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Abstract
This work, consisting of two parts, examines the possibilities and issues with enforc-
ing specified behaviors when performing reinforcement learning (RL). For a discrete
event system, modelled as a Markov decision process (MDP), a specification dictat-
ing the present and future system behavior can be formulated as a linear temporal
logic (LTL) formula, which is then realised by a Büchi automaton. A constrained
MDP control policy can then be obtained through RL, performed on a product sys-
tem constructed by a form of synchronous composition of the MDP and the Büchi
automaton.

In the first part of this thesis, a small research platform is constructed where
discrete time MDPs and LTL realising Büchi automata can be implemented. Path
planning control problems for so called slippery grid worlds are formulated, and the
chosen specifications test the limits of TL constrained RL. Specifically, constraints
that are hard to fulfill with classic RL are considered, such as sequential state visits
and liveness specifications.

Three different composite algorithms are proposed, tested and evaluated, and
they draw inspiration from existing methods for TL constrained RL. Firstly, a
standard TL constrained Q-learning is considered. Secondly, a detached accept-
ing frontier extension that rewards reaching specific intermediate automaton states
is formulated for the standard algorithm. Thirdly, a potential function that rewards
the RL agent, depending on the direction of travel, is fitted to the aforementioned
second algorithm.

In the second part of this thesis, a method to reduce the computational burden
for the TL constrained RL algorithm is considered. By the use of modular analy-
sis, a jointly controlled path planning and admission control problem modelled as a
continuous time MDP is divided into two partitions, where one part is modelled as
a queue for which a threshold type admission control policy can be found analyti-
cally. This reduces the RL exploration needed while also reducing the infinite joint
state space, making it possible to find the path planning policy through tabular TL
constrained RL.

The results of the first part show that there are situations, such as when the state
space is large, in which additional methods are needed to solve temporal logic con-
strained reinforcement learning problems. The experiments presented in the second
part entail that modular analysis successfully reduces the amount of exploration
needed for the learning agent to find a path planning policy that agrees with a
formulated specification.

Keywords: Reinforcement learning, Temporal logic, Reward shaping, Büchi au-
tomata, Safety, Liveness, Fairness
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1
Introduction

A Markov decision process (MDP)is a common way of modellingdiscrete event
systems (DES)which, in essence, are systems consisting of states between which
transitions, triggered by actions, are made. MDPs are versatile, since most systems
to some extent can be modelled as deterministic or probabilistic transition processes.

Environment modelling using Markov decision process is a standard approach in
reinforcement learing (RL), in which an agent shall interact with an environment
MDP by the use of actions. The RL problem aims to derive a way of selecting the
actions, and the derived strategy is called a policy which is optimal with respect to
a de�ned cost function.

An MDP model may include probabilistic transitions between states, and this is
often a reasonable abstraction for unmodelled parts of an environment. An optimal
control policy can be obtained even for models with stochastic properties by the
use of RL. This is due to theMarkov property, which says that all information
of the previous states is encapsulated in the current state of the system. In RL,
this property is combined with the fundamentalBellman optimality principle and
dynamic programming, to form an iterative policy deriving algorithm that assigns
values to the observed states and actions of the environment.

Although RL can �nd the optimal policy, this can understandably not happen
at any cost in practical applications. Often, there is a need to develop a solution
that is not only optimal, but also safe. As an example, if an optimal way to walk
through a city is to be derived, it is reasonable to avoid walking on highly tra�cked
and dangerous roads.

In this setting, temporal logic (TL), and in particular linear temporal logic (LTL),
can be used to impose constraints on a learning problem. LTL is a type of modal
logic, dictating both the present and the future behaviour of a system. For exam-
ple, a requirement may be that a certain state shall always be reachedeventually.
Naturally, the opposite constraint may also be formulated, if avoiding certain states
is desired. Speci�c LTL formulae can be realised asregular languagesfor which it is
possible to formulate a corresponding automaton that embodies that language in its
transitions. Depending on the language, di�erent types of automata are required.

This work concerns ways of solving reinforcement learning problems on systems
that are constrained by LTL speci�cations, formulated as automata. These speci�-
cations are inspired by realistic and practically applicable constraints that may be
necessary to formulate for a wide range of systems.

1



1. Introduction

1.1 Background

Machine learning is becoming an increasingly popular topic in industry, and the
method is being utilized due to its versatility and availability; many di�erent prob-
lems can be solved by methods that are easily accessible for everyone. With basic
knowledge in reinforcement learning, it is easy to adapt the formality of minimizing
a cost function to economic e�ciency or resource management optimisation. How-
ever, this perspective is not always compatible with the ethical aspects of machine
learning. Topics such as safety may become less interesting, while remaining very
important as the complexity and extent of systems increase with time.

Due to the interest of the industry and the vast number of problems that are
being solved with reinforcement learning, a currently active area of research is to de-
rive new ways of ensuring that di�erent types of speci�cations can be ful�lled. The
possibilities of developing a framework for which increasingly complicated speci�ca-
tions, describing many di�erent system behaviors, thus serve as motivation for both
industry and research.

While there are many di�erent reasons to constrain a system, one of them is
purely based on the physical limitations of the system that is modelled. However,
to some extent it is possible to motivate the imposing of constraints to a deeper
level. For certain systems, solely ethical dilemmas are not very far fetched. For
example, take the popular problem in which an RL based strategy for navigating a
self driving car is to be derived. It might be hard to guarantee that the algorithm
will produce an optimal policy that does not include dangerous states, which in
this case could mean life or death, and ensuring a safety speci�cation may in this
case save lives. Therefore, while not pretending to solve ethical dilemmas, this
project is in a position to help increase safety in a vast variety of processes and
thus contribute to increased safety while still maintaining a focus on optimization,
keeping it attractive in industrial applications. More information about the work
towards safety in machine learning can be gathered from the Institute for Ethical
AI & Machine Learning [5].

To motivate this work further, one of the major topics in reaching the current
national climate goals (available from the Swedish Energy Agency [6] where the na-
tional goals are put in context to the established European climate goals for 2020
and 2030) is to minimize the energy consumption. Sectors such as trade, transporta-
tion and industry are responsible for a majority of the Swedish energy consumption
[7], and as any measurement of pollution or CO2 emission could in theory be turned
into an RL performance criterion, constrained reinforcement learning may be a use-
ful investment to combat the climate change challenges that we stand before.

Regardless of the application of this broad theory, the question remains the
same: what are the possible bene�ts and challenges with trying to impose logical
constraints on reinforcement learning problems?

2



1. Introduction

1.2 Aim

This is a two part Master's thesis, and in the �rst half, focus lies on exploring
di�erent methods for imposing speci�cations formulated in LTL expressions on re-
inforcement learning problems. The work done in Part II, where the method of
modular analysis is used to solve a highly speci�c control problem, is very much
dependent on the concepts developed in Part I. Therefore, the aim presented here
can be applied to the entire project.

The goal of the project is to demonstrate how one can bene�t from formulating
constraints for reinforcement learning problems in temporal logic, and to investigate
di�erent situations and special cases in which modi�cations to a particular method
is needed. Furthermore, it is of interest to describe, nuance and possibly solve the
aforementioned potential contradictions that may emerge. For example, integrating
the LTL constraints into RL problems may include additional performance measure-
ments that are to be minimized. Therefore, the task runs the risk of introducing
contradictions and trade o�s between maximising performance reward and ensuring
that a safety speci�cation is not violated. Thus, exposing, exploring and discussing
challenging and contradictory situations is a part of this project, and the aim here
is to propose ways of handling these di�culties.

In the �rst part of this project, the performance of the main algorithm, proposed
in [1], is tested on di�erent challenging speci�cations. To develop solutions to the
problems that arise, an extensive literary study is conducted where other variants
of logically constrained reinforcement learning are investigated. The purpose of this
is to draw inspiration from other methods, and integrate the key features of these
into the basic version of the main algorithm as improvements, which may make it
possible to solve more challenging problems. In essence, this project investigates
the possibilities, but also the limitations of methods for imposing temporal logic
constraints on reinforcement learning. When a limitation is discovered, the aim is
to both highlight the challenges that one should expect will arise in the particular
scenario, and propose ideas for how to handle them.

In the second part of the project, the results of the �rst part of the project are
complemented by the formulation of the previously mentioned modular analysis,
which is one of the proposed future research directions formulated in [1]. The pur-
pose of this is to evaluate if the method of modular analysis is an e�cient way of
solving temporal logic constrained reinforcement learning problems when the envi-
ronment can be modelled as distinct partitions working together. Speci�cally, by
identifying control policies for each partition of a jointly controlled path planning
and queueing process, the goal is to �nd situations in which the modular analysis
method reduces the complete reinforcement learning problem such that it can be
solved more e�ciently than if reinforcement learning was used to �nd the solution
to the whole problem.

3



1. Introduction

1.3 Limitations

In this section, limitations are formulated for the �rst part of this project. Limi-
tations for the second part are found in Section 9.3 of Part II, and are formulated
there due to the fact that they depend upon the evaluation of Part I of this thesis.

To evaluate the performance of the algorithms under di�erent circumstances and
with di�erent additional modi�cations, it is in the �rst part of this project necessary
to develop a platform where RL problems for di�erent speci�cation automata and
MDPs can be formulated. There are certain demands on this implementation that
must be met, but it is also important to keep it as simple and stable as possible in
order to produce quality results.

The environment with which the algorithms interact can thus be considered
the core of the platform. A scalable and easily modi�ed grid-world environment is
su�cient to explore basic problems and is also one of the most common environments
in experiments with reinforcement learning. An e�ort is �rst made to implement
this type of environment in a minimal way from the ground up, but if it proves to
be a more stable solution, an open source environment will be used instead.

The LTL formulae needed for this project are deemed simple enough to be man-
ually translated to corresponding automata. However, if the automaton represen-
tation proves to be di�cult to �nd, there is a software tool called OWL [8] which
outputs an automaton realizing a given LTL speci�cation. Implementing the trans-
lation of an LTL formula to an automaton itself is thus not in the scope of this
project.

In Part I, there is a need to compare the main algorithm in [1] to some of the
similar algorithms in the �eld. Outside of the standard Q-learning method which
is the basic RL method that most of the other algorithms operate with, an action
supervising reactive shield system proposed by Alshiekh et. al [3] is studied. In
addition to this, the method proposed by Hasanbeig et. al. in [9] and [4] is also of
interest. Lastly, it is interesting to investigate additional methods designed to solve
highly speci�c issues. Therefore, methods such as advice based learning [10] and
reward shaping [11] are within the scope of this work.

Furthermore, as the focus lies on developing the method in [1], the exploration of
the other implementations is kept to a minimum, as their role is to act as references.
With this in mind, implementing the key features of these algorithms is highly
relevant. The idea is to regard these algorithms as fully working �nal products,
allowing them to be used for reference and comparison.

When evaluating performance, the most important metrics are considered. For
example, although computational complexity is a common measurement to make
when evaluating an algorithm, it is not a common way of evaluating reinforcement
learning algorithms. Measuring the number of iterations through a learning process,
or the agents interactions with the environment before convergence to an optimal
policy, is more interesting. Therefore, computational complexity is not used as a
measurement, and a slightly more detailed motivation to why this is the fact is
provided in later sections.

The research questions in the next section are formulated for both Part I and Part
II of this thesis, and are also restricted by certain limitations. They are formulated
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to mainly focus on the potential con�icts that may arise between the speci�cation,
environment and additional performance goals in constrained reinforcement learning.
The purpose of this is to highlight how the performance of the reinforcement learning
method is a�ected when introducing temporal logic constraints.

1.4 Research Questions

This project aims to answer the following research questions.

1. By imposing LTL constraints on an already existing reinforcement learning
problem, how can potential con�icts that may arise within the combined re-
inforcement learning cost function be handled, in order to ensure a mutually
bene�cial relationship between the LTL constraints and the original optimiza-
tion problem?

2. Most often, a model prediction may be enhanced by observations gathered
from simulation, measurements or information gathered elsewhere. What are
the possible improvements on estimation that can be made by assuming partial
knowledge of a large system, in terms of additional knowledge of the MDP,
and how can they be integrated into the basic method for temporal logic
constrained reinforcement learning?

3. How does the temporal logic constrained reinforcement learning perform in
terms of constraint violation, optimality, and computational e�ciency com-
pared to classical Q-learning and other constrained reinforcement learning
methods, where safety is imposed in other ways? Are there solutions that
are more e�cient for certain problems?

1.5 Contributions

The following contributions are made in Part I and Part II of this project:

ˆ Complex LTL speci�cations can easily be formulated as automata. How-
ever, for speci�cations of relatively low complexity the rewards or punish-
ments supplied by the accepting and forbidden states run the risk of being too
sparse. This implies that even with high exploration and an extensive num-
ber of episodes, rewards will not be handed out until the automaton reaches a
marked state. This is unlikely to happen even in one episode during the course
of learning, making it impossible for the agent to �nd a correct path through
the MDP. The solution to this is the accepting frontier function, described
in Section 4.2.2. The method uses the concept of colored automata states to
hand out intermediate rewards that e�ectively guide the agent along an MDP
trace that does not break the LTL speci�cation. Experiments showing this are
found in Sections 7.3 and 7.7.

ˆ The problem of sparse rewards described above can be induced in any problem
by scaling up the state space dimensionality of the MDP. In this case, even
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the accepting frontier cannot lower the exploration time needed to �nd a path
that satis�es the LTL formula of a problem. It is very unlikely that complex
LTL speci�cations can be realised in these settings, solely due to the size of
the MDP. A solution to this is to use the potential function, and the success
of this function is independent on distance between MDP states. This type of
function is a reward shaping technique designed to reward the learning agent
for going in the direction of one or more goal states, and the e�ects of this can
be observed in the experiment conducted in Sections 7.7 and 7.8.

ˆ When introducing di�erent functions such as potential and the accepting fron-
tier, tuning is required between the reward sources. This is due to the potential
functions inability to grasp dangerous states, and it will override the punish-
ments given by the marked and forbidden states of the automaton or the rec-
ommendations from the accepting frontier. These conclusions can be drawn
from many of the experiments, but a particularly sensitive situation is found
in Section 7.4.

ˆ Theoretically correct automata implementations of LTL formulae do not nec-
essarily work in the practical context of temporal logic constrained tabular
Q-learning. In Section 7.5 it is shown that for a liveness speci�cation, the
mappings between rewards, states and actions done in the Q-function will ef-
fectively be overwritten due to that the automaton always returns to the same
state after parts of the speci�cation has been ful�lled. A solution to this is
shown in Section 7.6 where a slight modi�cation to the problematic automaton
from the failed experiment in Section 7.5 is made.

ˆ The last experiment of Part I, found in Section 7.8, �nds that the potential
function can be used on the �rst few episodes of a large scale MDP sequential
problem and after this be turned o� to let an accepting frontier extended TL
constrained RL method take over. Essentially, the potential function is used
as a boost rocket for the agent, which then uses a method designed for small
scale problems to converge to a policy that satis�es the LTL formula.

ˆ In Part II, the main contribution is the evaluation of the modular analysis
method with which the speci�c problem of joint path planning and admission
control is solved. This method consists of �rst formulating a continuous time
Markov decision process that can be split into two independent processes, and
then deriving control policies for each of these sub-processes both analytically
and through reinforcement learning. The procedure is described in its entirety
in Chapter 13, and solved for speci�c numerical parameters in Chapter 14.

ˆ For the sub-process that can be modelled as a queue, two successful methods
to �nd threshold type solutions to the admission control problem are provided
in Section 13.2.1 and Section 13.2.2.
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1.6 Structure

The �rst part of this thesis explores the concept of temporal logic constrained rein-
forcement learning, while the second part focuses on the concept of modular analysis.

Part I

The �rst part of this thesis consists of Chapter 2 through Chapter 8, in which tem-
poral logic constrained reinforcement learning is described and evaluated, starting
with basic concepts.

Reinforcement learning

In the second chapter, the theory behind reinforcement learning is covered, as this
is one of the corner stones of this work. From a basic de�nition of discrete event
systems, topics such as

ˆ Discrete time Markov decision processes

ˆ Dynamic programming

ˆ Value function iteration

ˆ Q-learning

are explained.

Temporal logic speci�cations

Temporal logic speci�cations is the second par of the foundation for this thesis. This
concept is presented on the basis of

ˆ Formal languages

ˆ Automata classes

ˆ Automata that realise LTL formulae

and is covered in the third chapter.

Algorithms

Starting with the previous research in the �eld of temporal logic constrained rein-
forcement learning, the fourth chapter discusses three algorithms in particular:

ˆ Temporal Logic Constrained Reinforcement Learning

ˆ LDBA Constrained Reinforcement Learning

ˆ Shielded Reinforcement Learning

7
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Additionally, a discussion on the key elements of these algorithms is conducted,
resulting in additional methods with which path planning problems can be solved.
Three new composite algorithms are proposed:

ˆ Online executed LTL constrained RL

ˆ LTL constrained RL with detached accepting frontier

ˆ LTL constrained RL with detached accepting frontier and potential based
rewards

Evaluation of proposed algorithms

Starting with chapter �ve, the three main categories of path planning problems for
reinforcement learning are presented. These are

ˆ Safe navigation to destination

ˆ Sequential state visits

ˆ Liveness and fairness

Furthermore, suitable techniques for measuring the performance of the proposed
algorithms are presented here.

The algorithms are evaluated through experiments on speci�c problems from the
three path planning problem categories. The sixth chapter describes the implemen-
tation of the small research platform necessary for conducting these experiments in
the �rst part of this project.

The seventh chapter describes the seven experiments conducted in Part I of this
thesis. Through these, conclusions regarding the three proposed algorithms can be
made. Among these, the most important ones are that

ˆ The detached accepting frontier is necessary to induce initial speci�cation
compliance even in small scale systems.

