
LLDB’s module building process. For example, Clang checks the modify time of the
referenced header files and rebuilds modules if necessary in this mode. Clang also
splits the module cache into different subdirectories for each used build configuration,
so that we can have the same module with multiple incompatible build modes in the
cache. Finally, Clang automatically takes care of building any missing dependencies
of any requested C++ modules.

To use this mode, we modified the internal Clang instance used by the expression
evaluator to be capable of parsing C++ files. For this we had to inject the include
directories extracted from the debug information into the Clang configuration. These
include directories are necessary as Clang will use them to find modulemap files and
resolve any textual includes from within the modules. We also had to resolve several
differences between the configuration of the internal Clang instance and the normal
configuration of Clang. Most of the differences were related to language extensions
that were used by system headers and therefore needed to be activated before Clang
could parse them.

Our solution for triggering the build of the module files is to inject the respective
import directives into the wrapped source code of the expression (see Figure 3.3).
As Clang is configured to build any missing modules when they are needed, these
import directive will cause Clang to implicitly build all modules that have not been
compiled yet.

1 @import std;
2 @import hoge;
3

4 void $__lldb_expr(void *$__lldb_arg)
5 {
6 /*LLDB_BODY_START*/
7 argc + 1;
8 /*LLDB_BODY_END*/
9 }

Figure 3.3: Wrapper code generated for an expression that requests the build of
the std and hoge modules.

3.1.4 Embedding modules in the expression evaluator
Once LLDB has compiled the required C++ modules, we still need to load the
necessary AST nodes into the expression context. As described in Section 3.1.1, we
need to substitute partially reconstructed types and provide all missing functions to
Clang to improve the expression evaluator for the STL. However, our prototype has
to consider two constraints that limit the possible ways of loading these nodes into
our context.

22

3. Integrating C++ modules into LLDB

The first constraint is that we must never have two nodes with different con-
tents describing the same declaration. This would directly violate Clang’s internal
assumption that every declaration is only defined once as required by the One Defi-
nition Rule[5, 6.2-1]: “No translation unit shall contain more than one definition of
any variable, function, class type, enumeration type or template.”

For example, there can be at most one AST node describing the std::vector
template in our context. This means that we must never load for any given decla-
ration both the AST node from the C++ module and the AST node from the debug
information.

Because of this constraint we can not just add both the C++ module and the
debug information from LLDB to Clang’s lookup. This would either lead to Clang
behaving in some undefined way or trigger a diagnostic by Clang which would abort
the expression evaluation.

The second constraint is that we can not just load all AST nodes in advance
from the C++ module and look into the debug information AST for any missing
declarations. The reason for this is that deserializing all modules can severely slow
down the expression evaluator. This performance impact is negligible in the current
prototype as we only load the std C++ module (which contains only about 16
megabytes of AST nodes), but it would certainly impact the second prototype which
potentially would need to preload Gigabytes of AST nodes.

Because of these constraints we designed our prototype so that the loading of
AST nodes from a C++ module only occurs in these two scenarios:

1. Clang is requesting additional information about an unknown declaration via
the ExternalASTSource interface.

2. LLDB is copying requested AST nodes into the expression evaluation context.

3.1.4.1 Clang is requesting additional information

In the first scenario we receive a request from Clang that a certain identifier was
encountered and we need to load any related AST nodes into the expression evalu-
ation context. LLDB would normally just forward this request to its internal AST
context that was created from the debug information as shown in Figure 3.4.

In our LLDB prototype we intercept this request and first try to answer it by
loading potentially related AST nodes from the attached C++ modules as shown in
Figure 3.5. If we did find any node within the C++ module that could fulfill the
request, we consider the request as fulfilled and will not forward it to the debug
information context. However, as C++ modules might not contain all possible decla-
rations a program uses, we still have to forward the request to the debug information
if our C++ module can not provide any relevant AST nodes. In all possible cases
either the C++ module or the debug information will answer a request, but they will
never both answer the same request. This ensures that we never load any conflicting
nodes from the debug information into our expression evaluation context.

23

3. Integrating C++ modules into LLDB

Requests nodes
Expression

context Copies nodes

Debug info
context

Figure 3.4: Loading of external AST nodes in LLDB.

Request
multiplexer

C++ module

C++ module C++ module

C++ module

Module reader

Requests nodesExpression
context

Debug info
context

Forwards request

Forwards request
Copies nodes

Deserializes
nodes

Debug info
context

Figure 3.5: Loading of external AST nodes in LLDB with C++ modules.

24

3. Integrating C++ modules into LLDB

3.1.4.2 LLDB is copying requested AST nodes

In the second scenario where we load AST nodes from a C++ module is when LLDB
is copying AST nodes from the debug information context to the expression con-
text. For example, this happens when Clang requests a local variable of the current
function the debugger has stopped in (see Figure 3.6). The local variable will be
found in the debug information and the related AST nodes will be copied over into
the expression context. The problem is that the related AST nodes might contain
an AST node which is also available in the C++ module.

Our prototype has to intercept this copying process as the AST nodes from the
debug information context are expected to be incomplete. When an AST node is
intercepted, our prototype loads instead the corresponding AST node from the C++

module and then stops the recursive AST copying.

1 (lldb) r
2 Process 1469 stopped
3 * thread 1, name = "helloworld", stop reason = breakpoint 1.1
4 1 #include <Foo.h>
5 2 int main(int argc, char **argv) {
6 3 Foo f;
7 -> 4 return f.bar();
8 5 }
9 (lldb) expr f

Figure 3.6: Example scenario where LLDB would request more information about
the variable ’f’.

3.1.5 Manual reconstruction of templates instantiations
Even though the standard library module contains the declarations for all STL con-
tainers, it actually does not contain any declarations for the container instantiations
used in user programs. The reason for this is that user programs actually instan-
tiate the STL container templates with (potentially user-defined) types, while the
C++ module only contains the templates itself. For example, the user might use the
std::vector<double> type in the program, but the C++ module only contains the
std::vector itself.

To reconstruct these types we have to manually instantiate the container tem-
plates in our prototype, e.g., instantiate std::vector with the type double. Usually
instantiating a template with a type does not guarantee that the resulting template
instantiation is actually identical to the one used in the program. The C++ template
system allows the custom specialization of templates for certain types and these spe-
cializations do not have to be declared inside the C++ module. Figure 3.7 shows an
example where manually instantiating a templated type from the original template
would lead to a wrong result. In this example, the S<char> specialization is hidden

25

3. Integrating C++ modules into LLDB

inside the main.cpp file which is not included in the C++ module. A manual re-
construction of S<char> from the original template would create a struct with one
char member, not one int member as defined by the specialization.

module.h
1 template<typename T>
2 struct S {
3 T i;
4 };

main.cpp

1 #include "module.h"
2

3 template<>
4 struct S<char> {
5 int a;
6 };
7

8 int main() {
9 S<char> c;

10 }

Figure 3.7: A template specialization that is not in the C++ module. Manually
instantiating S with the type char to reconstruct the type S<char> would lead to a
wrongly reconstructed declaration.

For standard library templates it is more viable to reconstruct these declarations
by instantiating them from their original templates. This is because the C++ stan-
dard is disencouraging STL container template specialization by the user. In general
the C++ standard disallows adding any declarations to the standardized std names-
pace, but it allows standard library templates to be specialized if the specialization
depends on a user-defined type [5, 20.5.4.2.1-1]. Also, if the container is specialized
for a user-defined type, it must still meet the same standard library requirements as
the original container[5, 20.5.4.2.1-3]. To summarize, it is allowed for users to spe-
cialize the STL templates we instantiate, which would lead to incorrectly evaluted
expressions in our prototype. However, because of the limited scope in which it is
allowed, it is unlikely that any user actually specializes the STL containers. In fact,
we could not find any such specialization in the source code of the LLVM umbrella
projects.

Because it is so unlikely that users specialize STL containers, we decided that
template instantiation is a viable way to construct STL types. In the unlikely case
that a user decided to specialize a STL container template, our prototype would just
fall back to the normal LLDB reconstruction process using debug information. This
will prevent that we incorrectly reconstruct templates as was illustrated in Figure

26

3. Integrating C++ modules into LLDB

3.7.
An open question we had to answer was how to determine if a template in-

stantiation inside the debug information was created by instantiation or by user
specialization. DWARF actually can not express how a templated declaration was
created, so from the perspective of LLDB all templated declarations are treated as
user-defined specializations. The detection mechanism we developed for our proto-
type relies on the following specification of declaration coordinates in templates[1,
pp. 94].

If the class type entry representing the template instantiation or any of its
child entries contains declaration coordinate attributes, those attributes
should refer to the source for the template definition, not to any source
generated artificially by the compiler.

This means that the declaration coordinate in DWARF should never point to
compiler-generated declarations. As template instantiations are compiler-generated,
the declaration coordinate for them have to point to their original template defini-
tion. Template specializations however are written by the user in the source code
and will get assigned unique declaration coordinates. With this information we can
define that a DWARF declaration was created by instantiation if and only if its
declaration coordinates match with its original template definition. There is still
the problem that DWARF does not emit any information at all about the original
template definition, so we do not actually know its declaration coordinates. How-
ever, the C++ module contains the declaration coordinates of the original template,
which means we can compare DWARF’s declaration coordinates against the ones
generated from the C++ module.

We only had to change our prototype slightly to implement instantiation of
STL containers. Clang is already correctly instantiating STL containers due to the
way we implemented our lookup (see Section 3.1.4.1). For example, if we parse an
expression containing std::vector<Foo> (where Foo is a user-defined type), Clang
would first find both the std namespace and the vector namespace in our C++

module and therefore ignores the debug information for this type. The Foo type is
not found in our C++ module, which means the debug information will supply this
type and Clang will instantiate it by itself.

When LLDB is copying nodes (see Section 3.1.4.2), it also checks if any node
we copy is an instantiation of an STL container and then manually instantiate the
template in our expression AST context.

3.2 The generic module prototype
The second prototype we implemented as part of this thesis is the generic module
prototype. This prototype expands the loading mechanism of our standard library
prototype by loading all C++ modules used to compile a C++ program. The generic
module prototype was built upon the standard library prototype as the implemen-
tation of this prototype can be done by extending the first prototype. In the rest of
this thesis we will therefore test this unified prototype and refer to it as LLDB with

27

3. Integrating C++ modules into LLDB

C++ modules.

3.2.1 Module discovery process
The module discovery process for the generic module prototype was supposed to
be identical to the discovery process in the first prototype. However, this discovery
process turned out to be only viable for finding the standard library module. The
reason for this is that Clang only emits debug information for C++ modules that
are actually used in the program. This is consistent with how debug information is
in general not generated for unused declarations. However, in this case it prevented
the generic module prototype from building the modules in a certain build setup.

The specific problem is related to the build configuration we generate from the
debug information. For every imported module we find in the debug information
we expand the include directories in our C++ module build environment. This is
necessary to resolve all #include directives we encounter when compiling a C++

module for the expression evaluator. The problem we faced was now that if a C++

module is imported in a source file but never used, then we also do not get its include
directory. This becomes problematic when we actually compile the module and we
are unable to resolve this specific module to any specific file location. This causes
the module compilation to fail which renders the prototype useless in these build
setups.

As unused imports are not uncommon, we either had to change this behavior in
Clang or find another way to force the emission of all imported modules in the debug
information. As changing Clang’s behavior in this case would have actually increases
the debug information size (due to the additional module descriptions that would
have been emitted), we instead decided to change the way we required supported
programs to be compiled.

