Evaluation of Transformer-Generated
Proxy Credit Default Swap Spreads

A collaboration with Svenska Handelsbanken AB

Master’s thesis in Complex Adaptive Systems

Marcus Banér

DEPARTMENT OF PHYSICS

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2024
www.chalmers.se

www.chalmers.se

MASTER’S THESIS 2024

Evaluation of Transformer-Generated
Proxy Credit Default Swap Spreads

A collaboration with Svenska Handelsbanken AB

MARCUS BANER

CHALMERS

UNIVERSITY OF TECHNOLOGY

Department of Physics
CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2024

Evaluation of Transformer-Generated Proxy Credit Default Swap Spreads
A collaboration with Svenska Handelsbanken AB
MARCUS BANER

© MARCUS BANER, 2024.

Supervisor: Richard Henricsson, Handelsbanken Capital Markets
Examiner: Mats Granath, Department of Physics

Master’s Thesis 2024

Department of Physics

Chalmers University of Technology
SE-412 96 Gothenburg

Telephone +46 31 772 1000

Typeset in BTEX
Gothenburg, Sweden 2024

v

Evaluation of Transformer-Generated Proxy Credit Default Swap Spreads
A collaboration with Svenska Handelsbanken AB

MARCUS BANER

Department of Physics

Chalmers University of Technology

Abstract

Following the 2007-2008 financial crisis, accurately assessing Counterparty Credit
Risk (CCR) has become very important in the financial industry, especially in the
Over-The-Counter (OTC) derivatives market. Credit Valuation Adjustment (CVA)
integrates CCR into the pricing of OTC derivatives like Credit Default Swaps (CDSs)
by using precise Probability of Default (PD) estimations, typically derived from CDS
spreads.

When no liquid CDS spreads are available one uses proxy spreads instead. Tradi-
tional linear regression models for generating these, like the Nomura cross-sectional
model, are commonly used in the industry but show problems in certain market
environments. Therefore, this thesis evaluates the effectiveness of a Machine Learn-
ing (ML) model known as the Transformer for generating proxy CDS spreads and
compares its outputs to the Nomura model.

Using actual, liquid market data for Western European financial companies, the
Transformer model was trained to generate proxy spreads for five credit rating cate-
gories: AA, A, BBB, BB, and B. Results indicate that the Transformer model signif-
icantly outperforms the Nomura model, particularly in higher-rated categories, by
generating spreads that are better aligned with the liquid market spreads they aim
to simulate. Despite the promising results, further tests and analyses are needed to
confidently be able to declare the Transformer model’s superiority and potentially
take it to production. This includes hyperparameter optimization, data diversifica-
tion, and model interpretability improvements.

Keywords: Machine Learning, Transformer, Credit Default Swap, Proxy Spread,
Counterparty Credit Risk

Utvérdering av Transformer-Genererade Proxy-Kreditswappspreadar
Ett samarbete med Svenska Handelsbanken AB

MARCUS BANER

Institutionen for Fysik

Chalmers Tekniska Hogskola

Sammanfattning

Efter finanskrisen 2007-2008 har en noggrann bedémning av motpartsrisk (CCR)
blivit véldigt viktigt inom den finansiella sektorn, sérskilt pa marknaden for icke-
standardiserade (OTC) derivat. Kreditvarderingsjustering (CVA) integrerar CCR
i prissdttningen av OTC-derivat som kreditdefaultswappar (CDSer) genom att an-
vanda uppskattningar av sannolikheten for konkurs (PD), vanligtvis hérledda fran
CDS-spreadar.

I fall da det saknas likvida CDS-spreadar anvéinder man sig istéllet av proxy-
spreadar. Traditionella linjara regressionsmodeller for att generera dessa, som No-
muras tvarsnitssmodell, anvands ofta inom branschen men denna ar problematisk
under vissa marknadsforhallanden. Darfor utvarderar denna uppsats effektiviteten
av en maskininlarningings-(ML)-modell kind som Transformern fér att generera
proxy-CDS-spreadar och jamfor dennes resultat med Nomura-modellen.

Med hjalp av likvid marknadsdata for Véasteuropeiska finansbolag tranades Transformer-
modellen for att generera proxy-spreadar for fem kreditbetygskategorier: AA, A,
BBB, BB och B. Resultaten indikerar att Transformer-modellen avsevart overtréaffar
Nomura-modellen, séarskilt i kategorier med hogre betyg, genom att generera proxy-
spreadar som béttre aterspeglar de likvida marknadsspreadar som de ska simulera.
Trots de lovande resultaten behovs ytterligare tester och analyser for att med séker-
het kunna fastsla Transformerns 6verlagsenhet och for att eventuellt kunna forsatta
den i produktion. Detta inkluderar optimering av hyperparameter, datadiversifier-
ing samt forbéttringar av modellens tolkbarhet.

Nyckelord: Maskininlarning, Transformer, Kreditdefaultswapp, Proxy-Spread, Mot-
partsrisk

vi

Acknowledgements

I would like to start by thanking my supervisor at Svenska Handelsbanken (SHB),
Richard Henricsson, for his help during this project. I also want to thank my fellow
SHB thesis student, Gustav Karlsson, for good discussions and cooperation during
this spring. Moreover, I would like to thank previous master thesis student at
SHB, Johan Luhr, for taking the time to explain his work. Lastly, I would like to
express my gratitude to my family and friends for their support during my years at
university. Thank you very much.

Marcus Banér, Gothenburg, June 2024

viil

List of Acronyms

Below the acronyms that have been used throughout this thesis are listed in alpha-
betical order:

Al
CCR
CDS
CNN
CSV
CVA
DNN
EBA
EE
GPU
GUI
LSTM
LGD
MAE
ML
MSE
MHA
MTM
NLP
00S
OTC
PD
ReLU
RNN
RQ
SGD
SHB

Artificial Intelligence
Counterparty Credit Risk
Credit Default Swap
Convolutional Neural Network
Comma-Separated Values
Credit Valuation Adjustment
Deep Neural Network
European Banking Authority
Expected Exposure

Graphics Processing Unit
Graphical User Interface
Long Short-Term Memory
Loss Given Default

Mean Absolute Error
Machine Learning

Mean Squared Error
Multi-Headed Attention
Market-To-Market

Natural Language Processing
Out-Of-Sample
Over-The-Counter
Probability of Default
Rectified Linear Unit
Recurrent Neural Network
Research Question
Stochastic Gradient Descent
Svenska Handelsbanken

X1

Contents

List of Acronyms

List of Figures

List of Tables

1 Introduction
1.1 Background

1.2
1.3
1.4
1.5
1.6

1.1.1 The Importance of Accurate CDS Spreads
1.1.2 Challenges with Traditional Models . . .
1.1.3 Advancements in Machine Learning . . .
1.1.4 Building on Previous Work
Aim ...
Limitations
Specification of the Issue Being Investigated . .
Methodology

Report Guide

2 Theoretical Framework
2.1 Financial Context

2.2

2.3

2.4

2.1.1
2.1.2
2.1.3

Credit Default Swap
Counterparty Credit Risk
Credit Valuation Adjustment

Machine Learning Context

221

2.2.2
2.2.3

Deep Learning
2.2.1.1 Artificial Neural Networks . . .
2.2.1.2 Training and Optimizers

2.2.1.3 Common Challenges in Deep Learning

Sequence Models
The Transformer Architecture
2.2.3.1 The Encoder
2.2.3.2 The Decoder

Previous Implementations for Producing Proxy CDS Spreads

2.3.1
2.3.2

The Nomura Model
Machine Learning Implementations . . .

Statistical Context

24.1

Spearman’s Rank Correlation Coefficient

xXVii

xXix

xiil

Contents

Xiv

2.4.2 Mean Squared Error
2.4.3 Mean Absolute Error

Methods
3.1 Information Collection
3.2 Data Collection and Initial Preprocessing
3.2.1 Single Name CDS Spread Data
3.2.2 Proxy CDS Spread Data
3.3 Experiments
3.3.1 Training of Transformer Model
3.3.1.1 Training Setup
3.3.1.2 Statistical Significance Through Multiple Runs
3.3.2 Performance Evaluation
3.4 Software and Hardware

Transformer Modelling
4.1 Outline of Modelling
4.2 Preprocessingo
4.2.1 Training Data oo
4.2.1.1 Constructing Target Labels
4.2.1.2 Filtering on Rating Category
4.2.1.3 Building Sequences
4214 Embeddings
4.22 Test Data
4.3 Transformer Model
4.3.1 Architectural Differences to the Original Transformer
4.3.2 Training Differences to the Original Transformer
4.3.3 Schematic of Revised Transformer Model
4.3.4 Passingof Inputs
4.3.5 Hyperparameters

Results and Analysis

5.1 AA Category
5.2 A Category
5.3 BBB Category
54 BB Category
5.5 B Category
5.6 Comparison Across Rating Categories
5.7 Increased Training Time

Discussion
6.1 Discussion on Model Performance
6.2 Discussion on Implementation Challenges and Improvements

Conclusions and Future Work

7.1 Conclusions
7.2 Future Work

29
29
29
30
31
32
32
33
34
34
35

37
37
38
39
39
39
40
42
42
43
44
44
45
46
46

49
49
52
95
o8
60
64
66

71
71
73

Contents

7.2.1 Hyperparameter Optimization 78

7.2.2 Data Expansion and Diversification 78

7.2.3 Computational Efficiency and Model Scalability 79

7.2.4 Regulatory Compliance and Model Interpretability 79

7.3 Final Reflections 79
Bibliography 81

XV

Contents

Xvi

2.1

2.2

2.3

24

4.1

5.1

5.2

2.3

5.4
2.5

2.6

2.7

5.8

2.9

5.10
5.11

5.12

5.13
5.14

List of Figures

Simplified credit default swap (CDS) mechanism. Illustration created
by the author using PowerPoint. 8
Simple schematic of a deep neural network (DNN). Illustration cre-
ated by the author using PowerPoint, inspired by [30].. 13
The original Transformer architecture. Illustration created by the
author using PowerPoint, inspired by [40] and [38]. 18
The self-attention mechanism. Illustration created by the author us-
ing PowerPoint, inspired by [40] and [38]. 20
The Transformer architecture employed in this thesis. Illustration
created by the author using PowerPoint, inspired by [29]. 45
Error distributions for different tenors for best model of the AA cat-
EEOTY. « v e e e e e e e e e e e e 50
Target and proxy spread curves for all tenors on a single day for the
best model of the AA category. 51
Time series plots of target and proxy spreads for different tenors for
the best model of the AA category. 52

Error distributions for different tenors for best model of the A category. 53
Target and proxy spread curves for all tenors on a single day for the

best model of the A category. 54
Time series plots of target and proxy spreads for different tenors for
the best model of the A category. 55
Error distributions for different tenors for best model of the BBB
category. L L 56
Target and proxy spread curves for all tenors on a single day for the
best model of the BBB category. o7
Time series plots of target and proxy spreads for different tenors for
the best model of the BBB category. 57

Error distributions for different tenors for best model of the BB category. 59

Target and proxy spread curves for all tenors on a single day for the
best model of the BB category. 59
Time series plots of target and proxy spreads for different tenors for
the best model of the BB category. 60
Error distributions for different tenors for best model of the B category. 62

Target and proxy spread curves for all tenors on a single day for the
best model of the B category. 0oL 63

Xvil

List of Figures

5.15 Time series plots of target and proxy spreads for different tenors for

the best model of the B category. 63
5.16 Visual representation of the average statistical performance of each

model category. 65
5.17 Error distributions for different tenors for the best model of the AA

category with increased training time. 67
5.18 Target and proxy spread curves for all tenors on a single day for the

best model of the AA category with increased training time. 68
5.19 Time series plots of target and proxy spreads for different tenors for

the best model of the AA category with increased training time. . . . 69

xviii

2.1

3.1
3.2

4.1
4.2
4.3

5.1
5.2
2.3
5.4
9.9
2.6
5.7
2.8
2.9

List of Tables

Example of ranking of two variables. 26
Row structure for single name data. 31
Row structure for the Nomura model data. 32
Structure for input sequence before embeddings were added. 41
Row of an input sequence after embeddings were added. 42
Summary of the hyperparameters used for the Transformer model. . . 47
Statistical metrics for the AA category. 50
Statistical metrics for the A category. 53
Statistical metrics for the BBB category. 55
Statistical metrics for the BB category. 58
Statistical metrics for the B category. 61
Average statistical performance of each model category. 64
Training records per rating category. 66
Number of counterparties per rating category. 66
Statistical metrics for the AA category with increased training time. . 66

Xix

List of Tables

XX

1

Introduction

This chapter will provide an introduction regarding the importance and relevance
for conducting this thesis. Starting off, a background to the problem at hand will be
discussed along with its importance for Svenska Handelsbanken (SHB). Moreover,
a link to previous work conducted on the topic and what gaps these have left for
future work is provided. Building on this, the aim of the thesis will be presented
and its limitations discussed, resulting in a specification of the primary issues that
have been investigated.

1.1 Background

In this section, an overview of the problems which this thesis addresses is provided. It
starts by explaining why the need for accurate proxy CDS spreads are essential from
a risk point of view and challenges encountered by traditional models for obtaining
them. Moreover, the intersection between the machine learning (ML) domain and
proxy CDS spread generation is discussed as well as how this thesis directly links to
previous student projects at SHB.

1.1.1 The Importance of Accurate CDS Spreads

All major investment banks involved in the Over-The-Counter (OTC) derivatives
market are heavily dependent on accurate depictions of the probability for counter-
parties being able to fulfill their commitments versus the bank. Essentially what
this boils down to, is that in order to ensure a bank’s robustness in periods of market
instability, a necessary amount of capital must be allocated for protection against
potential losses following counterparty defaults. The 2007-2008 financial crisis, with
the collapse of major institutions such as Lehman Brothers [16], demonstrates a
recent event during which efforts to this end proved insufficient. This has led to
considerable efforts being taken in order to prevent similar events from occurring in
the future.

A Credit Default Swap (CDS) is a type of financial contract that serves as insurance
against the risk that a borrower will default on their obligations (further described
in Section 2.1.1). Essentially, it allows one counterparty (the buyer) to pay another
counterparty (the seller) a series of payments (called premiums) to protect against
credit risk posed by a third party. The risk that for example the seller of a CDS is
unable to uphold its contractual agreement is known as Counterparty Credit Risk

1. Introduction

(CCR). This refers to the possibility that this counterparty which is involved in the
CDS transaction might not fulfill its payment obligations. CCR is a critical con-
cern in the over-the-counter (OTC) derivatives market, where vast sums are traded
based on the promise of future payments. Linking to CCR, the concept of Credit
Valuation Adjustment (CVA) comes into play. CVA represents an adjustment to
the value of a financial derivative such as a CDS to reflect the risk of counterparty
default. Thus, CVA essentially puts a price on the CCR, allowing institutions to
account for the risk that the counterparty to a derivative might not uphold their
end of the arrangement (CCR and CVA are both detailed in Sections 2.1.2 and 2.1.3).

Given these definitions, the accuracy of CDS spreads becomes important. A CDS
spread represents the annual cost (expressed in basis points) that a buyer must
pay to the seller to insure against the default of a reference entity (such as a cor-
poration or government). For example, a CDS spread of 100 basis points means
the buyer pays 1% of the notional amount per year (further described in Section
2.1.1). Spreads directly influence the CVA calculation (and therefore perception of
the CCR) by indicating the market’s current view on the Probability of Default (PD)
for the counterparty of the transaction. An accurate CDS spread is thus essential
for effective risk management, ensuring that financial institutions can appropriately
hedge against potential defaults and make precise adjustments to the valuation of
their derivative positions to reflect the risk of counterparty failure.

Liquid, counterparty-specific (so called single name) CDS spreads are important for
financial institutions as they provide a clear, market-driven indicator of the perceived
risk associated with a specific entity. These spreads are directly proportional to the
PD, offering immediate insight into the financial health and stability of a counter-
party. However, not all counterparties have actively traded CDS contracts, leading
to a lack of liquid, single name CDS spreads. In these cases, proxy CDS spreads are
used as an alternative metric to estimate the counterparty risk of such entities. As
has been determined in the Basel III accord (which is an international regulatory
framework for banks), proxy curves are to be constructed by analyzing the CDS
spreads of similar liquid entities, considering common variables like industry sector,
credit rating, and geographical region [11] [20]. These proxies allow financial insti-
tutions to approximate the CDS spreads for entities lacking liquid market spreads,
which ensures a continuous ability to accurately calculate CVA in order to hedge
against CCR, and comply with regulatory requirements.

1.1.2 Challenges with Traditional Models

Traditionally, linear regression models have been used to generate proxy CDS spread
curves. One such model is the cross-sectional regression model introduced by the
global financial services group Nomura [31] in 2013 (typically called the Nomura
model, further described in Section 2.3.1). While this model has gained popularity
and become common for generating proxy CDS spreads within the financial industry,
it has proved problematic during periods of market volatility, resulting in inaccurate
proxies.

1. Introduction

1.1.3 Advancements in Machine Learning

As illustrated in a series of papers by Brummelhuis & Zhongmin ([12], [13], [15] and
[14]), using non neural network based machine learning (ML) techniques improves
on the accuracy of estimating proxy CDS spreads. Previous thesis projects at SHB
have moreover showed that deep neural network (DNN) based ML-techniques also
show great potential in improving the accuracy of the generated proxies, for example
by using Recurrent Neural Networks (RNNs) [18] or Transformers [29)].

1.1.4 Building on Previous Work

This thesis builds directly on the work presented in the 2023 thesis conducted in
collaboration with SHB by Johan Luhr [29] in which it was shown that Transformers
inspired by the original architecture presented in the 2017 paper Attention is All
you Need [40] can be used to generate proxy CDS spreads. While the main outcome
of that thesis was the proven ability of Transformer models to generate proxy CDS
spreads, it did not go the full length in evaluating the performance of the proxy
spreads against the actively traded liquid market spreads they aim to simulate.
This however, along with a thorough comparison between Transformer generated
proxy spreads and proxy spreads generated by traditional models, is where this
thesis takes off.

1.2 Aim

The primary aim of this thesis has been to improve the evaluation of proxy CDS
spreads generated by Transformer models, such as the ones constructed in [29], using
market spreads from actively traded liquid counterparties. Should the Transformer-
generated proxy spreads show close alignment with these liquid market spreads,
especially compared to proxy spreads generated by traditional models, this would
indicate a high model reliability. A successful evaluation could lead to more con-
fidence surrounding the supposed superiority of Transformer models compared to
traditional linear regression models for the purpose of generating accurate proxy
CDS spreads. This outcome could also provide additional value for SHB since more
accurate CDS spreads provide a better foundation for accurately perceiving CCR.

1.3 Limitations

The most apparent limitation of this thesis is that it has solely employed a Trans-
former model when producing proxy CDS spread curves, as opposed to other ML-
architectures such as the RNN models used in [18]. Moreover, considering that this
is a master’s thesis supposed to be carried out during the course of one semester, an
important limitation is the time-constraint of the project. As a consequence of this,
some interesting challenges has been excluded given time and resources availability.
Among other things, this includes:

» Expanding the data sets beyond certain sectors, regions and ratings.

1. Introduction

o Extensive embedding analysis.
o Extensive hyperparameter optimization.

 Incorporating the models into SHB’s systems or creating additional extensions
such as a graphical user interface (GUI).

All these challenges are interesting and important, but they have been left for future
work.

1.4 Specification of the Issue Being Investigated

The core objective of this thesis is to thoroughly evaluate proxy CDS spread curves
generated by a Transformer model in order to determine if they propose a bet-
ter alternative to traditionally used linear regression models, specifically the cross-
sectional Nomura model [31], in simulating liquid market spread curves. The eval-
uation in this thesis thus seeks to answer the following research question (RQ):

o RQ: To what extent can Transformer-generated proxy CDS spread curves more
accurately simulate market based CDS spread curves, compared to those pro-
duced by traditional linear regression models?

Given the context provided in the previous sections, including outcomes of previous
works and financial context, the evaluation process of the Transformer generated
proxy CDS spread curves will be centered around two primary data sources:

o FEvaluation utilizing data on actively traded liquid market CDS spreads.

» FEvaluation utilizing data on proxy CDS spreads generated by traditional mod-
els.

1.5 Methodology

Similar to most quantitative research, including previous theses at SHB ([29] and
[18]), this project has followed the hypothetico-deductive method. This is a sci-
entific approach that begins with an hypothesis or theoretical premise from which
deductions are made. The deductions are then tested through empirical observation
or experimentation. If observations align with the deductions, the hypothesis gains
support; if not, it may be revised or rejected [39]. In this thesis, the hypothesis
has been the research question. The primary data sources provided the basis for
generating deductions, which involved creating Transformer-generated proxy CDS
spreads and comparing them with these primary data sources. This process details
how the theory was tested against empirical data. The workflow followed can be
divided into the following subchallenges:

e 4. Information collection.

1. Introduction

e 5. Data collection and preprocessing.
o 5. Transformer modelling.

e 7v. Evaluation of model output.

Step i. outlines the theoretical backbone of the thesis. Considering the complex
nature of both the Transformer model as well as the financial context in which it
has been applied, a lot of effort during the initial weeks of the project was spent
gathering literature on these topics. The research of relevant evaluation methods
was also an important part of this pre-study.