ˆ Potential methods can be used to solve problems with large state spaces.

ˆ Potential can be used for initial exploration guidance when this information is
expensive.

The conclusions are presented in the eight chapter of this thesis. Here, notes on the
technical implementation and experiments, ideas for future work, and the answers
to the research questions that Part I provides are also found.

Part II

The second part of the project focuses on modular analysis as a method to solve
temporal logic constrained reinforcement learning problems in systems that have
multiple distinct sub-processes. Speci�cally, the type of modular processes consid-
ered are systems consisting of a grid world and a queue.
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Continuous Markov chains

The basic process that lays the foundation of Markovian queueing systems, the
Poisson distribution, is introduced in the �rst chapter of the second part of this
thesis. As this is a process in which discrete events occur at random points in
continuous time, it is also necessary to introduce the concept of Generalised semi
Markov processes (GSMP), in which the event timings can be described technically.

Chapter 10 starts with the de�nition of continuous Markov chains, and aims to
highlight the di�erences between these and the discrete Markov chains used in the
�rst part of this project. As reinforcement learning still requires discrete Markov
decision process descriptions, an important method calleduniformisation is intro-
duced to discretise continuous time Markov processes. In the �nal part of Chapter
10, the proposed structure of joint Markov processes is formulated, along with a
method for discretising those.

Queueing theory

Chapter 12 focuses entirely on queueing theory. It starts with some fundamen-
tal concepts and notation, before moving on to describe two Markovian queueing
systems, theM=M=1 and M=M=1=K queues.

The two types of queues that are discussed are continuous Markov processes.
As reinforcement learning is done on discrete processes, uniformisation is described.
This operation produces a discretised version of a continuous Markov process.

The chapter is �nished with a few sections that explain how cost functions can
be expressed for continuous and uniformised Markov processes, and how these can
be used to �nd analytical solutions to control problems. In the end, the speci�c
threshold type solutions are considered.

Path planning and admission control

Chapter 13 formulates the main control problem of this part, which is solving a
jointly controlled path planning and admission control problem. This problem is
di�cult to solve with reinforcement learning as the state space is in�nitely large.

Modular analysis implies deriving control policies for separate parts of a joint
system, such that reinforcement learning can be used to �nd the policy on a �nite
representation of the state space. The solution is presented in several stages:

ˆ Developing a threshold type solution to an admission control problem for
M=M=1 queues.

ˆ Identifying the threshold using an analytical method.

ˆ Identifying the threshold using simulation.

ˆ Using reinforcement learning to �nd the solution to the temporal logic con-
strained path planning problem in the joint process.
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Evaluation of modular analysis method

In Chapter 14, the experiments of Part II are formulated and conducted. These are
organised in four categories:

ˆ Simulating unlimited queueing systems.

ˆ Simulating limited queueing systems.

ˆ Cost estimation for admission control problems. Here, a parameter that limits
the in�nite joint state space is found.

ˆ Joint path planning and admission control on the joint system.

In Chapter 15, the conclusions concerning the second part of this project are
presented. These are formulated in two parts, which are:

ˆ Evaluating the method of modular analysis.

ˆ Evaluating the implementation and conducted experiments.

After this, answers are provided for the two selected research questions that are
studied in the second part of the project. In the �nal conclusions of this thesis,
some notes on the entirety of the project are given, along with suggestions for future
work.
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2
Reinforcement Learning

To describe the methods that are studied and used in this project, there is a need
to explain concepts ranging from the basics of reinforcement learning to regular
languages, automata and temporal logic. This chapter focuses on the �rst, and the
structure aims to help the reader build a strong fundamental understanding of the
mechanisms that work behind the fundamental reinforcement learning algorithm
used in this work, called Q-learning. This is crucial to understand the problems and
methods investigated in the succeeding experiments and conclusions of this work.

2.1 Discrete Event Systems

A system can, according to [12], in its fundamental meaning be intuitively de�ned
as the concept of di�erent entities exchanging information with each other, through
some function. To describe the behaviour of a system, a system model may be
constructed, describing the change of a set of parameters. Some of these may be
in�uenced by an input and some may be measured to form an output.

When modeling dynamical systems describing for instance position and velocity
of a particle, it is natural to assume that all system states are in some way depen-
dent on time. They are continuous-time state systems, and their state transition
mechanisms are time-driven. However, there are also systems where the state transi-
tion mechanism is driven by the occurrence of discrete-time events, instantaneously
taking the system from one state to another, for example the pressing of a button
that changes the light bulb state from o� to lit.

Therefore, a practical way to view discrete event systems is a discrete state
space, event driven system where the transitions between states are dependent on
occurrences of asynchronous discrete events over time. Based on this, the speci�c
discrete event system class called Markov decision processes can be de�ned.

2.2 Markov Decision Processes

A Markov decision process (MDP) is a system model of a discrete-time stochastic
process. It can be viewed as a transition system where a probability distribution
over state transitions is de�ned in each state, and this non-determinism is very
useful for modelling an environment that may behave in an unpredictable way. A
fundamental de�nition of an MDP M , following in the style of [2], is

M = hS; A ; P; pinit ; AP; � i (2.1)
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where

ˆ S is a �nite set of discrete states.

ˆ A is a �nite action set such that A (s) � A is the subset containing the actions
that can be performed from the states 2 S.

ˆ P is a mapping over the probabilities of transitioning between states, such
that P : S � A � S ! [0; 1] describes the probability to transition from state
s to state s0 via action a as P(s; a; s0).

ˆ pinit describes the probability distribution that determines the starting point
of the process such thatpinit : S ! [0; 1]. Naturally, the probability of any of
the states being the initial state is always one.

ˆ AP is the set of state labels, and here they are speci�cally called atomic
propositions.

ˆ � is the mapping that connects each state to the atomic propositions as
� : S ! AP [ ? . An important assumption embedded in this notation is
that at most one element ofAP can be mapped to each state. Another way
of expressing this is that at most one of all possible atomic propositions can
hold true in each MDP state. This is common in the grid world type MDP
applications considered in this work, and is thus a special case of the general
setting where more than one label fromAP can be present in each state. In
the general case, this relationship is then instead denoted� : S ! 2AP , but
this is again not the case in this work.

Furthermore, asP is a probability function it is important to note that
P

s02S P(s; a; s0) = 1 which intuitively says that the probability of performing any
transition possible from a states is one. As mentioned before, the probability of
any state being the initial state is given by

P
s2S pinit (s) = 1 .

However, for reinforcement learning applications the MDP description can vary.
One way of modifying the de�nition is to consider the initial state as a deterministic
entity, making the probabilistic notation pinit redundant. This convention is used
in [9] and [4], and may be formally de�ned by exchanging the distributionpinit to a
speci�c initial state sinit in the MDP de�nition of (2.1). It should also be noted here
that even sinit is a somewhat redundant notation; it is often exchanged fors0. In
this work, the practical ordering of MDP states into grids is used which technically
implies that each state is associated with a coordinate. This means that if each state
has an indexi , each i can be mapped to coordinates(x i ; yi ). To avoid confusion,
when s0 is used to denote the initial state, it does not necessarily mean that the
state with coordinates(0; 0) is the initial state.

In [3], another way of describing an MDP is used. Rewards are important in
reinforcement learning, and they can be included in the MDP description. Formally,
the environment reward convention is described by including the element
� : S � A � S ! R in the tuple in (2.1). The function maps a transition from
P(s; a; s0) to a reward, received when completing the transition. Furthermore, in [3]
the atomic propositions and state labeling functions are disregarded.
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Lastly, a third modi�cation to the MDP is considered. This description is used
in [1], and it includes both the concept of atomic propositions with corresponding
state labeling function, and that of rewards. Formally, the tuple in (2.1) is extended
to M = fS ; A ; P; s0; AP; �; � g.

With these descriptions, an MDP environment model may be modi�ed to see �t.
However, the core concept of Markov decision processes remains consistent through-
out the di�erent modi�cations, and is what makes the MDP a good environment
representation in reinforcement learning. This concept is called the Markov prop-
erty.

2.2.1 The Markov property

The Markov property, here described as in [13], is interesting as it addresses the
problem of �nding the probability of the environment being in a speci�c state. In
the context of reinforcement learning, the probability of a discrete process receiving
rewards r in state s at discrete time point k + 1 depends on all previous states,
rewards and actions. The joint probability distribution for the reward and state at
k + 1 is then said to be conditioned on all these di�erent factors, and it is given by

Prf s(k + 1) = s0; r (k + 1) = r js(0); a(0); r (1); : : : ; r (k); s(k); a(k)g (2.2)

where general probability is denoted byPr. However, if the Markov property holds,
all information needed to express the next state and reward is encapsulated in the
expression for the state, action and reward at the previous discrete time pointk.
The joint probability is then said to be conditioned on the available information at
k only, such that the probability of the next state assuming some speci�c values0

and the next reward beingr is given by

Prf s(k + 1) = s0; r (k + 1) = r js(k) = s; a(k) = ag (2.3)

The information about the process is thus propagated through the iterations of
k and can be accessed without considering all previous states. To dive further into
the statistical background of the Markov processes, the concept of determinism and
probabilism is explained in the next section.

2.2.2 Deterministic and probabilistic Markov processes

The relationship between the statesS and the set of actionsA in the MDP M can
be both deterministic and probabilistic. To understand this, consider a controller
responsible for selecting the actions performed in the process. This setting can be
illustrated as in [14] by the following example.

A robot is navigating through a discrete grid world. The environment is described
by the MDP M D = hS; A ; PD ; sinit ; � i where S = f s0 : : : s8g and the action space
is A = f N; E; S; W g representing the four cardinal coordinates. The initial state is
sinit = s4, the center.

By assuming a transition probability function PD de�ned as PD (s; a; s0) ! [0; 1]
that assumes values between0 and 1, the action a needs to be de�ned in order to
get the probability of transitioning from s to s0. This action is somehow determined
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s0 s1 s2

s3 s4 s5

s6 s7 s8

PD (s4; N; s1) = 1

Figure 2.1: A deterministic transition from s4 to s1 via the action N .

by the controller, but often motivated by maximising the total number of rewards
for transitioning between states, given by� . Having de�ned s and a, the probability
of transitioning to any other state in the state spaceS is now given byPD .

For deterministic Markov decision processes such as the robot in Fig 2.1, the
probability of transitioning between states by an action is always exactly one or zero.
Therefore, it is common to express deterministic Markov processes using transition
functions denotedT instead of probability functions denotedP. However, as this
work focuses on probabilistic Markov processes only, the probabilistic notation is
used. In the example, if the robot is in states4 and the controller selects actionN ,
the probability function PD gives the values

PD (s4; N; s0) =

8
<

:
0; s0 = f s0; s2; s3; s4; s5; s6; s7; s8g

1; s0 = s1
(2.4)

and
X

s02S

PD (s4; N; s0) = 1 (2.5)

Both the action selection and the resulting transition are deterministic in that there
is a 100 percent probability of transitioning to another speci�c state. If the robot is
in s4 and the action selected isN , the robot will de�nitely move north to state s1

at all times, according to the deterministic probabilities inPD .
Now imagine the same setting, except that oil has been spilled on the �oor,

making it slippery. As the robot might slip and move unexpectedly, this must be
included in the model. The functionP is a probabilistic transition function, and
the environment MDP is now described by the tupleM P = hS; A ; P; sinit ; � i . In the
same manner as in the deterministic setting, the robot is in its initial statesinit = s4

when the actiona = N is chosen by the controller. Since the �oor is slippery, the
actual transition resulting from this is now determined byP as

P(s4; N; s0) =

8
>>>>>>>><

>>>>>>>>:

0; s0 = f s0; s2; s4; s6; s8g

0:1; s0 = s3

0:1; s0 = s7

0:3; s0 = s5

0:5; s0 = s1

(2.6)
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s0 s1 s2

s3 s4 s5

s6 s7 s8

P(s4; N; s1) = 0 :5

P(s4; N; s5) = 0 :3

P(s4; N; s7) = 0 :1

P(s4; N; s3) = 0 :1

Figure 2.2: Probabilistic transitions resulting from selecting the actionN .

and
X

s02S

P(s4; N; s0) = P(s4; N; s3) + P(s4; N; s7) + P(s4; N; s5) + P(s4; N; s1)

= 0:2 + 0:1 + 0:3 + 0:5 = 1
(2.7)

Although the controller selected the northern action, the robot may slip and
instead go west, south or east with the corresponding probabilities 0.1, 0.1 and 0.3,
visualized in Fig 2.2. Only with probability 0.5 will the robot actually go in the
northern direction. A probabilistic MDP describes the probability of transitioning
from one state to another,after the action has been independently selected according
to some external policy. The probabilistic property does not change the probability
of selecting an action or what actions are available in a speci�c state, but it a�ects
the model response to those actions.

With this setting explained, the concept of reinforcement learning can be de-
scribed in the next section.

2.3 Reinforcement Learning Fundamentals

The principle behind reinforcement learning, as described in [13], may be de�ned as
learning by repeated interaction with the environment and reinforcing an observed
and desired behavior. In practice, the procedure can be summarized as developing
a mapping from environment states and agent actions to a quanti�er in order to
classify each action available in a state as desired or undesired.

Reinforcement learning is considered alongside so called supervised and unsuper-
vised learning as a separate type of machine learning. In comparison to supervised
learning, in which improvements to an existing hypothesis are made if the output
of the hypothesised model di�ers from that of the actual environment, RL does not
go through labeled data sets and its learning is thus independent of any prede�ned
answers, or �supervision�. Even so, RL is not a form of unsupervised learning either,
as unsupervised learning is associated with pattern �nding, whereas RL is merely
trying to maximise the collected total reward to achieve its goal.
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Environment

Agent

ActionStateReward

Figure 2.3: The interaction based reinforcement learning principle.

As implied before, an environment and an agent (equivalent to the previously
used controller term) are the two central entities in RL, visualized in Fig 2.3. The
reward, the value function and the policy are also considered main characters of the
reinforcement learning setup. Although the environment is assumed to behave as an
MDP, an explicit model of the environment is not always used in RL. If implemented,
a model can help predict the future states of the environment based on observations
of the current state, which is �tting in situations where the environment behaves
according to some discretised physical dynamic process, and examples of this can
be found in [13]. However, in this work, the model free variant of reinforcement
learning is used.

The principle mechanism of RL, further described in the style of [13], is thus that
the agent interacts with the environment, and through the structure of the MDP
it receives a reward dependent on the transitions that are made. These rewards
e�ectively serve as a guide for the agent, and immediate rewards are used to achieve
a higher goal. For example, if the navigating robot is ultimately supposed to move
from state sa to sb then rewards might be handed out for transitioning betweensa

and some intermediate statesc and then for the transition betweensc and sb. The
goal is to maximise the total reward, but this cannot be done by only considering
the immediate reward.

The value function puts the concept of rewards into the context of traces through
the MDP, as it maps an environment transition to a value that is not only dependent
on the immediate reward signal, but also on the expectation of future rewards. For
example, if the robot would get a large reward for going to a state in a neighborhood
of states that all imply large negative rewards, the value function would take the
risk of receiving many negative rewards into account when evaluating the transition
to the positive reward state, and this state may ultimately be abandoned in order
to avoid negative rewards in the future.

When the transitions have been valued, a policy can be derived. This will in part
depend on the value of the transitions, but not only, as a problem in reinforcement
learning is that a certain degree of exploration is needed to �nd out if there exists
a better strategy to achieve the goal. This is in [13] described as one of the main
challenges of reinforcement learning, and often implies �nding a balance between
exploration and exploitation.

To describe reinforcement learning technically, the starting point is to de�ne
what has already been touched upon; considering future rewards.
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2.3.1 Return and discount

As mentioned before, a value function will not only take immediate reward into
account, but also potential future rewards. Therefore, as done in [13], it is convenient
to de�ne the return r at discrete time points as

g = r (k + 1) + r (k + 2) +  2r (k + 3) + � � � =
1X

i =0

 i r (k + i + 1) (2.8)

where denotes the discount factor which is a weighting parameter that changes how
far from k individual rewards are taken into consideration in the return function.
The return g at point i is thus a weighted sum of all the future rewards. Using this,
the optimisation target in reinforcement learning can be described as maximising
the return.

2.3.2 Connection to dynamic programming and optimal
value functions

Dynamic programming, originally proposed in [15] and e�ciently summarised in
[16], builds upon Bellmans principle of optimality which states that any part of an
optimal process is also optimal. Its name comes from the application to computer
programming and that it is suitable for dynamic processes, as in the following opti-
mal control based description obtained from [16]. The next state of a discrete time
system can be described by

s0 = f (s; a) (2.9)

wheref is a function describing the system dynamics,s is the state at time k and a
is the control signal at timek. A cost function for the complete process is given as

J (s) = S(s(K )) + V(s; a) + V(s0; a0) + V(s00; a00) : : : (2.10)

where the states and actions over a time horizon are evaluated in terms of value.
Here,S denotes the cost at the �nal state whenk = K and V is the value function.
If the optimal control, state and costa� , s� and J � are evaluated, the principle of
optimality can be used to write the optimal cost function at stagek as

J � (s) = min
a

�

V(s; a)
�

+ J �0(s�0) (2.11)

Thus, the solution to a discrete time optimisation problem can be formulated as
a recursive process. This principle is also exploited in reinforcement learning to �nd
the optimal values of two speci�c functions, concerning the values of the states and
the values of the actions. The optimal cost function is not necessarily deterministic,
and can in the stochastic case be formulated as maximising the optimalexpected
value of the stochastic cost function.