The best solution we found to emit all modules into the debug information was
to make use of Clang’s module debugging[8]. We already describe this feature in the
related work section of this thesis (see Section 6.2), so we will not further explain
it here. However, the important change with modules debugging is that Clang is
forced to declare all modules inside the debug information.

3.2.2 Module building
Module building in our general module prototype is more complex than with our
standard library prototype. The standard library is usually only slightly influenced
by most compiler settings while a user-defined module can potentially be fully depen-
dent on a specific build parameter to even build at all. The precise reconstruction of
the used build parameters is therefore of utmost importance in our generic module
prototype.

While DWARF itself does not have any way to express the used build configura-
tion (i.e. the used compiler flags), there are several different sources from where we
can retrieve information about if and how a certain compiler flag has been used in
the original program. The defines given to the compiler are emitted, similar to the
include directories, by Clang into the DW_AT_module DWARF tags of the specific

28

3. Integrating C++ modules into LLDB

module. The specific version of the C++ standard used to compile the program is
also found in DWARF.

However, other flags are not emitted into the debug information which can pose
a problem for correctly compiling user-defined C++ modules. In Figure 3.8 we can
see an example for where the content of a module would depend on the build config-
uration, specifially whether Streaming SIMD Extensions (SSE) support is enabled
or not. With SSE enabled during compilation of the original program, the Data
struct would contain an aligned vector member. With SSE disabled during compi-
lation, the Data struct would instead contain a normal std::vector. To correctly
reconstruct the Data struct in our C++ module we need to determine when building
the C++ module whether SSE was enabled during the compilation of the original
program. This information however is not emitted into the debug information in
any way which means our prototype can not guarantee that it correctly compiled
this C++ module. Not only SSE support is causing this problem but in general all
compiler flags that can somehow alter the AST of a header file. This includes the
used C++ dialect (e.g., GNU, Borland or Microsoft extensions), SSE-like features
such as AVX2, whether run-time type identification (RTTI) was enabled and POSIX
thread support.

1 #include <aligned_vector.h>
2

3 struct Data {
4 // Feature check if SSE is supported or not.
5 #ifdef __SSE__
6 aligned_vector<int> v;
7 #else
8 std::vector<int> v;
9 #endif

10 };

Figure 3.8: A header that compiles differently depending on whether it was com-
piled with Streaming SIMD Extensions (SSE) support enabled or not.

A possible workaround for this is to let the user manually specify all the original
compiler flags used in the program for the current expression. This however would
make the debugger more complicated to use for the user and is prone to errors due
to wrongly entered compiler flags.

As we could not find a good solution to this problem as part of this thesis, we
only reconstruct the build configuration for the language version and the user-defines
in our current generic module prototype.

3.2.3 Integration into the expression evaluator
After finding and building the C++ modules of the project with our prototype, we
sill have to integrate them into our expression evaluator. We could reuse most of
the infrastructure we already developed inside LLDB for integrating the standard

29

3. Integrating C++ modules into LLDB

library module. The lookup mechanism described in Section 3.1.4.1 stayed identical
as it was designed to work independently from the actual declarations that are
being requested by Clang. The interception mechanism in Section 3.1.4.2 has been
extended to cover a wider range of possible data structures that need to be copied.
With the standard library prototype we only needed to support class templates, but
in the generic prototype we needed support for intercepting and replacing generic
class and struct declarations.

30

4
Evaluation

This chapter presents our evaluation of the reliability and performance of our LLDB
prototypes. To measure these properties, we performed several experiments that test
our prototype when evaluating expressions. To put our test results into context, we
repeat the experiments with the following three debuggers: the Microsoft Visual
Studio Debugger, the GDB debugger and the normal LLDB debugger without any
of our patches.

4.1 Evaluation setup
The hardware setup we use in this thesis for gathering performance data consists of
an AMD Threadripper 2990WX with 48 GB of memory. All parsed source code, de-
bug information and executables are stored on a Samsung 970 EVO during testing.
The software setup for our measurements consists of three different debuggers run-
ning on Linux: GDB, LLDB and our own prototype based on LLDB. The Microsoft
Visual Studio Debugger is running on Windows 10.

Microsoft Visual Studio Debugger (MVSD)
The Microsoft Visual Studio Debugger (or MVSD for the rest of this paper) is the
default debugger for Microsoft’s Visual Studio IDE. We use the default debug build
configuration of Visual Studio to compile the test programs. The used version of
Visual Studio is 2019 16.0.4.

GNU Debugger (GDB)
The GNU Debugger is the default debugger on all major Linux systems and is
widely used by developers. Due to its large userbase and prominence we will treat its
expression evaluator as the state-of-the-art debugging experience on these platforms.

The GDB version we use in this evaluation is 8.2.1, which is the latest version
of GDB at the time of writing. The programs we debug with GDB are compiled
the GNU Compiler Collection (GCC) version 8.3, which is also the latest version at
the time of writing. All programs debugged with GDB are compiled with GCC’s
default flags on Linux, with the exception of the -g flag which tells GDB to emit
debug information for the compiled program.

LLDB
LLDB is the default debugger on several BSD-based distributions and on macOS, so
we consider it as the state-of-the-art debugging experience on these platforms. The

31

4. Evaluation

version of LLDB we test is 8.0.0 which is the latest release at the time of writing.
We compile all executables for this debugger with Clang version 8.0.0. We keep
Clang’s default flags for Linux when compiling the executables, but enable module
support and tell Clang to emit debug information specifially for LLDB via the flags
-fmodules -fcxx-modules -glldb.

LLDB with C++ modules
This represents our LLDB with C++ modules prototype. Our patches are applied
to LLDB version 8.0.0.

4.1.1 Standard libraries
As we make use of the standard library in the following sections, we also need to
specify which standard library implementation we use in our test setup. We decided
two use three different standard libraries in our test setup. All programs compiled by
Clang are using LLVM’s own libc++ implementation of the C++ standard library.
This is necessary as the GCC standard library is not configured by default to support
Clang’s module implementation, which prevents our LLDB prototype from loading
the standard library module. As libc++ is by default configured to work with
Clang’s modules and is the default standard library on macOS and some BSD-
based distributions, we decided to compile our LLDB and prototype tests against
libc++.

When compiling for GDB with GCC, we use the libstdc++ implementation that
is included with GCC. We decided to let GDB/GCC use their own standard library
implementation as the debugging support for their own standard library is more
mature than for other standard library implementations.

When compiling for MVSD we use Microsoft’s MSVC compiler that is the default
in Microsoft Visual Studio. MSVC is also using its own standard library implemen-
tation for these tests, as neither libstdc++ or libc++ seem to be officially supported
by MSVC.

4.2 Reliability of expression evaluation
The main goal of this project was to provide a reliable expression evaluator in
LLDB. We define reliability as the chance to successfully evaluate expressions. An
evaluated expression is successful if it was correctly parsed, its side effects were
correctly applied to the target program and the expected evaluation result was
returned to the debugger. If any of these steps failed, we consider the evaluation
unsuccessful.

4.2.1 Selection of the benchmark data
To measure the reliability of an expression evaluator we can evaluate a list of ex-
pressions. The actual reliability can then be defined as the percentage of successful
evaluations within this list. As the actual composition of an expression influences
whether a debugger can successfully evaluate it, therfore the composition of our list

32

4. Evaluation

of expressions also influences our reliability measurement. For example, if our set of
expressions would only contain templated member function calls, we would proba-
bly measure a high reliability for our C++ modules prototype. This is because our
prototype was designed to handle these kind of expressions and has a higher chance
to successfully evaluate them. However, this measurement is not very meaningful
as expressions in the real world are not just templated member function calls.

Creating a fair and representative list of expressions is a challenging task since it
would first require us to create statistics about what kind of expressions are usually
evaluated in debuggers. In this section we instead decided to use an exhaustive
list of expressions as a basis for our reliability measurement. Exhaustive means in
this context that our expression list covers all possible kinds of expressions, even if
that means it is potentially not representative of expressions used in the real world.
This keeps the measurements free of bias, but also makes the actual reliability
measurements harder to relate to the actual end user experience. We leave this
interpretation of the measurements for the next chapter which discusses the results.

When creating our list of expressions we try to let the debugger construct dec-
larations with as many different language features and other properties as possible.
However, we try to avoid certain language features in the expressions themselves,
as we do not want to test the expression parser capabilities of the debuggers. This
mostly means that we do not use constructs like new to allocate function arguments
and always try to use simple data types for arguments (e.g., integers instead of
custom classes) as these are both language constructs which seem to be mostly un-
supported by GDB and MVSD. We also limit our expressions to C++ 14 features
as we do not want our tests to be influenced by potential immature support in
debuggers for the most recent C++ 17.

4.2.1.1 Allowed workarounds in LLDB

Besides the workarounds and limitations above, we also allow one workaround for
expressions evaluated in LLDB. This workaround is only necessary when the ex-
pression we evaluate returns a non-trivial type. Expressions that return these types
can be successfully evaluated in our prototype, but after we evaluate such an ex-
pression, LLDB attempts to copy the expression results to a persistent AST. This
copying process is likely to fail as it was not designed to handle the complicated AST
nodes we reconstruct with our prototype. However, the copying process itself is not
relevant for the actual evaluation of the expression but instead only used for the
persistent expression result feature in LLDB (which is supposed to store expression
results). For this reason we decided that if an expression fails due to the copying
process and we can workaround the issue, then we would still treat the expression
evaluation as successful. For the sake of making our results easier to reproduce, we
marked all expressions where we used a workaround in the appendix.

4.2.1.2 Testing unused and used declarations

Not only the expression itself determines how likely it is that a debugger can suc-
cessfully evaluate it, but also the surrounding code in the program. Especially if
the program contains a declaration that is only references by the expression but not

33

4. Evaluation

in the original program, the chance that the expression can be evaluated decreases.
Declarations in the program that are never used are often not emitted by the com-
piler into the executable in the form of executable code or debug information, which
makes it impossible for the debugger to reconstruct it.

When we generate our test data, we have to make the decision whether the
expressions we want to test should reference declarations that are used or unused
in the original program. In practice, expressions are usually using both used and
unused declarations, so we decided to run all our tests with two kinds of programs.
First, programs that use all declarations that the expressions are going to reference.
Second, programs that use nearly no declaration the expression is going to reference.
While these two extremes are not very realistic, they still allow us to define an upper
and lower bound for the reliability of expression evaluation. We expect the program
where all declarations are used to be the upper bound of the reliability and the
program with only unused declarations to be the lower bound.

4.2.2 Evaluating the standard library prototype
This section explores the reliability of the standard module prototype. As this pro-
totype is concerned with only the limited code of the standard library, we can create
an exhaustive list of expressions by just creating an expression for every declaration
in the standard library. Each expression should use the referenced declaration in
some logical way, e.g., a function should be called and a variable read.

The list of expressions, the results and the program in which they are used can
be found in the appendix of this thesis.

4.2.2.1 A short introduction to GDB’s Xmethods

In the following sections we refer to some expressions as being evaluated with the
help of Xmethods. This refers to a feature of GDB that provides a Python function,
the Xmethod, as an alternative implementation of a C++ function in the target
program[3]. When GDB tries to evaluate a call to a C++ function where such an
Xmethod was provided, GDB will call the Xmethod instead of the C++ function
in the target program. The Xmethod usually runs in the GDB process and reads
values from the target program if necessary to calculate the same result that the
C++ function would return.

Xmethods try to solve a similar problem as we do in this thesis by allowing the
user to evaluate expressions using functions that are inlined or otherwise unavailable
in the target program. GDB allows users to provide their own Xmethods, but also
provides a set of Xmethods for the C++ standard library which allows GDB in the
following chapters to evaluate expressions involving inlined functions.