Step i. is straightforward and involved gathering, sorting and preprocessing the
data used in the training, testing and evaluation steps respectively. Two main cat-
egories of data have been handled in this thesis. The first include time-series data
of counterparty specific, liquid (so called single name) CDS spreads. The second is
time-series data of proxy CDS spreads generated by a traditional linear regression
model (the so called Nomura model). An important note on this matter is that all
the data in this project has been provided by SHB and is a commodity, which means
no data will be shared publicly.

Step dii. involved putting a Transformer model which can handle the gathered
time-series data effectively to use. The model that was used resembles the encoder-
decoder model constructed in the 2023 SHB thesis by Johan Luhr [29]. Tools uti-
lizing various ML-platforms in Python were used for this purpose, mainly the Ten-
sorFlow library [37] with the Keras API [36].

Step iv. was the most important step for this thesis since this is where the evaluation
of the Transformer output took place. This step has included performing visual and
statistical evaluations employing the primary data sources specified earlier, namely
data on liquid, market CDS spreads and proxy CDS spreads generated by a tra-
ditional linear regression model. Out-of-sample (OOS) testing was utilized, where
unseen data samples of real world market CDS spreads were compared to the model
generated proxy spreads in order to determine model accuracy.

Steps i.-iv. have required an iterative procedure in alignment with the hypothetico-
deductive method [39].

Chapters 3 and 4 will provide details regarding all of the above steps.

1.6 Report (GGuide

The thesis has the following chapter outline, made in conjunction with the steps
presented in the previous section. Chapter 2 presents the theoretical framework
necessary for understanding the financial, machine learning and statistical concepts
under consideration. Chapter 3 describes the methodology surrounding the thesis,
including information collection, data handling and conducted experiments. Chap-

1. Introduction

ter 4 details the Transformer modelling that has been done for generating proxy CDS
spreads. Chapter 5 presents the results and analysis of the conducted experiments.
Chapter 6 involves a discussion regarding the outcomes of the results, and Chapter

7 brings the thesis to a close by presenting conclusions, ideas for future work and
some final reflections.

2

Theoretical Framework

This chapter aims at familiarizing the reader with the context in which this thesis is
set by detailing relevant theoretical concepts. Initially the financial background will
be outlined, focusing on the relevance for modelling accurate proxy CDS spreads.
Then, important machine learning (ML) topics will be described with a key empha-
sis put on the Transformer architecture. Moving on, an overview of previous work
done in the field of proxy CDS spread generation will be described and an emphasis
will be put on how this thesis is directly connected to previous theses that have
been done in collaboration with SHB. Lastly, some statistical background will be
provided to introduce the reader to some important metrics that have been used.
The theoretical framework presented here will thus make the subsequent chapters
of the thesis more easily digestible from both a fundamental as well as holistic point
of view.

2.1 Financial Context

Below three major financial concepts are described: the Credit Default Swap, Coun-
terparty Credit Risk and Credit Valuation Adjustment. Knowing about these topics
and their interplay is important for understanding why the work conducted in this
thesis is of relevance to SHB.

2.1.1 Credit Default Swap

A derivative is a financial contract where opposite parties (the buyer and seller)
enters into an arrangement to either make payments or to buy or sell an underlying
security at a specific future time or times. Often derivatives are used as a tool to
hedge against certain risks, such as an airline wanting to lock in a certain fuel price.
Simpler derivatives with high trading volumes and liquidity, like options or futures,
are usually traded through a centralized exchange which facilitates rapid and struc-
tured trades. Exchanges guarantees clearing and provides efficient price discovery
and thereby reduces certain risks, such as the default of a counterparty of a trans-
action. More complex and less standardized derivatives contracts are typically not
tradable via exchanges, but are instead private contracts bilaterally traded between
two entities. These are known as Over-The-Counter (OTC) derivatives. Without
the clearing function of an exchange, opposing parties in an OTC-derivative contract
assumes a greater risk of the default of the other (further discussed in Subsection

2. Theoretical Framework

2.1.2 below). Typically the OTC-derivatives market is subject only to a few major
players such as corporate banks, big corporations and large financial institutions [20].

The credit default swap (CDS) is a kind of OTC-derivative [20]. As with most
derivative instruments, a CDS has several layers of complexity which will not be
covered here. Instead, an overview of the CDS structure will be presented and
interested readers are referred to the cited references for more details about CDS
contracts. Figure 2.1 below provides a simplified scheme of the CDS mechanism.

Premium Payments
Reference [EECIMIIEN ——
Entity — CDS Buyer CDS Issuer

Protection

Figure 2.1: Simplified credit default swap (CDS) mechanism. Illustration created
by the author using PowerPoint.

As Figure 2.1 aims to illustrate, a CDS contract is entered bilaterally between two
entities: the CDS buyer and the CDS seller. Typically, the CDS Buyer is involved
in some kind of arrangement with another entity (the reference entity) for which
the CDS buyer carries a credit risk (i.e. default risk of the reference entity). The
CDS buyer thus wishes to offset or "swap" this risk with an unrelated third party,
which in this scenario would be the CDS issuer (or seller). In this scheme, the CDS
buyer would pay recurrent premiums to the CDS seller for the promise that the
seller reimburses the buyer in case the reference entity would default on its out-
standing arrangement with the buyer. This scheme makes the buyer and seller so
called counterparties in the CDS transaction. Effectively, a CDS contract protects
(or "hedges") the buyer from possible losses that otherwise could occur in the event
of a default. A situation where the protection offered by the CDS contract is en-
forced is commonly referred to as a credit event [22]. To be noted, this arrangement
also institutes what is known as counterparty credit risk (CCR) which is the risk
that the seller of the CDS will be unable to reimburse the buyer in the time of a
credit event (more on CCR in Section 2.1.2).

The premium is determined via the so called "spread" which is the pricing compo-
nent of a CDS expressed as a rate in basis points (bps) per annum of the notional
amount of the contract. One bps is equal to one one hundredth of a percent. So if
for example a CDS is quoted with a spread of 100 basis points on a notional of $10
million, the annual premium would be $100,000 ($10M x 100bps = $10M x 0.01 =
$100K). Depending on the time the buyer wishes to hedge its position it can enter
into CDS contracts of different tenors (times until maturity).

2. Theoretical Framework

2.1.2 Counterparty Credit Risk

Counterparty Credit Risk (CCR) is the risk that an entity with whom one has en-
tered into a derivatives contract will fail to fulfil their side of the contractual agree-
ment. In practice this usually takes shape in the form of a default of the opposing
entity (counterparty) in question, meaning it will not be able to pay the credit it
is contractually obliged to, resulting in a credit risk for the institution on the other
side of the contract. Typically, CCR is associated with the OTC-derivatives mar-
ket, including products such as CDSs, interest rate swaps and securities financing
transactions (for instance repurchase agreements) [20].

A good way of understanding CCR is to demonstrate how it differs from traditional
credit risk, or lending risk as it is more appropriately denoted. Lending risk occurs
when one party owes some amount to another party and fails to uphold the agree-
ment to repay the loaned amount. It is applicable to many underlying assets, some
common ones being mortgages, credit cards or bonds. Determining lending risk is
quite straightforward. First of all, the notional amount at risk at any point in time is
relatively known. For example this could be the outstanding balance for a mortgage
on a house accounted for amortization, or the debt on a credit card which typically
has a maximum usage facility. Secondly, lending risk is unidirectional meaning that
only one party assumes the risk. This could for instance be demonstrated through
a bond contract in which the holder assumes a significant credit risk, whereas the
issuer faces no risk in the event that the buyer defaults [20].

CCR on the other hand differs from these dynamics. Most importantly, the future
value of the contract is very uncertain due to its connection to underlying market
variables. Take an interest rate swap for example. Its value is linked to how interest
rates evolve over the term of the swap, meaning it is dictated by market behavior.
This makes it difficult to confidently estimate its value at future points in time. Fur-
thermore, CCR is a bilateral risk measure which means both parties of the contract
(for example the buyer and seller of a CDS contract) faces the risk of loss. This
is because derivatives often involves the exchange of payments over time based on
the fluctuating behavior of the underlying asset. A consequence of this is that the
value of the derivative contract can be both positive or negative at different times,
meaning that each party is potentially both a creditor and a debtor at different
points during the life of the contract [20].

As was pointed out in Chapter 1 it is crucial for institutions dealing with these kinds
of financial instruments to effectively manage CCR. Common mitigation strategies
include collateral agreements where cash or securities are posted against Market-To-
Market (MTM) losses, netting which is arrangements allowing parties to combine
or offset mutual obligations to reduce the total number of transactions and thereby
minimize the CCR exposure, and hedging which is typically done via instruments
such as the CDS [20] (see Section 2.1.1 for details about the CDS) . Most impor-
tantly, CCR management is a matter of ensuring financial stability. This is because
defaults of entities with the size of the ones usually involved in these kinds of trades
can have cascading effects across the financial system, something the 2007-2008 fi-

2. Theoretical Framework

nancial crisis clearly showed with the ultimate collapse of major investment banks
such as Lehman Brothers [16]. Institutions have to ensure they can withstand the
default of a counterparty of a transaction without undergoing severe financial dis-
tress themselves.

2.1.3 Credit Valuation Adjustment

In practice, institutions operating in the OTC-derivatives market use what is known
as Credit Valuation Adjustment (CVA) to account for CCR. This is required both by
globally accepted accounting standards (such as IFRS 13) and for capital allocation
purposes (as determined by Basel III) [20]. CVA is best though of as the quantifi-
cation, or pricing, of the CCR associated with an OTC-derivative position and thus
crucial for having a correct valuation of the position in the company’s balance sheet.
Originally, CVA’s contribution to the valuation is expressed by Equation 2.1:

Risky value = Risk-free value - CVA (2.1)

The risk-free value represents the value of the contract assuming no risk of coun-
terparty default and CVA represents the adjustment made to account for this risk.
The risk-free value is typically positive or zero and as Equation 2.1 shows CVA is
subtracted from this value. As a result, the net valuation after accounting for CVA
can be negative if the CVA is substantial, which would indicate a net liability rather
than an asset. As Equation 2.1 shows, the Risk-free value and CVA components of a
derivatives contract can be completely separated, meaning that each can be treated
on its own. First of all, this means that the responsibilities of the valuation process
can be divided between different desks within an institution, with each focusing on
their respective part [20]. Moreover, it makes the outline of each component’s con-
struction easier to define. Moving on, only the CVA aspect of Equation 2.1 will be
detailed since this part relates to CDS spreads.

Looking closer at the CVA component of Equation 2.1, one may start by considering
the formula for CVA computation. This is presented in Equation 2.2 below:

CVA=LGD> FEE(t;) x PD(ti-1,t;) (2.2)
i=1

In this formula, LGD stands for Loss Given Default and it is the exposure expected
to be lost in case the counterparty (for example the issuer of a CDS contract) de-
faults. LGD is expressed as a percentage and it is the complement of the so called
Recovery Rate of the transaction. Say for instance that one is expected to recover
60% on a transaction given a default, then the LGD would be 1 - 0.6 = 0.4 = 40%.
EE stands for Expected Exposure and this is the estimated amount one might be
exposed to or stand to lose at different future points in time if the counterparty
defaults. Essentially, it is like looking into the future and guessing how much cap-
ital you could stand to lose over time. PD stands for Probability of Default and
it expresses the likelihood that the counterparty defaults within the time period of
consideration (t;_; til ¢; in Equation 2.2) [20]. Considering the time-dependency
of the EE and PD components of Equation 2.2, the equation must be integrated

10

2. Theoretical Framework

over time rather than simply using the respective components’ averages in order to
account for the precise distributions of the PD and EE. [20]. An important impli-
cation of Equation 2.2 is the direct proportionality between the LGD, EE and PD
components to the CVA computation. Especially interesting for the purposes of this
thesis is the PD component and its connection to the CDS spread, which will be
further explained below.

As with all components of the presented topics so far, PD can be broken down into
smaller and more detailed pieces of construction. However, in order to preserve only
the necessary level for this thesis, the analysis will be kept only to the essentials for
the context for which it is set (proxy CDS spread generation). Curious readers can
find more details in the provided references, especially [20] which offers clear and
concise explanations of these concepts. One important distinction when dealing with
PD is the one between real-world and risk-neutral PD. Real-world PD is estimated
from historical data associated with some credit rating. Risk-neutral PD on the
other hand is market implied and derived from financial instruments such as the CDS
[20]. From here on, this is what is meant by PD. Recall from Section 2.1.1 that an
important component for CDS contracts is the so called spread, which is a rate used
for computing the premiums paid by the buyer to the seller for the duration of the
contract. Apart from this, the CDS spread also influences the computation of CVA
(and thus pricing of CCR). Equation 2.3 below shows a simplified approximation
used for determining PD between two sequential dates when for example quantifying
a term such as CVA [20]:

St;_yti-1 St;ti
rep)~ P ep)
In the approximation of PD shown in Equation 2.3, s; represents the CDS spread
at time ¢. The terms t;_; and t; represents the start and end of the interval for
which the PD is computed. The exponential functions (which yields outputs in the
range [0, 1] for real-valued inputs) then approximates the survival probabilities up
to times t;,_; and t; respectively, whereas the difference between these survival prob-
abilities gives the probability of default within the interval [t;_;,t;]. For example,
suppose that the spread level s; is 100 bps (=1%), the time periods are t;_; = 1 year
and t; = 2 years and the LGD is 40%. Following the approximation by Equation
2.3, the scaled spreads would be for ¢;_; = 1 year: (2%21) = 0.025, and for t; = 2

0.4

years: (2312) = 0.05. The exponential terms become: exp(—0.025) ~ 0.9753, and

exp(—0.05) ~ 0.9512 respectively. The approximated PD between ¢;_; and ¢; then
becomes: 0.9753 - 0.9512 = 0.0241=2.41 %.

PD(ti-1,t;) ~ exp(— exp((2.3)

As can be seen, the PD is proportional to the spread in such way that an increase
in the spread will lead to an increase in PD and vice versa. Merging Equation 2.3
and Equation 2.2 one gets the following expression to approximate CVA [20]:

Stiti

_LGDD

Sti, 1 ti—].

LGD) -

CVA=LGDY EE(t) x (exp(—

i=1

exp((2.4)

What Equation 2.4 shows is that the CDS spread has a proportional impact on the
computed CVA. The bottom line of this outline is that since CVA essentially puts a

11

2. Theoretical Framework

price on the CCR, which is important for the valuation process of OTC-derivatives
as shown in Equation 2.1, the accuracy of CDS spreads becomes important for insti-
tutions dealing in such instruments. The more accurate the spread, the better will
be the accounted CVA and thus CCR, meaning institutions will have a more robust
foundation for ensuring capital is properly allocated in the event of a counterparty
of a transaction (such as a CDS issuer) defaulting on its obligations. Previous work
on proxy CDS spread generation (recall that proxy spreads are used when no liquid
market spreads are available) will be further discussed in Section 2.3.

2.2 Machine Learning Context

The purpose of this section is to familiarize the reader with some concepts from the
machine learning (ML) domain needed to comprehend the work presented in this
thesis. For this purpose, an introductory part on the ML subfield of deep learning
(DL) is provided in order to sort out some fundamental ideas and topics in the field.
Moving on, the concept and progression of sequence models is outlined. Finally, the
Transformer architecture, which is the backbone of the ML-modelling in this thesis,
is presented and detailed.

2.2.1 Deep Learning

Fundamentally, Artificial Intelligence (AI) can be though of as the ability of com-
puters to perform human-like tasks such as reasoning, decision-making or problem
solving. The AI landscape encompasses several different approaches and subfields
whose use cases and recognition differs. Among the most popular Al subfields to-
day is Machine Learning (ML). In practice, ML-algorithms involve using historical
data (typically referred to as training data) to build a mathematical models that
makes predictions without being explicitly programmed on how to do so [9]. A large
subfield of ML is what is known as deep learning (DL). DL represents classes of
algorithms that are inspired by the function and structure of the brain, known as
neural networks. DL structures algorithms in layers to create an "artificial neural
network" that can learn complex, nonlinear patterns in the input data and from
this make intelligent decisions on its own [19]. The ability to handle large and com-
plex datasets better than traditional algorithms has made DL a significant and very
popular approach within the ML-community today.

2.2.1.1 Artificial Neural Networks

An artificial neural network is a computer structure in which small units of com-
putation (commonly denoted as neurons) are connected in large networks in order
to process input data to produce an output. Compared to the neural network
of the brain, the artificial version contains highly idealised units of computation.
These units (or neurons) connects to each other by weights and the output of each
connected neuron is the weighted average of its inputs [30]. This relationship is
illustrated by Equation 2.5 below:

12

2. Theoretical Framework

si(t+1) = Q(Z1 wi;s;(t) — 6;) (2.5)

In Equation 2.5, s; is a neuron with index ¢ which receives N inputs from other
neurons s;. The neurons ¢ and j are connected via the weight w;;. This weight
determines the strength of the connection between the two neurons and thus how
much influence the input from neuron j will have on the output produced by neuron
1. The term t represents a discrete time step in the iterative process of updating the
neuron’s state. At each time step t the state of neuron ¢ is updated based on the
weighted inputs from other neurons j.

As Equation 2.5 shows, the connected neurons produce a weighted sum which is
adjusted by some threshold value 6; for neuron i. The output of each neuron is
transformed using a non-linear activation function, g(b), which can introduce com-
plex patterns and behaviors. The general notation aims to show that an activation
function can be of several types, with b being the local field representing the thresh-
old adjusted input [30]. Functions such as the Rectified Linear Unit (ReLU) have
become the default, providing a simple yet effective way to introduce non-linearity
[19]. In the field of DL, the artificial neural networks have one or several hidden
layers (thus the notation "deep") which allows for more complex representations of
the input data. This layering produces what is known as a deep neural network
(DNN) and Figure 2.2 shows a very simple schematic of such a network with one
hidden layer of neurons.

Hidden Layer

Input Layer

Input Output

Figure 2.2: Simple schematic of a deep neural network (DNN). Illustration created
by the author using PowerPoint, inspired by [30].

2.2.1.2 Training and Optimizers

When training a DNN, a method known as backpropagation is employed which in
very simple terms can be described as the process of adjusting the weights of the
network (black arrows in Figure 2.2) backwards through the network based on the
error of the network’s predictions. When performing backpropagation during train-

13

2. Theoretical Framework

ing, the network uses a loss function which computes the error between the predicted
and the expected output of the network. Two common loss functions include Mean
Squared Error (MSE) and Cross-entropy loss. MSE squares the difference between
the current prediction and the expected output and divides this by the number of
outputs (see Section 2.4.2 for details regarding MSE). Cross-entropy loss measures
the difference between two probability distributions by calculating the total entropy
(i.e. uncertainty or unpredictability) between the predicted probability distribution
and the actual distribution and is often used in classification tasks to evaluate the
performance of a model by penalizing predictions that differ from the true labels [32].

During training, the idea is to minimize the loss function (i.e. the error between
predictions and expectations) so that the weights of the final trained network maps
input to output as accurately as possible. For this purpose, one typically uses
an optimizer with backpropagation. A common choice of optimizer is known as
Stochastic Gradient Descent (SGD). In principle, SGD is quite straightforward and
it follows Equation 2.6 below:

Wt+1 = Wt - nVJ(Wt) (26)

What Equation 2.6 shows is that the new weight states, W;.1, will equal the old
weight states, W;, adjusted by the gradient of the loss function J(W;), with respect
to the old weight states, V.J(W;). The term t in this context represents the iteration
step in the training process. Each iteration ¢ corresponds to an update of the weights
based on the gradient of the loss function. For a randomly selected subset of data
(thus "stochastic"), SGD computes the gradient of the loss function with respect to
each weight and this gradient points in the direction of the steepest increase of the
loss function. The gradient is multiplied by a learning rate, n, which controls how
much the weights are adjusted with respect to the gradient [30].

Another optimizer which has become popular in recent years is Adam which stands
for Adaptive Moment Estimation. While SGD is effective in many applications,
the choice of the learning rate n and the condition of the objective function J(W;)
sometimes impacts its performance to a large extent. To address such issues, Adam
computes adaptive learning rates for each parameter through the estimation of the
first and second moments of the gradients. The resulting update rule takes into
account and adapts the learning based on the average first moment (the mean)
and the square root of the average second moment (the uncentered variance) to
normalize the gradient. Detailed derivations of and explanations of Adam will not be
covered here. It is enough to know that the introduction of these moment estimates
allow Adam to adjust its learning rate based on the uncertainty (or variance) in the
gradient, which makes it robust to variations in the gradient’s magnitude which often
leads to better performance on complex neural network architectures and datasets.
Compared to SGD, Adam can also help in achieving faster training convergence and
also require less tuning of the learning rate [26].

14

2. Theoretical Framework

2.2.1.3 Common Challenges in Deep Learning

In the context of DNN’s, a problem that normally arises when successively per-
forming backpropagation over several layers is exploding or vanishing gradients.
Exploding gradients means that the gradients become too large which causes the
training progress to diverge. Vanishing gradients on the other hand appears when
gradients become too small, which causes the weight updates to become insignificant
and that can lead to a slowdown or halt in the learning process of the network. A
whole section could be devoted to this problem but for the purposes of this thesis
it is enough to know that one typically uses some common techniques to the net-
work architecture to tackle them. This for instance involves using non-saturating
activation functions such as Rectified Linear Units (ReLU), sophisticated initializa-
tion methods, batch normalization and residual (skip) connections. An interested
reader is referred to [19] and [30] for more in-depth explanations of these techniques.