2.3.3 Optimality in state and value functions

To use the principles of dynamic programming in a reinforcement learning setting,
following in the style of [13], the starting point is to consider a function that assigns
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a value to the MDP states, according to a control policy� . As dynamic program-
ming is open for stochastic cost functions, the probabilities must now be taken into
consideration, which is why the expected value of the return at a given state is
considered. Let the state value at discrete time pointk according to the policy�
be de�ned as

V� (s) = E� [gjs] = E�

� 1X

i =0

 i r (k + i + 1) js
�

(2.12)

This function is thus the expected value of the return that was previously described
in (2.8). Continuing in this fashion, the decision to take a speci�c actiona in a
speci�c state s according to� at a discrete time pointk may be valued according to

Q(s; a) = E� [gjs; a] = E�

� 1X

i =0

 kr (k + i + 1) js; a
�

(2.13)

The Bellman principle of optimality can now be used to express the state value
function as the actions that maximise the action value function. This follows the
same principle as (2.11), but now the notation regards MDP statess and actionsa.
Therefore, instead of formulating the optimality in discrete time steps, the Markov
property is used to express the probability of the speci�c next state, which is now
denoted s0. Accordingly, the next action is now denoteda0. The optimum of the
value functions for the state and action selection described in (2.12) and (2.13) are
now given in terms of the MDP as

Q� (s; a) = max
�

Q(s; a) =
X

s02S

P(s; a; s0)
h
r 0+  max

a0
Q� (s0; a0)

i

V �
� (s) = max

�
V� (s) = max

a2A (s)

X

s02S

P(s; a; s0)
h
r 0+ V �

� (s0)
i (2.14)

The �nal expressions for the optimal state and action values in (2.14) are called
the Bellman optimality equationsfor the two functions. Here,P is the MDP element
that denotes the probability of transitioning to state s0 from state s via action a.
For illustrative purposes, the notation includes the speci�c reward valuer 0 that is
obtained by completing the transition, but the expression remains equivalent to the
one used in the de�nition of the MDP.

2.3.4 Policy iteration

Previously, it has been discussed how the Bellman principle of optimality is used
in the context of an MDP and how the Markov property is utilized to produce
an equivalent function for a probabilistic MDP for one speci�c policy. Now, if two
di�erent policies � and � 0 are given, and their state value functions can be compared
such that V� 0(s) � V� (s) in all states s 2 S, then V� 0(s) is at least as good or better
then than V� (s). One example of this is thegreedypolicy described as in [13], and
given by

� 0(s) = arg max
a2A (s)

X

s02S

P(s; a; s0)
h
r 0+ V � (s0)

i
(2.15)

for which the value function isV� 0(s). Since the better policy is derived from the
old one, this procedure is calledpolicy improvement. Evaluation and improvement
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can be done consecutively until a point whereV� 0(s) = V� (s) which implies that

V� 0(s) = max
a2A (s)

X

s02S

P(s; a; s0)
h
r 0+ V � 0(s0)

i
(2.16)

Comparing this expression to the Bellman optimality equation (2.14), the equiva-
lence between them becomes clear. Therefore, asV� 0 = V � , � 0 must be the optimal
policy. The procedure of iteratively deriving a better policy until convergence is
called policy iteration.

2.3.5 Value iteration

According to [13], computing the policy evaluations in the policy iteration procedure
includes repeated evaluations of the whole state set. Furthermore, the convergence
to the optimal value occurs only in the limit, and it may be a very bene�cial trade
o� between computation time and accuracy to consider �nish close to convergence
instead of in the exact limit. Value iteration may thus be expressed as a combination
of policy improvement and a shortened policy evaluation as

Vi +1 (s) = max
a2A (s)

E[r 0+ V i (s0)js; a]

= max
a2A (s)

X

s02S

P(s; a; s0)
h
r 0+ V i (s0)

i (2.17)

for all states s 2 S. Here, i does not denote discrete time, but rather a general
iterative index indicating that V(s) is a value that is recursively improved upon.
This convenient iteration is guaranteed to converge to the optimal value function,
and plays a central role in a fundamental type of reinforcement learning called Q-
learning.

2.4 Q-learning

Q-learning is an algorithm that produces an estimate ofQ, the function that values
the selection of actions in states, given previously in (2.13), hence its name [13].
The estimate is denotedbQk(s; a) and follows the principles of value iteration until
it converges to the optimal action value functionQ� (s; a) from the Bellman opti-
mality equation (2.14). The fundamental version of Q-learning originally proposed
in [17] is a model free reinforcement learning algorithm, but there are also ways of
incorporating a model of the environment in the process.

2.4.1 Model free Q-learning

The formal de�nition of model free Q-learning follows in the style of [1], and is the
type of Q-learning that is used in this work.

Consider a basic MDPM = hS; A ; P; sinit ; AP; �; � i . The extended value func-
tion Q : S � A ! R can be seen as a mapping from states and actions to a value
and the probability expressed in the value iteration described in (2.17) is now given
by the MDP transition probability map P : S � A � S ! [0; 1], while the rewards
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are given by the mapping� : S � A � S ! R. Under the assumption thatQ� (s; a)
describes the action value at the optimum, the Bellman equation for optimality of
the action value function in (2.14) writes as

Q� (s; a) =
X

s02S

P(s; a; s0)[� (s; a; s0) +  max
a02A (s0)

Q� (s0; a0)] (2.18)

Note here that r 0 is replaced with the MDP element� (s; a; s0). Furthermore, given
that this denotes the function at the optimum, the optimal policy is naturally given
by

� (s) = arg max
a2A

Q� (s; a) (2.19)

To further motivate that the Q-function approximate can be expressed by the
principles of value iteration, consider that the estimated sample mean of a random
variable X is expressed aŝmk =

P k
i =1 x i =k wherex i are samples of the variable. As

explained in [1], weighted re�nements of the estimate can be expressed recursively
in terms of an increasing set of samples as

m̂k+1 = m̂k + � (xk+1 � m̂k) (2.20)

where � is the weighting. Now, let the estimated Q-function bQ(s; a) replace m̂.
Then recall that the evaluation of an action is based on both the immediate reward
and the return, and replace the new samplexk+1 with the sum of the immediate
reward and the weighted previous estimation of the Q-value at the next state and
next action, which is � (s; a; s0) +  maxa02A (s0)

bQk(s0; a0). Then

bQk+1 (s; a) = bQk(s; a) + � [� (s; a; s0) +  max
a02A (s0)

bQk(s0; a0) � bQk(s; a)] (2.21)

becomes the expression for the recursive Q estimate, as described in [1]. As a
reminder, 0 <  < 1 is called the discount factor, and it determines how far away
Q-values shall in�uence a new approximation. This result coincides with the original
formulation of the Q-learning iteration in [17], where it is derived in a similar manner.

Finally, note that in reinforcement learning, it is well known that theQ-function
is an estimate that is continuously developed in the learning process. Because of
this, the estimate notation of bQ is often expressed as a plainQ.

2.4.2 Action selection

While the optimal action taken in a certain states is said to be given by the optimal
policy in (2.19), little has been said about how to select actions when developing
it. As mentioned in Section 2.3, the Q-function estimate develops by the agent
taking the actions with the largest Q-values, but there is also a need to keep ex-
ploring di�erent paths through an MDP process to �nd di�erent, possibly better,
paths to maximise the total reward. Therefore, two concepts of action selection are
considered.

As explained in [18], selecting the actiona with the largest Q-value in state
s is called greedy action selection. To introduce exploration, consider choosing a
random action with probability � from a uniform probability distribution over the
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set of available actions. With probability 1 � � , the action is selected greedily.
Formally, if m actions exist to choose from, this can be expressed in terms of a
probability distribution as

� (ajs) =

8
><

>:

�=m + 1 � � if a = max
a2A (s)

Q(s; a)

�=m otherwise
(2.22)

Note that � here denotes a probability distribution describing the general� -greedy
action selection principle, and does not denote a policy in the traditional sense.

After many iterations, when the approximation of the Q-function starts to con-
verge to the optimum, the need for exploration generally decreases. There are many
ways of ensuring that the probability � decreases with the iterations, increasing the
probability of selecting an action greedily. For example, exponentially or linearly
decaying� functions are common [19].

With the Q-learning fundamentals outlined, the �eld of temporal logic is de-
scribed in the next chapter.

2.5 Summary

From a basic de�nition of discrete event systems, the concept of Markov decision
processes utilising the Markov property is considered as the fundamental descrip-
tion of an environment in a reinforcement learning setting. MDPs are said to be
either probabilistic or deterministic, which regards transitions between states after
an action has been selected.

Reinforcement learning is concluded to build upon the dynamic programming
principle and its implementation of the Bellman optimality principle. Basic concepts
such as policy and value iteration leads up to the de�nition of tabular Q-learning,
for which model free Q-learning and� -greedy action selection are described.
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3
Temporal Logic Speci�cations

This chapter handles the second cornerstone of the theory behind this project which,
next to reinforcement learning, is temporal logic (TL).

3.1 Temporal Logic and Predicate Logic

Predicate logic presented as in [20] is used to state propositions, a form of declarative
statements, about variables that can be either true or false. Common operators are
negation, implication, conjunction and disjunction. In this work, it su�ces to brie�y
summarise the commonly used propositions in the form of a table with illustrative
examples.

Note that the example for conjunction in Table 3.1 can never be true. Such
a statement is called acontradiction, and in similar manner a statement which is
always true is called atautology.

The di�erence between classical predicate logic and temporal logic as described in
[21] is that temporal logic makes it possible to express logical statements in relation
to time, which is why it is very useful when planning the behavior of systems. The
expressions used in TL are similar tomodal logic, where modalities such aspossibly
and necessarilyare used to extend predicate logic statements. For example, the
statement �p is possibly true if q is necessarily false� can be formulated in modal
logic, while only absolute statements such as �p is true if q is false� can be formulated
by the use of predicate logic. In temporal logic, di�erent modalities are used, such
as alwaysand eventually. To elaborate on this, the speci�c form of temporal logic
called linear temporal logic is introduced next.

Table 3.1: Predicate logic propositions with examples.

Proposition Sign Example Read out
True T p = T p is true.

False F q = F q is false.
Negation : p = : q p is not q.
Disjunction _ p _ : p = T por not p is true.

Conjunction ^ p ^ : p = F
p and not p is
false.

Implication ! p ! q
If p true then q
true.
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Table 3.2: LTL modalities with examples.

Modality Word Example Read out

# Next ' = # p ^ : # q
Next is p and not
q.

� Eventually ' = � (p _ q)
Eventually p or q
will be true.

� Always ' = � p ^ � : q
p is always true
and q is never
true.

S
Until ' = p

S
q

p is true until q
is true.

3.2 Linear Temporal Logic

Linear temporal logic, which gets its name from the linear time relation that it builds
upon, is introduced and formulated in the style of [2]. To begin with, linear discrete
time can be de�ned as a set in which any two elements, which can be regarded as
points in time, are related by one of them being larger than the other. The smaller
element of the two must then necessarily occur before the larger one; this is called
a linear order.

Only a few fundamental modalities need to be explained in order to understand
how temporal logic are used in this work, and they are as in [2] compiled in a
summarising table. In Table 3.2, some of the more common modalities are pre-
sented along with illustrating examples. LTL formulae are further de�ned using the
principle of induction according to the following statements:

ˆ If p 2 AP , then p is considered an LTL formula.

ˆ If ' 1 and ' 2 are both LTL formulae, then : ' 1, ' 1 ^ ' 2, # ' 1 and ' 1
S

' 2 are
also LTL formulae.

Moreover, two interesting special cases of LTL formulae arise when modalities
are combined. They are�� ' , meaning �in�nitely often ' �, and �� ' which means
�eventually forever ' �.

In connection to the MDP setting described in Section 2.2, LTL formulae can be
de�ned for variables such asp and q from the set of atomic propositionsAP . Later in
this thesis, it is explained how to take advantage of the fact that atomic propositions
can be assigned as state labels in the MDP formulation. First, to explain the method
in which temporal logic is combined with reinforcement learning and MDPs, there
is a need to brie�y describeformal languages.

3.3 Formal Languages

Formal languages are here used to describe the behavior of certain discrete systems.
It is therefore necessary to de�ne the basic properties that make up a language.
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3.3.1 Symbols, words, alphabets and languages

In accordance with [22], a symbol is considered the fundamental element, and can
be for instance a letter or a digit. A sequence of symbols is called a word or string,
and these annotations will be used interchangeably. For symbols and words, the
following properties are de�ned:

ˆ An alphabet, denoted� , is a �nite set of symbols from which words can be
formed.

ˆ The empty word is denoted� .

ˆ The length of a wordw is denotedjwj and simply equates to the number of
symbols in the word.

ˆ A concatenation of two wordsw and v is a word de�ned as the �rst word
followed by the second. Concatenations of a wordw with the empty word � ,
both before and after, results in the same wordw.

ˆ The pre�x of a word is any number of leading symbols of a word. For example,
the pre�x of mad is � , m, ma, or mad.

ˆ The su�x of a word is any number of trailing symbols. In the mad example,
the su�xes are � , d, ad and mad.

ˆ A formal languageL is a subset of possible words that can be derived from an
alphabet. For example, if the alphabet is� = f a; bg then a language, in this
case denotedL � � � 1, is a setL = f �; a; ab; b; ba; aab; bba; : : :g. The empty
set ? and the set with only the empty string � are also considered languages.

3.3.2 ! -languages

Extending the de�nition of languages derived from �nite words, languages consisting
of in�nitely long words are also possible. This concept is here described as in [2].

In�nite length words are never ending sequences of symbols from a �nite al-
phabet, and the notation � ! describes the set of all in�nite words that can be
constructed using� . Subsets of� ! are called! -languages, and concepts such as
union and concatenation that in Section 3.3.1 were used for �nite sequences, apply
here with in�nite repetition.

To formally express the in�nite repetition in the context of a language, de�ne a
languageL � � � . The ! -languageL ! is then a subset of wordsL ! � � ! formed by
an in�nite number of concatenations of �nite words gathered from� , so that

L ! = f w1w2w3 : : : jwi 2 L ; i � 1g (3.1)

The concept of! -languages is central to this work, as it is used as an exten-
sion to the relation between in�nite ful�llment of a speci�cation and its automata
representation, which is described next.

1The � operator used here is theKleene star [22], which since� is a set of symbols implies the
set of all words over the symbols in� .
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3.4 Automata

The basic �nite automaton (FA) , sometimesdeterministic �nite automata (DFA)
with the non-stochastic property emphasized, is a discrete model of a system ac-
cording to [22]. It is, in a similar tuple fashion as the MDP, formally described by
the tuple

A = hQ; � ; �; q0; Qm i (3.2)

where Q is a �nite set of states, � is a �nite input alphabet, q0 2 Q is the initial
state and Qm � Q is the set of marked or accepting states. Sometimes, such as
in [21], a set of forbidden statesQx � Q is also included. The transition function
mapping � : Q � � ! Q describes the transitions between states via a con�guration
of symbols from the input alphabet, such that� (q; � ) returns a state for eachq 2 Q
and � 2 � .

A language can be de�ned as in [22] for the automaton input alphabet� in the
way it is described in Section 3.3.1. The sequence of inputs from the alphabet makes
up a word, and since the inputs result in transitions between automaton states, the
di�erent words formed by the input alphabet can be assigned di�erent properties
depending on which states their associated sequences of transitions visit. A wordw
is accepted by the automaton if� (q0; w) = qm for someqm 2 Qm , and by association
the accepted or marked languageL m of an automaton is the setf wj� (q0; w) 2 Qmg,
meaning the set of words for which the sequence of transitions �nishes in a marked
state. Analogously, the forbidden language can also be de�ned if there are forbidden
states in the automaton de�nition.

Fig 3.1 describes an example automaton with the state setQ = f q0; q1; q2; q3g,
alphabet � = f a; b; c; dg. State q0 is the initial state, state q2 is forbidden while
state q3 is marked, meaning the marked language isL m = f adg and the forbidden
language isL x = f b; cg.

3.4.1 Coloured deterministic �nite state automata

Marked and forbidden states of an automaton make it possible to express marked
and forbidden languages in terms of input words. Sometimes, it is also necessary
to characterise these words in terms of which automaton states are visited when
performing the sequence of actions that the word implies, without neccessarily being
associated with marked and forbidden states.

To categorize states, an addition to the automaton tuple de�nition can be made.

q0

q1

q3

q2

a

b c

d

Figure 3.1: DFA with the marked state q3 and the forbidden stateq2.
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This can according to [23] be viewed as a generalization of the deterministic �nite
state automata class, and is calledcoloureddeterministic �nite state automata. This
type of automaton is here formally de�ned as

A = hQ; � ; �; q0; Qm ; C; � i (3.3)

where the function� : Q ! C maps a stateq 2 Q to a colour in C such that � (q) is
the color of stateq. Using this notation, states can be categorized in a convenient
way.

Speci�cally, the concept of coloured states is in this work used to label automaton
states in scenarios when state categories such as marked and forbidden are insu�-
cient. In �gures describing automata, the colour of an automaton state is visualised
by an actual colour, and di�erent colours thus indicate di�erent labels. The default
color of a state is white, which is also re�ected in the �gures.

3.5 Translating LTL Formulae to Automata

Similar to the connection between �nite languages and �nite automata, described in
Section 3.4, there is a connection between the in�nite languages and another form
of automata.

3.5.1 The key idea

The procedure of translating an LTL formula to an automaton is best explained by
an example from [1]. Consider the LTL formula

' = � p ^ � : q (3.4)

This is interpreted as eventually,p occurs whileq must never be true. In other
words, the negation ofq must be repeated forever according to the formula. As
described in Section 3.2, LTL formulae such as (3.4) can be de�ned for a set of
atomic propositions,AP . For the example above, the associated set isAP = f p; qg,
and it is assumed that there is a way for the automaton to observe the elements of
this set and their value, which can be either true or false.