We assume that the Microsoft Visual Studio Debugger is providing a similar
functionality as it also able to call some simple functions that were inlined or not
emitted into the executable. However we can not confirm this theory as we do not
have access to the source code and could not find any mention of this in the MVSD
documentation. As we do not have an official name for this feature in MVSD, we
will also refer to it as Xmethods.

34

4. Evaluation

4.2.2.2 Sequence containers

The C++ standard library offers several sequence containers, which are containers
that preserve the insertion order of the elements that are stored in them[5, 26.3].
The sequence containers defined by C++ 17 are: array, vector, stack, queue,
deque, list and forward_list. All these containers have different approaches for
storing their elements and therefore different implementations. However, they have
in common that they usually do not inspect the elements they store in any way,
i.e., they do not try to compare different elements to establish an order or generate
hash values for them. Because these containers barely interact with the API of the
stored elements we will use normal integers as the stored data type in the related
evaluation tests. The test results were identical to other simple data types like a
user-defined struct, so this decision does not influence the following test results.

First we try to evaluate the member methods of each type of sequential container.
No member method is used in the original program in this test, so most of the
relevant symbols and debug information will not be emitted into the executable.
The reliability measurements for this test can be seen in Figure 4.1.

The unmodified LLDB debugger was not able to evaluate a call to any member
method of the tested sequential containers. The GDB debugger was able to call a
few commonly used member functions like size() or empty() by emulating the call
with its Xmethod feature. However, for the more rarely used containers, like stack
or queue, GDB did not seem to ship with any relevant xmethods and could not
evaluate a single member function call. Our standard library prototype was able
to evaluate every single member function call and reached the maximum reliability
score.

The second test is identical with the first test in that it evaluates member function
calls to the sequential containers. However, this time all expressions are also done
inside the program to force the emission of debug information and code into the
executable. The reliability results for this test can be see in in Figure 4.2.

The reliability of the unmodified LLDB increased slightly compared to the previ-
ous test, but LLDB was still unable to evaluate most expressions. The main failure
comes from libc++’s methods that were forcibly inlined with function attributes.
This made LLDB unable to call them from the expression evaluator.

The GDB debugger became more reliable in this test. It was able to evaluate
nearly all expressions and only failed expressions that required more advanced pars-
ing such as support for templated member methods and using iterators as function
arguments. This is most likely a shortcoming of the parser GDB uses which does
not support advanced C++ language features.

Our C++ modules prototype was, as in the previous test, able to evaluate every
single expression in our list.

4.2.2.3 Smart pointers

Smart pointers are a part of the standard library that provide an alternative to
manual memory management. They are implemented as templates which, when
instantiated for a given type, take care of freeing the memory associated with a
given object. There are three kinds of smart pointers in the standard library that

35

4. Evaluation

vector deque stack
0

20

40

60

80

100

0 0 0

15 19

0

23

36

0

100 100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

LLDB
MVSD
GDB
LLDB with C++ modules

queue forward_list array
0

20

40

60

80

100

0 0 00
5

00
5

64

100 100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

Figure 4.1: Expression reliability when evaluating member functions of unused
sequential containers from the standard library.

36

4. Evaluation

vector deque stack
0

20

40

60

80

100

19
9

0

77 80

50

85 82

67

100 100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

LLDB
MVSD
GDB
LLDB with C++ modules

queue forward_list array
0

20

40

60

80

100
86

18

100

42

68
76

71
64

94
100 100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

LLDB
MVSD
GDB
LLDB with C++ modules

Figure 4.2: Expression reliability when evaluating member functions of used se-
quential containers from the standard library.

37

4. Evaluation

are being used:

• std::unique_ptr which represents unique ownership of the object and will
free it when it goes out of scope.

• std::shared_ptr which represents a pointer which shares ownership of the
object with other shared_ptrs. A shared_ptr tracks a reference count for the
given object (i.e., how many shared_ptrs in total own the object) and deletes
it if this reference count reaches zero.

• std::weak_ptr which represents temporary ownership of an object and is
usually used to prevent reference cycles when using shared_ptr.

Our first test tries to evaluate smart pointers when they are otherwise unused
in the user program. We can see our reliability measurements for this test in Fig-
ure 4.3. Our prototype performs again as intended and can evaluate all expres-
sions involving smart pointers. For other debuggers, the reliability is the highest
when evaluating expressions involving std::unique_ptr with std::shared_ptr
and std::weak_ptr being less supported. This is reflective of the popularity of
the different smart pointers, with std::unique_ptr being usually more commonly
used than std::shared_ptr or std::weak_ptr in C++ programs. This correlation
is most likely caused by the increased popularity of data structures leading to more
type-specific workarounds in debuggers.

Our second test tries to evaluate the same expressions but also uses all related
member functions of the smart pointers inside the program. The reliability results
of this test can be seen in Figure 4.4. All debuggers could now consistently evaluate
the majority of the expressions involving smart pointers. The main problem for the
remaining failing expressions were expressions involving the owner_before method
of std::shared_ptr and std::weak_ptr which could not be successfully called
by any debugger besides our prototype. One possible explanation for this is that
owner_before takes another smart pointer as an argument which does not seem to
be supported by most expression evaluators.

4.2.2.4 Associative containers

The standard library comes with four associative containers which are designed to
allow efficient access to their elements by some form of key and optionally store the
elements ordered by their keys. These four containers are a set (where each element
is unique) and a map (where each key is unique but with an associated value that
does not need to be unique), with both having an alternative implementation in the
standard library that does not order its keys (unordered_set and unordered_map).

The ordered containers compare their keys with the < operator implementation
for the key types, while the unordered containers hash the keys via std::hash. This
differentiates them from the other data structures in the standard library which
usually only access the destructors and constructors of their containing types, but
never related functions and structures like the < operator or std::hash.

Before we inspect this part of the associative containers, we first perform our two
standard reliability tests as in the sections before with integers as keys and values.
We can see the reliability measurements for unused associative containers in Figure

38

4. Evaluation

unique_ptr shared_ptr weak_ptr
0

20

40

60

80

100

17

0 0

50

17

0

67

50

0

100 100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

LLDB
MVSD
GDB
LLDB with C++ modules

Figure 4.3: Expression reliability when evaluating member functions of unused
smart pointers from the standard library.

unique_ptr shared_ptr weak_ptr
0

20

40

60

80

100 100

33

75
83

67
75

100

67
75

100 100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

LLDB
MVSD
GDB
LLDB with C++ modules

Figure 4.4: Expression reliability when evaluating member functions of used smart
pointers from the standard library.

39

4. Evaluation

4.5. Our modules prototype delivered as before full reliability when evaluating mem-
ber functions of the containers. Similar to earlier results, the other three debuggers
could not evaluate most of the expressions with LLDB not being able to evaluate a
single member function call.

The reliability results for used associative containers are displayed in Figure
4.6. This time LLDB outperformed every other debugger as both GDB and MVSD
struggled with correctly reconstructing and calling the complex function signatures
of the containers.

set map
0

20

40

60

80

100

0 0

15 1923

36

100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

LLDB
MVSD
GDB
LLDB with C++ modules

unordered_set unordered_map
0

20

40

60

80

100

0 00
5

0
5

100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

Figure 4.5: Expression reliability when evaluating member functions of unused
associative containers from the standard library.

40

4. Evaluation

set map
0

20

40

60

80

100
90

95

71 73
62

55

100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

LLDB
MVSD
GDB
LLDB with C++ modules

unordered_set unordered_map
0

20

40

60

80

100
89

95

22

71

11

58

100 100

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

Figure 4.6: Expression reliability when evaluating member functions of used as-
sociative containers from the standard library.

So far we only tested simple integers as keys but as we mentioned above it
is also possible to use more complicated types in associative containers. To test
this we implemented a custom type (see Figure 4.7) that can be used as a key
for both unordered and ordered containers as it provides interfaces for hashing and
comparison. We created two derivative test cases from our associative container test
above but with the integer keys and values replaced by our custom key type:

1. A test where we used our custom type as the key for an unused and a used

41

4. Evaluation

std::set, std::map, std::unordered_set and std::unordered_map. The
custom type was implemented in the source file and was therefore not contained
in any C++ module. This test is supposed to see how having to reconstruct
the hash or comparison operator from debug information will affect reliability.

2. A test where we used our custom type as the key for an unused and a used
std::set, std::map, std::unordered_set and std::unordered_map. The
custom type was implemented in a C++ module and we loaded this module
with our generic module prototype. This test is supposed to see how cus-
tom comparison or hash operators influence the reliability with associative
containers.

We repeated the expression tests we used on the original test case with our two
new test cases and our prototype. We did not repeat the tests for all debuggers
due to time constraints. The reliability results from the new test cases were for the
identical to the original test case. Our own prototype kept its full reliability score
as it seems reconstructing hash and comparison operators from debug information
does not interfer in any way with the rest of our prototype.

1 struct A {
2 A() = default;
3 A(int i) : i(i) {}
4 int i;
5 };
6 // Custom comparison operator for A.
7 bool operator<(A a, A b) { return a.i < b.i; }
8

9 // Custom hash implementation for A.
10 namespace std {
11 template<> struct hash<A> {
12 size_t operator()(const A &a) const {
13 return a.i;
14 }
15 };
16 }

Figure 4.7: Implementation of our custom data type A that can be used as a key
in both ordered and unordered associative containers.

4.2.2.5 Standard library algorithms and functions

Besides container templates, the standard library also contains several functions that
either provide miscellaneous functionality (e.g., std::exit for exiting the process)
or implement generic algorithms (e.g., sorting or calculating the absolute value of a
number). When we tried calling these functions from our set of tested debuggers,

42

4. Evaluation

we found that nearly no function call could actually be evaluated by any debugger
successfully. This was true both for unused functions and when we used them (with
the same type arguments for templates) in our test program. However, our prototype
was able to call every single function inside the standard library independently if it
was used or not.

We could not find a precise explanation for why other debuggers were not able
to evaluate these functions even when they were used inside our program.

4.2.2.6 Generic module declarations

So far we only tested the reliability of our prototype by using the standard library.
This section will present the results when testing the reliability of the generic module
prototype with a small testbed that makes use a wide variety of C++ language
features. The program and the expressions we evaluate can be found in Appendix
B. We divide the expressions we test in the generic prototype into two categories:
Expressions that reference templates and expressions that do not. The reason for
this is that templates are one of the areas where our prototype sees the biggest
difference in reliability. We can see the reliability measurements of our tests in
Figure 4.8.

Our own C++ modules prototype performed better than the other three debug-
gers in this test, but failed to evaluate all expressions. The failures were related to
our prototype currently incorrectly importing macros from the module and template
specializations hidden inside source files which could not be reconstructed.

The other debuggers performed in general much better when evaluating expres-
sions that do not involve templates. This again is related to them not having the
original template in the debug information so they ca not create new instantiations
for types that do not occur in the original program. When the templated declaration
was already instantiated by the program with the same types, the other debuggers
were usually able to correctly evaluate the expression.

When evaluating normal expressions the other debuggers performed better and
could evaluate about half of our test expressions. The failed expressions could not
be evaluated because they fell into one of two categories:

1. Expressions calling inlined functions that were not emitted into the executable.
It should be noted that member functions are implicitly inline which means
these failures are also caused by inlining.

2. Expressions involving information that was not emitted into the debug in-
formation. This includes the failures related to expanding macros or calling
functions with their default arguments.