Another problem in DL is the trained network’s ability to generalize to unseen
data. The common approach when training neural networks is to have one sample
of data (the training set) which the network trains on (i.e. uses to update the
weights). Then, another much smaller sample known as the validation set is used
during training to see if the trained weights can perform accurate predictions on
unseen data. The loss achieved on the validation set typically helps in determining
whether the network has converged (reached a sufficient point of accuracy) or if
further training is required. When the training is deemed completed, one passes an
unseen test set (which again typically is much smaller than the training set) through
it to determine the general performance of the network. Sometimes the network
overfits which simply means that it learns the training set very well, but is poor at
generalizing predictions to unseen data. In order to increase the generalization to
unseen data, it is therefore common to employ regularization techniques [19]. On
such technique is known as dropout which in practice means randomly setting some
of the weight connections in the network to zero. What this results in is that the
layers of the network are pointed to take more or less responsibility for the input to
them by taking a probabilistic approach [41].

2.2.2 Sequence Models

As highlighted in the previous section, DNN’s can have various architectures depend-
ing on the specific needs of the problem at hand. Convolutional Neural Networks
(CNNs) for example is a kind of DNN architecture particularly useful in handling
grid-like data such as images by applying what is known as convolution layers to
the input [30]. Sequential data on the other hand, such as texts, speech or financial
time series (important for the purposes of this thesis), requires different approaches
considering the importance of order and dependency between elements. Sequence
models is a type of DNN architectures designed to process sequences by maintain-
ing a form of "memory" of previous inputs, thereby allowing them to capture time-
dependent dynamics in the dataset [28].

The first simple form of a sequence model is a so called Recurrent Neural Network

15

2. Theoretical Framework

(RNN). RNNs are used for sequential data processing, typically in areas such as
Natural Language processing (NLP) and time series applications. Without going
into the technical details of RNNs, which is outside the scope of this thesis, it is
enough to know that an RNN feature shared weights across time which means the
weights can maintain memory from previous inputs. This is achieved via an inter-
nal loop (which is a kind of "hidden layer" in the DNN architecture) which allows
information to be passed from one step of the network to the next [28]. The use of
RNNs is thus advantageous in applications where past information impacts future
predictions and because they are simple and rather intuitive. However, RNNs suffer
from the exploding (or vanishing) gradient problem discussed in Section 2.2.1 mak-
ing it difficult for them to capture long-range dependencies in the data. Moreover,
they are not parallelizable which makes them computationally inefficent and slow
during training [33].

Due to the problem of handling long-range dependencies suffered by RNNs, another
popular sequence model is the Long Short-Term Memory (LSTM) model. LSTMs
build on the previously mentioned hidden layer of the RNN architecture by passing
what is known as a cell state to the next time step. This cell state contains three
so called gates: the forget gate which removes (or "forgets") irrelevant information
from the cell state, the input gate which adds more important information to the cell
state and the output gate which also adds more useful information to the cell state
[24]. Without going into the technicalities of the gating mechanism, it is enough to
understand that it allows an LSTM model to know when to forget, ignore or keep
information from previous time steps [24]. The advantages of this, as mentioned,
is that they can capture essential information over longer sequences compared to
RNNs while also reducing vanishing or exploding gradients. However, since LSTMs
are much more complex than RNNs, they become harder to train and require more
computational resources. Moreover, similar to the RNN architecture, LSTMs pro-
cess data sequentially which make them slow during training compared to if the
data was to be processed in parallel [33].

Given the limitations mentioned with previously popular sequence models like RNNs
and LSTMSs, these have been challenged by another state-of-the-art DNN architec-
ture that effectively mitigates many of these issues. This architecture is known as the
Transformer. By combining parallel processing, an encoder-decoder structure and,
perhaps most importantly, an attention mechanism, the Transformer has become
more and more popular in various ML-applications, such as for example problems
involving sequential data [28]. Below, a section on the original Transformer archi-
tecture is presented aimed at showcasing its functionality and advantages compared
to other sequence models.

2.2.3 The Transformer Architecture

Transformers are DNN models that use what is known as self-attention to process,
comprehend complex dynamics in, and make predictions on sequential data. As was
briefly discussed in Section 2.2.2, Transformers stand out compared to traditional

16

2. Theoretical Framework

sequence models such as RNNs or LSTMs in their increased ability to capture long-
range dependencies in a dataset as well as their enabling of parallel data processing
[23]. Originally, the Transformer architecture was designed for tasks in the field of
Natural Language Processing (NLP) when first introduced in the 2017 paper "At-
tention Is All You Need" [40]. From there, its use cases have moved on to many
other domains, such as computer vision, multi-modality, audio and speech process-
ing, and signal processing [23]. Applying Transformers to time-series tasks is also
interesting, given their increased ability to capture long-range dependencies as well
as computational efficiency compared to traditional sequence models as discussed
in Section 2.2.2. Typically, there are two main tasks performed on time-series data:
forecasting and classification. Forecasting means predicting real-valued numbers
from a given time-series dataset (commonly known as regression), and classification
means categorizing the given time-series data into one or more target classes [8].

Although the specific use case for this thesis has to do with time-series regression,
given that the prime incentive of the thesis is to use Transformers to generate proxy
CDS spreads as outlined in Section 1.4, the following sections will provide an expla-
nation of the original Transformer model first presented in [40] used for NLP tasks.
More details on the slightly modified version employed in this thesis is however pre-
sented in Chapter 4. To be noted is that the Transformer is a quite complicated
DNN which means a lot of the intricate, mathematical details involved in its different
parts will not be covered here. Instead, the aim is to provide an easy-to-understand
overview of the architecture and its main functionalities as they were presented in
the original paper [40], which serves as the reference for the following explanation.
However, the interested reader is prompted to read [40] in its entirety for a detailed
description. Considering the Transformer’s advance in recent years there also ex-
ists plenty of material on it in more beginner friendly formats. One example is the
YouTube video in [38] which offers a clear and concise outline of the information
presented in [40], accompanied by detailed illustrations.

The authors of [40] explains that the motivation behind creating the Transformer
was the already mentioned limitation of previous recurrence based sequence mod-
els to capture long-range dependencies in datasets, as well as their inherent nature
of processing data sequentially rather than in parallel which causes computational
inefficiency and slow training times. Furthermore, they explain that other model
architectures using so called attention mechanisms, such as the one first presented
in [10], have been developed, but still with a dependency on recurrence and hence
sequential data processing. In view of this, the Transformer instead ignores recur-
rence entirely and solely focuses on attention mechanisms. Before proceeding, it is
important to know that the Transformer does not use the exact attention mecha-
nism outlined in [10], but rather a specific variant of this called self-attention. The
focus will therefore be on this instead of the original attention mechanism of [10].

Figure 2.3 shows a schematic of the original Transformer architecture. Below, an

explanation of each part of the network is explained to demonstrate how the model
uses self-attention and parallelisation in a encoder-decoder fashion to map input to

17

2. Theoretical Framework

output.

QOutput Probabilities

I
[Softmax
1
[Linear]

...
» 5,

Add. & Norm. }4—

[Feed Forward]

F 3

Add. & Norm.]4—
I

[kel & b] ‘ [Multi-Headed Attention

..

|
[Feed Forward] ry
1= -~ K T UT Q
P —)
% : | g
o —>| Add. & Norm. Add. & Norm. |4—
= I] I g_
= P 5
- ; H Masked -
Rt Eleaked: A : Multi-Headed Attention
: P N x
Nx;
F Y F FY
Q K v Q K v
Positional @_G:') @ Positio_nal
Encoding r 1 r Encoding

[Input Embedding] [Output Embedding]

Inputs Outputs
(shifted right)

Figure 2.3: The original Transformer architecture. Illustration created by the
author using PowerPoint, inspired by [40] and [38].

As illustrated in Figure 2.3, the Transformer uses an encoder-decoder structure.
From a macro perspective this is how the original Transformer works: the encoder
maps the input sequence, such as a sentence in an NLP application, to continuous

18

2. Theoretical Framework

representations. The encoder output is then passed to the decoder which converts
this into a target sequence, one symbol at a time. The decoder also uses all previously
generated output to add additional context and memory when generating the target
output sequence in a process called autoregression. Below, the encoder and decoder
of the original architecture are detailed.

2.2.3.1 The Encoder

First, the input is passed through an input embedding layer. Considering that neural
networks, as with all computer models, learns with numbers, this layer is used to
map each input token (which for example is a word in a sentence) to a continuous
vector representation. After the input embedding layer, positional encoding is added
to the vector representations of the input tokens. Since Transformers, as mentioned,
do not utilize sequential processing as in recurrence models, all input passed to the
network is processed in parallel. While this opens up for efficient computation, it
however means one must add information about position into the input embeddings.
In [40], the authors perform the positional encoding using sine- and cosine-functions
since these possess linear properties which the model can easily learn:

. pos
PE(pOS, 21 +].) = COS(W> (27)
N pos
PE(pos,2i) = Sm<—100002i/dm0del) (2.8)

What Equations 2.7 and 2.8 show is that for even dimensions of the embedding
vector, the positional encoding is computed using the sine function and for odd
dimensions it is computed using the cosine function. These encoded vectors are
then added to the input embedding vector for the corresponding token to effectively
include information about its position in the input sequence.

Next, the input is passed to the encoding layer. The purpose of this layer is to
create an abstract, continuous representation of the learned features for the entire
input sequence. As shown in Figure 2.3, the encoding layer is built up by two sub-
modules: Multi Headed Attention (MHA) and a Feed-Forward (also denoted "Fully
Connected") networks. Each of these modules also contains residual (or "skip")
connections (the arrows circumventing the modules in Figure 2.3) as well as layer
normalization. The MHA module applies the specific attention mechanism men-
tioned earlier called self-attention. This mechanism illustrated in Figure 2.4.

19

2. Theoretical Framework

[Linear

i

[Concatenation]

r

[Matrix mult.]

F 3
| Softmax I

r 3

| Scaling I

[Matrix mult.]

& F 3

| tinear | | Linear | [Linear |

T

Q K Vv

Figure 2.4: The self-attention mechanism. Illustration created by the author using
PowerPoint, inspired by [40] and [38].

The self-attention mechanism allows the Transformer to associate every individual
input token to all other input tokens in the input sequence. The embedded input is
first mapped to vectors known as the Query (Q), Key (K) and Value (V) by being
passed through separate, linear layers. Following this, the query and key vectors are
multiplied to produce a score matrix which shows how much attention each input
token should place to every other token in the input sequence. This matrix is then
scaled down by the square root of the dimension of the query and key vectors in
order to stabilize the gradients to avoid the exploding gradient problem discussed
in Section 2.2.1, which allows for more stable training during backpropagation. The
softmax function is then applied to the scaled score matrix to produce attention
weights which are values in the range 0-1, mimicking probabilities. Large scores
produces a high probability and vice versa, meaning the model will more easily
know what tokens deserves the most attention. After this, the attention weight
matrix is multiplied by the value vector to produce an output which, thanks to the
different attention scores, will tell the model which tokens to focus more or less on.

Before applying the self-attention mechanism outlined above, the query, key and
value vectors are split into N vectors. Each subset of query, key and value vectors
then undergoes the same exact operations just described via its own "head", thereby
explaining the "multi headed" part in MHA. As can be seen in Figure 2.4, the output
vector of each self-attention head is concatenated into a single output vector which
then passes through a final linear layer. The idea of MHA is to allow for the model

20

2. Theoretical Framework

to learn new representations of the input via each application of the self-attention
mechanism. Thus, one normally experiment with different numbers of heads.

As Figure 2.3 shows, the output of the MHA-module of the encoder is then passed
through a Normalization layer to normalize the values. Before this however, one
can see that the original input is added to the processed MHA output via a residual
connection. The reason for this is to allow for gradients to flow freely through the
network to avoid exploding gradients and thereby stabilize the training process.
The normalized output is then passed through a Feed-Forward network for further
learning before being passed through another Normalization layer (again utilizing a
residual connection before normalization). Having done all this, the encoding part
of the Transformer is then completed. As explained, the job of the encoder is to
map the input sequence to continuous representations with attention information.
This will allow for the next part, the decoder, to more easily know what parts of
the input to focus on when producing an output. To be noted is that one can stack
several encoding layers on top of each other (illustrated by the Nx symbol in Figure
2.3) in order to get richer representations of the input sequences. In the original
architecture six encoders and decoders were stacked respectively.

2.2.3.2 The Decoder

The job of the decoder of the Transformer is to generate output sequences. Upon a
quick glimpse of Figure 2.3, one notices that the decoder has similar sublayers to that
of the encoder. It first has two MHA layers followed by a Feed-Forward network,
repeatedly using residual connections and normalization. What is important about
the decoder in the original Transformer, and which has been touched upon in the
previous text, is its autoregressive capabilities. This means that simultaneously as it
receives encoded attention-informed input from the encoder, it passes all previously
produced parts of the generated output sequence back to itself to allow for a more
contextualized output as a whole. The decoder stops generating output when an
<end> token is passed. To get the general point one can look at an NLP example.
If for instance an input such as:
Where are you?

is processed via the encoder and passed to the decoder, the decoder may generate a
response like:

<start> I am home . <end>
token by token in an autoregressive manner, with the <start> token signalling the
beginning of the output sequence and the <end> token the end of the sequence. To
understand the workings of the decoder an explanation of each submodule will be
outlined.

In the first part of the decoder, a similar kind of input embedding and positional
encoding as that of the encoder is applied. Similar to the encoder, the self-attention
mechanism is then applied to the query, key and value generated vector representa-
tions of the input in an MHA layer.

As highlighted in the beginning of this section, a strength of the Transformer is its

21

2. Theoretical Framework

parallel processing abilities. During training, this means that the Transformer will
generate the entire predicted output sequence at once, instead of token by token
such as a recurrence model would do. However, since the order in which the output
is generated matters, one must somehow prevent the model from seeing the future
tokens when predicting what token should come next in the sequence. In its first
MHA layer, the decoder thus shields (or "masks") parts of the input to prevent itself
from conditioning on future tokens when predicting the next token of the output
sequence. In the NLP example this would mean that when the MHA layer com-
putes the attention scores for the token "am’, it should not have access to the token
'home" since this appears at a future point in the sequence. Without going into
the specific mathematics of the masking process, what is done is that the values of
future tokens in the embedded vector representations of the decoder input are set
to negative infinity, which effectively makes their attention weights equal to zero
upon passing them through the softmax function (see Figure 2.4 for repetition on
the self-attention steps). This limits the decoder to only seeing past outputs when
determining what attention each token in the sequence should be appointed. An
important note is that this refers to the computation of attention and intermediate
outputs across all positions simultaneously during training specifically. The final se-
quence generation during inference (i.e. use of the trained model) is still sequential
and autoregressive. Similar to the encoder, for each self-attention head, the masked
attention weights are then multiplied by the corresponding value vector to produce
the respective output vectors that are then concatenated into a single output vector
for the entire MHA layer. This is then passed through a linear layer for further
processing before being passed to the second MHA layer.

In the second MHA layer, which does not involve any masking operations, the de-
coder receives input from the encoder alongside the output from the decoder’s first
MHA layer. The encoder output serves as the key and value vectors respectively,
while the output from the decoder’s first MHA layer serves as query. The impact
of this is that while keeping memory of the already produced output, the decoder
receives additional information about what features of the encoder input to put fo-
cus on. Subsequently, the output from the second MHA layer is combined with the
input of the first MHA layer using a residual connection, and then it undergoes nor-
malization. It is then passed through a Feed-Forward network and and once again
normalized.

The output from the decoder is then passed through a final linear layer which acts
as a classifier in the original architecture (which, as said, was made for NLP tasks).
The output dimension of the linear layer will depend on the number of classes the
Transformer model is supposed to generate. So, if for example one has 1000 classes
for 1000 tokens the output vector of the linear layer will have a dimension of 1000.
This vector is then passed through a softmax layer which maps the values to the
range 0-1 to mimmick probabilities. The index of the element with the highest soft-
max score then determines the predicted Transformer output for the current round
of inference. This is then added to the already predicted output sequence and, again
using autoregression, the process is iterated until the <end> token appears.

22

2. Theoretical Framework

As the reader may now be aware, the Transformer is a very complex DNN ar-
chitecture, composed of several complex submodules. To maintain focus on the
overarching functionality and avoid overwhelming detail, certain specifics have de-
liberately been omitted. The key takeaway is that the Transformer leverages an
encoder-decoder structure, self-attention mechanisms, autoregressive properties, and
parallel processing to overcome traditional limitations in handling long-range depen-
dencies in data, and thereby enhancing computational efficiency. While this section
has concentrated on the original architecture, subsequent sections of the thesis will
demonstrate the Transformer applications beyond NLP tasks.

2.3 Previous Implementations for Producing Proxy
CDS Spreads

The following section will cover some previous work in the field of proxy CDS spread
generation. To start off, the Nomura model which is commonly used by the financial
industry will be discussed. Thereafter, some ML-implementations will presented and
an emphasis will be put on the connection between this thesis and previous theses
that have been done at SHB for this purpose.

2.3.1 The Nomura Model

As was described in Sections 2.1.1, 2.1.2 and 2.1.3, the spread is a principal compo-
nent in the pricing process of a CDS contract. It is supposed to adjust the valuation
of the CDS by reflecting the CCR associated with it at any point in time. For liquid
CDS contracts (i.e. contracts that are traded frequently and in large volumes in
the market), one can assume that the associated spread is well-aligned with market
perception of the CCR. For illiquid CDS contracts, however, determining the spread
becomes more challenging due to the lack of active market perception. Thus, the
spread must be calculated in a manner that encapsulates the associated CCR as
accurately as possible, despite the limited market perception. In the international
regulatory framework for banks known as Basel III it is presented that when coun-
terparties do not have associated liquid CDS spreads, financial institutions should
instead use appropriate proxy spreads with regards to the rating, region and sec-
tor of the counterparty [11], [31], [20]. Following the need for accurate proxy CDS
spreads that follows the mentioned regulatory demands, Nomura which is a global
financial services group released a cross-sectional model in 2013 doing just that [31]
(hereafter referred to as the Nomura model). Since then, the Nomura model has

become common within the financial industry for the purpose of generating proxy
CDS spreads.

The Nomura model initially aimed at improving the lacking results of the intersection
model presented by the European Banking Authority (EBA) [17] by applying an
alternative approach based on cross-sectional regression [31]. The main idea of
the Nomura model is that the proxy spread for a counterparty is the product of

23

2. Theoretical Framework

various factors. These include a global factor which is a universal adjustment applied
across all related counterparties, as well as factors for the sector, region, rating and
seniority that are adjustments based on the counterparty’s specific characteristics.
The formula for computing the proxy spread, s?"**¥ for counterparty ¢ thus becomes:

Sgn“omy - Mglob Msector(i) Mregion(i) Mrating(i) Mseniority(i) (2 . 9)

The calibration of the model is done using a regression approach with the logarithm
of the factors. Upon calibration one aims to minimize the squared differences be-
tween model-generated proxy spreads and market spreads. Upon historical analysis
it has been shown that the Nomura model avoids the erratic behavior observed in
EBA’s intersection model when market conditions change or in the case of undefined
spreads due to cases where certain intersections of sector, region and rating does not
exist [31].

2.3.2 Machine Learning Implementations

Some attempts have been made in the past to produce proxy CDS spreads using
Machine Learning (ML). Although the approaches have differed, something com-
mon among the various implementations is their belief that ML-algorithms possess
a higher potential in capturing important, non-linear patterns in the input data
which other models (such as the log-linear regression approach of the Nomura model
discussed in Section 2.3.1) fail to do. Below, a brief outline of some past approaches
will be given.

In the series of papers published in 2019 by Brummelhuis and Luo [15], [14] the
authors investigate the construction of proxy CDS spreads. Similar to the purposes
of this thesis, their focus is on generating credible spreads for illiquid counterpar-
ties, but instead of focusing their analysis to a specific algorithm they expand their
study to involve a comparison between various ML approaches including regression
trees, neural networks, and ensemble methods. By constructing an input dataset
composed of market data, financial statements, and macroeconomic indicators and
subsequently training the mentioned models on it, they were able to show that
ML models could outperform traditional linear regression models in predicting CDS
spreads. For example, the authors benchmarked the results against the Nomura
model which highlighted improvements in predictive accuracy and reliability in fa-
vor of the ML approaches.

Considering the importance that accurate proxy CDS spreads has to institutions
such as SHB (see Section 2.1), previous thesis projects at the bank have also been
dedicated to the task of generating them using different ML approaches. One such
example is the 2023 thesis by Fagerdng and Thoursie [18]. In their work, the au-
thors showcased some scenarios where the Nomura Model fails to produce reliable
proxies. Particularly, they found that this is the case during periods of volatile
market conditions and for larger counterparties. As a response to this, the thesis
proposed using two Long Short-Term Memory (LSTM) models trained on datasets
including CDS spreads of similar counterparties. These models aimed to generate

24

2. Theoretical Framework

better proxy CDS spread curves during periods of high market volatility considering
their ability to capture nonlinear dynamics in the datasets which might be missed
by traditional linear regression models such as the Nomura model. The general con-
clusions of the thesis is that the LSTM-models achieves a better performance than
the Nomura model during instances where it fails, such as in the mentioned periods
of high market volatility, although further improvement measures such as expanding
the dataset and refining the model structure was identified [18].