In practice, the key step is now to construct the automaton that realises (3.4)
by building an automaton alphabet of temporal logic statements from the elements
of AP . In the example above, a corresponding automaton is the one in Fig 3.2. It
can in Fig 3.2 be observed how words can be constructed by making transitions in
the automaton. For example,p and q can both be false until some point wherep is
true, and a transition is made to the marked state. Ifq becomes true in any case,
a transition is made to the forbidden state, which is undesired, and this behavior
agrees with (3.4). This must then hold in�nitely often.

Hence, LTL formulae can be realised as languages of in�nite words over the
alphabet 2AP . This comes from the de�nition of (2AP )! being the set of words that
is the result of in�nite concatenation of words in2AP [2]. To summarise the principle
behind the procedure in theory, an LTL property can, as described in [1], be de�ned
by the in�nite sequences� = � (0)� (1)� (2) : : : that can be formed from the alphabet
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q0 q1

q2

p ^ : q

q
q

: p ^ : q : q

Figure 3.2: Automaton from [1] realising' = � p ^ � : q.

� . These sequences are part of the set denoted� ! , and the symbols� (i ) 2 � where
� = (2 AP ). Thus, LTL properties are ful�lled by ! -languages based on an alphabet
of atomic propositions. If LTL properties can be realised by an! -language, there
are also automata structures that can describe these languages. In this way, an
automaton can be de�ned to represent an LTL-property.

However, the speci�c automata form required for this has not yet been discussed.
As the automaton in the example of Fig 3.2, this class of automata is calledBüchi
automata.

3.6 Büchi Automata

Finite automata require a �nite number of transitions to reach an accepting state.
The words formed from the input language are �nite, and all possible words that
imply reaching the marked state make up a �nite marked language. To express
an in�nite marked ! -language for an automata, this automata needs an accepting
condition suitable for in�nite words, according to the de�nition in [2].

The formal di�erence between an automaton that realises a �nite marked lan-
guage and one that realises a marked! -language is that for the automaton with a
�nite marked language, it is enough that the input word leads to an accepting state
once. If the marked language is an! -language, however, the entire in�nite input
word must be checked so that it always leads to an accepting state. This means
that the acceptance condition is in this case de�ned for in�nite runs of the automa-
ton, according to [2]. There are several di�erent automata for which the acceptance
condition is to visit a state an in�nite number of times, but the types that are used
in this work are variants of the Büchi automaton.

3.6.1 Nondeterministic Büchi automata

The non-deterministic Büchi automaton (NBA) is a general form of the Büchi au-
tomaton, and is by following the de�nition in [2] described by the tuple
B = hQ; � ; �; Q 0; Qm i whereQ is a �nite set of states, � is the alphabet,
� : Q � � ! 2Q is the transition function mapping, Q0 is the set of initial states
and Qm � Q is the set of marked states. Note that the transition function mapping
returns a set of states, not a single state, and the initial state condition is also a set
of states.
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q0 q1

b

a ^ b

b a ^ b

Figure 3.3: NBA from [2] that satis�es the LTL property ' = � b^ �� a.

The accepting! -language of the NBA is given by

L ! (B) = f � 2 � ! j9 an accepting run for � 2 Bg (3.5)

where a run is de�ned as a state sequence resulting from applying an input sequence
from the alphabet. An in�nite run is thus de�ned as an in�nite sequence of visited
states, and the accepting language is then all the in�nite input words constructed
from the alphabet that produce the in�nite runs in which the accepting states appear
in�nitely often.

The behaviour of a non-deterministic Büchi automata can be illustrated by the
speci�c example in [2] that relates linear temporal logic properties to both non-
deterministic and the deterministic special case of the Büchi automata. The non-
deterministic Büchi automaton in this example, illustrated in Fig 3.3, is given by
B = hQ; � ; �; Q 0; Qm i whereQ = f q0; q1g, � = 2 AP contains the expressionsa, band
a ^ b formed from a setAP = f a; bg. Furthermore, Q0 = f q0g, Qm = f q1g and the
transitions are de�ned according to Fig 3.3. By inspection, it can be seen that this
NBA ful�lls the LTL property ' = � b^ �� a.

As explained in [2], it can be seen thatB is not deterministic, because no matter
what symbol is chosen, properties are ful�lled for transitions to both state; if inq0

and b is true, it cannot be determined if a transition toq1 shall be made or not, but
the language is still that of the speci�ed LTL formula. This automaton is a Büchi
automaton since the runs that contain the marked state, such as the runq0q!

1 , are
the result of applying in�nitely long words from the accepting language. These runs
can be observed to contain the accepting state an in�nite number of times.

3.6.2 Deterministic Büchi automata

A Büchi automaton B = hQ; � ; �; Q 0; Qm i is according to [2] deterministic (DBA) if
the initial state set has size one, and the transition function only returns one state.
The descriptions for the elements in the tupleB are in all other aspects the same as
in the description for nondeterministic Büchi automata.

The determinism property is illustrated by the same example from [2] that is
used to describe the nondeterministic Büchi automaton in Section 3.6.1. Consider
the automaton B where Q = f q0; q1g, � = 2 AP with AP = f a; bg, Q0 = f q0g,
Qm = f q1g and the transitions that are de�ned according to Fig 3.4. Just as the
non-deterministic Büchi automaton described in Fig 3.3, the automaton describes
the property ' = � b^ �� a.

The DBA in Fig 3.4 thus ful�lls the same LTL properties as the NBA in Fig 3.3,
but it is deterministic since the transition mapping from source state and action to
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q0 q1

a ^ b

: a ^ b

: a ^ b a ^ b

Figure 3.4: DBA from [2] that satis�es the LTL property ' = � b^ �� a.

a destination state only returns one destination state, and not several. For exam-
ple, there are no actions available from theq0 state that imply staying in q0 and
transitioning to q1 at the same time, which was the case in the automaton of Fig
3.3.

A very important property is that NBAs are more general than DBAs, meaning
that for every ! -language that can be represented by a DBA, there exists an NBA
that represents the same language, but the converse is not true. There exist! -
languages that can be represented by an NBA, but not by any DBA; this can be
proven by contradiction.

3.6.3 Some languages have an NBA representation, but not
a DBA representation

The following proof is outlined from the more comprehensive version found in [2].
Consider the! -language given by(a + b)� b! .

A corresponding NBA can be seen in Fig 3.5. For the word� = wb! where w
is some word fromf a; bg� , the NBA has the options to either stay in stateq0 or
�guess� when the b-su�x of w starts (at the point where w = aaaabbb : : :switches
from a to b repetitions) and thereby move to the accepting stateq1; this behavior is
non-deterministic and can not be represented by a DBA.

As explained in the proof of Theorem 4.50 of [2], start by assuming that the
language of a DBA is formed by the same expression such that
L ! (B) = L ! ((a + b)� b! ) for a DBA B = hQ; � ; �; q0; Qm i . Given the deterministic
property, the transition function � � : Q � � � ! Q is a mapping to one state and not
to a set of states.

The word � 1 = b! is in L ! (B), implying the existence of an accepting state
q1 2 Qm and n1 > 1, such that
� � (q0; bn1 ) = q1 2 Qm . Similarly, the word � 2 = bn1 ab! is also in L ! (B), which
results in a corresponding accepting stateq2 and natural number n2 > 1 so that
� � (q0; bn1 abn2 ) = q2 2 Qm . The same conditions hold for the word� 3 = bn1 abn2 ab!

and correspondingq3 2 Qm and n3 > 1. Iterating this relation until i and gathering

q0 q1
b

a _ b b

Figure 3.5: NBA from [2] representing the language of(a + b)� b! .
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the terms results in

� � (q0; bn1 ) = q1 2 Qm

� � (q0; bn1 abn2 ) = q2 2 Qm

� � (q0; bn1 abn2 abn3 ) = q3 2 Qm

...

� � (q0; bn1 abn2 a : : : bn i � 1 abn i ) = qi 2 Qm

(3.6)

As the DBA has a �nite number of states, there must exist ani < j such that

� � (q0bn1 a : : : abn i ) = � � (q0; bn1 a : : : abn i : : : abn j ) (3.7)

implying that B accepts the sequence

bn1 a : : : abn i (abn i +1 a : : : abn j )! (3.8)

Since this implies an in�nite repetition of a, this is a contradiction, because this
feature is not described by the languageL ! (B) = L ! ((a + b)� b! ), according to the
conclusion of the proof in [2].

3.6.4 Generalized Büchi automata

The generalized Büchi automata is a modi�ed version of the NBA, but the di�erence
lies in the acceptance condition which states that the automaton has to visit several
setsQm in�nitely often, in accordance with the de�nition from [2]. The de�nition of
a GNBA is thus the same as for NBA, but the set of accepting statesQm is replaced
with Qm , a set consisting of a �nite number of accepting state setsQ1

m : : : Qk
m � Q.

Formally, a GNBA G is given by

G = hQ; � ; �; Q 0; Qm i (3.9)

where Qm is a subset of2Q. Another note that can be made is that while a non-
deterministic Büchi has been shown to be a generalization of the deterministic Büchi,
a deterministic Büchi with several acceptance sets can also be de�ned as a special
case of the non-determinstic and more general GNBA, making it a GBA.

3.6.5 Limit deterministic Büchi automata

The last class of Büchi automata that is important in this work is the limit determin-
istic Büchi automata (LDBA). This type is in turn a modi�cation of the generalized
Büchi automata class. Originally proposed by Sickert et al in [24], but explained in
the context of reinforcement learning in [9] and [4], the GBAG is limit deterministic
if the state setQ can be split into two setsQ = QN [ QD (where [ is the set union
operator) such that

ˆ � (q; � ) � QD and j� (q; � )j = 1 for every stateq 2 QD and for every� 2 � .

ˆ Qj
m � QD for every acceptance setQj

m 2 Q m .

Now, su�cient theory has been covered to present algorithms that uses these
concepts in reinforcement learning.
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3.7 Summary

This chapter elaborates on the principles of temporal logic and starts with a distinc-
tion between that and predicate logic. Linear temporal logic is speci�cally de�ned
as the central form of logic used in this work.

Moreover, formal languages and speci�cally in�nite so-called! -languages are de-
�ned as a fundamental concept to understand the connection between LTL-speci�cations
and automata realisations. After this, the most fundamental type of automata is
introduced, followed by the key principle between translating an LTL formula to an
automaton.

For ! -languages, automata with in�nite accepting conditions are required, and
therefore so-called Büchi-automata are introduced. Within this group, a distinction
between deterministic and non-deterministic Büchi automata is made, followed by
some useful variations to these speci�c forms of automata.
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Algorithms and Methods

In this chapter, results from previous research in the �eld of temporal logic con-
strained reinforcement learning is presented and thoroughly analysed. The results
come in the form of three algorithms, which are presented alongside additional meth-
ods for handling large scale systems. After this, three new composite algorithms are
proposed on the basis of the previous research.

4.1 Algorithm 1: Temporal Logic Constrained
Reinforcement Learning

All of the algorithms try to derive an optimal policy for an unknown MDP, whilst
ensuring that the optimal policy follows a speci�cation. The speci�cation is in all
cases formulated in a formal language based on temporal logic expressions, and all
algorithms use tabular Q-learning as the underlying reinforcement learning method.
However, there are variations in the details of these algorithm, and this work is
focused on investigating those di�erences in order to evaluate the potential perfor-
mance di�erences, advantages and disadvantages with the methods.

The �rst algorithm is presented according to the formulation in [1], and it here-
inafter referred to as the TL constrained RL algorithm. The idea behind the algo-
rithm is to consider an MDP and a Büchi automaton that represents a temporal
logic speci�cation, and then formally compute aBüchi weighted product MDPon
which Q-learning can be performed such that marked states in the Büchi automaton
are rewarded. In this way, the learning agent is not only taught the control policy
that is optimal, but also the LTL behavior speci�ed by the Büchi automaton.

4.1.1 Büchi weighted product MDP

Though it is shown in Section 3.6.3 that there are languages that can only be
represented by NBAs, it is stated in [1] that practically usable LTL formulae are
most often possible to express with DBAs. Therefore, for an LTL speci�cation
' , consider the DBA B' = hQ; � ; �; q0; Qm i with a languageL ! (B' ) that ful�lls
' . Next, let M be the MDP given by M = hS; A ; P; s0; AP; �; � i . The product
betweenM and B' is then de�ned as

M 
 B ' = hS
 ; A ; P
 ; s0;
 ; AP
 ; � 
 ; � 
 i (4.1)

where the following holds:
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ˆ The combined state space is formed by a cross product between the two state
spaces, such thatS
 = S � Q.

ˆ The initial state is s0;
 = ( s0; q0).

ˆ The combined transition probability from the combined state(s; q) to (s0; q0)
is

P
 ((s; q); a; (s0; q0)) =

8
<

:
P(s; a; s0) q0 = � (q; � (s0))

0 otherwise

ˆ The set of atomic propositions of the product isAP
 = f M; F g, representing
marked and forbidden product states. These are the only state labels in the
product, as the more complex restrictions based on the state labels ofM are
handled by the DBA before the synchronization.

ˆ The state labeling function for the product is� 
 : S � Q ! AP
 and it maps a
labelled product state to either a marked or a forbidden atomic propositional
label.

ˆ The reward for the product is given by

� 
 (s; q) = � (s) +

8
>><

>>:

� M > 0 � 
 (s; q) = f M g

� F < 0 � 
 (s; q) = f F g

0 otherwise
but it should be noted that the environment rewards� (s) are often disregarded
in practical purposes, and in this work it is only used in classical Q-learning
and never with additional reward methods.

The product is well understood by the graphical example in [1]. The LTL formula
' = � p ^ � : q, which is familiar from Section 3.5.1, can be realized by a DBAB' ,
and computing the product between this DBA and a simple MDPM results in the
product M 
 B ' .

The product system can be seen in Fig 4.1, along withM and B' individually.
The MDP state labels are the atomic propositionsp and q and the formula ' is
formulated using those atomic propositions, but in the product the atomic proposi-
tions are just M and F (represented in the product by a double circle and a dashed

s0 s1

s2 s3

M
f qg

f pg

a

b

c
c

q0 q1

q2

B'

p ^ : q

q q

: p ^ : q : q

s0; q0 s1; q2

s2; q1 s3; q1

M 
 B '

a

b

c
c

Figure 4.1: Visualized example from [1] of the productM 
 B ' between an MDP
M and a Büchi automatonB' .
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circle, respectively) depending on whether or not the DBA state is in a marked or
forbidden state.

4.1.2 Online execution equivalence

Since the probability of transitioning in the product is either the probability of
transitioning in the MDP or zero, and since the total reward is given as a sum
of the MDP reward and the Büchi reward, the transition process of the MDP is
independent on that of the Büchi. Transitioning in the product can be divided into
�rst transitioning in the MDP, and then making a transition in the Büchi depending
on the new state label in the MDP. Thus, computing transitions sequentially for the
MDP and the Büchi is equivalent to transitioning in the product, and this is referred
to as anonline executionof the Büchi.

4.1.3 Algorithm presentation

Finally, an algorithm that describes the Q-learning procedure for the Büchi weighted
product is presented. The underlying algorithm is the tabular Q-learning, explained
in Section 2.4.1, but it is here extended by a dimension to also incorporate the
automaton states. The algorithm is shown in Fig 4.2 and shows the full procedure
of the reinforcement learning loop. The method proposed in [1] has been shown to
guaranteesafety and livenessfor a model free Q-learning problem.

Result: Optimal policy � � (ajs) that satis�es the LTL formula ' .
Initialise
MDP M ,
Büchi automaton B' ,
Q table as in 2.4.1 but for theproduct state and actions,
episode number= 0,
iteration number = 0.
while Q is not convergeddo

episode number++
while q 2 B ' is not forbidden and iteration number < iteration thresholddo

Choose MDP actiona 2 A (s) � -greedily.
Move to s0 by a in the MDP.
Read atomic proposition labels ins0.
Move to q0 in the Büchi according to the atomic propositions.
Recieve the total reward� 
 (s0; q0).
Q(s; q; a)  Q(s; q; a) + � [� 
 (s0; q0) +  maxa02A (s0) Q(s; q0; a0) � Q(s; q; a)]

end
Update � and learning rate � as function ofepisode numberif desired.

end

Figure 4.2: Temporal logic constrained reinforcement learning.
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4.2 Algorithm 2: LDBA Constrained
Reinforcement Learning

This method, presented in [9] and [4], is similar to the previous algorithm but uses
the limit deterministic Büchi automata class to assert that the LTL property holds.
In the original paper, it is proven that the algorithm �nds an optimal policy that
maximises the probability of satisfying the LTL constraints if an optimal solution
exists. If it is not possible to satisfy the given LTL formula, the control policy that
is produced is still "reasonable".

4.2.1 Generalized Büchi automata application and
� -transitions

The environment is in this method, as expressed in [9], de�ned as an MDP tuple
M = hS; A ; P; s0; AP; � i , and note that there is no reward associated withM . The
goal is again to ensure that when using the derived policy, the sequence of states
from s0 and forward (often called a path or trace throughM ) satis�es the LTL
formula ' . This is done by reading the atomic propositions in the MDP state labels
and evaluating the Büchi automata associated with the LTL formula.

As the Büchi automata N = hQ; � ; �; Q 0; Qm i is limit deterministic, the state
set can be divided into two disjoint sets,QN and QD and the following de�nitions,
all gathered from [9], of the sets are made:

ˆ QD is the accepting set, and it is invariant which implies that the automaton
is unable to escape from it when it is reached.

ˆ QN is considered the initial set.

ˆ Both QD and QN are deterministic.

ˆ BetweenQD and QN there are non-deterministic so-called� -transitions. These
transitions are spontaneous, and do not require the reading of any atomic
propositions.

ˆ A non-accepting sink component is a subsetO � Q which induces a strongly
connected directed graph and does not include all accepting sets inQm . Fur-
thermore, the sink component is such that there is no other setO0 � Q, O0 6= Q
such that O � O0.