4.3 Expression evaluator performance
In this section we measure the performance of our expression evaluator. We define
the performance as the elapsed real time that our expression evaluation needs from
receiving the evaluation command to returning the expression result. The measure-
ments are done in real time and not CPU time because usually debuggers are used

43

4. Evaluation

Expressions Templates
0

20

40

60

80

100

58

10

50

20

58

30

92

80

Ex
pr
es
sio

n
su
cc
es
s
ra
te

in
%

LLDB
MVSD
GDB
LLDB with C++ modules

Figure 4.8: Expression reliability when evaluating different kinds of expressions.
We divide the expressions into expressions using templates and expressions that do
not use templates.

44

4. Evaluation

as interactive programs. This means that a user is usually waiting on the expression
result and minimizing the user’s wait time has the highest priority.

The debuggers we test in this section are LLDB and our LLDB with C++ mod-
ules. We do not test GDB or MVSD in this section for several reasons. One reason
is that they use a very different expression evaluation infrastructure and differ-
ently compiled test executables compared to LLDB, so comparing their timings
with LLDB’s timings is not very meaningful. Another reason is that they could not
evaluate all the expressions we test in this section.

4.3.1 Performance when calling vector member functions
We start our performance evaluation with a list of expressions that consists of calls to
member methods of a std::vector<int> v. The first expression is v.at(v.at(0)/3),
which is a compound of member function calls which should check the behavior in
case LLDB employs any single-function call optimizations. The second expression
v.max_size() is just calling a simple member function of the vector. The last
expression v.push_back(1) is calling a more complicated member function of the
vector class. We call each expression 100 times and measure the average time it
took for each debugger to evaluate them.

The measured time for each expression can be seen in Figure 4.9. We can see
that all our expressions are being evaluated at a slower pace in our C++ modules
prototype. The first two expressions are around two to three times slower, while our
call to push_back was around 25 times slower in our C++ modules prototype.

v.at(v.at(0)/3) v.max_size() v.push_back(1)
0

50

100

150

200

250

7 7.1 9.513.4 20

240

Ev
al
ua

tio
n
tim

e
in

m
ill
ise

co
nd

s

LLDB
LLDB with C++ modules

Figure 4.9: Expression performance when evaluating expressions. The expression
that is evaluated is listed on the x-axis.

To better understand what could cause these slowdowns we can look at the gener-
ated LLVM intermediate representation (IR) that was created when the expressions

45

4. Evaluation

were evaluated. In Figure 4.10 we can see the number of LLVM IR instructions
that each expression generated. All expressions in the LLDB with C++ modules
prototype are generating more instructions than when they are evaluated in the un-
modified LLDB. This is mostly because in our prototype we compile these methods
ourselves from the AST, while in the unmodified LLDB we just generate a function
call to the function inside the executable. Generating just a function call is obviously
faster but comes with the unreliability we measured in the previous section. On the
other hand, compiling the whole function comes with a potentially high slowdown
when we call a complicated function such as the push_back member function.

v.at(v.at(0)/3) v.max_size() v.push_back(1)
0

200

400

600

800

1,000

25 20 16
57

109

903

LL
V
M

IR
st
at
s
fo
r
th
e
ex
pr
es
sio

ns

LLDB - IR instruction count
LLDB with C++ modules - IR instruction count

Figure 4.10: Number of instructions in the generated LLVM IR when evaluating
certain expressions. The expression that is evaluated is listed on the x-axis.

4.3.2 Performance for trivial expressions
We now try to evaluate expressions that do not cause the compilation of imported
functions. These tests demonstrate the performance impact of using C++ modules
themselves, which includes opening and searching the module file for potential decla-
rations and importing them into the AST. We are again evaluating these expressions
in a compiled function with a std::vector<int> v variable.

The measurements of this test can be seen Figure 4.11. Our first expression
just performs a simple calculation without actually using any declaration from the
standard library module. The slowdown of around 2.6 milliseconds we see for this
expression is therefore the time we need to load the standard library module and

46

4. Evaluation

integrate it into the expression evaluator. The second prototype tries to use the
vector v type but without causing any function from a C++ module to be compiled.
As the slowdown is identical to the previous expression, we see that deserializing and
instantiating the std::vector type itself is efficiently possible within our prototype.

1 + 1 (void*)(&v + 1)
0

1

2

3

4

5

6

7

2

3.1

4.6

6.2

Ev
al
ua

tio
n
tim

e
in

m
ill
ise

co
nd

s
LLDB
LLDB with C++ modules

Figure 4.11: Expression performance when evaluating expressions. The expression
that is evaluated is listed on the x-axis.

Now we also review the LLVM IR generated by the simple expressions. As both
expressions do not reference any information from the module, we expect to see the
same amount of instructions generated for both expressions. The data we measured
can be seen in Figure 4.12 and confirms this theory.

47

4. Evaluation

1 + 1 (void*)(&v + 1)
0

2

4

6

8

10

12

14

3

12

3

12

LL
V
M

IR
st
at
s
fo
r
th
e
ex
pr
es
sio

ns

LLDB - IR instruction count
LLDB with C++ modules - IR instruction count

Figure 4.12: Number of instructions in the generated LLVM IR when evaluating
certain expressions. The expression that is evaluated is listed on the x-axis.

48

5
Discussion

This section discusses our prototype based on the evaluation we did in the previous
chapter.

5.1 Review of results
When looking at our results and the theory we set out at the start of the thesis,
we can see that C++ modules did bring the improved reliability we expected at the
start. In the case of the standard library, using C++ modules in LLDB resulted in
a perfect expression reliability. This outcome was possible thanks to the fact that
LLDB already contained a full Clang compiler in its expression evaluator. Once we
were able to load AST nodes into Clang, we essentially already had a full-featured
C++ programming environment.

Our prototype showed weaknesses when certain details of the source code are
hidden in the implementation files of the project. The best example of this are
template specializations where our prototype will have no positive effect on the
expression reliability. The same will be true with projects that do not contain their
declarations inside a C++ module the debugger could load.

C++ modules had undoubtedly a negative impact of the performance of our ex-
pression evaluator. However, this slowdown was mostly due to recompiling functions
that were already compiled in the executable. This problem is therefore rather a bug
in our implementation than being related to the C++ module system itself. Also,
the slowdown is barely noticeable due to the interactive nature of debugging and
the already very short expression evaluation times.

Also, even without solving this performance problem, C++ modules can already
be used as a fallback when the normal expression evaluation fails. This would mean
that most users will not experience any performance degradation until they reach
an expression which would fail without importing C++ modules.

5.1.1 Xmethods as an alternative to C++ modules
We saw that GDB and presumably MVSD provided an alternative approach to us-
ing C++ modules in the form of Xmethods (see Section 4.2.2.1). In the evaluation
section we tested these Xmethods and found that they did also improve the relia-
bility of the expression evaluation in cases where functions were either unused or
inlined. However, the actual increase in reliability was often very limited as only
the most important functions of STL containers were provided with an Xmethod.

49

5. Discussion

A simple reason for why not all functions are provided with an Xmethod is that
Xmethods are not trivial to implement. They have to reimplement the logic of
the actual container which is, in simple cases, only reading a certain value (e.g.,
for std::size) or recompute hashes for specific objects as it is the case for most
methods in std::unordered_map. In comparison to our approach based on C++

modules, Xmethods require more time to add support for an additional function as
every new supported function needs to be reimplemented. In our LLDB prototype
adding a new function is essentially free as we only add support for specific language
constructs and not support for specific methods. However, Xmethods have the ad-
vantage that their initial implementation is simpler than integrating C++ modules
and they also work in programs that do not support building with C++ modules.

5.1.2 Potential problems with synchronizing debug infor-
mation and modules

There is one problem we have not discussed so far in this thesis: what happens if
sources are modified but the target program is not recompiled? The AST infor-
mation we get from the C++ modules is gathered by compiling and loading these
modules when the compiler needs them. However, the sources we compile might
not actually match the sources that were used to compile the target program. It is
very likely that a developer modifies a program while debugging to fix any bugs that
were found. However, when modifying the source code, the developer also changes
the source files we use in our prototype when compiling our C++ modules. Due
to this, we could compile C++ modules that are actually a different, newer AST
than the one we need to reconstruct for the compiled program. In the best case
this difference is not affecting the expression evaluation because all data structures
and functions stayed compatible. However, in the worst case these data structures
change their binary layout without our debugger noticing it, which would lead to
incorrectly evaluated expressions.

There is no real solution to this problem besides pointing out to the user that
the sources we use to compile our modules have a newer modification time stamp
than the target program we are about to reconstruct.

5.2 Revisiting the initial problem formulation
At the start of this thesis we formulated the problem we want to solve by asking five
questions that we wanted to answer in this thesis. In this section we try to provide
a specific answer to each of these questions.

Is it feasible to import C++ modules in the expression evaluator of a
C++ debugger?
As we shown with our prototype, it is possible to integrate C++ modules into a C++

debugger. However, the actual work that is needed to make this possible depends
heavily on the way the expression evaluator in the debugger is implemented. For
LLDB this implementation was relatively straightforward as it already utilized a full

50

5. Discussion

C++ compiler to parse user expressions which could build and import the modules.
For debuggers that do not have a real C++ compiler in their expression evaluator,
integration of C++ modules would most likely be more difficult. They would first
have to implement logic for loading and building C++ modules. Then they would
need to extend their custom expression parser to be able to handle all the parsing
logic required to make use of the C++ module contents (e.g., template instantiating).

What are potential problems when trying to add C++ module support
to a C++ debugger?
The biggest problem was related to template specializations in source files and sup-
porting non-default build configurations. Template specializations prevented us from
doing our most important feature which is implicitly reconstructing templated dec-
larations by instantiating their original templates.

Is the debug information commonly emitted by C++ compilers enough
to correctly configure the debugger for importing modules?
The answer for this depends on whether the debugger needs to build the C++ mod-
ules or can directly import them.

For building the used C++ modules the compiler needs to reconstruct the build
configuration (i.e. defines, include directories and language settings like C++ version
or the used C++ dialect). Most of this information is currently not emitted in the
debug information generated by current compilers. In our prototype we only had this
information available because the DW_TAG_module tags in DWARF were extended
with LLVM-specific attributes. The debugger also needs a list of imported modules
which is possible to be expressed in DWARF.

In this thesis we did not test an approach based on loading the C++ modules
that were used during compilation. However, we can assume that a debugger needs
significantly less information for just loading an already compiled C++ module com-
pared to building it. The only information that would be needed for Clang is a path
to the directories containing the module files and the used modules.

What kind of declarations and expressions are better supported with
C++ modules?
In general all declarations that are contained in a C++ module will be better sup-
ported with integrated C++ modules. Any declarations that are hidden inside a
source file or a traditional header file will not become more usable inside the expres-
sion evaluator.

Templates and other declarations that are usually optimized away or not fully
described benefit the most from this. In our tests we could use templates to the same
extent as inside the original program, while in other debuggers meta-programming
(i.e., using templates) inside the expression evaluators is often barely or not at all
supported. Calling inlined functions is now also reliable possible from the debugger
even though they are not present in the executable.

51

5. Discussion

How do C++ modules effect the performance of the expression evalua-
tion?
In our prototype C++ modules reduced the performance of the expression evaluation.
The main reason for this was due to the way we implemented the merging of AST
nodes from a C++ module and debug information. As we gave precedence to the C++

module, we often ended up loading function definitions from the module that we
needed to compile and evaluate alongside the user expression. This was significantly
slower than just calling the compiled function inside the target program. In theory
this redundant work could be avoided by deciding ,while merging AST nodes, if we
can call the already compiled function or if we have to compile it on our own.