Given the limited abilities of capturing long-range dependencies suffered by recur-
rence models like LSTMs (discussed in Section 2.2.2), Johan Luhr investigated the
possibilities of generating proxy CDS spreads using the Transformer model (see Sec-
tion 2.2.3) in his 2023 thesis made in collaboration with SHB [29]. To the best of
the his knowledge, no prior work had been done on the application of Transformer
models to the task of generating proxy CDS spreads before the work presented in his
thesis [29], thus in a way making it a proof of concept. In his thesis, Luhr developed
two Transformer models. The first, simpler model, only included the encoder part of
the original Transformer architecture (see Section 2.2.3) and used data records from
one counterparty at a time to produce one proxy spread per inference. The second,
more advanced model, employed a modified version of the entire encoder-decoder
architecture of the original Transformer along with data from three counterparties
at a time to enhance the accuracy of the proxy spread generated. For both models,
custom embeddings for incorporating features such as tenors, ratings and sectors as
well as time-dependency details about the CDS spreads were used. What Luhr found
was that the models effectively were able to produce proxy spreads whose curves
were well-aligned with that of the Nomura model. It was also discovered that the
more advanced, encoder-decoder model outperformed the simpler enocoder-based
one. More details on the implementations made in [29] will be discussed in the
subsequent chapters of this thesis.

What is important to mention with regards to [29], is that it lacked some important
evaluation analysis needed to determine the Transformer model’s supposed superi-
ority over existing traditional methods such as the Nomura model. One especially
important aspect of this, is that the target labels used during the training of the
Transformer models in [29] consisted of proxy spreads rather than actual market
spreads. The implication of this is that the resulting Transformer output became
somewhat dependent on the same linear models it sought to replace, making it
difficult to independently compare one to the other. Moreover, the thesis did not
provide thorough statistical tests between model output and corresponding, market
spreads, but instead limited the comparisons to be between Transformer generated
proxies versus linear regression generated proxies. This meant it lacked an analysis
in which each method’s resulting proxies independently were compared to that of
the real-world market data they are supposed to simulate, which would make it
easier to draw firm conclusions on which model is the superior one and thus should
be favored in the task of producing reliable proxies. These limitations therefore
form the basis and justification for the work presented in this thesis and why it
is an important addition to the work presented in [29]. To better be able to tell

25

2. Theoretical Framework

whether or not Transformer models outperform corresponding models for the task
of generating proxy CDS spreads, this thesis will thus put a core emphasis on the
evaluation part of the Transformer generated output against both market and proxy
spread data, as well as solely using data from actively traded, liquid CDS contracts
instead of existing proxy data when training the Transformer. More details on the
implementations and experiments made in this thesis along with their connection
to [29] are presented in Chapters 3 and 4.

2.4 Statistical Context

This section provides an explanation of the primary statistical metrics used in the
evaluation of this thesis’s results. These include Spearman’s Rank Correlation Co-
efficient, Mean Squared Error and Mean Absolute Error. Each metric is detailed in
its own section below.

2.4.1 Spearman’s Rank Correlation Coefficient

Spearman’s rank correlation coefficient (r;) measures the strength and direction of
association between two ranked variables. It is nonparametric which means it does
not assume that the associated variables follow a normal distribution. Compared to
the commonly used Pearson product-moment correlation, which assesses linear rela-
tionships, Spearman’s correlation instead assesses monotonic relationships whether
these are linear or not [27]. A monotonic relationship fulfills one of the following
behaviours:

o As the value of one variable increases, so does the value of the other variable.

o As the value of one variable increases, the other variable value decreases.

By using ranks instead of the raw data values, Spearman’s correlation can be applied
to data that does not meet the assumptions of parametric tests, such as normal
distribution and linearity [27]. The concept of ranking variables is a straightforward
procedure. Assuming you have two samples containing values for each variable, the
ranking is applied in such a way that highest value of each sample gets the rank 1,
the second highest the rank 2, et cetera. At the occurrence of two identical values
in a sample, the rank of each becomes the average of the rank that they would have
otherwise occupied. Table 2.1 shows a simple example of two data samples and their
respective ranking.

Table 2.1: Example of ranking of two variables.

Sample 1 (value) | Sample 1 (rank) | Sample 2 (value) | Sample 2 (rank)
12 4.5 3 1.5

17 1 8 b}

12 4.5 3 1.5

10 3 5 3

9 2 6 4

26

2. Theoretical Framework

The formula for computing Spearman’s rank correlation coefficient then follows
Equation 2.10:

- cov(R(X),R(Y)) (2.10)

OR(X)IR(Y)

where R(X) and R(Y") denotes the rank variables, cov(R(X), R(Y)) is the covariance
of the rank variables, and opg(x) and or(x) are the standard deviations of the rank
variables [27]. In case there exists no paired ranks, the formula can be reduced to
Equation 2.11, where d; is the difference in paired ranks and n is the number of cases:

63d?
n(n?—1)
The correlation coefficient r, takes continuous values ranging from -1 to 41, where
+1 indicates a perfect positive relationship between the ranks, 0 indicates no rela-

tionship between the ranks and -1 indicates a perfect negative positive relationship
between the ranks [27].

re=1- (2.11)

2.4.2 Mean Squared Error

In regression analysis, a common measure used to evaluate the accuracy of a model is
Mean Squared Error (MSE). MSE calculates the average of the squares of the errors,
where an error is the difference between the actual target value and the predicted
value by the model. The formula for MSE is presented in Equation 2.12, where a;
is the ith actual target value, p; is the corresponding predicted value, and n is the
number of observations:

i (a; — pi)?
n

A low MSE means small errors on average and high model accuracy, and vice versa

for large errors [34]. Due to the squaring procedure of Equation 2.12, MSE puts

more emphasis on large errors which makes it extra sensitive to outliers. Moreover,

it provides a smooth gradient, which is appreciated for optimization algorithms used
in ML-models [7].

MSE =

(2.12)

2.4.3 Mean Absolute Error

Another important metric in regression analysis is Mean Absolute Error (MAE).
MAE measures the average of the absolute errors between predicted and actual
values. The formula for it is given in Equation 2.13, where again a; is the ith
actual target value, p; is the corresponding predicted value, and n is the number of
observations:

it lai — pil
n

Different to MSE, MAE does not square the errors. Therefore, all errors are treated

equally. This makes MAFE more intuitive and straightforward as it represents the

MAE = (2.13)

27

2. Theoretical Framework

average magnitude of errors in the same units as the original data. Often one may
therefore include both MAE and MSE when evaluating the accuracy of a model’s
predictions as each metric offers different insights. While MSE is more sensitive
to outliers due to the squaring of errors, MAE provides a more balanced view by
looking at the absolute differences instead [7].

28

3

Methods

The following chapter outlines the methodology for each step conducted throughout
the thesis work, thus detailing the workflow which was presented in Chapter 1. First,
a summary regarding the collection of information about the topics relevant to the
thesis is given. Next, an overview is provided on what data was used in the work
along with some of the initial preprocessing applied to it. Finally, a description of the
experiments conducted is presented along with the primary software and hardware
used. In the subsequent chapter, details about the Transformer model that was used
in the experiments along with how the data was preprocessed before being passed
to it are given.

3.1 Information Collection

The work on this thesis began in January 2024, starting with researching relevant
information to understand the details of the proposed project. By recalling that the
aim of the thesis has been to evaluate the performance of Transformer generated
proxy CDS spreads, project relevant information was needed from three primary
domains: finance, machine learning and statistics.

The process for obtaining information on each context was twofold. First of all, a
lot of explanatory value was provided firsthand by the staff in the Model Validation
and Quantitative Analysis department at SHB, who work daily at the intersection
of these topics. Secondly, literature was collected, covering mediums such as text
books, research papers and online articles.

Apart from processing general information, an in-depth analysis of the SHB thesis
on Transformer models conducted prior to this, i.e. the 2023 thesis by Johan Luhr
[29] mentioned earlier, was made. This included dissecting all parts of that project
as well as understanding the associated code and data used in its experiments. A
lot of help on this was offered by Johan Luhr himself who took the time to explain
his work and subsequent results. This preparatory work helped pave the way for
this thesis.

3.2 Data Collection and Initial Preprocessing

Upon gaining an understanding for the thesis context as well as previous work,
the workflow then progressed onto data collection and initial preprocessing. As

29

3. Methods

have already been mentioned, all data for the thesis was provided directly by SHB.
Since the data is a commodity it has however not been possible to share it publicly.
Therefore, no extracts from the datasets will be shown, but rather a description of
the data characteristics needed to understand what utility they have offered will
be provided. Two primary categories of data have been employed in this thesis:
counterparty specific (so called single name) market CDS spread data and proxy
CDS spread data. Each will be covered in the following sections.

3.2.1 Single Name CDS Spread Data

One category of data used in this thesis was single name CDS spread data. This
data was used for training the Transformer model and during evaluation of its out-
put. While the specifics for those procedures are detailed in Chapter 4, this section
explains the initial preprocessing that was applied to it.

The single name data contained counterparty specific, end of day liquid market
CDS spreads along with additional information such as counterparty, rating, region,
sector and tenor for the associated CDS contract. The data is delivered in daily
CSV-files and a period of four years between the beginning of 2020 until the end of
2023 was collected. Before the Transformer modelling the data had to undergo a
substantial amount of preprocessing.

First of all, a lot of data had to be removed in order to concentrate the analysis to
a certain subset. This had several reasons. An apparent first one was that many of
the supplied columns in the original raw data files were not of interest for the pur-
poses of this work. By recalling from Section 2.3.1 that the Basel III accord states
that financial institutions should use proxy CDS spreads appropriate with regards
to the rating, region and sector of the illiquid counterparty for which they are to
be used, these were the columns of data that were collected apart from the single
name spreads themselves. Another reason for initial data removal was due to data
amount and liquidity in different subsets of the raw data files. The idea behind this
was first presented in [29] and it is that by having a comprehensive dataset of liquid
contracts, the data will be less prone to containing errors that might affect the mod-
els negatively during training. Data containing spreads for CDS contracts with the
region and sector categories set to "Western Europe" and "Financials" respectively
best met these constraints and were therefore kept. Moreover, this intersection of
region and sector is the one most relevant to SHB.

Having cleaned the files and after performing some additional formatting to ensure
each row contained the wanted information for each counterparty, the daily CSV-
files were merged into a single, large CSV-file which would then go on to be used in
the experiments. This file chronologically contained information on business date,
counterparty, spreads, et cetera needed when constructing input data and output
labels for the Transformer model (as mentioned, this procedure is detailed in Chap-
ter 4). Table 3.1 shows what columns were present in the single name dataset after
the initial preprocessing.

30

3. Methods

Table 3.1: Row structure for single name data.

Column Name | Containing

BusinessDate Date for spreads
issuerName Associated counterparty
Sector Counterparty sector

Region Counterparty region
Rating Counterparty rating

6M Spread for six month tenor
1Y Spread for one year tenor
30Y Spread for thirty year tenor

The final columns of Table 3.1 included the daily spreads for each tenor for the
specific couterparties. The following tenors were considered, where "M" stands for
months and "Y" stands for year:

o 6M, 1Y, 2Y, 3Y, 4Y, 5Y, 7Y, 10Y, 15Y, 20Y and 30Y

It is also noteworthy to mention that both the Sector and Region columns only
contained a single category each ("Financials" and "Western Europe" as mentioned
above), while the Rating column could take various categories (for example AA, A
BBB, et cetera). As mentioned earlier, Chapter 4 will provide a detailed explanation
of how the single name data was preprocessed for creating model input as well as
output target labels.

3.2.2 Proxy CDS Spread Data

The second category of data used in this thesis was proxy CDS spread data. It is
important to note that the proxy spread data has in no capacity been part of the
training of the Transformer model (as Chapter 4 will show). Since part of the the-
sis’s aim has been to evaluate whether Transformer generated proxy CDS spreads
are able to outperform traditional methods for generating them, proxy data was in-
stead collected in order to have a benchmark to compare with. This is an important
difference compared to the the prior thesis on Transformers at SHB [29], in which
the proxy spread data was used as the actual labels during training (see Section
2.3.2 for details about this and how it differs to approach taken here).

The model used to generate the proxy CDS spread data collected in this thesis is
based on the Nomura model described in Section 2.3.1. In short, the model applies
cross-sectional regression to produce proxy CDS spreads using various weight fac-
tors. In the following, the proxy CDS spread data will therefore be referenced to as
the Nomura model data.

Similar to the single name data, the Nomura model data was provided in daily
CSV-files. Data was collected from October 2020 until the end of 2023. The format

31

3. Methods

of the Nomura model data was quite similar to that of the single name data in
that it could be categorized based on rating, region, sector and tenor. However, by
definition, instead of having specific counterparties as issuers, this dataset contained
indices specific to certain intersections of rating, region and sector. The implication
of this was that for each business date, the Nomura model dataset contained less
data than the corresponding single name dataset since each index corresponds to
all counterparties of the same rating, region and sector (hence "proxy'). Given the
similar format of the raw data files, the cleaning, formatting and merging of the
daily CSV-files into a large file encapsulating the entire dataset could be done in a
similar fashion to that of the single name data. Table 3.2 shows how each row of
the Nomura model dataset was structured after the initial preprocessing.

Table 3.2: Row structure for the Nomura model data.

Column Name | Containing

BusinessDate Date for proxy spreads
issuerName Associated proxy index
Sector Associated sector

Region Associated region

Rating Associated rating

6M Spread for six month tenor
1Y Spread for one year tenor
30Y Spread for thirty year tenor

3.3 Experiments

Following the data collection and initial preprocessing, the experiments of the thesis
were planned and conducted. Experimentwise, this thesis has involved a compre-
hensive scheme of training and testing several instances of a Transformer model
with identical architecture and hyperparameter settings, but different output target
labels for the purpose of proxy CDS spread generation. Subsequently, evaluations
of the results for the model outputs have been carried out using statistical metrics
and visual representations. The outlines for these two phases are provided in the
following sections.

3.3.1 Training of Transformer Model

In the first experimental phase of this thesis, an approach to generate proxy CDS
spreads using a Transformer model was implemented. The primary objective was to
determine if the accuracy of the proxy spreads generated by the Transformer could
outperform that of the Nomura model.

32

3. Methods

3.3.1.1 Training Setup

The training involved distinct subsets of the single name dataset, each classified
by credit ratings. This segmentation was designed to allow focused analysis on how
well the model predicted spreads for counterparties with different credit rating. Five
credit rating categories were used:

« AA
e A
- BBB
« BB

« B

For each rating category, several model instances were trained to predict proxy CDS
spreads tailored to the specific financial profile associated with that rating. This was
done using target labels that corresponded to the rating of interest when training
each model (the construction of target labels is detailed in Section 4.2.1.1). The
architecture and hyperparameters were fixed across all model instances and rating
categories in order to maintain uniformity in the experiment. This allowed for a
direct comparison of model performance based solely on the variation of the rating
category it was generating spreads for.

An important aspect of the methodology was the use of an Out-Of-Sample (OOS)
approach for each model instance during training and testing to ensure the robust-
ness of the model against unseen data. What this meant in practice was that for
each model instance in each rating category, a counterparty (denoted company dur-
ing modelling) was held out of the training process. The model was then trained on a
dataset which excluded the data from the selected OOS-test company to prevent the
model from learning the specific patterns of it, basically making sure that its data
was unseen by the model during training. The withheld data of OOS-test company
was then used as the test set for that model instance. The idea with this approach
is that it tested each model’s ability to accurately predict proxy CDS spreads for a
counterparty it had not been exposed to during training. This strategy was meant
to simulate realistic conditions where the Transformer model needs to generate ac-
curate proxy CDS spreads for illiquid counterparties that lack market spreads.

Ten individual model instances were trained in each rating category except for the
B category, in which only six models were trained. This was due to the fact that
in comparison to the other rating categories, few counterparties with a B rating
existed in the single name dataset and out of the ones who did, only a select few
had enough data records to be worth considering. To be mentioned once again, the
specifics of the Transformer model’s architecture, the data preprocessing, and the
hyperparameter settings are detailed in Chapter 4.

To be noted, an additional test with an increase in training time was also conducted.

33

3. Methods

This was only performed for the AA category and only three such model instances
were trained and evaluated. The results and details of this test is presented along
with all other results in Chapter 5.

3.3.1.2 Statistical Significance Through Multiple Runs

The idea behind training multiple models per rating category (i.e. several model
instances) was to ensure the statistical significance and robustness of the results ob-
tained. Training many independent models (of same architecture, but using different
datasets) helps in lowering the risk of anomalies due to specific dataset characteris-
tics, which is important in order to avoid performance biases introduced by potential
outliers or non-representative issuer behaviors that may appear in a specific dataset.
This is particularly important in case the model is to be used for generating proxy
CDS spreads for actual illiquid counterparties in the future. Additionally, employ-
ing multiple models allows for a more sound statistical analysis. With more runs
to evaluate in each category, this approach ensures that the model’s capabilities is
generalizable and not a result of specific data anomalies related to the training and
test sets selected for a specific model instance. Lastly, a varied set of test cases
provides a robust framework when comparing the performance against established
benchmarks (like the Nomura model in this case). The whole point is that we wish
to ensure that potential conclusions are supported by a sound amount of empirical
evidence rather than theoretical assumptions.

3.3.2 Performance Evaluation

When all the model instances of all of the rating categories had been trained, each
was tested on its respective test set which contained data for a counterparty of the
same rating which the model had been trained to generate spreads for and which was
held out-of-sample during training (the so called OOS-test company for that model
instance). The following statistical metrics, which may be recalled from Section 2.4,
were computed for each model’s predictions, as well as for the corresponding proxy
spreads collected for the Nomura model benchmark:

e Spearman’s Rank Correlation Coefficient
» Mean Squared Error (MSE)

e Mean Absolute Error (MAE)

In order to look at how closely the order of the Transformer model’s proxy spreads
and the Nomura model’s proxy spreads respectively matched the rank order of the
actual spreads, the Spearman’s rank correlation coefficient was used. This coefficient
is useful because it does not assume that the relationship between the variables is lin-
ear nor that the samples are normally distributed (see Section 2.4.1). The coefficient
was computed for each model in each rating category individually and then the aver-
age for the entire sample (i.e. all models of the same rating category) was computed.

MSE was used to measure the average of the squares of the errors between model

34

3. Methods

generated proxy spreads and actual market spreads. As explained in Section 2.4.2,
MSE is useful for assessing the quality of a model because it penalizes larger errors
more than smaller ones, which enhances the focus on model accuracy with respect
to outliers in particular.

MAE was also used, but instead of looking at the squares of errors it measures the
average of the absolute magnitude of the errors. Since it evaluates on absolute values
and not squares, all individual differences have equal weight. MAE was therefore
deemed useful in order to provide a clear representation of error magnitude in units
that are easy to understand and relate to, while MSE was used to signal the presence
of outliers instead.

For each respective rating category, the following plots were also generated for the
best performing Transformer model instance of the category to get a visual percep-
tion of model performance:

o Error plots showing the deviations from the actual market spreads for the
proxy spreads generated by the best performing Transformer model instance,
as well as for the corresponding spreads of the Nomura model.

o A plot showing the actual market spreads, Transformer generated proxy spreads,
and Nomura model proxy spreads for all tenors on a single day, i.e. full spread
curves.

o A plot showing the evolution over time of the actual market spreads, best
performing Transformer model’s proxy spreads, and Nomura model’s proxy
spreads for various tenors.

The results of the evaluation are presented in Chapter 5. Before that, Chapter 4
will provide the details about the Transformer model employed throughout all model
instances and categories. First however, the software and hardware tools used in
the thesis are detailed below.

3.4 Software and Hardware

All the programming performed in this thesis has been done utilizing the Python
programming language [5]. For data preprocessing the Pandas [4] and NumPy [3] li-
braries have primarily been used. The construction and training of the Transformer
model was done using the TensorFlow [37] library with the Keras API [36]. Visu-
alizations were made using the Matplotlib library [2] and the statistical evaluations
mostly relied on the SciPy library [6]. In terms of hardware, the training of the
models were done on an Nvidia Quadro A6000 Graphics Processing Unit (GPU).

35

3. Methods

36

4

Transformer Modelling

In this chapter, the Transformer model used for generating proxy CDS spreads for
the experiment outlined in Section 3.3.1 is presented. First, an outline for the model
implementation is explained, followed by the preprocessing scheme for constructing
input data to the model as well as output target labels for the training and test sets
respectively. Thereafter, the details of the model itself is presented and finally the
hyperparameters used in the experiments are displayed and discussed.

4.1 Outline of Modelling

The Transformer modelling in this thesis is almost identical to the modelling of the
encoder-decoder model introduced in the 2023 thesis on Transformers at SHB [29],
which was briefly discussed in Section 2.3.2. As was mentioned there, a core dif-
ference in the implementation of that model to the one presented here is the data
used as labels during training. This and additional differences will be detailed in
the following subsections.

The model to its core is widely influenced by the original Transformer architecture
first presented in [40] and which was detailed in Section 2.2.3, with some impor-
tant differences applied. Most importantly, compared to the original Transformer
architecture which was developed for NLP-tasks with the purpose of generating text
sequences as output, the aim of this model is to generate proxy CDS spreads. By
feeding input sequences consisting of previous single name CDS spreads and addi-
tional information regarding rating, region, sector, tenor and issuer (or "company'
as it is named here), the model predicts the next spread in the sequence.

An important thing to keep in mind is that the same exact procedure in terms of
preparing input and output data, architectural design and hyperparameter settings
have been used for all the separate model instances trained over the five rating cate-
gories mentioned in Section 3.3.1, namely: AA, A, BBB, BB and B. This effectively
means that the only difference for each instance of training and testing of the model
detailed below has been the rating category it has been trained to predict spreads
for, and the various out-of-sample (OOS) companies that has been used to test each
respective model instance.