The � -transition re�ects a �guess� on reaching the invariant acceptance set. If a
label cannot be read after such a transition, this means that the guess was wrong
and the trace does not satisfy the LTL property.

4.2.2 Accepting frontier

The acceptance condition can be represented as several sets of accepting states. It
may be noted that this acceptance condition can also be de�ned for a generalized
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Büchi automaton, as the important feature is the sets of accepting states and not
the non-determinism. In both cases, a way to make sure the agent visits all these
sets in�nitely often is needed. This method is de�ned in both [9] and [4] as the
accepting frontier function Acc : Q � 2Q ! 2Q, and reads

Acc(q;Q) =

8
>>><

>>>:

Q n Qj
m if q 2 Qj

m ^ Q 6= Qj
m

S

k=1: f
Qk

m n Qj
m if q 2 Qj

m ^ Q = Qj
m

Q otherwise

(4.2)

This function operates on the accepting frontier setQ. This set is initialized as
Q =

S

k=1: n
Qk

m whereQ1
m ; Q2

m ; : : : ; Qk
m ; : : : ; Qn

m 2 Q m , the union of all sets of accepting

states in the LDBA. When a new state is reached in the LDBA, the accepting frontier
is updated using (4.2) asQ  Acc(q0; Q). This function evaluates ifq0 is in one of
the setsQk

m 2 Q m ; if it is, this set is removed from the accepting frontier. Now,
this set does not need to be visited again. This procedure continues until all sets
Qk

m 2 Q m but one have been visited andQ = Qn
m where n denotes the index of

the last set in Q. After this, the accepting frontier is re-initialized to the union of
all accepting state sets as before. In this way, the algorithm makes sure that all
accepting conditions of the LTL formula are ful�lled.

To distinguish frontier sets in the automata of this work, the concept of coloured
states from Section 3.4.1 is used. A speci�c frontier set is thus given a speci�c color,
and this is also highlighted in �gures, where all colors except white denote frontier
sets.

4.2.3 Product MDP and reward function

As in the DBA constrained RL algorithm [1], a product between the MDP
M = fS ; A ; P; s0; AP; � g and the LDBA N = f Q; � ; �; Q 0; Qmg is computed in [4]
and [9] as

M 
 N = hS
 ; A ; P
 ; s0;
 ; AP
 ; � 
 i (4.3)

whereS
 = S � Q, s0;
 = ( s0; q0), AP
 = Q, � 
 = S � Q ! 2Q so that
� 
 (s; q) = q. The joint transition probabilities are given byP
 : S
 �A�S 
 ! [0; 1],
implying that P
 ((s; q); a; (s0; q0)) = P(s; a; s0). The accepting condition is to visit
all combined states in which the automaton state is in one of the marked state
de�ned in Qm of the LDBA N .

In addition to this, there are two modi�cations that need to coexist with the
above de�nition of the product MDP:

ˆ The � -transitions to LDBA state q are handled by an action� q that is added
to A 
 = A [ f � q; q 2 Qg. In the algorithm, both A and A 
 are used, so this
formulation does not replace the de�ned actions of the product MDP.

ˆ Probabilities to travel via the � -transitions are given by

P
 ((s; q); � q; (s0; q0)) =

8
<

:
1 if s0 = s, q0 � q! q

0 otherwise
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The reward function is furthermore de�ned using the accepting frontier function
as

� (s
 ; a) =

8
<

:
r + if q0 2 Q, s
 0

= ( s0; q0)

0 otherwise
(4.4)

wherer + and 0 denote positive neutral rewards.

4.2.4 Algorithm presentation

By comparison to how the LDBA constrained reinforcement learning algorithm is
presented in the original paper [9], the additional algorithm steps that calculate the
probability of LTL property satisfaction have here been removed as they are not,
in practice, central to this work. Furthermore, as the equivalence between direct
computation of the product MDP and online execution of the Büchi holds in this
case as well, the algorithm is formulated in terms of the product in order to keep
the notations concise. The algorithm for LDBA constrained reinforcement learning
is shown in Fig 4.3.

Next, a third algorithm that considers the concept of shielded reinforcement
learning is studied.

Result: Optimal policy � � (ajs) that satis�es the LTL formula '
Initialise
MDP M ,
LDBA N ' ,
Q table Q : S
 � A 
 ! R+

0 ,
Accepting frontier set Q,
episode number= 0.
iteration number = 0.
while Q is not convergeddo

episode number++.
s
 = ( s0; q0).
while q =2 sink : s
 = ( s; q) and iteration number < iteration threshold do

Choose MDP actiona as argmax
a2A

Q(s
 ; a), or � -greedily.

Receive the reward� 
 (s
 ; a).
Update the accepting frontier function asQ  Acc(q0; Q).
Q(s
 ; a)  Q(s
 ; a) + � [� 
 (s
 ; a) +  maxa0 Q(s0


 ; a0) � Q(s
 ; a)].
s
 = s0


 .
end
Update � and learning rate � as function ofepisode numberif desired.

end

Figure 4.3: LDBA constrained reinforcement learning.
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Environment Agent Shield

Rewards

Observations Actions

Observations

Safe actions

Safe actions

Figure 4.4: The shielding principle from [3].

4.3 Algorithm 3: Shielded Reinforcement
Learning

The concept of a shield, proposed in [3], can easily be explained visually. A principle
sketch is therefore provided in Fig 4.4. The idea is to have a second system, called a
shield, that observes and analyses the actions selected by the reinforcement learning
agent. When an action is considered unsafe, the shield suggests another action that
is better.

4.3.1 Principles of shield synthesis

In [3], the shield is described as a�nite state reactive system, which has an input
and output alphabet, and is technically de�ned as aMealy machine. However, the
system operates in a similar way as the Büchi automata in the previous algorithms.
The system satis�es a given LTL formula by accepting an! -language, and the
objective is that the LTL property shall be satis�ed for in�nite traces through the
environment.

It is stated in [3] that the algorithm achieves safe reinforcement learning by
considering the safety speci�cation formulated in LTL and expressed as a �safety
word automaton� ' s = hQ; � ; �; q0; Qm i . The goal is achieved by solving a safety
game constructed from' s and an abstraction of the environment. The environment
behaves as an MDPM = hS; A ; P; s0; � i , and the abstraction' M can be described
as the original MDP, with behaviour restricted by the safety word automaton' s.
The game is played by the actual environment and the system, and in every step
the environment and the system takes turn selecting input actions and outputs. If
only safe states are visited, then the safety game is won.

An example of an MDP abstraction is discussed in [3], in which a water heater
serves as the observed system, which behaves as an MDP. The energy consumed by
the heater depends on the water level in the tank. The volume of the tank is known,
and it is also known that there is an in�ow and out�ow of water, where the volume
per time unit capacity is known for both the in- and out�ow. With this knowledge
only, a safety speci�cation can be formulated for keeping the water level within the
limits of running dry and over�owing; this is the abstraction of the water tank.
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In [3], a shield is synthesized by transforming the safety speci�cation' s and the
abstraction ' M into a safety game. After this, a winning region in which only safe
states can be reached is computed, and then both the game and the winning region
are translated into the reactive system that constitutes the shield.

4.3.2 Shielded reinforcement learning

While a more detailed description of the shield construction can be found in [3], the
operation of the shield is quite straight forward. In each step of the reinforcement
learning process, the actiona1 is selected by the agent. This action is forwarded to
the shield, and ifa1 is unsafe according to the speci�cation, it is substituted for the
safe actiona 6= a1, and the environment executesa instead. It moves to the state
s0, and the agent receives the rewardr 0 which is used to update the Q-function for
the safe action.

There are two possible ways of using the obtained reward when an actiona1 is
substituted for the safe actiona. The �rst way is to punish the original selection of
the unsafe state; this is done by assigning the punishmentr 0 to a1. The second way is
to assign a rewardr 0 to the same unsafe actiona, which may seem counterproductive.
However, while it does imply that unsafe actions are part of the �nal policy, the
unsafe actions are in this way always mapped to a safe action. Hence, the behavior
of mapping an unsafe action to a safe one is rewarded in the end.

The advantage of using any of the mentioned reward strategies is that the safety
speci�cation ' s is never violated in practice, as unsafe actions are never executed
in the environment but still punished in the Q-learning. The main downside is that
the shield must in both cases still be active when the learning phase is done and the
policy shall be executed.

A second subject that is discussed in [3] is the concept of action ranking. The
purpose of this is for the system to be less restrictive to the learning algorithm. The
idea is that in each step, the agent performs a ranking of some available actions,
such that rank = f a1; a1 : : : aj g. The action with rank one is prioritised according to
some known information, such as a desired general direction through a maze. The
ranking does not need to be performed on all available actions; the agent selects the
highest prioritised action in the ranked set, and only chooses actions outside of the
ranked set if all of the ranked actions are unsafe according to the speci�cation.

With the three main algorithms described, two additional methods are discussed
below. They are not considered to be separate algorithms, as they target very
speci�c problems in general reinforcement learning. Rather, they are treated as
helper functions that may o�er solutions to certain problems that occur in speci�c
learning situations.

4.4 Reward Shaping

Reward shaping, as described in [11], is an additional method a�ecting the behavior
of the agent in a reinforcement learning problem by giving out additional rewards
in a strategic manner to meet a criterion. In [11], the method is mainly motivated
by the problem of teaching an agent to perform a sequence of tasks, for example to
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visit certain states of an MDP in a speci�c order. It is shown that this can be done
by the use of a potential function.

4.4.1 Potential based reward shaping function

According to the de�nition in [11], the reward shaping function has the structure
F : S � A � S ! R for an MDP. This is also valid for the labeled MDP type
M = hS; A ; P; s0; AP; �; � i considered in this thesis. By selecting the potential
reward function as

F (s; a; s0) =  �( s0) � �( s) (4.5)

the value of selecting an action in a particular states and then transitioning to
another state s0 can be valued in terms of the next state and the current state.
Here,  is the discount factor of the reinforcement learning algorithm, and� can
be seen as a �gravitational pull� (or any other type of physical potential, such as
voltage).

In the experiments constructed on gridworld MDPs in [11], aManhattan distance
to a desired goal state is considered as a basis for the potential function. The
Manhattan distance between two pointss1 and s2 in a cartesian coordinate frame
is given by

Manhattan(x1; y1; x2; y2) = jx1 � x2j + jy1 � y2j (4.6)

In [11], a probabilistic MDP environment is considered. In each state, the prob-
ability of going in the intended direction upon selecting an actiona is 80% while
the probability of going in any other direction is 20%. Therefore, it is expected
that the agent on average will perform0:8 steps in the Manhattan direction per
RL algorithm time step, so the weight0:8 is assigned to the Manhattan function to
accommodate for the probabilistic behavior of the MDP.

As a positive reward shall be handed out for a step in the direction towards the
goal statesgoal, �( s) can be selected as� Manhattan(s; sgoal)=0:8 and then

F (s; a; s0) =  �( s0) � �( s) = � 
5
4

Manhattan(s0; sgoal)+
5
4

Manhattan(s; sgoal) (4.7)

If s0 is closer tosgoal than s is, it is easy to see thatF (s; a; s0) will provide a positive
reward.

4.4.2 Applications

As mentioned previously, this method is in [11] applied to problems where certain
states in an MDP are to be visited in a sequence. This is just one of the possible uses
of this function, and the function is in this work mainly used due to its independence
from state space dimensionality.

As the potential is formulated as a distance between two points in a grid world
MDP, it can be used in scenarios where the state space dimensions make exploration
very time consuming. As it is often reasonable that some knowledge of the MDP
strucure and where the goal regions are is available, this function can be imple-
mented with limited but su�cient knowledge of where to navigate in an MDP, and
particularly in a grid world example. Next, an additional method for handling large
state spaces in RL problems is described.
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4.5 Advice Based Exploration

Advice based exploration is in [10] motivated by the previously mentioned MDP
state space dimensionality problem. It is noted that practical possible applications
of reinforcement learning will most often involve problems with very large state
spaces, and a method to handle these situations is therefore crucial.

A solution is presented in the form of advice based exploration, and advice is
here described as a softer way of manipulating the development of an optimal policy
in contrast to a harder constraint speci�cation. In practice, the advice is in [10] im-
plemented on the same basis as the three previously described TL constrained RL
algorithms, as LTL speci�cations formulated as automata are used in the reinforce-
ment learning loop to provide the advice for the agent. An MDP and an automata
are used in an online execution similar to the one proposed in [1].

There are two important features that can be extracted from the method de-
scribed in [10]. Firstly, the situation in which the agent enters a dangerous state is
considered. In such a case, the automaton of the LTL formula may in certain cases
reach a dead end, which is entirely possible during the learning phase even if the LTL
formula forbids it. In practice, reaching this dead end implies that learning cannot
proceed in a useful manner as the automaton which is used in the Q-function up-
date is stuck. Therefore, in such situations the automaton is returned to its previous
state in order to be able to continue the learning.

The second feature that is worth noting is the so-called background knowledge
function. This is described as a function that can be de�ned manually, arbitrarily,
and reasonably with respect to the available information about the MDP. As men-
tioned in an example in [10], a background knowledge function could be the number
of steps required to reach a speci�c goal state from the current state.

Using the notation of automaton dead ends and the background knowledge func-
tion, the advice function central to the work in [10] is split into two properties.

ˆ Advice guidanceimplies in a grid world scenario that actions taken in the
direction of a goal state are recommended by the guiding function.

ˆ Advice warningsimply that, by in each MDP state de�ning a subset of actions
leading to the previously mentioned automaton dead end, undesirable actions
are sorted out.

The key elements to take away from this is thus that it is often reasonable
to assume that a distance based function, such as the one described in [10] or a
potential function described in [11], can be obtained. Another interesting feature of
the method in [10] is the advice warnings, which are given before transitioning to an
undesired state. The use of this function suggests that some knowledge of the next
state is available before actually making the transition, and that this information
can be used to disregard dangerous transitions by one step ahead predictions.
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4.6 Comparing and Combining Algorithm
Features

In many practical situations, some of the elements in each algorithm described so far
are very similar to parts in other algorithms. Therefore, the di�erent algorithms are
here viewed as variants of LTL constrained reinforcement learning methods, where
each method has a key feature that di�erentiates it from the others. These key
features are used to construct new proposed algorithms that utilise di�erent types
of available information.

It is very important to underline that the key features of each method may make
the method hard to compare to the others, because it may involve having access to
additional information that the others do not have. Therefore, it seems irrelevant to
compare the methods in terms of �which one is better�, but it is highly relevant to
instead compare them in terms of �how does this particular additional information
a�ect learning�. In this setting, all comparisons of the methods illustrate how and
why they work, and not which one is superior to the other. However, before the
key features from each algorithm are described, features that apply to all of the
proposed algorithms are covered.

4.6.1 General methods

Before describing and comparing the di�erences between the three composite algo-
rithms that are experimented with in this work, some general features that apply to
them all are considered.

Firstly, as described in Section 4.3, the concept of shielded reinforcement learning
implies that actions selected by the agent are monitored by the shield and corrected
if the shield determines that it will lead to a dangerous state. For this to be possible,
some information about the next state and whether or not this is dangerous is to
some degree necessary in the construction of the shield. Based on this, a reasonable
assumption to make is that in a certain MDP structure such as a grid world, the
next state can be crudely estimated one step ahead. For example, if the actionN
for north is selected, a reasonable prediction of what the next state will be is the
state north of the current state.

Similar to the strategy for avoiding the dead end automaton states described
in [10], a shield inspired assumption is made in all proposed algorithms. When an
action that leads to a dangerous state is selected, the agent receives the punishment
for that action selection. However, in practice, neither the MDP state nor the
automaton state is in any algorithm updated to the corresponding dangerous and
possible dead end states. This is to avoid getting stuck in bad states and halting
the learning procedure. One way to look at this is to imagine that a �border� is set
around the bad states, and the agent learns to avoid them using the same knowledge
as in traditional reinforcement learning problems, and only actually transitioning
to the dangerous states is avoided. Despite not being a very large change to the
development of the policy, this procedure is not technically model free as a one step
ahead prediction is made; this can be argued to also apply to both the shielding
method and the advice learning technique.
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4.6.2 Proposed algorithm 1: The LTL constrained RL
algorithm

The algorithm described in Section 4.1 performs Q-learning for a product between
the MDP and the Büchi automaton representation of the LTL speci�cation, using the
online execution. Therefore, the key feature of this algorithm is considered to be the
usage of the deterministic Büchi automaton as opposed to the more complicated non-
deterministic version. As such, the LTL speci�cation is formulated as an automaton
that can have both marked and forbidden states, regulating the reward supplied to
the agent, and the transitions are formulated using the atomic propositions of the
MDP.

This algorithm is in its simplicity considered to be the baseline reinforcement
learning algorithm, where the behavior is speci�ed by an LTL formula. The formula
is realized by an automaton, and the type of automaton that is necessary depends
on the speci�cation at hand. The only modi�cation to the algorithm proposed in
[1] is that the total reward consists solely of the positive and negative rewards that
are delivered when the automaton enters a marked or forbidden state in the online
execution.

4.6.3 Proposed algorithm 2: LTL constrained RL algorithm
with detached accepting frontier

The second reference algorithm, described in Section 4.2, is the algorithm that uses
the online execution of the limit deterministic Büchi automaton to ful�l the LTL
speci�cation. In the practical cases considered here, the LDBA is found to be
equivalent to the DBA. This makes it hard to argue for the di�erence between
algorithms, but there is one more property that the original paper discusses, and
that is the accepting frontier function.