Another but less important reason for the slowdown was the additional overhead
of loading the C++ modules into the expression evaluator. This overhead was in-
cluded in every expression as we create a new Clang instance for every expression.
This could be improved by reusing a Clang instance for multiple expressions.

5.3 Future work
This section offers a list of possible improvements to our work and potential future
work in this area.

The most obvious place for improvements in our prototype is the expression
evaluation performance. As using C++ modules causes in our prototype unnecessary
recompilation of imported functions, the best possible approach here would be to
determine in the debugger when compiling a function is not necessary. This could be
done by looking at the executable and verifying that it contains enough information
(i.e. debug information, symbols and compiled code) to receive the function call.
An alternative solution would be to automatically use C++ modules to re-evaluate
expressions that have failed without C++ modules. This would be much simpler to
implement and is less prone to unintentional errors, but would also be slower as the
expression needs to be parsed twice.

Another possible way of improving the prototype would be to find a generalized
strategy for reconstructing the build configuration of certain translation units. In
theory, this information is available to the compiler when it is emitting the debug
information, so finding a solution for how to emit this information into the debug
information in a DWARF-conform way would help the prototype with supporting
more build configurations.

Future work in this area could be implementing and comparing C++ module
support in other debuggers. However, this might be very difficult for compilers
that do not feature a real compiler as their expression evaluator. It would also be
interesting to see how well this approach would translate to other debug information
formats, such as Microsoft’s PDB format.

52

6
Related work

This chapter reviews related work which is also either concerned with improving C++

interpreters with C++ modules or using C++ modules to improve debug information.
We mainly focus on two related projects: The integration of C++ modules into the
Cling C++ interpreter[12][10] and Clang’s module debugging which optimizes debug
information size by bundling it alongside compiled module files[8].

6.1 C++ modules in ROOT and Cling
CERN’s data analysis framework ROOT comes with a C++ interpreter named
Cling[11]. Cling provides ROOT users with the means do high-performance ex-
plorative programming by offering a REPL that can directly call optimized C++

libraries. The architecture of Cling is similar to LLDB. Cling takes the user pro-
vided expressions, wraps them inside a function body and then uses Clang to parse
and compile them.

The Cling version in ROOT offers an additional functionality called autoloading.
This allows users to omit the needed #include directives when using the REPL and
directly type in their expressions. The external code that is necessary to parse the
expression is then determined by Cling and loaded into the interpreter on demand.
Autoloading is useful for making the interpreter easier to use, but also comes with
the added complexity of maintaining a lookup that maps missing declarations to the
corresponding external code.

ROOT implemented autoloading by injecting forward declarations of all exter-
nally available declarations into the interpreter AST. When Clang tries to access
these forward declarations, ROOT interrupts the parsing process and starts a new
nested parsing process. This nested parsing would start parsing the header files
associated with the used forward declarations. After the nested parsing process is
complete, the original expression parsing continues and can use the declarations
parsed from the header.

While this implementation is straightforward, it is neither fully correct nor very
efficient. For example, autoloading of namespaces is not possible with this approach
as it is not possible to make a forward declaration for a namespace. Even if the
autoloading works as intended, the external code will be loaded by parsing the
whole source file containing the external code, even if only a single declaration from
this file is needed.

These problems were resolved in Cling in a similar fashion as in this paper.
Cling’s custom autoloading mechanism was replaced with Clang’s C++ module sys-

53

6. Related work

tem as explained in this paper by Vassilev[12]. With this new system, Cling loads on
startup the C++ modules for all header files which it previously loaded manually. As
explained in Section 2.6.2, loading a module does not actually load all the module
contents but only creates hooks in the AST which pull in the actual AST nodes
when they are needed. The autoloading of declarations is now implicitly supported
in Cling by the lazy nature of Clang’s AST loading.

The results of this project were a more reliable and often faster loading of external
code into the Cling interpreter as illustrated in a paper by Yuka Takahashi[10].
Cling now supported autoloading related to previous problematic declarations such
as namespaces. External code could now also be loaded faster, which could reduce
the CPU time of short-lived Cling invocations by about 25%.

Compared to this thesis, the work done in Cling was only focused on bringing
C++ modules into a traditional interpreter which avoided many of the difficulties
related to reconstructing compiled programs. For example, Cling does not have to
reconstruct any build configurations to build modules but can rely on the user to
manually provide it with the correct information. Cling also did not have to handle
two different kind of sources for AST information. In LLDB these two sources are
C++ modules and the debug information which are both providing different parts of
the final AST.

6.2 Module debugging in Clang
When generating debug information for larger C++ projects, the size of the DWARF
debug information on disk can often take up several gigabytes. One reason for this is
the redundant debug information produced by header files. Every header file that is
included in a source file means that the compiler has to emit the debug information
for the types introduced by the header files into the generated object file. As header
files are usually included several times by different source files, their respective debug
information is duplicated in several object files as illustrated in Figure 6.1.

As described in Section 2.3.1, a compiler can not cache the resulting AST nodes
of a header because #include directives are context sensitive. For the same reason
it is also not possible to cache the debug information injected by an #include
directive. The new semantics of the import statements opened up the opportunity
to cache the debug information for each module in the same way as the AST nodes
themselves. Since the AST that a translation unit sees when referencing a module
is always identical, the debug information is therefore also identical and only needs
to be generated once.

Clang made use of this with its Module debugging feature, which was presented
by Prantl and Smith at the 2015 LLVM developers’ meeting in San Jose[8]. With
Module debugging, the DWARF debug information is bundled alongside the AST
in a compiled C++ module file. The actual DWARF debug information in each
object file is replaced by references to the respective module files as seen in Figure
6.2. When debugging a program compiled with Modules debugging, LLDB opens
the module files and reads the debug information from them. It should be noted
that LLDB only reads DWARF debug information and does not read the AST nodes
generated by Clang. This is because the Clang AST format is as discussed in Section

54

6. Related work

Clang
AST

Module A

Clang
AST

Module B

Class C

Class D

Object file A.o Object file B.o

references references

references

Class C

Class D

Class A

Class B

Figure 6.1: Debug information organization without Module debugging.

2.6.2 unstable.
This thesis is a logical continuation of the module debugging feature. Both our

thesis and module debugging rely on the new semantics introduced with modules to
improve the program reconstruction. While module debugging is more focused on
reducing redundant debug information, our thesis is focused on improving beyond
the debug information by utilizing C++ modules.

55

6. Related work

Clang
AST

Module A

Class A

Debug
information

Class B

Clang
AST

Module B

Class C

Debug
information

Class D

Object file A.o Object file B.o

references references

references

Figure 6.2: Debug information organization with Module debugging.

56

7
Conclusion

Our goal was to explore if, and to what extent, C++ modules can be used to improve
program reconstruction in C++ debuggers. We implemented two prototypes based
on the LLDB debugger that made use of Clang’s C++ module system to reconstruct
program information. The first prototype only loaded the C++ standard library
module and used it to improve expression evaluation when interacting with the
container classes from the standard library. As the standard library module only
provided templates, this prototype had to manually instantiate these templates to
reconstruct the actual types found in user programs.

During our evaluation we found that our first prototype drastically improved
the reliability of LLDB’s expression evaluator when debugging code that made use
of the standard library. However, using C++ modules instead of debug information
turned out to be slower in our implementation.

As the first prototype worked as intended, we implemented a second prototype
which loaded all user-defined and system C++ modules used by the target program.
Our second prototype was also able to improve the reliability of the expression eval-
uator, but the actual impact on real world programs depends on the structure of
the project. Programs that have the majority of their types and templates inside
C++ modules will have a improved expression evaluation reliability, while program
that keep their types hidden inside implementation files will not benefit at all. Also
correctly reconstructing the original build flags of the modules can be problem-
atic, which means that projects using uncommon build configurations may not be
supported by our approach. The performance results were identical to the first pro-
totype. This means that C++ modules may not be a good replacement for debug
information-based expression evaluation, but certainly can be used as a fallback in
cases where debug information can not reconstruct enough of the program.

In the end, the future of using C++ modules in debuggers mainly depends on
the widespread adoption of C++ modules itself. Without them being supported by
compilers and libraries, any attempt to utilize them in debuggers will be in vain.
With the recent standardization of C++ modules and the current efforts to implement
them in the available C++ compilers, the only limiting factor is how quickly users
can migrate their source code and build infrastructure.

57

7. Conclusion

58

Bibliography

[1] DWARF Debugging Information Format Committee et al. DWARF debugging
information format, version 4. 2010.

[2] DWARF Debugging Information Format Committee et al. DWARF debugging
information format, version 5. 2017.

[3] Debugging with GDB : Xmethods in Python. https : / / sourceware . org /
gdb/current/onlinedocs/gdb/Xmethods-In-Python.html#Xmethods-In-
Python. Accessed: 2019-05-15.

[4] Michael J Eager et al. Introduction to the dwarf debugging format. 2007.
[5] ISO. ISO/IEC 14882:2017 Information technology - Programming languages

- C++. Fifth. Dec. 2017, p. 1605. url: https://www.iso.org/standard/
68564.html.

[6] Chris Lattner and Vikram Adve. “LLVM: A compilation framework for lifelong
program analysis & transformation”. In: Proceedings of the international sym-
posium on Code generation and optimization: feedback-directed and runtime
optimization. IEEE Computer Society. 2004, p. 75.

[7] Alex Lorenz and Michael Spencer. “clang-scan-deps: Fast dependency scanning
for explicit modules”. 2019 European LLVM Developers Meeting. 2019. url:
https://llvm.org/devmtg/2019-04/slides/TechTalk-Lorenz-clang-
scan-deps_Fast_dependency_scanning_for_explicit_modules.pdf.

[8] Adrian Prantl and Duncan Exon Smith. “Debug Information - From Metadata
to Modules”. LLVM Developers’ Meeting 2015, San Jose. 2015. url: https:
//llvm.org/devmtg/2015-10/slides/Prantl-ExonSmith-DebugInfoMetad
ataToModules.pdf.

[9] Richard Stallman, Roland Pesch, Stan Shebs, et al. “Debugging with GDB”.
In: Free Software Foundation 51 (2002).

[10] Yuka Takahashi et al. Optimizing Frameworks Performance Using C++ Mod-
ules Aware ROOT. 2018.

[11] V Vasilev et al. “Cling – The New Interactive Interpreter for ROOT 6”. In:
Journal of Physics: Conference Series 396.5 (Dec. 2012). doi: 10.1088/1742-
6596/396/5/052071. url: https://doi.org/10.1088%2F1742- 6596%
2F396%2F5%2F052071.

[12] Vassil Vassilev. “IOP: Optimizing ROOT’s performance using C++ Modules”.
In: J. Phys.: Conf. Ser. Vol. 898. 2017, p. 072023.