37

4. Transformer Modelling

4.2 Preprocessing

As was explained in Section 3.2.1 of Chapter 3, the single name dataset, which con-
tained real-world market data consisting of spreads for CDS contracts belonging to
liquid counterparties, has been used to train the model. This is because the proxy
spreads generated by the model were aimed to simulate real-world market spreads
as closely as possible. The single name dataset consisted of daily spreads for 11
tenors (i.e. times until maturity for the associated CDS), as well as information on

the business date, counterparty, sector, rating and region for each record (see Table
3.1).

The data first needed to be formatted correctly for neural network architectures built
in TensorFlow. Additionally, the input data and output labels had to be structured
so the model could learn proxies for specific intersections of rating, region, and sec-
tor. These preprocessing steps were required before every instance of training the
model. Despite the seemingly extensive procedure, the actual implementation was
quite fast due to the use of the Pandas and NumPy libraries in Python.

The first step during preprocessing was to construct a list of all the unique counter-
parties (denoted companies here) in the entire dataset, regardless of rating (called
the "Full Company List"). Secondly, another list was constructed which contained
all the companies that had the rating which the model was currently trained to pre-
dict proxy spreads for (called the "Test Company List"). These two lists were then
used collectively to prepare input sequences and corresponding labels for each model
instance of the current rating category. Algorithm 1 shows the pseudocode for this
procedure. Since the preprocessing of the training and test data was handled in a
slightly different way, the procedure for each will be described in their own sections
below.

Algorithm 1 Preprocessing and initialization of Transformer training

1: Algorithm: Preprocessing and Initialization of Transformer Training

2: Input: Single Name Dataset, Test Company List, Full Company List

3: Output: Input Sequences and Corresponding Output Target Labels to Trans-

former Model

4: for each OOS-company in Test Company List do

5: Split dataset into training and test sets by current OOS-company

6: Remove current OOS-company from the Full Company List

7: Add average columns (target labels) to the training set

8: Split training set into an input dataset and output target label dataset
9: Filter output dataset and OOS-test set by current rating
10: Add target label columns (next day) to the test set

11: Save test set

12: Prepare lists to store inputs and target labels for training and validation sets
13: for each company in the Full Company List do

14: Merge input data with corresponding output target labels

15: Split the merged sample into training and validation samples

16: Divide the training and validation samples into sequences of size five

17: Store input and output windows for each sequence as NumPy arrays

18: Append input and output arrays for each sequence to corresponding lists
19: end for

20: Concatenate arrays across all companies for training and validation sets

21: Embedd input before passing it to the Transformer model

22: end for

4. Transformer Modelling

4.2.1 Training Data

The construction of the training data set (as well as test data set which the next
section will detail) followed Algorithm 1 above. As Algorithm 1 shows, the prepro-
cessing began with removing the data for the current model instance’s out-of-sample
(OOS) company from the single name dataset as well as removing that company
from the full company list. This was done to ensure that the model did not learn
any information from it since this company’s data was later used as the test set for
that model instance.

4.2.1.1 Constructing Target Labels

In the next step, labels were generated for each row of the single name dataset.
The target label spreads were constructed by using averages of the input spreads on
the basis of tenor and business date. This means, that for every row in the single
name dataset (which before the operation had the format described in Table 3.1 of
Section 3.2.1), 11 new columns were added (one for each existing tenor) containing
the average spread of that specific tenor for all the rows in the dataset with the same
business date and rating as the current row. So, for example, an arbitrary row in the
dataset would show all the spreads for different tenors for a specific company with
a specific rating on a specific business date. The tenor column "6M" for instance
would contain the six month spread for that company on that business date. After
the label adding operation, that same row would have a new corresponding label
column named "6M_ Label" which contained the average spread value for the "6M"
column of all other rows in the data set that shared the specific business date and
rating of the row that was currently being processed. Such a corresponding label
column was added for all tenors and processed for all rows in the entire dataset.
As was explained in Section 2.3.2, this construction of target labels was done to
train the model on generating spreads as similar as possible to real market spreads.
As was explained there, this approach differed completely to that of [29], in which
proxy spreads were used as target labels for the model.

4.2.1.2 Filtering on Rating Category

After adding target labels to the training set, it was split into two distinct datasets
based on the newly added label columns. The first contained the input data which
is all the data except for the label columns, while the second contained the label
columns and corresponding business date and rating columns for later identifica-
tion. Next, a filtering maneuver was performed over the output labels. Remember
that each model instance was to be trained to generate spreads for a certain rating
category. This means that for the training output labels the incentive was only to
retain the records corresponding to the rating of interest for that specific model run.
Therefore, the output (label) dataset was filtered to only keep records that had the
rating for which the current model instance was trained to generate spreads for.

After filtering the output labels to ensure that the model generates spreads for a
certain rating, the input data was sorted into input sequences which would be fed to

39

4. Transformer Modelling

the Transformer model. In line 13 of Algorithm 1, one sees that the preprocessing
occurs over every company present in the Full Company List (i.e. all companies
present in the entire single name dataset, apart from the OOS-company extracted
for testing). Two important implications from this should be kept in mind here.
First of all, this meant that the model would be trained on one company at a time,
processing all its data before pursuing to the next (different to [29], in which three
companies were processed at once). Secondly, by looping over the full company list,
this means the model would receive records containing different ratings than the
one it was currently trained to generate spreads for (recall the construction of the
output labels). This is important because even though the model was trained to
generate spreads for a specific rating, we still want it to be able to learn patterns
from other ratings since that may benefit its generative capabilities. An additional
column called "Group ID" was therefore also added to the data to explicitly provide
the model with information on this. The "Group ID" column contained an integer
representing the specific intersection of rating, region and sector for that record. So
for example, all records with one specific combination of rating, region and sector
would have a specific integer in the Group ID column, while all records with another
combination of rating, region and sector would have another integer in the Group
ID column. Effectively, this forms a way to map all input combinations to a specific
type of output proxy spread curve (based on rating, region and sector) and this
procedure was first presented in [29].

4.2.1.3 Building Sequences

Moving on in the inner loop of Algorithm 1, the first step was that the output target
labels dataset were merged to the now company specific input dataset on the basis of
matching business date. After this, the merged dataset was split into a training set
and validation set. As was explained in Section 2.2.1, these two sets are used together
during training of an ML-model, where the training set is the one the model learns
from whereas the validation set is a much smaller sample unseen to the model during
training used to evaluate how well the model can predict on unseen data after each
update of the network weights. Basically, it is a way to follow the progression of the
training to determine if the model is good enough or if it should train for longer. An
important detail here is that because the data is of time-series nature (which means
it follows a sequential, chronological order in terms of business date) the split was
performed without shuffling to ensure the model was unable to learn patterns using
future data points. The ratio between these samples was set to 0.9, meaning that
the first 90% of the data was used for training and the remaining 10% for validation.

Next, both the training and validation sets were divided into smaller sequences.
The sequence size was set to five, meaning that a sequence contained consecutive
spreads for five business dates whereas the Transformer model then generates the
spread of the sixth business date. The sequencing was done on the basis of tenor,
which means first sequences for all the spreads for the six month tenor along with
the additional information regarding company, rating, sector and group ID were
generated, then the spreads and additional information for the one year tenor were
sequenced, then the two year tenor, et cetera until all the input for all the company

40

4. Transformer Modelling

data were sequenced. For each sequence, every column was then stored in its own
NumPy array, which in turn was passed to a list of arrays. An important thing to
note here is that similar to what was done with the group ID column, all the cate-
gorical data (i.e. business date, rating, region and sector) were mapped to a unique
integer in this step to prepare for the embedding applied to them before passing the
input to the Transformer model. More on this is covered further down in the section.

Parallel to generating input sequences, the corresponding labels for each input se-
quence were also sequenced. This procedure was straightforward. Since the model
is supposed to predict the spread for the immediate business date followed by the
last business date of the input sequence, the label for that sequence was set to be
the spread value of the corresponding label column for the current tenor one day
into the future. So, if for example the "3Y" tenor was being processed and the final
business date of the current input sequence was "2020-10-01", then the output label
for that input sequence would be the spread value of the "3Y Label" column for
the business date "2020-10-02", i.e. one day into the future (note however that in
practice the dates were expressed as integers in a sequence at this point). After
all the companies in the single name dataset were processed in this way, the lists
of arrays containing information on the input sequences were concatenated for the
training and validation sets respectively. Table 4.1 shows how an input sequence
would look like after being processed in the way mentioned above.

Table 4.1: Structure for input sequence before embeddings were added.

Spread | Tenor | Comp. | Seq. | Sect. | Rat.
Float Int. Int. Int. | Int. Int.
Float Int. Int. Int. | Int. Int.
Float Int. Int. Int. | Int. Int.
Float Int. Int. Int. | Int. Int.
Float Int. Int. Int. | Int. Int.

As can be observed in Table 4.1, a column with information on the region was not
included since this did not differ between the various inputs and thus did not add
any additional information (recall from Section 3.2.1 that only the region "West-
ern Europe' was used in this thesis). However, since the same can be said about
the sector column (the sector was limited to financial companies), this might as
well have been removed. Moreover, the group ID column was not included at this
stage either. This is because this information is not passed to the model before the
decoder-phase, in which it replaces the company column. However, more on why
this was done is detailed in Section 4.3 on the model implementation and can be
disregarded at this point.

Another noteworthy thing about Table 4.1 is that apart from the spread values
themselves, all additional input was as described earlier mapped to integer values at
this stage. Now, the reason for doing this is that it simplifies the embedding applied
before passing the input to the Transformer model.

41

4. Transformer Modelling

4.2.1.4 Embeddings

As was explained in Section 2.2.1 of the Theoretical Framework, neural networks ap-
ply mathematical operations such as gradient descent, normalization and apply non-
linear activation functions, all of which benefit from real-valued precision. Therefore,
even though it is possible to feed integers directly into a neural network, embeddings
are used to provide a higher-dimensional and continuous representation of the in-
put data. This allows the network to learn more intricate patterns and relationships.

In this thesis’s implementation, similar to what was done in [29], this was achieved
using the Keras Custom Embedding Layer in Python [1]. The embedding procedure
was performed as the last step of the preprocessing described in Algorithm 1. The
Keras Embedding Layer converts the integer-mapped data into dense float vectors,
essentially mapping the discrete numerical values into a high-dimensional space.
This provides a representation that the neural network can process more effectively.
Therefore, all the data except the spreads themselves (which were already of type
float, see Table 4.1) were passed through a separate embedding layer before being
passed to the Transformer model. The dimensions of the embeddings in this imple-
mentation were directly influenced by [29]. This meant that the tenor, company,
sector and group ID integer representations were mapped to a three-dimensional
vector space, while the sequence embedding mapped the one-dimensional integers
into a two-dimensional vector space. This differs to the original Transformer of
[40], in which values produced by cosine and sinus functions were added to encoded
tokens to account for sequential encoding (see Section 2.2.3). A benefit of using
the Keras Custom Embedding Layer is that it performs the embedding as long as
integers are passed to it. Therefore, all that had to be done before employing it was
to map the categorical data to an integer representation (as was described earlier in
this section). Table 4.2 shows the structure of a row of the sequence input matrix
passed to the Transformer model after embedding of the inputs were performed.
T, represents the tenor embedding, C, the company embedding, Sq. the sequence
embedding, Sec, the sector embedding and R, the rating embedding.

Table 4.2: Row of an input sequence after embeddings were added.

‘Spread‘Te‘Te‘Te‘Ce‘C’e‘Ce‘Sqe‘Sqe‘Sece‘Sece‘Sece‘Re‘Re‘Re‘

In summary, the preprocessing to the Transformer model described above produced
the input in the form of NumPy arrays (sequence matrices) with dimensions 5 = 15.
Each array contained five consecutive spreads with embedded, company specific,
information. This input was then passed through the model which finally generated
a single proxy spread value one business date into the future for the tenor currently
being processed. Details about this procedure are given in Section 4.3, where the
Transformer model used in this thesis is described.

4.2.2 Test Data

As was explained in Section 4.2.1 above, some steps of the preprocessing of the test
set for the model was performed in a slightly different way than for the training set

42

4. Transformer Modelling

and will therefore be briefly detailed below.

First of all, in lines 5-6 of Algorithm 1, one can see that all the data records for the
current OOS-company used as test set were removed from the single name dataset
and the Full Company List. This OOS-company specific data was the data used
for testing the model and therefore it was crucial that it remained unseen to the
model during training. Given that each model instance has been trained to gen-
erate proxy spreads for a certain rating category, it was necessary to ensure that
the test set only contained records where the rating was equal to that which the
model was to generate spreads for. Now, it may appear as though this was already
ensured given that the Test Company List, from which the test set (i.e. current
OOS-test company) was obtained only contained records with the targeted rating
(see line 9 of Algorithm 1). However, it was observed upon inspection of the sin-
gle name dataset that companies could change rating over time and given the fact
that the test set was obtained directly from the single name dataset it had to be
ensured that potential instances where the OOS-test company had another rating
in the past (for example if it used to have an A rating but a BBB rating now) were
removed from the test dataset. Therefore, a filtering of the records in it to remove
potential instances with an undesired rating was performed. As mentioned above,
every record of the training dataset that possibly could contain information for the
same OOS-test company under a different rating were also removed by eliminating
the company from the Full Company List.

After filtering for rating, output labels were added to the test set. This was done
in a different way than for the training set. Since the test set was used to evaluate
the Transformer model’s ability to generate the next days spread for that specific
company, no need for averages were necessary. Instead, the label for each row in the
test set was simply set to be the corresponding spread value one business date ahead.

Upon extracting the test set and after labels had been added to it, it was saved
to a separate file (line 11 of Algorithm 1). When the training of the model was
completed, the test set was then loaded and the additional preprocessing needed
to pass it to the model was performed identically to the additional steps of the
preprocessing described in Section 4.2.1 above.

4.3 Transformer Model

The Transformer model used in this thesis is as mentioned identical in architecture
to the encoder-decoder model presented in the 2023 thesis by Johan Luhr [29].
Basically it is the original Transformer from [40] which was described in Section
2.2.3, but revised in order to predict proxy CDS spreads instead of text sequences.
Considering this, the reader is referred to Section 2.2.3 and [40] for the details
regarding the mechanisms of each part of the Transformer, whereas this section will
instead focus on major differences applied to certain parts of it in order to achieve
the desired output.

43

4. Transformer Modelling

4.3.1 Architectural Differences to the Original Transformer

Regarding the Transformer architecture used in this thesis, which to be mentioned
again is based on the one presented in [29], a first significant difference from the orig-
inal Transformer (shown in Figure 2.3 in Section 2.2.3) is the removal of masking in
the first multi-head attention (MHA) layer of the decoder. Originally, this masking
was important to ensure that the decoder did not see future time-steps while gener-
ating text sequences, thereby operating in a unidirectional manner. This feature is
important for step-by-step sequence prediction tasks, for example in NLP-problems
(such as a language translation), where each output word must solely rely on previ-
ously generated words (the autoregression explained in Section 2.2.3). In contrast,
the architecture used here omits this masking within the first MHA layer of the
decoder, enabling the attention mechanism to access all input sequence positions in
a bidirectional manner. The idea behind using bidirectional self-attention without
masking MHA was applied in [29] as well and it is that it allows the model the ability
to utilize all available information of the input sequence simultaneously. Remember
that the aim of the model used here is to generate the most accurate CDS spread
prediction one day ahead for each new input sequence passed to it (which again
consists of the spreads for the five previous days relative to the one it is predicting
for). Therefore the autoregressive feature is not needed because the model only pre-
dicts for the next day based on the current input sequence and without passing its
own output back to itself. Masking the input to the decoder thus becomes unnec-
essary and instead the model is allowed to see and use information from the entire
input sequence when predicting the spread for the next step following that sequence.

Furthermore, the output generation of the original Transformer was changed to suit
regression needs. Originally, the Transformer model outputs a sequence of tokens,
with a softmax function at the end to determine the next token in a sequence. This
model is however designed to output a single continuous value, specifically a proxy
CDS spread. Therefore, the final layers in this model consist of a global pooling layer,
a series of dense layers, and ultimately a single dense layer that outputs a continuous
value (the predicted spread). The Transformer architecture used is shown in Figure
4.1 in Section 4.3.3.

4.3.2 Training Differences to the Original Transformer

In addition to architectural modifications, adaptations relating to the training of
the Transformer model were also implemented (again replicating what was done
in [29]). Instead of using Stochastic Gradient Descent (SGD) as the optimizer,
the Adam optimizer was used. Detailed in Section 2.2.1, Adam is preferred for its
adaptive learning rate capabilities. Furthermore, Mean Squared Error (MSE) was
used as loss function instead of Cross-entropy loss. MSE is the a common choice for
regression tasks which aims at minimizing the error between continuous predicted
values and actual values, such as in the generation of proxy spreads versus market-
based target spreads which is the purpose of this implementation. Cross-entropy
loss, on the other hand, is more common in classification tasks (such as the NLP
task of the original Transformer), where outputs are discrete categories and the

44

4. Transformer Modelling

model instead predicts the likelihood of each category.

4.3.3 Schematic of Revised Transformer Model

Figure 4.1 shows a schematic of the revised version of the Transformer architecture
used in this thesis. A final remark is that instead of stacking 6 encoders and decoders
on top of each other respectively, as in the original implementation, 4 of each were
used here (see also Section 4.3.5 for an overview of the used hyperparameters).

Output Spread

Feed Forward
Feed Forward

Global Pooling
| Feed Forward

Feed Forward

e Add. & Norm.
& | Add. & Norm. | Dropaut
i Feed Forward
Multi-Headed Attention
K v
™Y Feed Forward Q U
e @
T o
Q Add. & Norm. Add. & Norm. o
2 o
c
L “Dropout 1]
| Dropout I "
4x
4x 2 : ’ -
Multi-Headed Attention Multi-Headed Attention
] r Y
K v
Q Q K \
| Norm.
% MNorm. 7

| Concatenated Inputs | Concatenated Inputs I

cDs
Spread

Comp.
Emb.

Tenor
Emb.

Sector
Emb.

Rating
Emb.

Jeslee

Seq.
Emb.

Group
Emb.

e

Figure 4.1: The Transformer architecture employed in this thesis. Illustration
created by the author using PowerPoint, inspired by [29].

45

4. Transformer Modelling

4.3.4 Passing of Inputs

A final remark, which was discussed briefly in Section 4.2.1, has to do with how
the inputs were passed to the Transformer in this implementation. In the bottom of
Figure 4.1 one can observe that the encoder receives the embedding for the company
currently being processed (labeled "Comp. Emb.") and not the group ID embed-
ding, while the opposite is true for the decoder. This concept was first presented in
[29] and has been kept in this implementation. The idea with this is to allow for a
mapping between all types of input combinations of rating, region and sector to any
type of output target.

Recall that each input record has a unique value associated with what "proxy group'
it is categorized by given its rating, region and sector combination. For example,
a financial company with rating AA located in Western Europe belongs to one
group, while for example an Asian manufacturing company with rating BB belongs
to another. Now, as the generation of proxy CDS spreads are done on the basis
of rating, region and sector in alignment with the Basel III recommendations (see
Section 2.3.1), the group ID embedding essentially provides information on what
kind of proxy group the specific company record currently being processed belongs
to. Since the decoder is supposed to predict proxy spreads for a targeted group (for
example AA rated financial companies in Western Europe), the idea is to let it know
what kind of group is currently being processed in order to map potential relevant
information from it that can help in the generation of spreads for the targeted one.
The aim is therefore to be able to provide the Transformer with CDS spread data
of any proxy group, regardless of the one spreads are currently being generated for,
with an anticipation that it learns relevant information from it.

4.3.5 Hyperparameters

The choice of hyperparameters for the Transformer model implemented in this thesis
were selected on the basis of two counts. First of all, since an overall aim was to
replicate the model presented in [29], this greatly influenced the choice of the hyper-
parameters. As explained in [29], there is a difficulty in selecting optimal settings
for hyperparameters and often this requires detailed and computationally expensive
analyses (such as a grid search) which was out of the scope for this thesis (recall the
limitations of Section 1.3). Therefore, the best performing settings of the hyperpa-
rameters as presented in [29] were kept to the greatest extent possible, which leads
to the second count.

In Section 3.3.1 regarding the outline of the thesis experiment, it was explained that
approximately ten individual model instances were trained per each of the five rating
categories. Given the vast amount of model instances and time constraints of the
thesis, a decrease in training time for each model instance was therefore made. This
was done by lowering the number of epochs and early stopping criterion compared
to [29]. The final hyperparameter settings used in all the instances of training the
Transformer model, regardless of rating category, can be seen in Table 4.3. Applying
these settings to the architecture shown i Figure 4.1 produced a Transformer model

46

4. Transformer Modelling

consisting of 780 349 parameters in total.

Table 4.3: Summary of the hyperparameters used for the Transformer model.

Hyperparameter Value
MHA Head Sizes 256
No. of MHA Heads 4
Encoder & Decoder Blocks | 4
Feed Forward Dimension 4
Dropout Factor 0.4
Batch Size 64
Epochs 20
Early Stopping Factor 0.1

47

4. Transformer Modelling

48

O

Results and Analysis

In this chapter, the results of the experiments described in Chapter 3 are presented.
Five categories of models have been trained following the outline of Chapter 4, each
with the purpose of predicting proxy CDS spreads for counterparties of a specific
credit rating. To reiterate from Section 3.3.2, the following results are provided for
each category:

o Statistical metrics for the average, best and worst performing model of the
category.

o Error plots showing the deviations from the actual market spreads for the
proxy spreads generated by the best performing Transformer model instance,
as well as for the corresponding spreads of the Nomura model.

o A plot showing the actual market spreads, Transformer generated proxy spreads,
and Nomura model proxy spreads for all tenors on a single day, i.e. full spread
curves.

o A plot showing the evolution over time of the actual market spreads, best
performing Transformer model’s proxy spreads, and Nomura model’s proxy
spreads for various tenors.