The accepting frontier function in the LDBA constrained algorithm in [9] and [4]
is de�ned for generalized Büchi automata, described in Section 3.6.4. The algorithm
can handle language speci�cations requiring the visiting of several sets of marked
states in�nitely often, and the accepting frontier function is here intended to shift
focus to another set of accepting states once an accepting state set has been visited
in the automaton. Inspired by this mechanism, the idea is to detach the principle
of an accepting frontier function from a speci�c automata type, and formulate it for
simpler automata models.

Consider an automatonB' = hQ; � ; �; q0; Qm ; Qx i representing an LTL speci�ca-
tion ' . Furthermore, extend the de�nition of the automaton to incorporate coloured
states according to Section 3.4.1, so that the formal de�nition of the automaton be-
comesB' = hQ; � ; �; q0; Qm ; Qx ; C; � i . In this case, a subset ofQ can be de�ned as
the set of states in the automaton that are not necessarily marked, but crucial to
visit in order to �nally arrive in the marked state or states.

With this setup, an accepting frontier function is now de�ned similarly to Sec-
tion 4.2.2. In the second proposed TL constrained RL algorithm of this work, the
accepting frontier function is in each episode initialised as a set of coloured states
called the frontier states, in the LTL speci�cation automatonB' . These need to be
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visited in order to get to the �nal state. This frontier function can be considered as
a detached observer function that has access to the coloured states and the current
state of B' , which is far from unreasonable as the speci�cation is de�ned by the
user.

The procedure in the algorithm is identical to that of the �rst proposed algorithm,
except that an additional positive reward can be supplied to the agent if it enters
a frontier state. When doing so, the frontier state is removed from the frontier
set, implying that this type of frontier reward can only be handed out one time
per frontier state until all frontier states are visited. Once the frontier state is
emptied, the procedure can repeat itself, ensuring a balanced reward distribution to
the frontier states.

As it is still necessary to provide both negative rewards when the agent enters
forbidden states and positive rewards when it enters a marked state, the frontier
reward is considered an additional feature that can be added to the �rst proposed
algorithm in Section 4.6.2.

4.6.4 Proposed algorithm 3: LTL constrained RL algorithm
with detached accepting frontier and potential based
rewards

The third algorithm draws inspiration from the shielded reinforcement learning de-
scribed in Section 4.3, the reward shaping potential function strategy in Section 4.4
and the advice based learning of Section 4.5.

Firstly, the shielded reinforcement learning algorithm [3] raises the important
question of �do we treat all MDPs equally?�. In many practical scenarios, conclusions
or predictions can be made about the system that the MDP describes; from this,
an abstraction can be made and analysed, even if the procedure after this is not
necessarily shield synthesis.

For instance, having knowledge of that a system behaves in a predictive manner,
such as a water tank that can be either �lled or emptied as in [3], can allow the user
to model an abstraction where an action, such as supplying water, in most cases
leads to the state of the tank water volume being raised. Similarly, an abstraction
for a navigation transition system can be formulated as a grid world, and knowledge
of what will probably happen when selecting for instance the north direction. With
this information, there are still di�erences between the abstraction and the actual
environment, such as unknown transition probabilities and unknown locations of
the forbidden states. With this said, not having reasonable knowledge of these
underlying structures is a severe disadvantage compared to having accessed to this
additional information.

Secondly, with an underlying MDP structure known, the reward shaping strate-
gies of [25] can be used. In this third proposed algorithm, the potential based
reward function from Section 4.4 is implemented as an MDP observer function that
has access to the current state that the MDP is in, the next state that a selected
action leads to, and a set of states from which a goal position can be formulated.
To formulate the goal, two strategies are considered.
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ˆ The goal is initially a set of unvisited MDP states, and it is desired to go in the
general direction of these. It is not desired to stay in one of these states only,
so once reached, the state is removed from the set, much like the accepting
frontier set of the LTL automaton, but for the MDP. The goal is now all of
the remaining unvisited states, and the potential reward for a transition will
be based on the average Manhattan distance to all remaining states in the set.
This method is suitable when the exact position of a goal state is unknown,
but a general region can be guessed.

ˆ The goal is a list of states that must be visited in sequence. Once a state in
the sequence is visited, it is removed from the list, and the next goal becomes
the next state in the list. This version is suitable when an exact state sequence
must be executed.

The usage of an additional function that provides a potential between the current
state and a goal state is very similar to the approach of advice learning, where
knowledge about going in the direction of the goal state is provided. The motivation
behind implementing the potential based function is that the automaton strategies
assume that the agent is able to �nd an accepting trace, or part of it, through the
MDP and only after that receive a reward that reinforces this behavior. However,
this assumption might not be ful�lled for certain combinations of MDPs and LTL
speci�cations. In [25] the problem that is illustrated is the sequential state visits
problem, and in [10] the problem of large state spaces is the main motivation behind
these types of functions. Both these types of problems are investigated further in
Section 5.1.

In the practical implementation of the third composite algorithm, the additional
potential based reward is added to the method of LTL constrained reinforcement
learning with detached accepting frontier function described in Section 4.6.3. As the
forbidden states are not known, it is impossible for the potential function to steer
the agent away from these.

In cases where the �rst form of potential is used, the accepting frontier function
is also necessary, since upon arrival to a group of states included in the potential
function, a speci�c order or state to visit is not speci�ed in the potential function.
For instance, if the speci�cation says that the agent must observe a labelp before
going to the goal state, and the potential is set to explore a region in which that
label is believed to be, only the accepting frontier function would provide incentive
to �nd the exact location of the state in which p is.

4.7 Summary

The chapter describing the core algorithms in this work starts with the introduction
of the �rst algorithm gathered from previous research in the �eld. It is described in
[1] and is here referred to as the temporal logic constrained reinforcement learning
algorithm. Within this section, the Büchi weighted product MDP is explained and
exempli�ed, followed by a note on the equivalence between online execution of the
product MDP and the Büchi and MDP pair. The �rst algorithm is then presented
in terms of a pseudo-code.
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The second algorithm from previous research, originally described in [9] and
[4], is then described. It utilizes the concept of a limit deterministic and generalized
Büchi automata, and also mentions a so-called accepting frontier function to organize
the di�erent acceptance sets in the automaton, both of which are described. The
details behind the reward function is then touched upon, followed by a pseudo code
description of the algorithm for clarity.

The third algorithm, described in [3] regards the concept of shielded reinforce-
ment learning. Here, descriptions on how a shield is synthesised is provided, followed
by a portrayal of the actual algorithm; however, a pseudo code is not necessary for
this algorithm as it would not do the core concepts of the algorithm justice.

Next, reward shaping, speci�cally the Manhattan distance potential function,
is described along with a note on its applications. After this, another additional
method for handling large scale systems called advice based exploration is illustrated.

The section describing the composite algorithms contains the algorithms that
are implemented in this work. They are called the proposed algorithms and take
inspiration from the key elements of the algorithms from previous work in the �eld.
The �rst of the three is the standard LTL constrained algorithm, while the second
proposed algorithm is the LTL constrained RL algorithm with a detached accepting
frontier function. The last algorithm builds upon the second and further uses the
Manhattan potential function to perform guided learning.
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5
Problems and Measurement

Techniques

This chapter �rstly discusses various problems in temporal logic constrained rein-
forcement learning, in order to evaluate the strengths and weaknesses of the algo-
rithms and methods described in the previous section. Secondly, the fundamental
methods for measuring the performance of the algorithms are described.

5.1 Evaluating LTL Constrained Reinforcement
Learning

The goal of the �rst part of this project is to investigate LTL constrained reinforce-
ment learning by answering the research questions in Section 1.4. The questions are
focused on the potential problems or con�icts that may arise when trying to solve
certain problems that are relevant to many practical reinforcement learning prob-
lems. Furthermore, the interesting problem of integrating additional information
such as potential into the strategy is considered. Lastly, it is of interest to compare
the performance of all three proposed algorithms; how do they compare to classic
Q-learning and what are the reasons for the potential similarities or di�erences?

To answer all of the questions, a collection of scenarios must be formulated.
Considering the potential con�icts of interest within the di�erent objective functions
of the algorithms, combinations of MDP structures and LTL speci�cations that
can potentially put the algorithms in ambiguous situations are highly interesting.
Furthermore, problems where it is expected that the algorithms will perform very
di�erently are also of interest.

To answer the second research question, focus lies on ways of improving the
convergence to the optimal solution of the reinforcement learning problem by the
use of additional information, such as the potential function, and problems are
formulated with this in mind. Lastly, as question three addresses the performance
of all the proposed methods, there is a requirement on the type of data that must
be collected during the experiments, which is why a thorough motivation for the
selected measurements is needed.

In the next section, three types of problem categories are explained, and after
that a description of the necessary performance measurements is provided.
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5.2 Reinforcement Learning Problem Categories

For all reinforcement learning problem categories, the MDP is a grid world described
by the tuple

M = hS; A ; P; s0; AP; �; � i (5.1)

This MDP is always probabilistic to some degree. The set of actions is in all cases the
four cardinal directions A = f N; E; S; Wg, and the initial state s0 is for simplicity
always the origin in the grid world Cartesian coordinate frame. Parameters that
di�er between the problems are the size of the state spaceS, the set of atomic
propositionsAP , the state labeling function� and the exact values of the probability
to transition between states.

5.2.1 Safe navigation to destination

This category concerns the general MDPM where the states, actions, proba-
bilities, and reward function are described above. The atomic propositions are
AP = f p; q; rg, and the state labeling function maps the labelp to the �nal desti-
nation or goal state,q to certain MDP states that are considered dangerous, and
�nally r to intermediate states that can be visited before the goal state but are not
mandatory to visit.

The speci�cation that is enforced has to steer the agent to the goal state, either
via an intermediate state or directly towards the goal, and the LTL formula that
expresses this is

' = �
�

p _ (r ^ � p)
�

^ � : q (5.2)

where eventually, eitherp or the alternative r and eventually p will hold, while q is
never true. Due to the fact that the speci�cation requiresp to hold in�nitely often
once eventually reached, the language that satis�es this property is an! -language
and can only be realised by an automaton that can handle these languages, and
similar examples can be found in [2].

In simulated cases it is not necessary to require in�nite repetition. In the safe
navigation to destination setting, the problem can be considered solved when the
agent converges to a policy that ends in the destination state. However, this is only
a practical distinction. In this work, it can be assumed that all speci�cations require
Büchi automata realisations.

This setting is ideal for an initial experiment where classical Q-learning is com-
pared to a constrained reinforcement learning problem. Since temporal logic con-
strained reinforcement learning, both with an accepting frontier function and with
potential, should not behave di�erently in a setting where the standard Q-learning
algorithm can �nd a correct policy, this situation is useful to compare the proposed
algorithms performance in terms of execution time, convergence to the optimal pol-
icy and developed policy.
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5.2.2 Sequential state visits

Here the MDP is againM , but the atomic propositions are nowf p; q; r; s : : :g. The
state labeling function maps, as before,p to the goal state and q to dangerous
states, but r , s and potential subsequent letters in the alphabet are mapped to
states which are necessary to visit in a speci�ed order before reaching the goal state.
Upon reaching the goal state or a dangerous state, the agent must stay there forever.
An LTL speci�cation for this behavior, with an increasing number of required state
visits, is

' 1 = �
�

s ^ � p
�

^ � : q

' 2 = �
�

r ^ � (s ^ � p)
�

^ � : q

' 3 = �
�

t ^ � (r ^ � (s ^ � p))
�

^ � : q

...

(5.3)

This problem is interesting, because it describes a situation where the classic
Q-learning cannot, except in very limited scenarios, be used to �nd the optimal
policy. It cannot (in any practical scenario) receive a strong enough incentive to
�nd an intricate sequence by purely� -greedy exploration and environment rewards,
compared to the TL constrained methods which supply the agent with rewards for
selecting a speci�c path through the MDP.

In a sequential state visits problem, the accepting frontier may prove useful
compared to the pure LTL constrained RL algorithm, which only receives rewards
upon visiting forbidden or marked states. In the case of the third of the proposed
algorithm, which uses potential, this problem may prove challenging if obstacle
avoidance is to be performed beyond the sequential state visits. Here, a con�ict of
interest between the elements in the �nal method may arise.

5.2.3 Liveness and fairness

Other than safety speci�cations, there are speci�cations that enforce the repetition
of �good� behaviors. An example of such a speci�cation is the liveness property.
This property, formally described in [2], is naturally an LTL property that cannot
be realized by �nite words, or traces, in a corresponding automaton. Intuitively,
the property is in [2] de�ned as the ability for any �nite pre�x to be extended
into an in�nite trace that satis�es the liveness property. An example of a liveness
speci�cation that is used in this work is to demand that the agent travels back and
forth between two states, inde�nitely.

Fairness in the context of liveness is in [2] exempli�ed as a problem wheren
processes require service. The liveness speci�cation may state that service of all
processes shall be repeated in�netly often, expressed as several in�nite acceptance
conditions. If one of the processes constantly requests service, and also gets service
upon its request, this corresponding acceptance condition is ful�lled more often than
the others. This behavior might be valid according to the liveness LTL speci�cation,
but it is intuitively considered to be an unfair strategy.
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A liveness LTL speci�cation that is considered here is given by

' = �� p ^ �� r (5.4)

Automaton realizations of this property can be found both in [4] and [2]. While the
latter uses a generalized Büchi automaton with two acceptance conditions that must
be ful�lled in�nitely often, the former uses a standard Büchi formulation. Therefore,
it is interesting to see if there is a practical di�erence between these formulations,
and this problem thus investigates how important the selection of automaton is in
practical situations, and how each of the proposed algorithms handle a scenario
where there is no goal state to end up in.

5.3 Measuring Algorithms

To evaluate the algorithms, data on relevant properties must be collected when
running experiments in the di�erent settings that were described previously. Five
di�erent ways to measure algorithms are considered, but not all are used when
performing experiments.

5.3.1 Time and memory complexity

Time and memory complexity is a common way of determining what is expected
of an algorithm in terms of time and memory requirements [26], independent on
hardware. Complexity is expressed using the mathematical concept of function
order to compare the rate of growth of an algorithm. For two functionsf (n) and
g(n), a brief de�nition of order is formulated according to [27] as

ˆ f (n) = O(g(n)) if 9 c > 0 such that for large enoughn, f (n) � cg(n).

ˆ f (n) = 
( g(n)) if 9 c > 0 such that for large enoughn, f (n) � cg(n).

ˆ f (n) = �( g(n)) if 9 c; c0 > 0 such that for large enoughn,
cg(n) � f (n) � c0g(n).

Then, the growth rate off (n) can be expressed in terms ofg(n). In this context,
f (n) is an algorithm while g(n) is a function in n, which can be viewed as �number
of elemental operations�. For example, a triple nested for loop where each loop
can executen iterations has the time complexity off (n) = O(n3). Some common
rates that can be found in [26] are the constantg(n) = c, logarithmic log(n), linear
g(n) = n, linear logarithmic g(n) = nlog(n), quadratic g(n) = n2 and exponential
rate g(n) = 2 n .

This method is applicable to both time and memory requirements of algorithms,
but this way of measuring algorithms is not always necessary, and it does not always
provide a relevant statistic that is practically usable. In supervised learning, it is in-
teresting to study both computational complexity and sample complexity (how large
must the training set be to achieve learning), but in the more realistic reinforcement
learning setting, this is harder for a few reasons, as discussed in [28].
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ˆ The environment with which the agent interacts does not provide labeled train-
ing and testing sets, so there is no �ground truth� to compare to, making it
hard to know the true number of interactions needed for learning.

ˆ The information received by the agent is only �partly labeled�, since the agent
must maximise a long term reward while only seeing the current reward at a
given time instance.

ˆ There is no clear segregation between training and testing; the time the agent
spends until convergence to the optimal policy occurs is dependent on the
interaction with the environment and other parameters such as the trade o�
between exploration and exploitation.

In short, interacting with an environment makes it hard to measure performance
in terms of complexity. A more common way of measuring the performance is there-
fore to measure directly how many interactions with the environment are necessary
before the reinforcement learning algorithm converges to an optimal policy. There-
fore, the most important parameter to measure is the number of episodes needed
for convergence.

5.3.2 Convergence of entries in Q-table

Firstly, the term convergence must be explained. In the scope and context of this
thesis, the term implies the speci�c development of a value as a function of discrete
time, such that the value approaches a region where the �uctuations of that value
are practically bounded around some arbitrary constant with an arbitrary tolerance.

In a tabular Q-learning problem, the values are updated as the agent collects
rewards and moves around in the environment. If a problem is solved correctly, the
agent develops a path through the environment, stops exploring additional states and
thereby ceases to collect more rewards. This practically means that most elements
in the Q-table are not updated anymore.

To see when an algorithm converges in a tabular Q-learning problem, one way
to do so is therefore to look at the average value of all entries in the Q-table versus
episode number. In this way, the development of the whole Q-table can be sum-
marised in one value per episode, and that value will stabilise when the elements in
the table cease to be updated for a su�cient number of episodes. Thus, the number
of episodes needed for convergence to the optimal policy is easily accessible.

The reason for using this measurement instead of going by total collected rewards
is that in a TL constrained RL setting, rewards are fairly sparse; on one episode,
the agent might only collect either+1 or � 1, making the reward per episode mea-
surement very noisy. Therefore, Q-element value convergence is the most stable
measurement available in this context.

5.3.3 Rewards

Since the rewards that the agent receives are few and may come from either an
automaton, the environment or a potential function, it is interesting to see how
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much reward the agent receives per episode and how it is distributed across all
di�erent types of rewards. Using this metric, it can be seen approximately how
many intermediate states, goal states, dangerous states and automaton goal states
are visited during an episode.

5.3.4 Time

In this work, all experiments are conducted on the same hardware. Therefore, it
is in this case relevant to measure the time it takes for the machine to perform an
episode of any of the proposed algorithms. Since each algorithm performs di�erent
sub-processes that the other algorithms do not, it is interesting to see if any slightly
superior performance is worth it in terms of execution time.