59

https://sourceware.org/gdb/current/onlinedocs/gdb/Xmethods-In-Python.html#Xmethods-In-Python
https://sourceware.org/gdb/current/onlinedocs/gdb/Xmethods-In-Python.html#Xmethods-In-Python
https://sourceware.org/gdb/current/onlinedocs/gdb/Xmethods-In-Python.html#Xmethods-In-Python
https://www.iso.org/standard/68564.html
https://www.iso.org/standard/68564.html
https://llvm.org/devmtg/2019-04/slides/TechTalk-Lorenz-clang-scan-deps_Fast_dependency_scanning_for_explicit_modules.pdf
https://llvm.org/devmtg/2019-04/slides/TechTalk-Lorenz-clang-scan-deps_Fast_dependency_scanning_for_explicit_modules.pdf
https://llvm.org/devmtg/2015-10/slides/Prantl-ExonSmith-DebugInfoMetadataToModules.pdf
https://llvm.org/devmtg/2015-10/slides/Prantl-ExonSmith-DebugInfoMetadataToModules.pdf
https://llvm.org/devmtg/2015-10/slides/Prantl-ExonSmith-DebugInfoMetadataToModules.pdf
https://doi.org/10.1088/1742-6596/396/5/052071
https://doi.org/10.1088/1742-6596/396/5/052071
https://doi.org/10.1088%2F1742-6596%2F396%2F5%2F052071
https://doi.org/10.1088%2F1742-6596%2F396%2F5%2F052071

Bibliography

60

A
Appendix 1 - std module

evaluation

The following source code listings and tables describe the tests for evaluating our
standard module prototype. There exists always two tests for each standard library
container. One test where the container is unused in the original program and one
where all functions called in the expression evaluator are used in the program. The
source code listing provides the program we compiled. Each program contains a
source line marked with a comment that describes where we stopped the execution
and started to evaluate our list of expressions. This list of expressions can be
found in the table below each source code listing. Each table contains the result
of evaluating the expression in the current row with different compilers. If the
evaluation is successful, we mark the test with a 3 sign. Otherwise we mark the
test with a 7 sign. If the test passes but only with the workarounds described in
Section 4.2.1.1, we mark the test with a 3* sign.

I

A. Appendix 1 - std module evaluation

Source code for testing unused std::vector

#include <vector>

int main() {
std::vector<int> v = {3, 2, 1};
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::vector

Expression MVSD GDB LLDB

LLDB
with
C++

modules
v.data() 7 7 7 3*
v[0] 3 3 7 3

v.front() 7 3 7 3

v.back() 7 3 7 3

v.push_back(1) 7 7 7 3

v.emplace_back(1) 7 7 7 3

v.at(0) 7 3 7 3

v.begin() 7 7 7 3*
v.cbegin() 7 7 7 3*
v.end() 7 7 7 3*
v.cend() 7 7 7 3*
v.rbegin() 7 7 7 3*
v.crbegin() 7 7 7 3*
v.rend() 7 7 7 3*
v.crend() 7 7 7 3*
v.empty() 7 3 7 3

v.size() 3 3 7 3

v.max_size() 3 7 7 3

v.reserve(20) 7 7 7 3

v.capacity() 3 7 7 3

v.shrink_to_fit() 7 7 7 3

v.clear() 7 7 7 3

v.insert(v.end(), 4) 7 7 7 3*
v.erase(v.end()) 7 7 7 3*
v.pop_back() 7 7 7 3

v.resize(10) 7 7 7 3

Success rate 15 % 23 % 0 % 100 %

II

A. Appendix 1 - std module evaluation

Source code for testing fully used std::vector
#include <vector>
int main() {

std::vector<int> v = {3, 2, 1};
v.front(); // We evaluate expressions here.
v.at(0); v[0]; v.back(); v.data(); v.resize(20);
v.begin(); v.end(); v.cbegin(); v.cend(); v.crbegin(); v.crend();
v.empty(); v.size(); v.max_size(); v.reserve(20);
v.capacity(); v.shrink_to_fit(); v.clear(); v.insert(v.begin(), 1);
v.emplace_back(1); v.erase(v.begin()); v.pop_back(); v.push_back(1);

}

Evaluation success rate for fully used std::vector

Expression MVSD GDB LLDB

LLDB
with
C++

modules
v.data() 7 3 7 3*
v[0] 3 3 7 3

v.front() 7 3 7 3

v.back() 3 3 7 3

v.push_back(1) 7 7 7 3

v.emplace_back(1) 7 7 7 3

v.at(0) 3 3 3 3

v.begin() 7 3 7 3*
v.cbegin() 3 3 7 3*
v.end() 3 3 7 3*
v.cend() 3 3 7 3*
v.rbegin() 3 3 7 3*
v.crbegin() 3 3 7 3*
v.rend() 3 3 7 3*
v.crend() 3 3 7 3*
v.empty() 3 3 7 3

v.size() 3 3 7 3

v.max_size() 3 3 3 3

v.reserve(20) 3 3 3 3

v.capacity() 3 3 7 3

v.shrink_to_fit() 3 3 3 3

v.clear() 7 3 7 3

v.insert(v.end(), 4) 3 7 7 3*
v.erase(v.end()) 3 7 7 3*
v.pop_back() 3 3 7 3

v.resize(10) 3 3 3 3

Success rate 77 % 85 % 19 % 100 %

III

A. Appendix 1 - std module evaluation

Source code for testing unused std::deque

#include <deque>

int main() {
std::deque<int> d = {3, 2, 1};
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::deque

Expression MVSD GDB LLDB

LLDB
with
C++

modules
d.front() 7 3 7 3

d.back() 7 3 7 3

d.push_back(1) 7 7 7 3

d.emplace_back(1) 7 7 7 3

d[0] 3 3 7 3

d.at(0) 7 3 7 3

d.begin() 7 3 7 3

d.cbegin() 7 7 7 3*
d.end() 7 3 7 3*
d.cend() 7 7 7 3*
d.rbegin() 7 7 7 3*
d.crbegin() 7 7 7 3*
d.rend() 7 7 7 3*
d.crend() 7 7 7 3*
d.empty() 3 3 7 3

d.size() 3 3 7 3

d.max_size() 3 7 7 3

d.clear() 7 7 7 3

d.insert(d.end(), 4) 7 7 7 3*
d.erase(d.end()) 7 7 7 3*
d.pop_back() 3 7 7 3

d.resize(10) 7 7 7 3

Success rate 23 % 36 % 0 % 100 %

IV

A. Appendix 1 - std module evaluation

Source code for testing fully used std::deque

#include <deque>

int main() {
std::deque<int> d = {3, 2, 1};
d.front(); // We evaluate expressions here.
d.back(); d.push_back(1); d.emplace_back(1); d[0]; d.at(0);
d.begin(); d.cbegin(); d.end(); d.cend(); d.rbegin(); d.crbegin();
d.rend(); d.crend(); d.empty(); d.size(); d.max_size(); d.clear();
d.insert(d.end(), 4); d.erase(d.end()); d.pop_back(); d.resize(10);

}

Evaluation success rate for fully used std::deque

Expression MVSD GDB LLDB

LLDB
with
C++

modules
d.front() 7 3 7 3

d.back() 3 3 7 3

d.push_back(1) 7 7 3 3

d.emplace_back(1) 7 7 7 3

d[0] 3 3 7 3

d.at(0) 3 3 7 3

d.begin() 3 3 7 3

d.cbegin() 3 3 7 3*
d.end() 3 3 7 3*
d.cend() 3 3 7 3*
d.rbegin() 3 3 7 3*
d.crbegin() 3 3 7 3*
d.rend() 3 3 7 3*
d.crend() 3 3 7 3*
d.empty() 3 3 7 3

d.size() 3 3 7 3

d.max_size() 3 3 7 3

d.clear() 3 3 7 3

d.insert(d.end(), 4) 7 7 7 3*
d.erase(d.end()) 7 7 7 3*
d.pop_back() 3 3 7 3

d.resize(10) 3 3 3 3

Success rate 77 % 82 % 9 % 100 %

V

A. Appendix 1 - std module evaluation

Source code for testing unused std::stack

#include <stack>

int main() {
std::stack<int> s; s.push(1); s.push(2);
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::stack

Expression MVSD GDB LLDB

LLDB
with
C++

modules
s.top() 7 7 7 3

s.empty() 7 7 7 3

s.size() 7 7 7 3

s.push(1) 7 7 7 3

s.emplace(1) 7 7 7 3

s.pop() 7 7 7 3

Success rate 0 % 0 % 0 % 100 %

VI

A. Appendix 1 - std module evaluation

Source code for testing fully used std::stack

#include <stack>

int main() {
std::stack<int> s; s.push(1); s.push(2);
s.top(); // We evaluate expressions here.
s.empty();
s.size();
s.push(1);
s.emplace(1);
s.pop();
return 0;

}

Evaluation success rate for fully used std::stack

Expression MVSD GDB LLDB

LLDB
with
C++

modules
s.top() 3 3 7 3

s.empty() 3 3 7 3

s.size() 3 3 7 3

s.push(1) 7 7 7 3

s.emplace(1) 7 7 7 3

s.pop() 7 3 7 3

Success rate 50 % 67 % 0 % 100 %

VII

A. Appendix 1 - std module evaluation

Source code for testing unused std::queue

#include <queue>

int main() {
std::queue<int> q; q.push(1); q.push(2);
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::queue

Expression MVSD GDB LLDB

LLDB
with
C++

modules
q.front() 7 7 7 3

q.back() 7 7 7 3

q.empty() 7 7 7 3

q.size() 7 7 7 3

q.push(1) 7 7 7 3

q.emplace(1) 7 7 7 3

q.pop() 7 7 7 3

Success rate 0 % 0 % 0 % 100 %

VIII

A. Appendix 1 - std module evaluation

Source code for testing fully used std::queue

#include <queue>

int main() {
std::queue<int> q; q.push(1); q.push(2);
q.front(); // We evaluate expressions here.
q.back();
q.empty();
q.size();
q.push(1);
q.emplace(1);
q.pop();
return 0;

}

Evaluation success rate for fully used std::queue

Expression MVSD GDB LLDB

LLDB
with
C++

modules
q.front() 7 3 3 3

q.back() 3 3 3 3

q.empty() 3 3 3 3

q.size() 3 3 3 3

q.push(1) 7 7 3 3

q.emplace(1) 7 7 7 3

q.pop() 7 3 3 3

Success rate 43 % 71 % 86 % 100 %

IX

A. Appendix 1 - std module evaluation

Source code for testing unused std::forward_list

#include <forward_list>

int main() {
std::forward_list<int> f = {1};
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::forward_list

Expression MVSD GDB LLDB

LLDB
with
C++

modules
f.front() 7 3 7 3

f.before_begin() 7 7 7 3*
f.cbefore_begin() 7 7 7 3*
f.begin() 7 7 7 3*
f.cbegin() 7 7 7 3*
f.end() 7 7 7 3*
f.cend() 7 7 7 3*
f.empty() 7 7 7 3

f.max_size() 7 7 7 3

f.insert_after(f.begin(), 1) 7 7 7 3*
f.emplace_after(f.begin(), 1) 7 7 7 3*
f.erase_after(f.begin()) 7 7 7 3*
f.push_front(1) 7 7 7 3

f.emplace_front(1) 7 7 7 3

f.pop_front() 7 7 7 3

f.resize(20) 7 7 7 3

f.clear() 7 7 7 3

f.remove(1) 7 7 7 3

f.remove_if([](int){return 1;}); 7 7 7 3

f.reverse() 7 7 7 3

f.unique() 7 7 7 3

f.sort() 7 7 7 3

Success rate 0 % 5 % 0 % 100 %

X

A. Appendix 1 - std module evaluation

Source code for testing fully used std::forward_list
#include <forward_list>

int main() {
std::forward_list<int> f = {1};
f.front(); // We evaluate expressions here.
f.before_begin(); f.cbefore_begin(); f.begin(); f.cbegin();
f.end(); f.cend(); f.empty(); f.max_size(); f.insert_after(f.begin(), 1);
f.emplace_after(f.begin(), 1); f.erase_after(f.begin()); f.push_front(1);
f.emplace_front(1); f.pop_front(); f.resize(20); f.clear(); f.remove(1);
f.remove_if([](int n){ return n; }); f.reverse(); f.unique(); f.sort();
return 0;