The chapter also includes a comparison between the results of the different categories
as well as the results obtained when exposing the AA category of models to an
increased training time.

5.1 AA Category

Ten model instances were trained within the AA category, each using different OOS-
target companies as test sets. Table 5.1 shows Spearman’s Rank Correlation Co-
efficient, the Mean Squared Error (MSE) and the Mean Absolute Error (MAE)
averaged over all ten Transformer model instances as well as for the best and worst
performing model instance of the AA category (with Transformer denoted TF). The
values inside the parenthesis show the corresponding metrics of the Nomura model
for the same period. To be noted, the ranking of the models from best to worst was
done using a joint score of the three metrics, with a Spearman coefficient close to
+1 in combination with a low MSE and low MAE warranting a higher score (see
Section 2.4 for details about each metric).

49

5. Results and Analysis

Table 5.1: Statistical metrics for the AA category.

Metric TF Average (Nomura) | TF Best (Nomura) | TF Worst (Nomura)
Spearman Coefficient 0.86 (0.72) 0.96 (0.74) 0.82 (0.58)
MSE (bps) 40.14 (71.14) 18.64 (92.01) 75.72 (99.75)
MAE (bps) 4.75 (6.06) 3.47 (7.30) 5.18 (6.15)

The reported metrics of Table 5.1 indicates that the Transformer model outperforms
the Nomura model across average, best, and worst scenarios when generating spreads
for this category, indicating a consistently better ability to rank CDS spreads in order
of risk. The best Transformer model (0.96) significantly surpasses the corresponding
Spearman coefficient of the Nomura model (0.74), suggesting that the Transformer
model, when at its best, is much closer to an ideal ranking. Moreover, the best
Transformer model shows an MSE of 18.64 bps, much lower than Nomura’s 92.01,
highlighting much better accuracy in the best-case scenario. The worst Transformer
model’s MSE (75.72) is also lower than Nomura’s (99.75), indicating that even the
least accurate instance of the Transformer model is more reliable than the least accu-
rate Nomura model when generating spreads for AA rated counterparties according
to these tests. Regarding MAE, the Transformer models outperform the Nomura
benchmark across all scenarios, also showcasing the overall better accuracy achieved
by the Transformer.

Figure 5.1 shows the error distributions of the best performing Transformer model
of the AA category (blue bins) when predicting spreads for various tenors, as well
as the corresponding errors of the Nomura model (red bins).

B Nomura Model Proxy
150 { EEE Transformer Proxy

1 EE Nomura Model Proxy

Frequency

7 mmm Nomura Model Proxy
120 | HER Transformer Proxy

| = Nomura Model Proxy

Frequency

7 mmm Nomura Model Proxy
mEm Transformer Proxy

Frequency

N | 1
Tl L
UL T

0 10 20
Error (bps)

Error (bps)

Figure 5.1: Error distributions for different tenors for best model of the AA cate-
gory.

50

5. Results and Analysis

What the histogram’s in Figure 5.1 show, is that the Transformer model generally
has a tighter distribution of errors around zero for most tenors compared to the
Nomura model, suggesting more accurate and consistent performance. The Nomura
model’s error distribution tends to be broader and more skewed, especially in longer
tenors such as for 15 and 30 year maturities, which might indicate less stability or
higher variability in performance for those cases.

In Figure 5.2, full spread curves over all tenors on a single day is shown. The green
curve shows the target curve of the OOS-company used as test set, the blue curve
the proxy curve produced by the best performing Transformer model and the red
curve the proxy curve of the benchmark Nomura model.

—x- Target Company m
—e— Transformer Proxy -

701 —m- Nomura Model Proxy -

60 4

50

40

Spread (bps)

30 4

20 A

10 A

T T T T T T T T T T T
6M 1y 2Y 3Y Y 5Y rAd 10Y 15Y 20Y 307
Tenor (M for months, Y for years)

Figure 5.2: Target and proxy spread curves for all tenors on a single day for the
best model of the AA category.

On this particular day, the Transformer model’s spreads closely follow the target
company’s spreads across all tenors as can bee seen in Figure 5.2. In contrast, the
Nomura model generally seems to overestimate the spreads, particularly in mid to
long tenors (from 5Y and onwards).

Finally, Figure 5.3 shows the progression over time for the spreads of various tenors.
Again, the green curves shown the actual market spreads of the OOS-target com-
pany, the blue curves the proxies of the best performing Transformer model and the
red curves the corresponding proxies of the Nomura model.

51

5. Results and Analysis

(] 2Y

18 | — Target Company 28 4 —— Target Company
—— Transformer Proxy | — Transformer Proxy
16 4 —— Nomura Model Proxy

Spread (bps)
I~}
Spread (bps)
o
153

5Y 1oy

—— Target Company —— Target Company
45 4 —— Transformer Proxy 65 1 —— Transformer Proxy
—— Nomura Model Proxy

40 4
354
15Y 30Y

759]
—— Target Company 80

04— Transformer Proxy
—— Nomura Model Proxy

—— Nomura Model Proxy

iR

50 4

Spread (bps)
Spread (bps)

45

—— Target Company

754 — Transformer Proxy

—— Nomura Model Proxy
70 4 vl o
65 V

601

Spread (bps)
Spread (bps)

55 4

50 4

454

C)
A
e

2 i a2 A > A0
A5V 2 OF 0¥ 20 2O 2
10% 20 0% il 20 il 2°

Date Date

Figure 5.3: Time series plots of target and proxy spreads for different tenors for
the best model of the AA category.

The Transformer model tracks the target company’s spread changes over time with
reasonable accuracy, maintaining closer proximity than the Nomura model. The
Transformer also appears to adjust more rapidly than the Nomura model which sug-
gests better responsiveness to market dynamics. However, the Transformer and No-
mura models have different approaches to proxy CDS spread generation, which likely
affects their behavior over time. The Transformer generates proxy CDS spreads by
learning from historical sequences to try and capture temporal trends and shifts,
and the Nomura model generates proxy CDS spreads based on cross-sectional fac-
tors without focusing on temporal trends. Despite these differences it felt reasonable
to include the Nomura model alongside the Transformer in this evaluation since it
is a common industry choice for generating proxy CDS spreads for illiquid counter-
parties, thus making it a benchmark to compare with. However, the difference in
methodology should be kept in mind when evaluating the results to be as fair as
possible when reviewing the strengths and weaknesses of each model compared to
the other.

5.2 A Category

Similar to the AA category, ten model instances were trained for the A category
as well. The average, best and worst performance indicated by the three statistical
metrics tested are presented in Table 5.2.

52

5. Results and Analysis

Table 5.2: Statistical metrics for the A category.

Metric TF Average (Nomura) | TF Best (Nomura) | TF Worst (Nomura)
Spearman Coefficient 0.92 (0.75) 0.96 (0.81) 0.94 (0.70)

MSE (bps) 134.43 (270.46) 91.99 (31.67) 494.87 (1175.69)
MAE (bps) 8.12 (11.52) 7.09 (6.24) 14.86 (29.72)

What Table 5.2 shows, is that the Transformer model consistently outperforms the
Nomura model in terms of Spearman coefficient across average, best, and worst
cases, indicating a stronger ability to correctly rank the CDS spreads. What is es-
pecially interesting, is that the best (0.96) and worst (0.94) Transformer models of
the sample show less variability in performance compared to the Nomura model’s
0.81 and 0.70, suggesting a higher consistency in the Transformer’s ranking ability
compared to the benchmark. Furthermore, the average Transformer MSE is much
lower compared to Nomura’s. To be noted here is that both models exhibit a high
worst-case MSE, but the Transformer’s is notably lower, indicating it maintains bet-
ter control over errors under less ideal conditions compared to the Nomura model.
The average of the Transformer models in the A category also achieves a lower
MAE (8.12) compared to the Nomura model (11.52), indicating an effectiveness of
the Transformer model in minimizing absolute prediction errors when generating
proxy spreads for A rated counterparties.

Figure 5.4 shows the error distributions of the best performing model of the A
category along with the corresponding error distributions of the Nomura model.

6M 2y
120 1 EEE Nomura Model Proxy — BB Nomura Model Proxy .
B Transformer Proxy I 80 1 @l Transformer Proxy I
N [™ AR
9 o
=]
@ I]
: _ TIdl ||
: : J-.
O_A-F-_-J-l-,.—-‘_*

Error (bps) Error (bps)
5Y

=
[~
S

I Nomura Model Proxy
100 | mmm Transformer Proxy

7 EEE Nomura Model Proxy
I Transformer Proxy

"
15
3

80

@
S

60

Frequency
@
=]
Frequency

40 4

&
3

}h

Error (bps) Error (bps)
15Y 30Y

[Nomura Model Proxy ‘ II
mmm Transformer Proxy

b
1l .

| EEm Nomura Model Proxy
mmm Transformer Proxy

"
=]
=]

Frequency

N o

3 8
Frequency
2 o
5 & 8

Error (bps) Error (bps)

N
o S

~
=] 1)

Figure 5.4: Error distributions for different tenors for best model of the A category.

53

5. Results and Analysis

The histograms of Figure 5.4 shows that the Transformer model typically has a more
concentrated distribution around zero, which indicates more accurate and consistent
outputs in these cases. For both models however the error frequencies span further
from zero with longer tenors.

Figure 5.5 show the full spread curves for a single day for the best performing model

instance of the A category, as well as for the target OOS-company and the Nomura
model.

100 A
—x»- Target Company

—e— Transformer Proxy
—m- Nomura Model Proxy

80 +

60 1

Spread (bps)

40

204

T T T T T T T T T T T
6M 1y 2y 3 a4y 5Y rAd 10Y 15Y 207 307
Tenor (M for months, Y for years)

Figure 5.5: Target and proxy spread curves for all tenors on a single day for the
best model of the A category.

On the displayed day, the Transformer model’s proxy spreads across all tenors rather
closely align with the target company’s actual spreads, while the Nomura model
tends to overestimate the spreads similar to what was done in the AA category.

Moreover, the spread progression over time for the best model of the A category

along with the corresponding actual target spreads and benchmark Nomura model
spreads are shown in Figure 5.6.

o4

5. Results and Analysis

6M 2Y

—— Target Company
45— Transformer Proxy
—— Nomura Model Proxy

—— Target Company
30 1 —— Transformer Proxy
—— Nomura Model Proxy

5Y 1oy
—— Target Company T — Target company
80 { —— Transformer Proxy —— Transformer Proxy
—— Nomura Model Proxy 1004 — Nomura Model Proxy

Spread (bps)
Spread (bps)

15Y 30v
120 1 — Target Company 125 4 —— Target Company

—— Transformer Proxy —— Transformer Proxy
110 | — Nomura Model Proxy —— Nomura Model Proxy

spread (bps)
Spread (bps)

Figure 5.6: Time series plots of target and proxy spreads for different tenors for
the best model of the A category.

The plots in Figure 5.6 demonstrate the Transformer’s ability to closely track the
target company’s spread fluctuations over time compared to the Nomura model,
especially for shorter tenors.

5.3 BBB Category

Also for the BBB category ten model instances were trained using different OOS-
companies as test sets. Table 5.3 presents the statistical metrics for the average
performance across the BBB sample, as well as for the best and worst performing
models. Similar to before, the corresponding benchmark values of the Nomura model
are enclosed within the parenthesis.

Table 5.3: Statistical metrics for the BBB category.

Metric TF Average (Nomura) | TF Best (Nomura) | TF Worst (Nomura)
Spearman Coefficient 0.91 (0.66) 0.89 (0.42) 0.62 (0.28)

MSE (bps) 415.74 (470.18) 194.62 (495.98) 983.13 (1577.74)
MAE (bps) 16.35 (15.44) 11.00 (17.83) 22.69 (29.91)

One observes in Table 5.3 that the Transformer model significantly outperforms the
Nomura model in Spearman correlation across all cases, showing its robust ability to
accurately rank the risks as the grade of the credit rating category begins lower. For
example, the worst-case performance for the Transformer (0.62) more than doubles
that of the Nomura model (0.28). What is furthermore noticeable here compared

55

5. Results and Analysis

to the AA and A rating categories, is that both models (Transformer and Nomura)
show higher MSE values which implies that the size of the errors increase with
lower graded rating categories, but the Transformer’s average and best MSE are
considerably lower than those of the Nomura model in this category. The same can
also be said regarding MAE, with the Transformer still outperforming the Nomura
benchmark, but with larger overall errors for both the Transformer and Nomura
model compared to the AA and A categories which indicates potential issues to get
accurate spread values in this category.

Interestingly, one can then proceed with a visual observation of the error distribu-
tions of the best performing Transformer model and corresponding error distribu-
tions of the Nomura model as shown in Figure 5.7.

| EEE Nomura Model Proxy
B Transformer Proxy

60 1 @ Nomura Model Proxy
B Transformer Proxy

Frequency
Frequency
w
S

Error (bps) Error (bps)
5Y 1oy

B Nomura Model Proxy
B Transformer Proxy

I Nomura Model Proxy
80 + EEE Transformer Proxy

-3
5]
!

201 Jm-h
. M
—80 —60 —40 —20 1] 20 40 60 —80 —60 —40 60

Error (bps) Error (bps)
15Y 30Y

I
I
i

Error (bps) Error (bps)

Frequency
&
S
I

Frequency

N
o o
| !

I

I Nomura Model Proxy
7 mmm Transformer Proxy

Em Nomura Model Proxy
7 mmm Transformer Proxy

@ @
S S
!

&
S
Frequency

Frequency

| AT
iy

—60

Figure 5.7: Error distributions for different tenors for best model of the BBB
category.

The Nomura model shows a wider error distribution across most tenors, particularly
in the 2Y and 10Y cases, which indicates less precision. Also, as mentioned earlier,
the errors begin to increase in size compared to the results for the higher credit
ratings for both models, but with the distribution being more narrowed around zero
for the Transformer model on average compared to the benchmark Nomura model.

Similar to before, an example of a single day spread curve across all tenors for the

best performing Transformer model instance of the BBB category along with the
targets and Nomura benchmark can be observed. These are shown in Figure 5.8.

56

5. Results and Analysis

-»- Target Company
—e— Transformer Proxy .
140 4 —m- Nomura Model Proxy =
120
100 A
o
(=9
El
T 80
o
o
i
60 4
40 |
204

T T T T T T
6M 1Y 2Y 3y 4 5Y rAS 107 15y 20Y 307
Tenor (M for months, Y for years)

Figure 5.8: Target and proxy spread curves for all tenors on a single day for the
best model of the BBB category.

One notices that for this particular day, both the Transformer and Nomura pre-
dictions rather closely match the target company’s actual spreads across all tenors.
Interestingly, one may therefore also look at how the progression looks over time in
the different tenors as illustrated in Figure 5.9.

6M 2Y

—— Target Company
100 4 —— Transformer Proxy

| — Target company
—— Transformer Proxy

70 | — Nomura Model Proxy g0 — Nomura Model Proxy
7 7
E 60 - E 80+
= =
4 70
g% 8
& & 60

5Y 1oy
—— Target Company 1804 —— Target Company
140 4
—— Transformer Proxy —— Transformer Proxy
130 {- —— Nomura Model Proxy —— Nomura Model Proxy

160 1

Spread (bps)
Iy
B

1204

15Y 30Y

190 1 —— Target Company 200 — Target Company
180 | — Transformer Proxy —— Transformer Proxy
—— Nomura Model Proxy 1 — Nomura Model Proxy

Spread (bps)
G
3
Spread (bps)

140 4

Qb

R o &P & o 2 P T o o A2
o

g ¥ Jox
oF 0 O o & & ¥ S o o O A€ Y
e A 7 7 5 > s e P P A 7 S
Date Date

Figure 5.9: Time series plots of target and proxy spreads for different tenors for
the best model of the BBB category.

57

5. Results and Analysis

Both models struggle during periods of sharp peaks (e.g., mid-March in the 15Y
plot). Moreover, the profile of the Transformer model’s curves flatten considerably
as the tenor begins to increase, perhaps indicating that it has a harder time cap-
turing those dynamics in the BBB rating category compared to the previous rating
categories. The Nomura model shows more overall volatility compared to the Trans-
former and generally underestimates the spread values of the target company, but
show better tracking of the target curve’s profile in the longer tenors compared to
the Transformer in this category.

5.4 BB Category

The BB category also consisted of 10 model instances in total, each tested on a
unique OOS-target company similar to the procedure of the previously presented
rating categories. Table 5.4 show the average, best and worst results for the Spear-
man coefficient, MSE and MAE.

Table 5.4: Statistical metrics for the BB category.

Metric TF Average (Nomura) | TF Best (Nomura) | TF Worst (Nomura)
Spearman Coefficient 0.71 (0.51) 0.99 (0.84) 0.24 (0.72)

MSE (bps) 2708.06 (5492.17) 936.52 (2006.78) 6715.9 (5671.68)
MAE (bps) 36.38 (62.15) 21.97 (33.12) 54.4 (54.89)

For the BB category, as shown in Table 5.4, the Transformer model shows very good
performance in the best-case scenario with a Spearman coefficient of 0.99, substan-
tially higher than the Nomura’s benchmark at 0.84. There is however quite high
variability in the Transformer’s performance, with the worst case dropping to 0.24
compared to Nomura’s 0.72. The best Transformer model achieves a lower MSE of
936.52 compared to Nomura’s 2006.78, indicating better accuracy, but the worst-
case MSE is quite high for both models and particularly severe for the Transformer,
showing possible vulnerability when generating spreads for BB rated counterpar-
ties. The Transformer model reports lower MAE across average and best scenarios
compared to the Nomura benchmark, highlighting more consistent and accurate pre-
dictions, although the worst-case MAE does not outperform the Nomura model by
much (54.4 as opposed to 54.89). Considering the vast difference between the aver-
age, best and worst case performances of the Transformer model in this category it
should possibly be reviewed with some skepticism before firmly declaring its general
superiority over the Nomura benchmark.

Similar to the previous categories, some visuals have been included for the best

performing Transformer model instance of the BB category as well. First of all,
Figure 5.10 shows the error distributions across various tenors.

58

5. Results and Analysis

&M 2Y
140 BB Nomura Model Proxy (] 140 1 mmm Nomura Model Proxy (]
EEm Transformer Proxy . 120 | Transformer Proxy l
i |
> 100 _ 100
H m B § 80
g 80 1 g
g i g
okl || w 1
2] I | | 2
ol o el
—75 -50 -25 0 25 50 75 100 -150
Error (bps) Error (bps)
5Y 1oy

B Nomura Model Proxy] B Nomura Model Proxy

100 1 s Transformer Proxy -- 150 | g Transformer Proxy
80 4 125

=1
2 ol | 1] 2 ‘n
5 60 §°
g .- g
g g
£ - : | Tl
I | | || ? T LN
20 25
o——v——F—-FJ-LP—V——— 0
200 -150 100 -50 0 50 100 150 -250 200 -150 -100 -50
Error (bps) Error (bps)
15Y 30Y
140 J BB Nomura Model Proxy 1 = Nomura Model Proxy
mmm Transformer Proxy I g0 { == Transformer Proxy
120
| = |
2 1T 7
5 804 §
g . Bl S :
F =
. il | | =
40
CEPET L LI &
20
ol 0
250 -200 -150 100 50 0 50 100 150 250 200 -150 —100 -50
Error (bps) Error (bps)

Figure 5.10: FError distributions for different tenors for best model of the BB
category.

Figure 5.10 shows some frequency of large errors in the Transformer’s spreads, es-
pecially in the 2Y and 5Y tenors where a skewness towards the negative side of the
spectrum can be observed. However, the Transformer generally maintains a much
more narrow distribution around zero compared to the Nomura model when pre-
dicting spreads for BB rated counterparties.

Figure 5.11 show a full single day proxy spread curve across all tenors for the best
model of the BB category along with the target company’s actual market spreads
and Nomura model proxies for the same day.

—x- Target Company — |
—e— Transformer Proxy i
—m- Nomura Model Proxy reug

-

200

spread (bps)

100

50

&M v 2 3y ay sv v 107 15Y 207 307
Tenor (M for months, Y for years)

Figure 5.11: Target and proxy spread curves for all tenors on a single day for the
best model of the BB category.

59

5. Results and Analysis

One this specific day, the Transformer model closely aligns with the target company’s
actual spreads, especially in shorter tenors, suggesting good single day-specific per-
formance. One also notices that compared to the Nomura model, the shape of the
Transformer predicted curve is more well-aligned with the target curve, which can
perhaps be traced back to the very high Spearman coefficient of this model which
indicates that the curve dynamics have been learned well.

The very high Spearman coefficient of the best BB model can also be perceived
visually in the time series plots of Figure 5.12.