5.3.5 Relevant parameter development

In reinforcement learning, it is common to change parameters between episodes
during training. This is often done to manipulate the trade o� between exploration
and exploitation, but may also be done to regulate how much neighboring Q-table
values shall in�uence the current Q-function value. Therefore, to see if there is
a signi�cant relation between convergence and parameter value development, all
parameters that change with episode number are measured in the experiments of
this project.

5.3.6 Policy visualisation

In these types of problems, the Q-table may converge while still not following the
desired LTL speci�cation. For example, if the LTL formula states that a sequential
state visit shall be performed in a large MDP state space, it may not be possible
to �nd all sequential states if they are very far apart. Thus, showing the resulting
policy is crucial to determine if the policy is correct or not.

This can be done by running a greedy action selection algorithm on the given en-
vironment and potential automata, and the procedure is illustrated in the algorithm
of Fig 5.1.

Result: Optimal policy from converged Q-table
Initialise
MDP M (and automaton B if present).
while MDP (or product MDP) state is not the goal state/ accepting statedo

Choose optimal actiona� = max
a

Q(s
 ; a).
Recorda� and MDP state s
 2 M .
Perform a� and go to s0


 from s
 .
Set current states
 to s0


 .
end
Return the optimal action sequence and the optimal state sequence

Figure 5.1: Extracting the optimal policy from a converged Q-table.
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The state sequence that this pseudo code snippet produces can then be visualized
in the grid world so that its correctness can be determined visually.

5.3.7 Averaging over several experiment runs

To provide a stable measurement, and to examine the repeatability of the exper-
iments, several runs of each algorithm can be made. Then the average result in
terms of time, reward and mean Q-table element value can be derived. The optimal
policies of each run, which hopefully are the same, can be visualised to see if all of
them follow a single path through the MDP.

5.4 Summary

After having described the proposed composite algorithms central to this work in
the previous chapter, the function of this chapter is to discuss the situations in which
they are tested.

The chapter starts out with a motivation touching on how and why the algo-
rithms are tested. Next, three problem categories are formulated in a grid world
context; safe navigation to destination, sequential state visits and �nally liveness
and fairness.

After this, a formal description of the concepts of time and memory complexity
is given, but along with this comes a motivation for why these ways of measuring
algorithms are not used in this work. This is followed up with a description of
the measurements that are used to describe performance; these are convergence
of entries in the Q-table, rewards, processor time, non-static parameters, ways to
visualise the �nal policy and �nally the concept of running several experiments and
averaging their data.
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6
Implementation of Research

Platform

Here, the work behind creating the small research platform is described. If detailed
information about the project is needed, the entire source code is available on Github
at github.com/CJHeiker/master.

6.1 Environment

A necessary part of this project is the implementation of an environment. This
section outlines the technical speci�cations of this MDP structure and the imple-
mentation of the platform.

6.1.1 Requirements

The grid world environment is selected because it is natural to interpret a transition
system as physically travelling through a square world. The standard probabilis-
tic grid world is represented by the MDPM = fS ; A ; P; sinit ; AP; �; � g, and the
implementation of it must in some way meet the following requirements:

ˆ The state space is given by the setS = hs0; s1; : : : ; si i where i = 63 or 255.
Furthermore, the grid world is always a square8� 8 or 16� 16grid of numbered
states.

ˆ The action space is restricted to tower chess moves, such that
A = f N; E; S; W g, where it can be noted that it is not possible to stay in a
state. Furthermore, the actions are always available in every state.

ˆ The probability map P may either be probabilistic or deterministic, mean-
ing the probability of transitioning is in the probabilistic case the transition
probability obtained from P(s; a; s0) is between zero and one, and in the de-
terministic caseP(s; a; s0) gives either zero or one.

ˆ For the initial state, sinit = s0 in all experiments, for simplicity.

ˆ The atomic propositions areAP = f p; q; r; s; t; : : :g.

ˆ The state labeling function� maps the atomic propositions to di�erent MDP
states. These are used by the automaton to evaluate the LTL speci�cation.

59



6. Implementation of Research Platform

ˆ The environment reward function� maps transitions to a real number, and
the design of this function can be selected as needed for the reinforcement
learning problem at hand. However, this type of reward is only used in the
standard Q-learning case, without an LTL speci�cation.

To clarify, the grid world is �square� in the sense that the graph representation
of the MDP states and transitions can be ordered in a Cartesian coordinate frame,
where the coordinates are given as a function of the state index. Using this property
a state index can be translated to a coordinate in the plane by

y = �oor
� i

d

�

x = i � y � d
(6.1)

wherex and y are the column and row indices of a 2D grid,i is the state index, and
d is the dimension of the grid world (d = 4 for a 4� 4 grid world). For example, the
coordinates for statei = 5 in a 4� 4 grid world are y = �oor (5=4) = �oor (1:25) = 1
and x = 5 � 1 � 4 = 1, which holds if compared to the grid world in Fig 6.1.

Moreover, according to the transition probabilities it is possible to for example
perform the action a = W in a state which is graphically considered to be the
western border of the grid. These types of transitions are interpreted as self loops,
and the intended destination state is the same as the origin state.

6.1.2 OpenAI Gym and the Frozen Lake environment

With the basic features required for the environment explained, it is now time to
describe the implementation of it in the context of the other parts of the small
research platform that is implemented in the �rst part of this project.

In the platform, it must be possible to generate MDPs which can be interacted
with and visualized, run all of the proposed algorithms, create tests from which data
can be extracted, and �nally visualise the statistics. The platform is implemented
entirely in Python.

(0; 0)s0 (1; 0)s1 (2; 0)s2 (3; 0)s3

(0; 1)s4 (1; 1)s5 (2; 1)s6 (3; 1)s7

(0; 2)s8 (1; 2)s9 (2; 2)s10 (3; 2)s11

(0; 3)s12 (1; 3)s13 (2; 3)s14 (3; 3)s15

Figure 6.1: Example of indexed coordinate states.
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The �rst attempts to create an MDP environment were made entirely from the
ground up, de�ning the state space, actions and other units of the MDP using
fundamental data structures in Python. However, some unforeseeable problems that
appeared in later stages of use required extensive work to straighten out. In short,
an entire structure based on a �awed foundation is very hard to change from the top,
as both the errors and the required solutions propagate through the whole structure.
A more stable starting point is therefore to use an existing MDP implementation as
a basis, and customise it where necessary.

The OpenAI Gym [29] is a very popular Python toolkit designed entirely for
reinforcement learning. Its purpose is to provide open source implementations of
di�erent MDP environments, often modeled on physical phenomenons such as in-
verted pendulums, balancing jointed bodies and classic Atari games.

The environment that is interesting for this work is the OpenAI Gym �Frozen
Lake� environment. Placed within the �toy text� category of environments, Frozen
Lake is a 4 � 4 probabilistic grid world MDP with one initial state and one state
labeled goal. The remaining states can be either slippery ice or dangerous water,
and the objective is to get from the initial state to the goal state without accidentally
slipping into the water.

The Frozen Lake is a good basis that can be modi�ed, so the source code of the
entire OpenAI Gym is downloaded and installed locally as a new Python project,
instead of using it as a �black box�, which is how it is often used if no modi�cations
are to be made to it.

6.1.3 Required modi�cations to Frozen Lake

The following properties of the standard Frozen Lake environment needs modi�ca-
tion:

ˆ Frozen Lake o�ers two prede�ned sizes of grid worlds,4 � 4 and 8 � 8. This
needs to be extended so that any sized square grid world can be used.

ˆ Frozen Lake is probabilistic with unknown probabilities in its original descrip-
tion. There is a need to implement both deterministic environments and create
a way to assign known probabilities for the non-deterministic versions.

ˆ The only possible state labels areS (Start), F (Frozen), H (Hole) and G
(Goal). For this application, the MDP must be extended so that arbitrary
atomic propositions can be set as state labels in the Frozen Lake MDP.

ˆ Frozen Lake o�ers a text based visual interface which becomes insu�cient
when more complicated state labels are added, and must therefore be ex-
changed for a new one.

The solutions to these problems are presented and discussed in the following sections.

6.1.4 State space extension

As Frozen Lake already describes a grid world, many parameters such as the number
of actions and transitions follow a certain pattern. This is apparent in the standard
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implementation, as there are several ways of changing the standard grid, and this
implementation can be viewed on the Github page of OpenAI Gym Frozen Lake
[30]. When creating the environment object, there is a choice between a standard
4 � 4 and an 8 � 8 grid world both with F and H states, and a randomly designed
grid world of any square dimension can also be selected.

The two standard alternatives are represented as character arrays. The charac-
ters are the standard state labelsS, F , H and G. The arrays are selected internally
from a look-up table by the keywords �4x4� and �8x8� which the user provides as
an argument to the environment constructor. As random environments are not in-
teresting here, the way of implementing arbitrarily sized grid worlds is done in the
style of character arrays. Any square character array is valid as an environment
map, provided it has the correct characters in it. Therefore, the only modi�cation
done here is to instead provide the environment map from outside the constructor,
and send it as an argument instead. In that way, the user has the ability to de�ne
the map freely.

6.1.5 Deterministic representation

The Frozen Lake environment does have a constructor argument that regulates if
the grid world is deterministic or probabilistic [30]. In the deterministic case, only
one transition is de�ned for a selected action and state. As this function is already
implemented, this part of the standard implementation is left untouched.

6.1.6 Custom transition probability assignment

The environment constructor assigns probabilities automatically by considering that
the agent either goes to an intended state, considered to be �forward� in the coor-
dinate frame of the agent, or slipping to the left or right state of the current state.
These probabilities are �xed to 0:33, meaning it is as likely to go to one of two
incorrect next states as it is to go to the correct next state, and it cannot slip
�backwards�.

This is not a �tting probabilistic setup for this project. Instead, this method is
redesigned to take a total probabilityp of going in any unintended direction, assign
the probability of 1� p of going in the right direction, and distribute three (instead of
two) probabilities that all sum to p among each incorrect next state corresponding to
the left, right and backwards incorrect state. The pseudo code for the new method
is shown in Fig 6.2.

A special case is de�ned when the agent moves to a dangerous state, in which
the probability to remain there is set to one. Note that the agent may transition to
a dangerous state in the same manner as to any other state, but once it gets there
it cannot escape.

6.1.7 State labels and state labeling function

In the RL algorithm, interactions can be made with the environment via thestep
function. This function updates the state of the MDP, and returns a �ag describing
if a goal state or a forbidden state is reached. As this project requires an MDP state
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Result: Transition probability mapping P
Input: Probability p of going in any unintended direction
Initialise P(s; a; s0) ! [0; 1] to zero
for Statess 2 S do

for Actions a 2 A do
Assign a, a1, a2, a3 and aN as the intended, left, right, backwards and null
actions
if s is a dangerous statethen

Assign the stay in state probabilityP(s; aN ; s) = 1
else

Compute the resulting statess0
0, s0

1, s0
2, s0

3 deterministically
Randomly selectp1, p2 and p3 such that

P 3
i =1 pi = p Selectp0 = 1 � p

Assign the probabilities
P(s; a; s0

0) = p0

P(s; a; s0
1) = p1

P(s; a; s0
2) = p2

P(s; a; s0
3) = p3

end
end

end

Figure 6.2: The new transition probability assignment method.

labeling function, the ability to beforehand assign custom labels and also to access
these when performing an MDP step is needed.

The state labels are assigned by sending a state label array similar to the MDP
state construction character array as an argument to the constructor. A function
that obtains the state label, taking a state as an argument, is also implemented in
the MDP class.

6.1.8 Visualising the environment

The new grid world visualisation runs through the character array that de�nes where
dangerous states, intermediate states and the goal state of the MDP are. It then
creates a matrix representation of the grid world, where di�erent state labels have
di�erent identi�cation numbers. Then, a heat map with a custom colour associated
with each identi�er is plotted. The initial state is marked in green, the intermediate
states are yellow, dangerous states are blue and the goal state is red. Furthermore,
the states are indexed by their coordinates.

6.2 Automata

Intended to be used in parallel with the MDP, the automata class must have a
similar type of step function as the MDP implementation. The automata class is
implemented with the following properties in mind.

ˆ There are di�erent types of automata. In this project DBAs and GBAs are
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the ones that require implementation. DBAs have one accepting state, and
are designed to realise in�nite accepting sequences, while GBAs have several
accepting state sets where the acceptance condition is that all of these sets
must be visited in�nitely often.

ˆ The step function takes a list of MDP state labels (atomic propositions) and
performs a transition to another state if possible, returning the new state.

ˆ As in the MDP implementation, a reset function is necessary to enforce the ini-
tial state when starting a new episode after having ended up in an automaton
sink state.

ˆ Marked and forbidden states must be described.

ˆ The optional accepting frontier function is dependent on the existence of au-
tomaton colored states, which are not the same as marked and forbidden states,
although they may coincide in some cases.

The most challenging implementation step of the automaton is the de�nition of
actions and transitions. As it is known what labels can be expected from an MDP,
each action can be implemented as a function that takes a list of boolean values rep-
resenting the availability of a label in an MDP state. If the prede�ned con�guration
of label values corresponding to the transition condition in the automaton is true,
the function returns the next state. Upon constructing the automaton, all actions
can be de�ned accordingly, and then a list of source state and action index pair
tuples will ultimately link the source state to the destination state via the action.
The functions are implemented as anonymous lambda functions, and an example of
this follows below.

Consider the transition between automaton stateq0 and state q1. There are
three labels that can be true or false,p, q and r . The transition condition between
q0 and q1 is p ^ q^ : r , and in this case the lambda function de�ning the transition
condition is given by

lambda labels: q1 if labels(0) and labels(1) and not labels(2) else NaN (6.2)

If this is the action with index three in the list of all actions, and it can be
performed from stateq0, then a transition tuple is de�ned by (q0; a3), e�ectively
linking the state q0 to state q1 via action a3 that can be performed depending on
the truth values of the labelsp, q and r .

6.2.1 Accepting frontier

The accepting frontier is dependent on the existence of coloured states, but the
function itself is implemented outside of the automaton class. The frontier states
are de�ned as a simple map just as the marked and forbidden states. The option
to include frontier states is not necessary if the frontier function is not used. The
frontier function is ultimately implemented exactly as Section 4.2.2 describes.
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6.3 Statistics

The generated statistics are slightly di�erent between each experiment, which makes
it easier to have individual statistics subroutines for each experiment. In general,
the plots that are generated show the development of the average Q-table value
where the dimension describing automaton states is summed, making the trajectory
comparable to the standard Q-table which does not have this dimension. The tra-
jectory is normalised to the individual maximum for easy comparison. An example
of this is seen in Fig 7.3, describing the statistics of the �rst experiment.

In the second plot of Fig 7.3, the average reward distribution over environment,
automaton, accepting frontier and potential rewards for an algorithm is shown as a
bar graph. This is not normalised, as it is important to compare the actual levels of
the distribution. Below the reward distribution comes the exploration development,
which describes the value of the exploration parameter as a function of episode
number.

The episode time is also shown, below the exploration development in Fig 7.3,
but it should be noted that the shown statistic is a moving average of the actual
time, which is noisy. This is considered reasonable, as the average value over a
number of subsequent episodes still provides enough information about the time it
generally takes for one episode.

The state sequence derived by stepping through the converged Q-tables as de-
scribed in Section 5.3.6 is both visualised as a trace through a coordinate frame, and
as a curve describing the state identi�cation number versus step index. Examples
of this can be seen in Fig 7.4. In the coordinate frame plot, it can be observed how
many times the agent enters each state in the policy, and in the chronological plot
it can be seen when these steps were taken, as this cannot always be deciphered
from the coordinate trace. It is very important to note here that when an experi-
ment is performed, a list of MDP states is provided containing all of the interesting
states that need to be contained in what is regarded as a successful typical state se-
quence derived from the Q-table. This list does not care about order, and therefore
a visualised MDP trace might still need visual inspection. Furthermore, if several
experiments are run, the algorithm can generate one or more example traces per
experiment, and then visualise the �rst one that contains the desired states. If it is
desired to see how many of the example traces that are successful, each of them can
be inspected in the text �le that is generated after each experiment. This �le also
contains other data of the experiment, such as:

ˆ Date and time for the experiment.

ˆ Number of MDP states.

ˆ Probabilities for all transitions.

ˆ Information about the automaton used.

ˆ Experiment ID, and other information of the parameters used in the RL loop.

ˆ All the policy candidates for each sub-experimenta), b), c) and d).

65



6. Implementation of Research Platform

6.4 Experiment Implementation

An experiment is de�ned as a separate Python �le, and is always divided into four
sub-experiments that are to be compared. In each experiment an MDP is de�ned,
followed by an automaton, and con�gurations regarding accepting frontier and po-
tential. All settings required for the experiment, and for the statistical plots are
made in this �le.

An important feature of the experiments is that they can be run several times
to provide a more reliable measurement. The de�ned transition probabilities of the
MDP are not changed between these runs. Thus, while the transition probabilities
are identical between runs, the selected transitions will still change according to
the outcome of the probabilistic scenarios, which can a�ect learning. If a very high
probability to step in the wrong direction is selected, it is recommended to perform
more runs than if the probability is very low or zero. When all runs are performed,
the average Q-entry, reward distribution, and time per episode is averaged between
episode number over all runs. The exploration development does not change between
runs, and does not need to be averaged over the runs.

The way that the exploration factor � , described in Section 2.4.2, evolves through
episodes is called exploration development. This development is in all experiments
exponentially decaying according to

� (k) = ( � max � � min )e� �k + � min (6.3)

wherek denotes the episode number,� max is the maximum exploration factor,� min is
the exploration whenk approaches in�nity (and not the exploration factor value at
the last episode) and� is the exponential decay rate coe�cient. This decay model is
selected because it is a bit more �exible than a linear model, but it can be changed
easily by replacing the episode dependent lambda function that implements it in the
main RL loop.