}

Evaluation success rate for fully used std::forward_list

Expression MVSD GDB LLDB

LLDB
with
C++

modules
f.front() 7 3 7 3

f.before_begin() 3 3 7 3*
f.cbefore_begin() 3 7 7 3*
f.begin() 3 3 7 3*
f.cbegin() 3 7 7 3*
f.end() 3 3 7 3*
f.cend() 3 3 7 3*
f.empty() 3 3 7 3

f.max_size() 3 3 7 3

f.insert_after(f.begin(), 1) 7 7 7 3*
f.emplace_after(f.begin(), 1) 7 7 7 3*
f.erase_after(f.begin()) 7 7 7 3*
f.push_front(1) 7 7 3 3

f.emplace_front(1) 7 7 7 3

f.pop_front() 7 3 3 3

f.resize(20) 3 3 7 3

f.clear() 3 3 7 3

f.remove(1) 3 7 3 3

f.remove_if([](int n){return
n;});

7 3 7 3

f.reverse() 3 3 3 3

f.unique() 3 3 7 3

f.sort() 3 3 7 3

Success rate 64 % 64 % 18 % 100 %

XI

A. Appendix 1 - std module evaluation

Source code for testing unused std::array

#include <array>

int main() {
std::array<int, 3> a = {3, 2, 1};
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::array

Expression MVSD GDB LLDB

LLDB
with
C++

modules
a.at(0) 7 3 7 3

a[0] 7 3 7 3

a.front() 7 3 7 3

a.back() 7 3 7 3

a.data() 7 7 7 3*
a.begin() 7 7 7 3*
a.end() 7 7 7 3*
a.cbegin() 7 7 7 3*
a.cend() 7 7 7 3*
a.rbegin() 7 7 7 3*
a.rend() 7 7 7 3*
a.crbegin() 7 7 7 3*
a.crend() 7 7 7 3*
a.empty() 7 3 7 3

a.size() 7 3 7 3

a.max_size() 7 7 7 3

a.fill(0) 7 7 7 3

Success rate 0 % 35 % 0 % 100 %

XII

A. Appendix 1 - std module evaluation

Source code for testing fully used std::array

#include <array>

int main() {
std::array<int, 3> a = {3, 2, 1};
a.at(0); a[0]; a.front(); a.back(); a.begin(); a.end();
a.cbegin(); a.cend(); a.rbegin(); a.rend(); a.crbegin();
a.crend(); a.empty(); a.size(); a.max_size(); a.fill(0);
return 0; // We evaluate expressions here.

}

Evaluation success rate for fully used std::array

Expression MVSD GDB LLDB

LLDB
with
C++

modules
a.at(0) 7 3 3 3

a[0] 3 3 3 3

a.front() 7 3 3 3

a.back() 7 3 3 3

(int*)a.data() 7 3 3 3*
a.begin() 3 3 3 3*
a.end() 3 3 3 3*
a.cbegin() 3 3 3 3*
a.cend() 3 3 3 3*
a.rbegin() 3 3 3 3*
a.rend() 3 3 3 3*
a.crbegin() 3 3 3 3*
a.crend() 3 3 3 3*
a.empty() 3 3 3 3

a.size() 3 3 3 3

a.max_size() 3 3 3 3

a.fill(0) 3 7 3 3

Success rate 76 % 94 % 100 % 100 %

XIII

A. Appendix 1 - std module evaluation

Source code for testing unused std::unique_ptr

#include <memory>

int main() {
std::unique_ptr<int> u(new int(1));
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::unique_ptr

Expression MVSD GDB LLDB

LLDB
with
C++

modules
u.get() 3 3 7 3

u.reset(0) 7 7 3 3

*u 3 7 7 3

u.release() 7 3 7 3

u.get_deleter() 3 3 7 3

(bool)u 7 3 7 3

Success rate 50 % 67 % 17 % 100 %

XIV

A. Appendix 1 - std module evaluation

Source code for testing fully used std::unique_ptr

#include <memory>

int main() {
std::unique_ptr<int> u(new int(1));
u.get(); // We evaluate expressions here.
u.reset();
u.release();
u.get_deleter();
(bool)u;
*u;
return 0;

}

Evaluation success rate for fully used std::unique_ptr

Expression MVSD GDB LLDB

LLDB
with
C++

modules
u.get() 3 3 3 3

u.reset(0) 3 3 3 3

*u 3 3 3 3

u.release() 3 3 3 3

u.get_deleter() 3 3 3 3

(bool)u 7 3 3 3

Success rate 83 % 100 % 100 % 100 %

XV

A. Appendix 1 - std module evaluation

Source code for testing unused std::shared_ptr

#include <memory>

int main() {
std::shared_ptr<int> u(new int(1));
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::shared_ptr

Expression MVSD GDB LLDB

LLDB
with
C++

modules
u.get() 7 3 7 3

*u 3 3 7 3

u.reset() 7 7 7 3

u.use_count() 7 7 7 3

(bool)u 7 3 7 3

u.owner_before(u) 7 7 7 3

Success rate 17 % 50 % 0 % 100 %

XVI

A. Appendix 1 - std module evaluation

Source code for testing fully used std::shared_ptr

#include <memory>

int main() {
std::shared_ptr<int> u(new int(1));
u.reset(); // We evaluate expressions here.
u.get();
u.use_count();
(bool)u;
u.owner_before(u);
return 0;

}

Evaluation success rate for fully used std::shared_ptr

Expression MVSD GDB LLDB

LLDB
with
C++

modules
u.get() 3 3 3 3

*u 3 3 7 3

u.reset() 3 3 3 3

u.use_count() 3 7 3 3

(bool)u 7 3 3 3

u.owner_before(u) 7 7 7 3

Success rate 67 % 67 % 67 % 100 %

XVII

A. Appendix 1 - std module evaluation

Source code for testing unused std::weak_ptr

#include <memory>

int main() {
auto sp = std::make_shared<int>(42); std::weak_ptr<int> u = sp;
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::weak_ptr

Expression MVSD GDB LLDB

LLDB
with
C++

modules
u.expired() 7 7 7 3

u.owner_before(u) 7 7 7 3

(bool)u.lock() 7 7 7 3

u.reset() 7 7 7 3

Success rate 0 % 0 % 0 % 100 %

Source code for testing fully used std::weak_ptr

#include <memory>

int main() {
auto sp = std::make_shared<int>(42); std::weak_ptr<int> u = sp;
u.expired(); // We evaluate expressions here.
u.owner_before(u);
(bool)u.lock();
u.reset();
return 0;

}

Evaluation success rate for fully used std::weak_ptr

Expression MVSD GDB LLDB

LLDB
with
C++

modules
u.expired() 3 3 3 3

u.owner_before(u) 7 7 7 3

(bool)u.lock() 3 3 3 3

u.reset() 3 3 3 3

Success rate 75 % 75 % 75 % 100 %

XVIII

A. Appendix 1 - std module evaluation

Source code for testing unused std::map

#include <map>

int main() {
std::map<int, int> m = {{1, 2}, {2, 4}};
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::map

Expression MVSD GDB LLDB

LLDB
with
C++

modules
m[1] 7 7 7 3

m.at(1) 7 7 7 3

m.begin() 3 7 7 3*
m.end() 3 7 7 3*
m.cbegin() 7 7 7 3*
m.cend() 7 7 7 3*
m.rbegin() 7 7 7 3*
m.rend() 7 7 7 3*
m.crbegin() 7 7 7 3*
m.crend() 7 7 7 3*
m.empty() 7 3 7 3

m.size() 3 3 7 3

m.max_size() 3 7 7 3

m.clear() 7 7 7 3

m.insert(1, 1); 7 7 7 3*
m.emplace(1, 1); 7 7 7 3*
m.erase(m.begin()) 7 7 7 3*
m.equal_range(1) 7 7 7 3*
m.lower_bound(1) 7 7 7 3*
m.upper_bound(1) 7 7 7 3*
m.count(1) 7 7 7 3

m.find(1) 7 7 7 3*
Success rate 18 % 9 % 0 % 100 %

XIX

A. Appendix 1 - std module evaluation

Source code for testing used std::map
#include <map>

int main() {
std::map<int, int> m = {{1, 2}, {2, 4}};
// We evaluate expressions here.
m[1]; m.at(1); m.begin(); m.end(); m.cbegin(); m.cend(); m.rbegin();
m.rend(); m.crbegin(); m.crend(); m.empty(); m.size(); m.max_size();
m.clear(); m.insert({1, 1}); m.emplace(1, 1); m.erase(m.begin());
m.equal_range(1); m.lower_bound(1); m.upper_bound(1);
m.count(1); m.find(1);

}

Evaluation success rate for used std::map

Expression MVSD GDB LLDB

LLDB
with
C++

modules
m[1] 7 7 3 3

m.at(1) 7 7 3 3

m.begin() 3 3 3 3*
m.end() 3 3 3 3*
m.cbegin() 3 3 3 3*
m.cend() 3 3 3 3*
m.rbegin() 3 3 3 3*
m.rend() 3 3 3 3*
m.crbegin() 3 3 3 3*
m.crend() 3 3 3 3*
m.empty() 3 3 3 3

m.size() 3 3 3 3

m.max_size() 3 3 3 3

m.clear() 7 3 3 3

m.insert(1, 1); 7 7 3 3*
m.emplace(1, 1); 7 7 7 3*
m.erase(m.begin()) 7 7 3 3*
m.equal_range(1) 3 7 3 3*
m.lower_bound(1) 3 7 3 3*
m.upper_bound(1) 3 7 3 3*
m.count(1) 3 7 3 3

m.find(1) 3 7 3 3*
Success rate 73 % 55 % 95 % 100 %

XX

A. Appendix 1 - std module evaluation

Source code for testing unused std::unordered_map

#include <unordered_map>

int main() {
std::unordered_map<int, int> m = {{1, 2}, {2, 4}};
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::unordered_map

Expression MVSD GDB LLDB

LLDB
with
C++

modules
m[1] 3 7 7 3

m.at(1) 7 7 7 3

m.begin() 7 7 7 3*
m.end() 7 7 7 3*
m.cbegin() 7 7 7 3*
m.cend() 7 7 7 3*
m.empty() 7 3 7 3

m.size() 3 3 7 3

m.max_size() 7 7 7 3

m.clear() 7 7 7 3

m.insert(1, 1) 7 7 7 3*
m.emplace(1, 1) 7 7 7 3*
m.erase(1) 7 7 7 3*
m.equal_range(1) 7 7 7 3

m.count(1) 7 7 7 3

m.find(1) 7 7 7 3*
m.load_factor() 7 7 7 3

m.max_load_factor() 7 7 7 3

m.reserve(10) 7 7 7 3

Success rate 11 % 11 % 0 % 100 %

XXI

A. Appendix 1 - std module evaluation

Source code for testing used std::unordered_map
#include <unordered_map>

int main() {
std::unordered_map<int, int> m = {{1, 2}, {2, 4}};
// We evaluate expressions here.
m[1]; m.at(1); m.begin(); m.end(); m.cbegin(); m.cend(); m.empty();
m.size(); m.max_size(); m.clear(); m.emplace(1, 1); m.erase(m.begin());
m.equal_range(1); m.count(1); m.find(1); m.load_factor();
m.max_load_factor(); m.reserve(10);