6M 2Y

—— Target Company 1 — Target Company
—— Transformer Proxy 180 4 — Transformer Proxy
—— Nomura Model Proxy

120 4

100 4

80

spread (bps)
Spread (bps)

5Y 1oy

300 4 — Target Company 375 4 —— Target Company
—— Transformer Proxy
350 1 — Nomura Model Proxy

spread (bps)
~
I
&
Spread (bps)
w
5
g

15Y 30Y

| — Target Company
375 { —— Transformer Proxy
—— Nomura Model Proxy

—— Target Company
400 1 —— Transformer Proxy
375 | —— Nomura Model Proxy

Spread (bps)

> o)
o i

2% & o
,,,D ,’,0 ,’f\ 5
28F 28F 8% 20%

3 2 > 2 5] 3 0 %)
2! A 2 A 2 AS 2 hox 2
2> % @Dh nﬁDﬁ 13’0% o 9> 2 el 5" *
20 20 20 20 20 2 20 29 29 29
Date Date

Figure 5.12: Time series plots of target and proxy spreads for different tenors for
the best model of the BB category.

In Figure 5.12 one clearly sees that the Transformer aligns very well with its targets
throughout all tenors. Especially well results can be observed in the 10Y tenor,
whereas the 2Y tenor for example shows a similar profile but a consistent discrepancy
in absolute values compared to the target curve. The Nomura model however shows
a much more fluctuating and erratic profile for all tenors in this category.

5.5 B Category

The final category of models were the ones trained to predict proxy CDS spreads for
B rated counterparties. This rating category contained the least amount of liquid
counterparties which meant that the amount of data to generate labels from as well
as OOS-companies to extract as test sets for the different model instances were the
most scarce out of the five categories of focus. In total, six model instances were

60

5. Results and Analysis

trained for the B category and the average, best an worst results are presented in
Table 5.5. Considering the much smaller sample of trained models in this category
compared to previous ones the statistical significance of these results should be
regarded with less certainty.

Table 5.5: Statistical metrics for the B category.

Metric TF Average (Nomura) | TF Best (Nomura) | TF Worst (Nomura)
Spearman Coefficient 0.86 (0.38) 0.97 (0.81) 0.88 (0.30)

MSE (bps) 16157.5 (23808.87) 18363.65 (11811.84) 57953.45 (30095.14)
MAE (bps) 02.47 (123.02) 89.99 (74.99) 219.51 (91.97)

In Table 5.5 one notices a consistently high performance of the Transformer in gen-
erating accurate proxy spreads for B rated counterparties compared to the Nomura
model benchmark. The Transformer consistently outperforms the Nomura model in
terms of Spearman coefficient across all cases, particularly in the best case with 0.97
compared to the Nomura model’s 0.81. This demonstrates a strong ability to rank
the proxy CDS spreads accurately. Especially in the worst-case scenario, the Trans-
former maintains a high Spearman coefficient of 0.88 which far beats the benchmark
of 0.30 for the same period. In terms of MSE one notices that while the average of
the Transformer models outperforms the Nomura model, the best and worst cases
do not which might indicate that more severe outliers greatly impacts the metric in
these cases. The same can be said regarding MAE. It is noteworthy here to once
again repeat that the best and worst model instances for each of the categories
were determined by a joint score over all three metrics, which stands to explain
why the best model for example does not necessarily achieve a better score on each
metric individually compared to the average over all models as can be observed here.

Moving on to some visual inspections, again one can start by observing the error

distributions of the best performing model of the category over various tenors. This
can be observed in Figure 5.13.

61

5. Results and Analysis

6M 2Y
I Nomura Model Proxy 140 I Nomura Model Proxy m B
120 mmm Transformer Proxy B Transformer Proxy l I
c &
g g] Il
60 §
£ £ 60+
w1 il
2]] [
0- 0-
—400 -300 -100 —500 —400 —300 —200 -100 o]
Error (bps) Error (bps)
5Y 10y
175 A
I Nomura Model Proxy . 150 4 EEE Nomura Model Proxy
150 | HEE Transformer Proxy B Transformer Proxy
125
125 +
2 10 | g 1001
=4 o 75
] :
25 4 251
o] 0-
—400 —300 —200 -100 [} 100 200 300 —400 —300 —200 -100
Error (bps) Error (bps)
15Y 30Y

120
I Nomura Model Proxy

mmm Transformer Proxy

100 -/ B Nomura Model Proxy

100 mmm Transformer Proxy

-..
i
1 ‘I
] I

Frequency
Frequency

40 4

204

0
—500 —400 —300 —200 —100 0 100 200 -500 —300 —200 —100
Error (bps) Error (bps)

Figure 5.13: Error distributions for different tenors for best model of the B cate-
gory.

Aligning with the reported MSE and MAE metrics, one notices in Figure 5.13 how
the frequency of large errors is quite high for both the Transformer and the Nomura
model. The histograms are generally skewed to the negative side of the spectrum
indicating that the spread values tend to be underestimated. For the Transformer
model, these dynamics are particularly noticeable in long tenors with an increase of
the large error frequencies.

Next, the single day spread curves of the best Transformer proxies, the corresponding

Nomura proxies and actual target spreads of the OOS-company can be observed in
Figure 5.14.

62

5. Results and Analysis

—x- Target Company 5 — U e m—— %
—e— Transformer Proxy =T
500 { —m- Nomura Model Proxy —_d
* * *
400 +
-
£ .
o
o
o
5 300 4
W
200+
100 - T T u T

T T T T T T T
6M 1y 2y 3Y a¥ 5Y Al 10v 15y 207 307
Tenor (M for months, Y for years)

Figure 5.14: Target and proxy spread curves for all tenors on a single day for the
best model of the B category.

As was noted in the error distributions of Figure 5.13, what the curves in Figure
5.14 also show is an underestimation of the actual spreads on this particular day,
both by the Transformer and Nomura model. The Transformer is closer in absolute
terms, but for longer tenors its curve profile seems less aligned compared to the
Nomura model.

Finally, one can observe the progression over time for the spreads of some of the
tenors generated for B rated counterparties. This is presented in Figure 5.15.

&M 2y
600 4 — Target Company 2700 { — Target Company
—— Transformer Proxy —— Transformer Proxy
500 | — Nomura Model Proxy 600 | — Nomura Model Proxy
& 400 8 500
® ®
8 & 400
£ 300 4 g
& &
2004 300
200
100 4
5Y plo g
900
00 | — Target Company —— Target Company
—— Transformer Proxy a00 | — Transformer proxy
200 | — Nomura Model Proxy —— Nomura Model Proxy
2 3 700
2 3
£ 600 4 8
H g 600
5 500 4 g
- “ s00
400
400
300 4
15Y 30
900 1 —— Target Company 900 4 —— Target Company
—— Transformer Proxy —— Transformer Proxy
800 1 —— Nomura Model Proxy 800 { —— Nomura Model Proxy
g 700 4 g
g § 700
® ®
§ 600+ @ 600
a a
& &
500 7 500
400 400
A A A9 A A0 o o o & > A A0 s A0 *® *® ! &
A A A SF AT P AT A A5F oSV A A L 2 20 2 A5F 0¥
L S S L S L L I L S U C
Date Date

Figure 5.15: Time series plots of target and proxy spreads for different tenors for
the best model of the B category.

63

5. Results and Analysis

Compared to previous rating categories, one clearly observes difficulties in tracking
the targets for both the Transformer and Nomura model, with both models generally
underestimating the actual spreads in absolute terms as the previous figures have
also shown. However, the shapes of the curves differ. While the Nomura model
fluctuates frequently and does not capture the profile of the target curve very well,
the Transformer model has a much more even progression. In the shorter tenors
of 6M and 2Y one can see that the Transformer follows the target profile rather
well until approximately July 2022. Thereafter, it has troubles following the actual
target spreads. For the longer tenors one can see that the Transformer slightly has
the same upwards trend as the targets, although the absolute difference between the
curves is quite high as has already been discussed. The strong fluctuations observed
for the Nomura model may be due to factors such as less liquid spread data in this
category to base the estimations on compared to higher graded rating categories,
and higher volatility in general in lower-rated categories that are typically less liquid.
Additionally, the model’s reliance on frequent recalibration based on cross-sectional
factors can likely cause sudden changes in less liquid markets, which potentially can
explain the instability seen in the graphs.

5.6 Comparison Across Rating Categories

Following the prior analysis of the model categories individually, some brief compar-
isons between them can be made. Table 5.6 show the average performance of the
Transformer in each category in terms of Spearman’s Rank Correlation Coefficient,
MSE and MAE alongside each other. Figure 5.16 show the same metrics visualized
in bar charts (note that the y-axes of the two rightmost panels are presented in
logarithmic scale).

Table 5.6: Average statistical performance of each model category.

Model Category

Av. Spearman Coefficient

Av. MSE (bps)

Av. MAE (bps)

AA

0.86

40.14

4.75

A 0.92 134.43 8.12

BBB 0.91 415.74 16.35
BB 0.71 2708.06 36.38
B 0.86 16157.5 92.47

64

5. Results and Analysis

Average Spearman Coefficient Average MSE (bps) Average MAE (bps)
102 A

0.8 4

0.6

10° 4

Coefficient

0.4

0.2 4

102 4
00 — —
T < g 8 ° T < g 8 ° T < g 8 °

@ @ @
Model Category Model Category Model Category

MSE (bps) [Log Scale]
MAE (bps) [Log Scale]

Figure 5.16: Visual representation of the average statistical performance of each
model category.

Looking at Table 5.6 and Figure 5.16, one can notice a trend in performance drop
as the rating grade decreases. First of all, the correlation with the respective targets
is generally quite high across ratings as shown by the Spearman coefficient. This
indicates that the models in each category has achieved pretty good results in pre-
dicting the rank order of the data accurately. The BB model however shows a rather
big deviation to the others which might indicate a weaker or less consistent rank
correlation in its outputs on average in these runs. Looking at the error metrics
on the other hand there is a clear trend in that errors increases as the rating grade
decreases. AA for example, which is the rating category with highest investment
grade, shows the best performance with the lowest MSE of 40.14 bps on average,
which highlights its accuracy in outputs with the least error magnitude, while the
rating category of lowest investment grade, B, shows a very high MSE of 16157.5
bps on average, indicating large error magnitudes. The same can also be observed
in MAE where AA again shows the best performance with 4.75 bps, compared to
B’s 92.47 bps.

Apart from the metrics observed above one can also look at the data amount of each
rating category in the training dataset. Recall from Section 4.2.1 that all models
were trained on data from any rating category, but with target labels targeted to
a specific one. Upon merging the training inputs with the labels of the targeted
rating category, this meant that the amount of training records available for each
category depended on the number of available labels for it since the label and input
dataframes were merged on the basis of similar business dates. Table 5.7 below
shows the number of training records of each rating category, and Table 5.8 shows
the number of available counterparties per rating category.

When doing an observation of Table 5.7, one sees that the amount of available
training data decreases along with the investment grade of the rating category.
Moreover, this seems to be related to the fact that there is a larger amount of

65

5. Results and Analysis

Table 5.7: Training records per rating category.

Rating Category | Training Records
AA 47 771
A 48 637
BBB 48 637
BB 42 153
B 21 041

Table 5.8: Number of counterparties per rating category.

Rating Category | No. of Companies
AA 26
A 43
BBB 41
BB 32
B 13

companies (counterparties) in the high investment grade cases compared to the
lower ones, as seen in Table 5.8. The difference in available training data may thus
serve as part of the explanation to the variation in performance over the different
categories which the Transformer model was trained to generate proxy CDS spreads
for.

5.7 Increased Training Time

An additional experiment was conducted in which the training time was increased in
order to see what potential effect it had on model performance (see Section 3.3.1.1).
In all the previous categories, the hyperparameters of the model were fixed to be
able to draw general conclusions about model performance across different cate-
gories. These hyperparameters were presented in Section 4.3.5. For this experiment
with increased training time, the number of epochs was set to 1000 instead 50 (see
original hyperparameters in Table 4.3), to allow the model a lot of time for con-
vergence. The factor for the early stopping criterion remained at 0.1, effectively
allowing a patience of 100 epochs for the experiment with increased training time.

The experiment with an increase in training time was only done for the AA category.
Considering the longer training time, only three models were trained in total, which
means less statistical significance of the results which should be kept in mind. Table
5.9 shows the Spearman’s Rank Correlation Coefficient, MSE and MAE achieved
on average as well as for the best and worst performing model instance in this test.

Table 5.9: Statistical metrics for the AA category with increased training time.

Metric TF Average (Nomura) | TF Best (Nomura) | TF Worst (Nomura)
Spearman Coefficient 0.92 (0.71) 0.95 (0.61) 0.89 (0.77)

MSE (bps) 24.16 (99.82) 27.23 (84.41) 30.21 (123.04)
MAE (bps) 3.05 (7.68) 128 (7.43) 152 (8.29)

66

5. Results and Analysis

Reviewing the results of Table 5.9, one sees that across the average, best and worst
performing model the Spearman coefficient is generally quite high, especially com-
pared to the Nomura model. On average, a Spearman coefficient of 0.92 is achieved,
demonstrating good model performance in capturing the rank order. This can also
be compared to the average performance of the AA model without an increase in
training time, which achieved a Spearman coefficient of 0.86 (see Table 5.1). The
best model with an increase in training time achieved 0.95 which roughly matches
that of the best performing model without increased training time (0.96). The MSE
and MAE is reported lower compared to the Nomura model across average, best and
worst case. Compared to the AA category with normal training time one can see a
slight outperformance in MAE on average although not by much (3.95 compared to
4.75, see Table 5.1). What is interesting is that the average MSE is roughly half that
of the same category with normal training time (24.16 compared to 40.14) which
suggest less severity of outliers.

Looking at the error distributions of the best performing model with increased train-
ing time as presented in Figure 5.17 one can gain some visual insights of its results.

Freques

10
Error (bps)

Figure 5.17: Error distributions for different tenors for the best model of the AA
category with increased training time.

First of all, compared to the Nomura benchmark, a much more even distribution
is observed with less outliers. This can be also be seen compared to the same
category with normal training time (see Figure 5.1 for comparison). This visually
complements the observation of the big MSE difference discussed in the paragraph
above. The histograms of Figure 5.17 are a bit skewed however, with distributions
indicating an overestimation of the spreads for shorter tenors (6M and 2Y), and
underestimation for longer tenors (5Y, 10Y, 15Y and 30Y). The distribution best
centered around zero is that of 30Y, while for the normal training time this is the
case for the 15Y tenor instead (again, see Figure 5.1 for a comparison with normal
training time).

67

5. Results and Analysis

Figure 5.18 show full spread curves for the best performing model with an increased
training time along with its target and Nomura model benchmark.

—x- Target Company _a
—e— Transformer Proxy -
—&- Nomura Model Proxy -

© o ~
S 3 S
N\

Spread (bps)
s
5

30

oM 1 2y 3y 4y 5Y Al 1oy 15Y 207 307
Tenor (M for months, ¥ for years)

Figure 5.18: Target and proxy spread curves for all tenors on a single day for the
best model of the AA category with increased training time.

One sees that the model accurately follows a similar profile to that of the target and
particularly accurate performance can be observed in the 5Y and 7Y tenor, whereas
the shorter and longer tenor spreads are a bit offset in absolute terms. Compared
to the Nomura model however, both the curve profile and absolute difference to the
target appears to be better for the Transformer model.

Finally, Figure 5.19 shows the progression of the spreads for various tenors over time

for the best AA model instance with increased training time along with its target
and Nomura benchmark time series curves.

68

5. Results and Analysis

&M 2y
18 | — Target company 27.5] — Target Company
—— Transformer Proxy : —— Transformer Proxy
16 { —— Nomura Model Proxy 25.0 1 —— Nomura Model Proxy
7 14 | 7 225
2
T 121 o 20.0 4
@ =
& 104 & 1751
15.0
8
125
6
5Y 1oy
—— Target Company —— Target Company
45 4 —— Transformer Proxy 65 1 —— Transformer Proxy
—— Nomura Model Proxy —— Nomura Model Proxy
& 401 = 501 ‘
a a
E 2
HES el
o o
& &
30 4 50
45 4
25+
15Y 30Y
75 80J
—— Target Company —— Target Company
70l Transformer Proxy — Transformer Proxy
—— Nomura Model Proxy 75 1 —— Nemura Model Proxy
1 -Vw
\1 Yy
£l 2
© ©
T 60 2 65
a a
a o
55 4 60 4
50 55 4
E ar a2 ar > A A ; ar a2 A > A A2
Y Ny 0% 20 20 2 A A5V 2 OF 0¥ 20 2O 2 ey
,LQ’L 1‘0’3— ,”Q’L ,”Q’L ,."Q’L ’101 oL ,LQ’L ,LQ’L 1‘0’3— ,."Q’L ,”Q’L ’1,01 ’107‘

Date

Date

Figure 5.19: Time series plots of target and proxy spreads for different tenors for
the best model of the AA category with increased training time.

Although the Transformer appears to have difficulties in generating exact spread
levels across all tenors it generally follows the profile of the target curve, one ex-
ception being for the 6M tenor. The Nomura model show much more erratic and
fluctuating behaviour in comparison though and tend to overestimate spread levels
compared to the target curve in most instances.

69

5. Results and Analysis

70

O

Discussion

In this chapter, a discussion is carried out regarding the outcome of the thesis in
relation to the aim and issue of investigation presented in Sections 1.2 and 1.4. All in
all, this boils down to answering the research question (RQ) posed in the beginning
of this thesis:

o RQ: To what extent can Transformer-generated proxy CDS spread curves more
accurately simulate market based CDS spread curves, compared to those pro-
duced by traditional linear regression models?

And attempt at answering this as well as a discussion regarding various aspects of
the thesis implementation are provided here.

6.1 Discussion on Model Performance

When comparing the performance of the Transformer model relative to the cross-
sectional Nomura model benchmark, the results presented in Chapter 5 reflect a
positive outcome in favor of the Transformer. By observation of the Spearman co-
efficient, MSE and MAE metrics along with the presented visualizations it is clear
that in the experiments conducted here, the Transformer model has demonstrated
superior ability in generating accurate proxy CDS spreads across the various rating
categories. Unlike the Nomura model, which generally showed more volatile behav-
ior, the Transformer model produced better curve profiles and higher accuracy with
respect to error magnitudes and outliers. This likely suggests that the Transformer
is better at capturing important aspects of the input data, providing a more reliable
and stable prediction mechanism than the Nomura model’s cross-sectional regres-
sion approach. Under the limitations of the experiments conducted in this thesis
the outcomes are therefore overall deemed positive and promising with respect to
the Transformer model’s ability to more accurately generate proxy CDS spreads for
counterparties of different rating, compared to traditionally used linear regression
models such as the Nomura model.

There are however several points regarding the results which must be addressed in
order for general conclusions to be drawn. Starting off, by reviewing the perfor-
mance across the generation of proxy spreads for the various rating categories, one
sees a notable decline in model performance correlated with the decreasing grade
of the rating the model predicts proxy spreads for. Despite a generally high aver-
age Spearman correlation coefficient, the magnitude of errors and the presence of

71

6. Discussion

outliers increased in lower-rated categories as shown by the increase of both MAE
and MSE. This variability shows a divergence in performance stability. Especially
interesting is that the difference in performance between the best and worst model
of each category became higher as the rating grade decreased. This was also the case
for the Nomura benchmark. The statistical metrics reported showed less variabil-
ity between best and worst model instance for the higher graded rating categories,
which indicates a more stable performance in general amongst them. The reason
for this outcome can depend on multiple things but an important one is believed
to lie in the difference of data quality and quantity for the various categories. As
was noted in Section 5.6, higher graded rating categories (such as AA, A and BBB)
contained more individual counterparties, as well as data records, to train on com-
pared to the lower graded ones. Since ML-models in general perform better as the
availability of training data increases, this perhaps serve as part of an explanation
to the observed performance drop.

On this note it is also in its place to discuss the statistical significance of the observed
results in Chapter 5. As was mentioned there, ten model instances were trained per
rating category with different out-of-sample (OOS) companies used as test sets for
each model instance, except for the lowest graded rating category (the B category)
for which only six models were trained due to limitations in data availability. Opti-
mally, a greater sample of individual model instances would provide a better ability
to draw general conclusions about average performance. Since this was not possible
due to the time and computational limitations of this project one should therefore
be aware of this when reviewing the outcomes of the results. Most importantly, for
the B category which only contained a sample of six individual model instances, the
statistical significance is deemed quite low meaning a more comprehensive analysis
is in its place in order to be able to draw firm conclusions about the Transformer
model’s ability for generating accurate proxy CDS spreads of this category. Fur-
thermore, this implementation has only covered a single sector and region (financial
companies in Western Europe). This means that the findings reported here can not
with certainty be generalized to the Transformer’s generative abilities of proxy CDS
spreads for similar rated companies of different region and sector belongings without
exposing the model to such data during training.

Another important aspect to consider is the trade-off between model complexity
and performance, with an additional emphasis on interpretability, when contrast-
ing the Transformer model implemented in this thesis with the benchmark Nomura
model. As detailed in Chapter 4, the Transformer is a deep neural network (DNN)
which in this implementation contained 780 349 parameters in total. This complex-
ity likely enabled it to capture complex patterns and nuanced relationships in the
training data, leading to more accurate predictions of proxy CDS spreads compared
to the much simpler Nomura model. However, the complexity of the Transformer
model comes with some costs, particularly in the computational resources required
for training it and its inherent lack of interpretability. Deep learning models such
as the Transformer, which are often described as "black boxes", do not offer much
insight into their decision-making processes [25]. As the architecture deepens, un-

72

6. Discussion

derstanding how inputs are mapped to outputs becomes more difficult, complicating
the analysis of the model’s decision-making for humans to understand. In contrast,
the Nomura model is more interpretable. It uses parameters that are related to ob-
servable market characteristics such as global, sector, region, rating, and seniority
factors, upon which cross-sectional regression is applied (see Section 2.3.1). Each
component of the model can be detailed and explained, which provides an advan-
tage in contexts where regulatory compliance and stakeholder communication re-
quire transparency. Therefore, despite the Transformer model’s promising results in
predicting proxy CDS spreads compared to the traditional Nomura model, its prac-
tical deployment might be challenged by these interpretability issues, potentially
complicating regulatory approval and stakeholder acceptance.