Furthermore, through � min it is possible to de�ne an exploration that does not
approach zero after all episodes have terminated. This possibility is included because
personal experience has shown that it is sometimes not possible to �nd a policy with
an exploration factor approaching zero.

6.5 Summary

The research platform is a cornerstone of the �rst part of this project, and this
chapter describes its implementation. Starting with the demands on the environ-
ment implementation followed by a description of the OpenAI MDP starting point,
details are given concerning the required modi�cations on the OpenAI Frozen Lake
environment that are made to �t this application.

A fundamental part of the implementation is the automata structure, which is
shown next, along with a brief description of the accepting frontier implementation.
Lastly, some details on how statistics are generated are provided, followed by a
description of the general structure of the experiment implementation. Here, a
function for the exploration factor development is provided as well.
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In this chapter, all experiments conducted in Part I are described in detail in terms
of environment, speci�cation, setup, hypothesis, result and analysis. Results for
each of the experiments are shown in two �gures; a statistics plot and a graph of
a typical state sequence derived from the converged Q-table. Before describing the
experiments in detail, it is necessary to describe the outline of each experiment and
motivate their design.

7.1 Experiment Structure

In each experiment, four di�erent algorithms are used to solve a problem. In most
of the experiments, these algorithms are standard Q-learning, basic temporal logic
constrained reinforcement learning, the accepting frontier extended version, and the
extended version that uses both the accepting frontier and the potential function.
However, in a few of the experiments such as in the very last one, the test cases
are a bit di�erent. In the last one, for example, only the algorithm that uses both
the accepting frontier and the potential function is used as this experiment mainly
explores properties of the potential function.

The problems are expressed as combinations between an MDP and a speci�ca-
tion, illustrating di�erent scenarios from Section 5.2. In each experiment, both the
MDP and the speci�cation automaton are presented and explained. Before describ-
ing the experiments, the parameters, MDP types and statistics interpretation are
covered.

7.1.1 Basic parameters

Each experiment is run ten times. The statistics shown in the �rst �gure of each
experiment is an average taken over all ten runs, producing a more representative
and stable statistic than one experiment alone. The main reason for doing so is that
all environments are probabilistic, with the probability of going in an unintended
direction being 0:15. Additional to the � -greedy Q-learning algorithm, the proba-
bilistic environment will cause variations in the learning process to some degree, and
it is therefore desired to show the average development between the runs.

All algorithms shown have the tabular Q-learning algorithm as a common de-
nominator. For this, the discount factor  and the learning rate� are kept at 0:9
and 0:1 respectively through all of the experiments. In this thesis, the fundamental
Q-learning algorithm is not itself meant to be experimented upon, and therefore
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these parameters are not tuned any further.

7.1.2 Two grid world MDP sizes

The environment MDPs used in the experiments of Part I in this project are di�erent
in detail, but there are only two categories in terms of state space dimension;64and
256. An environment with 64 states is a square grid world with dimensions8 � 8,
and a 256state MDP thus represents a16� 16 grid.

The smaller environment MDPs are designed with the intent to eliminate prob-
lems related to dimensionality of the state space. Experiments conducted on this
type of MDP include the safe navigation to destination problem, along with sequen-
tial state visits and �nally liveness and fairness, all described in Section 5.2.

For the last two experiments of Part I, 16� 16 grid world MDPs are used, but
with the same actions as before and the a�ected attributes adjusted to accommodate
the higher state dimensionality. Moreover, these grids do not contain any danger-
ous states. The experiments conducted on these MDPs address exactly what the
experiments done on smaller grids avoid, and methods to solve state dimensional-
ity problems are tested. Again, all environments are probabilistic with the risk of
performing unintended transtions kept at0:15.

7.1.3 Interpreting the results

The statistics plots �rstly show the average Q-table element value. The reason for
displaying this value instead of the collected reward per episode is that in the setting
of TL constrained RL, this is a more stable measurement of the same property and
a more detailed motivation can be found in Section 5.3.2. Since the algorithms can
collect very di�erent amounts of rewards during an episode, each corresponding Q-
element value plot is normalised to its individual maximum, which makes it easier
to (visually) compare the points of convergence of each algorithm.

Regarding the reward distribution plots, there are four sources that rewards
can be collected from; the environment, the marked and forbidden states of an
automaton, the detached accepting frontier function and the potential function. To
show which of the sources each algorithm uses the most, a reward type distribution
averaged over all10 runs is provided. This distribution is not normalised in order
to show the actual relationships between the reward sources and algorithms. In the
plots, this is represented as a bar graph with the four categories on the x-axis and
the average reward displayed as a colour-coded bar where each colour represents an
algorithm.

Next, the development of the exploration factor� is provided, one for each al-
gorithm. The time measured between starting and �nishing an episodes is also
provided, and this measurement is also averaged over all runs. As it has quite a
high variance, it is low pass �ltered to display the overall trend over a few episodes.
Finally, a chronological graph shows one of the states sequences derived from each
of the converged Q-tables, with intermediate states and goal states in the MDP
marked as black x:es where the state sequences visit these. These sequences are also
shown on a representation of the grid world in the second �gure of each experiment
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Figure 7.1: Grid world representation of the safe navigation to destination problem.

result section.
It is important to note that the state sequences, also shown in the second �gure

of each experiment, are derived by stepping through the product MDP and greed-
ily selecting actions recommended by the Q-table; with the probabilistic setting,
di�erent paths may therefore be derived from the same Q-table, and they are not
guaranteed to always satisfy the LTL speci�cation. However, when a complicated
LTL formula is satis�ed, it is not by chance and the algorithms producing the results
can then be assumed to produce a correct MDP trace in the majority of cases due
to the relatively low probabilistic MDP behavior used in these experiments.

7.2 Safe Navigation to Destination

This section concerns the experiment in which the agent must navigate safely from
the initial state to a goal state. The environment is depicted in Fig 7.1. From the
initial green state, the agent must learn a policy that guides it to the red state63,
either by visiting one or several intermediate yellow states or by going directly to the
�nal state. Dangerous states, marked in blue, must be avoided in the �nal policy.
In each intermediate state is the labelr , in the dangerous states liesq and in the
goal state is the labelp. The LTL formula that speci�es this behaviour is

' = �
�
p _ (r ^ � p)

�
^ � : q (7.1)

and states that one possible behavior that satis�es this formula is observingp once,
which implies observing it forever. Another alternative is to observer , and then
eventually observingp forever. At all times, q is never observed as this would
lead to observingq forever. The automaton realisation of the speci�cation in this
experiment is shown in Fig 7.2. Here, the accepting frontier states are marked using
colored states, and the blue color denotes that statesq1 and q2 make up the frontier
set.
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Figure 7.2: Colored deterministic Büchi automaton specifying safe navigation to
a destination.

An important note is that the automaton is formulated under the assumption
that at most one labelp, r or q can be observed (or true) in a state. Therefore, it
is valid to state that r alone causes a transition toq1 from q2, as q cannot be true
at the same time. Moreover, ifr is true, the loop condition : p ^ : q ^ : r is false.
Having at most one true label per state also motivates why it is enough to have only
p or q as conditions for the outgoing transitions of stateq1.

Lastly, the speci�cation assumes that oncep is observed, the agent can either
observeq and go to the forbidden state, or not observeq over and over. In the
practical implementation, however, the learning is terminated as soon as the marked
state is reached once.

7.2.1 Setup

The �rst algorithm to be examined is the ordinary Q-learning with � -greedy explo-
ration. The second is the temporal logic constrained RL algorithm from Section
4.6.2, which uses the automaton in Fig 7.2. The third algorithm used is the second
proposed algorithm form Section 4.6.3 and it uses the accepting frontier function
that regards both DBA state one and two as coloured frontier states. These states
have the color blue in Fig 7.2. Lastly, the aforementioned temporal logic constrained
RL algorithm is extended with the potential function, which constitutes the third
proposed algorithm described in Section 4.6.4 and is thereby the fourth algorithm
tried in the experiment.

The experiment described above is conducted using the parameters in Table 7.1.
Note that � min is a parameter, denoting exploration in the limit. In practice, the
minimum exploration in this experiment is around0:5.
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Table 7.1: Parameters for the safe navigation to destination experiment.

Exp Algorithm
No.
exp

� max � min � Eps s/e

a) Standard Q 10 0.9 0.1 0.0001 10000 100
b) TL-RL 10 0.9 0.1 0.0001 10000 100
c) TL-RL w/ AF 10 0.9 0.1 0.0001 10000 100

d)
TL-RL w/ AF &
Pot

10 0.9 0.1 0.0001 10000 100

7.2.2 Purpose

The purpose of this is to show that in certain simple settings, an RL problem
can be solved without being constrained by temporal logic. With this being said,
it is interesting to see if a temporal logic speci�cation, accepting frontier and a
potential function can make the algorithm converge faster to the optimal policy.
The automaton in Fig 7.2 realizes the �rst LTL speci�cation in Section 5.2.1, an
! -language, as the marked and forbidden language includes an in�nite number of
visits to the single marked and forbidden states.

However, even though this automaton is formulated in the experiment, the
episode is terminated by the MDP when the goal state is reached, meaning the
looping behavior will not be learned. This is not considered to be a problem, since
an increasing number of rewards would be handed out upon arrival to this state
if the MDP would not terminate, and there is no doubt that this would make the
optimal policy stay in the �nal state once it is reached one time.

7.2.3 Hypothesis

For the Q-learning to work, there must be a su�cient initial exploration that de-
creases towards greedy as the Q-table converges. This algorithm only receives re-
wards from the environment, meaning the intermediate rewards must be signi�cantly
smaller than the �nal goal reward, and the previously mentioned exploration must
be high enough for the agent to move past the intermediate rewards until it gets to
the goal state. The hypothesis for the Q-learning algorithm is that it will approach
the intermediate state that is not as close to the dangerous states as the others, and
then go to goal.

When it comes to the standard temporal logic constrained reinforcement learning
algorithm, rewards are received only for going to the goal state. Intermediate states
are a possible detour in the speci�cation, but they are not rewarded. In relation
to the ordinary Q-learning algorithm that receives rewards for intermediate states,
rewards are sparse in the LTL constrained RL solution. This may result in a slower
convergence, but it does not run the risk of staying in an intermediate state as the
Q-learning does due to possibly unbalanced reward weightings between intermediate
and goal state transitions.

In the case of the accepting frontier extended algorithm, there is a slight chance
that the algorithm goes to several intermediate states before goal, which might make
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it converge to a policy that selects a longer state sequence. However, it is believed
to solve the problem of sparse rewards discussed before, without risking to get stuck
in intermediate states as frontier states are removed upon the �rst visit.

When adding potential, there must be a balance between aiming for a the inter-
mediate and goal states and avoiding regions with dangerous states. In this case,
there is a clear path to goal which makes it possible for the potential reward to be
quite high. Among all algorithms, this one is believed to converge �rst and also
converge to the optimal policy that selects the shortest path to goal.

7.2.4 Results

The results of the safe navigation to destination experiment are shown in Fig 7.3.
A heatmap describing an example of a selected path derived using the converged

Figure 7.3: Statistics from the safe navigation to destination experiment.
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Figure 7.4: Representative state sequences derived from the converged Q-tables.

Q-table is shown in Fig 7.4.

7.2.5 Analysis

All algorithms converge, which agrees with the initial hypothesis. According to the
hypothesis, the standard Q-learning algorithm would go to the goal state via an
intermediate state. This is not represented in the sequences of Fig 7.4 which is
somewhat surprising but may be due to the much larger reward received by going
to goal directly.

With the standard TL constrained RL algorithm, intermediate states are disre-
garded; something that is entirely plausible due to that no rewards are collected for
this. Using the accepting frontier, the hypothesis states that the agent would visit
several intermediate states, but this also turns out to be incorrect for this particular
state sequence. Furthermore, the prediction stating that the potential function con-
verges to the shortest path policy due to the clear path to goal is incorrect, but it
is actually almost as long as the standard Q-learning by inspection of the last plot
of Fig 7.3.

By inspecting Fig 7.3, it can be seen that the standard Q-learning algorithm and
the standard TL constrained RL algorithm receive many negative rewards in early
episodes. This is because they �nd the optimal policy by visiting many dangerous
states and eliminate them from the list of possible paths to take. The potential
function algorithm increases steadily and in a smoother fashion than the accepting
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frontier algorithm, which has one acceleration phase per newly found reward state.
An interesting side note is that the automaton constrained algorithms have two

possible alternative behaviours that are enforced in the learning; going directly to
goal or going to goal via one or more intermediate states. The accepting frontier
rewards transitions to the intermediate states, and in the learning this is represented
by positive acceleration phases when a new correct MDP trace is found. Despite
this, actually stepping through the product MDP could naturally result in either of
the allowed traces, as in Fig 7.4.

Regarding the reward distributions, the potential algorithm has the option to
collect both rewards from the accepting frontier and the reward from the marked
and forbidden automaton states, but it more or less disregards the accepting frontier
rewards due to the greater reward accumulated from the potential. Getting a reward
from the automaton is probably a bi-product from being drawn to the goal state in
the MDP by the potential function. The automaton rewards are in all cases negative
on average. In the case of the algorithm using potential, this property is crucial as
the potential does not see dangerous states in the way of the optimal path.

The time it takes for the TL constrained RL, accepting frontier and the po-
tential algorithms is in this case around30% more than standard Q-learning. If
implemented on larger problems, this may point towards a possible drawback.

7.3 Sequential State Visits Experiment 1

A visualisation of the environment is shown in Fig 7.5. In the �rst sequential exper-
iment, the agent must learn a policy in which a sequence of states must be visited,
while dangerous states are avoided.

According to the speci�cation, the agent must �rst visit state 7, then state56
and �nally state 63 without visiting any dangerous states. State7 has the labelr ,
state 56 is labeleds, state 63 is labeledp and the dangerous states all have the label

Figure 7.5: Grid world MDP visualisation for the �rst sequential experiment.
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Figure 7.6: Deterministic Büchi speci�cation for the �rst sequential state visits
experiment.

q. The LTL formula for this behavior is thus

' = �
�
r ^ � (s ^ � p)

�
^ � : q (7.2)

This formula states that eventually, the sequencer , s, p is observed. Further-
more, q is never observed. The Büchi automaton that realises this is shown in Fig
7.6. In this automaton, frontier states are colored blue, the marked state is depicted
with a double circle and the forbidden state is crossed out.

In this case, the transition to the forbidden state from the marked state by
observingq is included, but in practice, the learning stops as soon as the marked
state is reached. It is assumed that the agent has the same incentive as in the
previous experiment to stay in the �nal state once it is reached, given that: q is
observed inde�nitely in the end. Furthermore, the assumption that there is only
one state label per MDP state makes it possible to formulate the transition between
state q0 and q4 without regarding if r is true or false. If s or p or q is true there,
r cannot be true. This principle holds for the rest of the transitions as well, which
makes the automaton completely deterministic.

7.3.1 Setup

Classical Q-learning and the LTL constrained RL method are in this experiment
compared with the detached accepting frontier extended version and the algorithm
that uses both the accepting frontier and the potential function. Furthermore, this
experiment is run using the parameters in Table 7.2.

7.3.2 Purpose

This problem may be solved by ordinary Q-learning, but only under special circum-
stances, for example if environment rewards for intermediate states and goal states
are very carefully scaled to hopefully enforce a sequential policy. If the temporal
logic speci�ed version of the RL problem is a more convenient and more reliable way
of enforcing the sequential behaviour, it is interesting to see if the accepting frontier
or the potential function can improve convergence.
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Table 7.2: Parameters for the �rst sequential state visits experiment.

Exp Algorithm
No.
exp

� max � min � Eps s/e

a) Standard Q 10 0.9 0.7 0.0001 15000 100
b) TL-RL 10 0.9 0.7 0.0001 15000 100
c) TL-RL w/ AF 10 0.9 0.2 0.0001 15000 100

d)
TL-RL w/ AF &
Pot

10 0.9 0.2 0.0001 15000 100

7.3.3 Hypothesis

The problem is considered small enough for all methods using an automaton to
manage the problem. Classical Q-learning does not have any incentive to induce any
speci�c seqential behavior and will in essence treat this problem as a safe navigation
to destination problem. The TL constrianed RL algorithm does not get a reward
until the whole sequence is �nished, which is a disadvantage. This may require a
higher amount of exploration throughout the learning process. If this is the case,
the accepting frontier should remedy this and reward the agent for going to the
intermediate states.

From Fig 7.2, it can also be seen that it is not possible for the agent to be re-
warded for completing the sequence in the wrong order. The potential function may
enforce the same behavior, but does not punish the agent for going to the dangerous
states, which is why there is a risk of having a con�ict of interest between reward
sources around state56which is close to dangerous states. However, as the potential
function aims to push the agent towards the intermediate states independently of
exploration, it is believed that if the algorithm does produce a correct policy, it will
also produce the shortest state sequence.

7.3.4 Results

The results of the �rst sequential experiment are shown in Fig 7.7. A heatmap
depicting an example of a selected path through the MDP, where actions are selected
using a converged Q-table is shown in Fig 7.8.

7.3.5 Analysis

All algorithms except standard Q-learning shall converge to the speci�ed policy
according to the hypothesis, but this is only partly a correct prediction. Q-learning
indeed does not manage to �nd a solution that contains all the necessary sequential
states, which is the reason that no state sequence is displayed in the corresponding
top left sub �gure of Fig 7.8.

Although a higher degree of exploration is used, the standard TL constrained RL
algorithm using only an automaton can not collect a su�cient amount of positive
rewards to induce the sequential behavior. However, according to Fig 7.7, the Q-
table elements are updated to negative values which indicate that incorrect behaviors
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