}

Evaluation success rate for used std::unordered_map

Expression MVSD GDB LLDB

LLDB
with
C++

modules
m[1] 3 7 3 3

m.at(1) 7 7 3 3

m.begin() 3 3 3 3*
m.end() 3 3 3 3*
m.cbegin() 3 3 3 3*
m.cend() 3 3 3 3*
m.empty() 3 3 3 3

m.size() 3 3 3 3

m.max_size() 3 3 3 3

m.clear() 7 3 3 3

m.insert(1, 1) 7 7 7 3*
m.emplace(1, 1) 7 7 3 3*
m.erase(1) 7 7 3 3*
m.equal_range(1) 3 7 3 3

m.count(1) 3 7 3 3

m.find(1) 3 7 3 3*
m.load_factor() 3 3 3 3

m.max_load_factor() 3 3 3 3

m.reserve(10) 3 3 3 3

Success rate 74 % 58 % 95 % 100 %

XXII

A. Appendix 1 - std module evaluation

Source code for testing unused std::set

#include <set>

int main() {
std::set<int> m = {1, 2, 3};
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::set

Expression MVSD GDB LLDB

LLDB
with
C++

modules
m.begin() 3 7 7 3*
m.end() 3 7 7 3*
m.cbegin() 7 7 7 3*
m.cend() 7 7 7 3*
m.rbegin() 7 7 7 3*
m.rend() 7 7 7 3*
m.crbegin() 7 7 7 3*
m.crend() 7 7 7 3*
m.empty() 7 3 7 3

m.size() 3 3 7 3

m.max_size() 3 7 7 3

m.clear() 7 7 7 3

m.insert(1) 7 7 7 3*
m.emplace(1) 7 7 7 3*
m.emplace_hint(m.begin(), 1) 7 7 7 3*
m.erase(m.begin()) 7 7 7 3*
m.equal_range(1) 7 7 7 3*
m.lower_bound(1) 7 7 7 3*
m.upper_bound(1) 7 7 7 3*
m.count(1) 7 7 7 3

m.find(1) 7 7 7 3*
Success rate 19 % 10 % 0 % 100 %

XXIII

A. Appendix 1 - std module evaluation

Source code for testing used std::set
#include <set>

int main() {
std::set<int> m = {1, 2, 3};
// We evaluate expressions here.
m.begin(); m.end(); m.cbegin(); m.cend(); m.rbegin(); m.rend();
m.crbegin(); m.crend(); m.empty(); m.size(); m.max_size(); m.clear();
m.insert(1); m.emplace(1); m.emplace_hint(m.begin(), 1);
m.erase(m.begin()); m.equal_range(1); m.lower_bound(1);
m.upper_bound(1); m.count(1); m.find(1);

}

Evaluation success rate for used std::set

Expression MVSD GDB LLDB

LLDB
with
C++

modules
m.begin() 7 3 3 3*
m.end() 7 3 3 3*
m.cbegin() 3 3 3 3*
m.cend() 3 3 3 3*
m.rbegin() 3 3 3 3*
m.rend() 3 3 3 3*
m.crbegin() 3 3 3 3*
m.crend() 3 3 3 3*
m.empty() 3 3 3 3

m.size() 3 3 3 3

m.max_size() 3 3 3 3

m.clear() 7 3 3 3

m.insert(1) 3 7 3 3*
m.emplace(1) 7 7 7 3*
m.emplace_hint(m.begin(), 1) 7 7 7 3*
m.erase(m.begin()) 7 3 3 3*
m.equal_range(1) 3 7 3 3*
m.lower_bound(1) 3 7 3 3*
m.upper_bound(1) 3 7 3 3*
m.count(1) 3 7 3 3

m.find(1) 3 7 3 3*
Success rate 71 % 62 % 90 % 100 %

XXIV

A. Appendix 1 - std module evaluation

Source code for testing unused std::unordered_set

#include <unordered_set>

int main() {
std::unordered_set<int> m = {1, 2, 3};
return 0; // We evaluate expressions here.

}

Evaluation success rate for unused std::unordered_set

Expression MVSD GDB LLDB

LLDB
with
C++

modules
m.begin() 7 3 7 3*
m.end() 7 3 7 3*
m.cbegin() 7 3 7 3*
m.cend() 7 3 7 3*
m.empty() 7 3 7 3*
m.size() 3 3 7 3

m.max_size() 3 3 7 3

m.clear() 7 3 7 3

m.insert(1) 7 7 7 3*
m.emplace(1) 7 7 7 3*
m.emplace_hint(m.begin(), 1) 7 7 7 3*
m.erase(m.begin()) 7 7 7 3*
m.equal_range(1) 7 7 7 3*
m.count(1) 7 7 7 3

m.find(1) 7 7 7 3*
m.load_factor() 3 3 7 3

m.max_load_factor() 3 3 7 3

m.reserve(10) 7 3 7 3

Success rate 22 % 61 % 0 % 100 %

XXV

A. Appendix 1 - std module evaluation

Source code for testing used std::unordered_set
#include <unordered_set>

int main() {
std::unordered_set<int> m = {1, 2, 3};
// We evaluate expressions here.
m.begin(); m.end(); m.cbegin(); m.cend(); m.empty(); m.size();
m.max_size(); m.clear(); m.insert(1); m.emplace(1);
m.emplace_hint(m.begin(), 1); m.erase(m.begin()); m.equal_range(1);
m.count(1); m.find(1); m.load_factor();
m.max_load_factor(); m.reserve(10);

}

Evaluation success rate for used std::unordered_set

Expression MVSD GDB LLDB

LLDB
with
C++

modules
m.begin() 3 7 3 3*
m.end() 3 7 3 3*
m.cbegin() 3 7 3 3*
m.cend() 3 7 3 3*
m.empty() 3 3 3 3

m.size() 3 3 3 3

m.max_size() 3 7 3 3

m.clear() 7 7 3 3

m.insert(1) 7 7 3 3*
m.emplace(1) 7 7 7 3*
m.emplace_hint(m.begin(), 1) 7 7 7 3*
m.erase(m.begin()) 7 7 3 3*
m.equal_range(1) 3 7 3 3*
m.count(1) 3 7 3 3

m.find(1) 3 7 3 3*
m.load_factor() 3 7 3 3

m.max_load_factor() 3 7 3 3

m.reserve(10) 3 7 3 3

Success rate 72 % 11 % 89 % 100 %

XXVI

B
Appendix 1 - general evaluation

XXVII

B. Appendix 1 - general evaluation

Source code for the general test - header.h

int functionUnused() { return 1; }
int functionUsed() { return 1; }

inline int inlineFunctionUsed() { return 1; }
inline int inlineFunctionUnused() { return 1; }

int functionDefaultArg(int i = 0) { return 1; }

int functionOverloaded(int i) { return 1; }
int functionOverloaded(float f) { return 2; }

namespace N {
int functionInNamespace() { return 1; }

}

struct S {
int memberFuncUnused() { return 1; }
int memberFuncUsed() { return 1; }

};

extern int globalVar;
typedef int int_t;
#define MACRO 1

XXVIII

B. Appendix 1 - general evaluation

Source code for the general test - templates.h

template<typename T> T templatedUnused() { return 1; }

template<typename T> int templatedArgsUnused(T t) { return 1 + t; }

template<typename T> T templatedUsed() { return 1; }

template<typename T> int templatedArgsUsed(T t) { return 1 + t; }

template<typename T> T templatedUnusedWithType() { return 1; }

template<typename T> struct TS1 { T i; };
template<typename T> TS1<T> templatedReturnUnused() { return {1}; }

template<typename T> struct TS2 { T i; };
template<typename T> TS2<T> templatedReturnUnusedType() { return {1}; }

template<typename T> struct TS3 { T i; };
template<typename T> TS3<T> templatedReturnUsed() { return {1}; }

template<class T> constexpr T templatedVarUsed = T(3.14);

template<class T> constexpr T templatedVarUnused = T(-3.14);

template<typename T> T templatedSpecialized() { return 1; }

XXIX

B. Appendix 1 - general evaluation

Source code for the general test - main.cpp

#include "header.h"
#include "templates.h"

int globalVar = 0;

template<> int templatedSpecialized<int>() { return 2; }

int main() {
functionUsed();
functionPartlyUsed(1.0f);
N::functionInNamespace();
S s;
s.memberFuncUsed();

templatedUsed<int>();
templatedArgsUsed(1);
templatedUnusedWithType<float>();
templatedReturnUnusedType<float>();
templatedReturnUsed<int>();
templatedSpecialized<int>();

float f = templatedVarUsed<float>;
int_t i = MACRO;

}

XXX

B. Appendix 1 - general evaluation

Evaluation success rate for expressions not involving templates

Expression MVSD GDB LLDB

LLDB
with
C++

modules
functionUnused() 3 3 3 3

functionUsed() 3 3 3 3

inlineFunctionUsed() 7 7 7 3

inlineFunctionUnused() 7 7 7 3

functionDefaultArg() 7 7 7 3

functionOverloaded(0.0f) 7 3 3 3

N::functionInNamespace() 3 3 3 3

s.memberFuncUnused() 7 7 7 3

s.memberFuncUsed() 3 3 3 3

globalVar 3 3 3 3

(int_t)1 3 3 3 3

MACRO 7 7 7 7

Success rate 50 % 58 % 58 % 92 %

Evaluation success rate for expressions involving templates

Expression MVSD GDB LLDB

LLDB
with
C++

modules
templatedUnused<int>() 7 7 7 3

templatedArgsUnused(1) 7 7 7 3

templatedUsed<int>() 3 3 7 3

templatedArgsUsed(1) 7 7 3 3

templatedUnusedWithType<int>() 7 7 7 3

templatedReturnUnused<int>() 7 7 7 3

templatedReturnUnusedType<int>() 7 7 7 3

templatedReturnUsed<int>() 3 3 7 3

templatedVarUsed<float> 7 3 7 7

templatedVarUnused<float> 7 7 7 7

templatedSpecialized<int>() 3 3 7 7

templatedSpecializedHeader<int>() 3 3 7 3

Success rate 33 % 42 % 8 % 75 %

XXXI

	List of Figures
	Introduction
	Aim
	Problem formulation
	Limitations
	Thesis outline

	Background
	The ISO C++ programming language
	Templates in C++
	C++ modules
	A brief history of C++ modules

	Debuggers
	The DWARF debugging file format
	LLVM, Clang and LLDB
	The Clang compiler
	C++ modules in Clang

	The LLDB debugger
	Expression evaluation in LLDB

	Integrating C++ modules into LLDB
	The standard library module prototype
	Approach
	Module discovery
	Module building
	Embedding modules in the expression evaluator
	Clang is requesting additional information
	LLDB is copying requested AST nodes

	Manual reconstruction of templates instantiations

	The generic module prototype
	Module discovery process
	Module building
	Integration into the expression evaluator

	Evaluation
	Evaluation setup
	Standard libraries

	Reliability of expression evaluation
	Selection of the benchmark data
	Allowed workarounds in LLDB
	Testing unused and used declarations

	Evaluating the standard library prototype
	A short introduction to GDB's Xmethods
	Sequence containers
	Smart pointers
	Associative containers
	Standard library algorithms and functions
	Generic module declarations

	Expression evaluator performance
	Performance when calling vector member functions
	Performance for trivial expressions

	Discussion
	Review of results
	Xmethods as an alternative to C++ modules
	Potential problems with synchronizing debug information and modules

	Revisiting the initial problem formulation
	Future work

	Related work
	C++ modules in ROOT and Cling
	Module debugging in Clang

	Conclusion
	Bibliography
	Appendix 1 - std module evaluation
	Appendix 1 - general evaluation