6.2 Discussion on Implementation Challenges and
Improvements

Another topic of discussion is the implementation choices taken in this thesis. First
of all, one can look at the hyperparameter settings which were fixed throughout the
runs over the different rating categories. These were presented in Section 4.3.5. As
was touched upon there, selecting optimal hyperparameters for ML-implementations
is a tricky task which often requires multiple iterations and subsequent analysis of
the outcomes. In this thesis, the choices were directly influenced by the hyperpa-
rameters used in the prior thesis on Transformers at SHB [29]. By having a uniform
approach to hyperparameters, the comparison between results within and between
the different rating categories was therefore made easier. However, this approach
may have limited the model’s ability to optimize performance when generating proxy
spreads for each specific rating category.

An initial point to be made regarding hyperparameters was the training time allowed
for the models. As was presented in Section 4.3.5, the number of epochs for each
model in each category was fixed at 50 epochs in total. Added to this was an early
stopping factor set at 0.1, effectively meaning that if the training spanned 5 epochs
in a row without any improvement in validation loss (reported in MSE) the training
would stop. Now, the reason for setting this fairly low number of epochs was due
to the fact that ten model instances were trained per rating category (six for the
B category), and with a total of five categories this meant that 46 model instances
were trained in total. One typically wants a model to receive a lot of training time
since it allows its gradients to escape local minimums, which are plateaus in per-
formance that at a glimpse may appear as convergence points but which actually
are not the model’s best performing state. However, it is difficult to set an optimal
epoch number beforehand since it is pretty much impossible to know when during
training a model will fully converge. In this case, the choice of epochs was therefore
ultimately the result of a trade-off between the training time per model versus prac-
tical feasibility considering the many models which were trained in order to ensure
statistical significance of the findings. As reported in Section 5.7 of Chapter 5, an
attempt at increasing the training time was however made for the AA category. In

73

6. Discussion

that run, three models were trained, each receiving 1000 epochs of training time
with the same early stopping factor applied (effectively meaning a patience of 100
epochs of unimproved validation loss before early stopping). However as was shown
in Section 5.7, the performance did not substantially improve because of this (al-
though the results should be reviewed with some caution for these runs given that
only three model instances were trained and thereby not offering much of a statis-
tical significance to begin with). None of the models spanned for all of their total
epochs though, whether they were set to 50 as in the original experiment or 1000 as
in the one with increased training time. Instead, early stopping occurred at various
points during their respective training runs. What can therefore be said is that for
the experiments conducted in this thesis, the number of epochs did not appear to be
the single most important hyperparameter to focus on in order to achieve a better
performance. Instead, it is the author’s belief that potential causes for the early
convergence observed should be reviewed a bit more closely.

Pondering on this, the appearance of early convergence of an MIL-model (which as
mentioned above was observed here) may suggest potential overfitting or inability of
the model to fully capture the underlying patterns of the training data. Therefore, a
dynamic approach to selecting optimal hyperparameters, possibly through methods
such as grid search, could potentially enhance the models’ accuracy and ability to
generalize. Simpler approaches could also be applied, such as varying the dropout
factor to reduce potential overfitting or using an adaptive learning rate instead of
a fixed one for more efficient convergence. Furthermore, monitoring for signs of ex-
ploding or vanishing gradients that could show whether adjustments in the network
architecture could be needed with respect to the early convergence noted during
training could perhaps also help in making the model even better.

Regarding the network architecture of the Transformer model used in this thesis it
was, as explained in Section 4.3, deliberately made to replicate that of [29], which in
turn was constructed to be as similar as possible to the original architecture of [40].
This choice was made in order to see whether or not it could perform as well on the
liquid market data used as labels during training in this thesis as it did on the proxy
data used in [29]. However, this does not necessarily make it the best architecture
for optimal performance. For example, the early convergence discussed previously
could perhaps be reduced by lowering the complexity of the model. This could for
instance be achieved by minimizing its depth. In this thesis’s implementation, four
encoders and decoders were stacked on top of each other, making the overall archi-
tecture quite deep and complex. Perhaps lowering the number would allow for a
more straightforward flow of data, and thus simplifying the model’s learning task.
However, one should be aware that the risk taken with a decrease in complexity is
that it may limit the model’s ability to capture nuanced patterns necessary for ac-
curate outputs. Moreover, jumping back to the discussion on potential issues with
vanishing or exploding gradients, one approach to handle that issue could be by
using more residual connections in the network to allow for a more seamless flow of
the data. The outcome of such a change would be interesting to analyze. However,
due to time constraints, this thesis was unable to thoroughly experiment with all

74

6. Discussion

of these alternative approaches in model architecture and hyperparameter settings
(keep in mind the many model instances that were run). Future projects could ex-
plore these changes and evaluate their outcomes, making it an interesting next step
in this field of research.

Another point for discussion is the construction of target labels which are extremely
important when training ML-models. Target labels tell the model what it is sup-
posed to learn, directly affecting the quality of its outputs. In this thesis, it was
decided early on to use the average of all liquid market spreads of similarly rated
counterparties for each business date as target labels. To reiterate from Section 4.2.1
of Chapter 4, if a model was trained to predict spreads for BB rated counterparties
for example, each record in the training dataset would have label columns (one per
tenor) corresponding to the average spread value of all spreads of similar tenor with
a BB rating for the same business date. The reason for choosing the average was
that it intuitively accounts for information from all similar records into a single,
uniform value reflecting the entire sample. However, this may not have been the
optimal choice. Averages can be skewed by outliers, meaning that exceptionally low
or high spread values on a single date could disproportionately affect the label value
for that date. If this occurred multiple times, it could have caused big issues for
the model when learning to predict spreads accurately. Given this, an alternative
approach to constructing target labels could have been considered. For example,
analyzing the distribution of spreads in the training dataset for each rating cate-
gory on each business date to check for outliers might for example have suggested
using the median instead of the average to get a more representative target value.
This analysis was however not conducted in this thesis. Therefore, exploring other
methods for producing optimal target labels could also be an interesting direction
for future work on using ML-methods to generate proxy CDS spreads.

75

6. Discussion

76

-

Conclusions and Future Work

In this chapter, the conclusions of the thesis are presented. Additionally, ideas and
suggestions for future work on proxy CDS spread generation are provided, particu-
larly focusing on the use of Transformer models for this task. Finally, some of the
author’s final reflections on the thesis work is provided.

7.1 Conclusions

In this thesis a Transformer model was used to generate proxy CDS spreads which
were then evaluated against actual, liquid market CDS spreads to determine accu-
racy. Additionally, a benchmark comparison was made against proxy CDS spreads
produced by the cross-sectional Nomura model. Experiments were conducted to
generate proxy spreads for five credit rating categories (AA, A, BBB, BB, and B)
independently. Multiple model instances were run for each rating category, with
each instance tested on a separate out-of-sample (OOS) test set for the purpose of
obtaining statistically significant results. Overall, the Transformer model outper-
formed the Nomura model across all rating categories. Both the Transformer model
and Nomura model showed a trend of decrease in accuracy as the rating grade de-
creased though.

Within the scope and limitations of this thesis, the outcome is deemed positive as the
Transformer model has shown clear superiority over the Nomura model benchmark
in producing accurate proxy CDS spreads. However, it is not deemed possible to
draw general conclusions about the Transformer’s superiority over traditional mod-
els based on these results alone due to this thesis’s scope and limitations. Because of
this, future evaluations with more varied input data, different hyperparameter set-
tings, and potentially changes to the Transformer model’s architecture are believed
to be necessary. Moreover, issues related to the Transformer’s complexity and lack
of interpretability should be addressed and analyzed before implementing it in a
production environment.

7.2 Future Work

Due to the limitations of this thesis project, primarily its time constraints, several
aspects were left unexplored, as discussed in Chapter 6. Therefore, some suggestions
for future work are presented here.

7

7. Conclusions and Future Work

7.2.1 Hyperparameter Optimization

A first thing that potentially could lead to a better performance of the Transformer
model in its current state is a thorough hyperparameter analysis. As has been ex-
plained, the same hyperparameters were used throughout the experiments of this
thesis in order to facilitate easy comparison amongst rating categories. However, by
applying a rigorous testing scheme in which different combinations of hyperparame-
ters is tested one could perhaps find settings that provide more optimal performance
in generating accurate proxy spreads. Especially interesting would be if it turned
out that different hyperparameter settings provide the best results when generating
spreads for different rating categories. One approach for conducting a hyperparam-
eter analysis could be to use grid search. Essentially, grid search involves defining
a parameter grid, which can be thought of as a dictionary containing different hy-
perparameter values to be tested, and using cross-validation to evaluate the model’s
performance for each parameter combination [21]. To be noted however, grid search
can be a very time-consuming and computationally expensive process, especially
when using large datasets and models where the number of hyperparameter com-
binations are many (such as in this case). This should be taken into consideration
before proceeding with such a task.

7.2.2 Data Expansion and Diversification

Another interesting idea for future work would be to train and test the model using
a broader dataset than the one used in this thesis and analyze if it enables more
accurate and general predictive abilities. A first thing could be to include data from
regions beyond Western Europe and sectors beyond the financial industry, which
was the targeted group used here. Furthermore, simply training on a larger dataset
spanning over a longer time period is also believed to further enhance the model’s
predictive abilities. Especially interesting would be to evaluate the model’s per-
formance in times of high market volatility, such as a market crash, to see if its
predictions remains as stable as they proved to be compared to traditional models
in this thesis’s results even under extreme market conditions.

Moreover, expanding the dataset to include additional information beyond the sec-
tor, region, and rating variables could perhaps help the Transformer model learn
even more nuanced and complex patterns, potentially leading to more accurate
spread predictions. For example, incorporating information similar to the so-called
option greeks could be beneficial. Without going into details, these financial metrics
known as Delta, Gamma, Theta and Vega measure different dimensions of risk in
options trading [35]. Since a CDS contract is a type of financial derivative similar
to options, it also has sensitivities to underlying factors. By incorporating such
sensitivities as features into the model, it could potentially learn even more relevant
information which could perhaps enhance the accuracy of the proxy spreads it gen-
erates. However, this approach would require a much more rigorous effort in terms
of data gathering and preprocessing, as well as altering the model architecture to
accommodate these additional variables, than was taken in this thesis.

78

7. Conclusions and Future Work

7.2.3 Computational Efficiency and Model Scalability

An additional idea for future work relates to the scalability and efficiency of the
Transformer model compared to existing models that are used for generating proxy
CDS spreads. While the Transformer model showed promising results in this thesis,
its computational demand is quite high and if it was to be scaled up it would
probably be even higher. This can perhaps become an obstacle if the Transformer is
ever to be taken into production. Because of this, evaluating the trade-offs between
computational costs versus performance gains is an important analysis to be made.
Future work could for example explore more computationally efficient variants of
the Transformer architecture than the one used here, which optimally maintains a
high performance as well as reduces computational demand.

7.2.4 Regulatory Compliance and Model Interpretability

A final suggestion for future work has to do with interpretability and regulatory
demands. As explained in Section 2.3.1, the Basel III accord requires that models
that generate proxy spreads consider the sector, region, and rating variables of
similar counterparties for which they are to be used for. However, due to the black-
box nature of deep neural network (DNN) models discussed in Section 6.1, regulatory
demands may perhaps come to place even more emphasis on the ability to explain
how such models arrive at their outputs in the future. Because of this, looking into
explainable AI frameworks could be a way to help explain the model’s decision-
making process when determining a spread and thereby make its internal workings
more interpretable. For example, this can include things such as feature importance
analysis, model simplification, or other methods. Not only can this help in complying
with potential future regulatory demands, but it is also important from a developers
point of view to be able to pinpoint how the model that is used maps input to output
to the greatest extent possible. This is also important from an ethical point of view,
since an understanding of how the model processes the data passed to it can help in
highlighting if any biases with respect to the data may occur in its decision-making.
What this essentially boils down to is that future work on model interpretability
can serve many additional purposes beyond just getting a really good model up and
running. It ensures that ethics and regulatory compliance is considered alongside
development and such an approach, built on trust and transparency, paves the way
for a sustainable way of working with new technologies.

7.3 Final Reflections

This thesis has combined finance, machine learning (ML), and statistics to evaluate
a new method (the Transformer model) for generating proxy CDS spreads. While
the work has been very interesting for the author, particularly on a personal level in
learning about industry approaches to advanced ML-modeling, data preprocessing,
and statistical evaluations, understanding the thesis’s broader implications and its
place in a larger context has been the most rewarding aspect of this work. Partic-
ularly regarding the impact that proxy CDS spreads have on accurately assessing

79

7. Conclusions and Future Work

counterparty credit risk (CCR), which is of high importance for financial institutions
to get right. Much is left for future work on this topic, but hopefully this thesis
has contributed with valuable insights regarding the potentials that the Transformer
model offers for the task of proxy CDS spread generation compared to traditional
alternatives.

80

[1]

9]
[10]

[11]

[14]
[15]

[16]

Bibliography

Keras documentation: Embedding layer. https://keras.io/api/layers/
core_layers/embedding/. Accessed: 2024-04-20.

Matplotlib - visualization with python. https://matplotlib.org. Accessed:
2024-04-20.

Numpy - scientific computing with python. https://numpy.org. Accessed:
2024-04-20.

Pandas - python data analysis library. https://pandas.pydata.org. Accessed:
2024-04-20.

Python programming language - official website. https://www.python.org.
Accessed: 2024-04-20.

Scipy - fundamental algorithms for scientific computing in python. https:
//scipy.org/. Accessed: 2024-05-19.

N. Acharya. Choosing between mean squared error (mse) and mean absolute
error (mae) in regression: A deep dive. Medium, August 2023. Accessed: 2024-
05-19.

S. Ahmed, I. Nielsen, A. Tripathi, S. Siddiqui, G. Rasool, and R. Ramachan-
dran. Transformers in time-series analysis: A tutorial. arxiv 2022. arXiv
preprint arXiv:2205.01138, 2022.

D. Amballa. Introduction to ai, ml, dl. Towards Data Science, Sep 2023.

D. Bahdanau, K. Cho, and Y. Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Basel Committee on Banking Supervision. Minimum capital requirements for
market risk. Technical report, Bank for International Settlements, January
2019. Revised February 2019.

R. Brummelhuis and Z. Luo. Arbitrage opportunities in cds term structure:
theory and implications for otc derivatives. arXiv preprint arXiv:1811.08038,
2018.

R. Brummelhuis and Z. Luo. Bank net interest margin forecasting and capital
adequacy stress testing by machine learning techniques. Awailable at SSRN
3282408, 2019.

R. Brummelhuis and Z. Luo. CDS proxy construction via machine learning
techniques part I: methodology and results. SSRN, 2019.

R. Brummelhuis and Z. Luo. CDS proxy construction via machine learning
techniques part 1I: parametrization, correlation, benchmarking. SSRN, 2019.
Economics Observatory. Why did lehman brothers fail? https://www.
economicsobservatory.com/why-did-lehman-brothers-fail, 2023. Ac-
cessed: 2024-02-12.

81

https://keras.io/api/layers/core_layers/embedding/
https://keras.io/api/layers/core_layers/embedding/
https://matplotlib.org
https://numpy.org
https://pandas.pydata.org
https://www.python.org
https://scipy.org/
https://scipy.org/
https://www.economicsobservatory.com/why-did-lehman-brothers-fail
https://www.economicsobservatory.com/why-did-lehman-brothers-fail

Bibliography

[17]

82

European Banking Authority. Eba final draft regulatory technical standards on
credit valuation adjustment risk for the determination of a proxy spread and
the specification of a limited number of smaller portfolios. Regulatory Technical
Standards EBA/RTS/2013/17, European Banking Authority, Dec 2013.

L. Fagerang and H. Thoursie. Modelling proxy credit cruves using recurrent
neural networks, 2023.

I. Goodfellow, Y. Bengio, and A. Courville. Deep learning. MIT press, 2016.
J. Gregory. The XVA challenge: Counterparty credit risk, funding, collateral,
and capital. John Wiley & Sons, Incorporated, 3rd edition, 2015.

H. Hassan. Using grid search for hyper-parameter tuning. Medium, October
2023.

A. Hayes. What is a credit default swap and how does it work? Investopedia,
2024.

S. Islam, H. Elmekki, A. Elsebai, J. Bentahar, N. Drawel, G. Rjoub, and
W. Pedrycz. A comprehensive survey on applications of transformers for deep
learning tasks. Fxpert Systems with Applications, page 122666, 2023.

S. Jayawardhana. Sequence models & recurrent neural networks (rnns). To-
wards Data Science, Jul 2020.

W. Kenton. What is a black box model? definition, uses, and examples.
https://www.investopedia.com/terms/b/blackbox.asp, April 2024. Ac-
cessed: 2024-05-17.

D. P. Kingma and J. Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014.

Laerd Statistics. Spearman’s rank-order correlation, 2024. Accessed: 2024-05-
19.

B. Liquet, S. Moka, and Y. Nazarathy. The mathematical engineering of deep
learning, 2024.

J. Luhr. Modeling credit default swap spreads with transformers: A thesis in
collaboration with handelsbanken, 2023.

B. Mehlig. Machine learning with neural networks: An introduction for scien-
tists and engineers. Cambridge University Press, 2021.

Nomura International plc. Cross-sectional method for cva calculation. Nomura
Research, 2013. Accessed: 2024-01-24.

C. Pere. What are loss functions? Towards Data Science, Jun 2020.

O. F. Rokon. Rnn vs. Istm vs. transformers: Unraveling the secrets of sequential
data processing. Medium, Sep 2023.

K. Stewart. Mean squared error. Encyclopaedia Britannica, 2024. Accessed:
2024-05-19.

J. Summa. Option greeks: The 4 factors to measure risk. Investopedia, April
2024.

TensorFlow Team. Keras: A guide to the Keras API in TensorFlow. https:
//www.tensorflow.org/guide/keras, 2023. Accessed: 2024-02-12.
TensorFlow Team. TensorFlow: An end-to-end open source machine learning
platform. https://www.tensorflow.org/, 2023. Accessed: 2024-02-12.

https://www.investopedia.com/terms/b/blackbox.asp
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/guide/keras
https://www.tensorflow.org/

Bibliography

[38] The AI Hacker. Illustrated guide to transformers neural network: A step by
step explanation. YouTube, 2020. Available at: https://www.youtube.com/
watch?v=4Bdc55j8018.

[39] The Editors of Encyclopaedia Britannica. Hypothetico-deductive method.
https://www.britannica.com/science/hypothetico-deductive-method,
March 2020. Accessed: 2024-01-24.

[40] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin. Attention is all you need. Advances in neural
information processing systems, 30, 2017.

[41] H. Yadav. Dropout in neural networks. Towards Data Science, Jul 2022.

83

https://www.youtube.com/watch?v=4Bdc55j80l8
https://www.youtube.com/watch?v=4Bdc55j80l8
https://www.britannica.com/science/hypothetico-deductive-method

DEPARTMENT OF PHYSICS
CHALMERS UNIVERSITY OF TECHNOLOGY

Gothenburg, Sweden
www.chalmers.se

CHALMERS

UNIVERSITY OF TECHNOLOGY

www.chalmers.se

	List of Acronyms
	List of Figures
	List of Tables
	Introduction
	Background
	The Importance of Accurate CDS Spreads
	Challenges with Traditional Models
	Advancements in Machine Learning
	Building on Previous Work

	Aim
	Limitations
	Specification of the Issue Being Investigated
	Methodology
	Report Guide

	Theoretical Framework
	Financial Context
	Credit Default Swap
	Counterparty Credit Risk
	Credit Valuation Adjustment

	Machine Learning Context
	Deep Learning
	Artificial Neural Networks
	Training and Optimizers
	Common Challenges in Deep Learning

	Sequence Models
	The Transformer Architecture
	The Encoder
	The Decoder

	Previous Implementations for Producing Proxy CDS Spreads
	The Nomura Model
	Machine Learning Implementations

	Statistical Context
	Spearman's Rank Correlation Coefficient
	Mean Squared Error
	Mean Absolute Error

	Methods
	Information Collection
	Data Collection and Initial Preprocessing
	Single Name CDS Spread Data
	Proxy CDS Spread Data

	Experiments
	Training of Transformer Model
	Training Setup
	Statistical Significance Through Multiple Runs

	Performance Evaluation

	Software and Hardware

	Transformer Modelling
	Outline of Modelling
	Preprocessing
	Training Data
	Constructing Target Labels
	Filtering on Rating Category
	Building Sequences
	Embeddings

	Test Data

	Transformer Model
	Architectural Differences to the Original Transformer
	Training Differences to the Original Transformer
	Schematic of Revised Transformer Model
	Passing of Inputs
	Hyperparameters

	Results and Analysis
	AA Category
	A Category
	BBB Category
	BB Category
	B Category
	Comparison Across Rating Categories
	Increased Training Time

	Discussion
	Discussion on Model Performance
	Discussion on Implementation Challenges and Improvements

	Conclusions and Future Work
	Conclusions
	Future Work
	Hyperparameter Optimization
	Data Expansion and Diversification
	Computational Efficiency and Model Scalability
	Regulatory Compliance and Model Interpretability

	Final Reflections

	Bibliography

