
Data Hide and Seek is Over!
Automatic annotation of vehicle data from onboard car sources
with predefined annotation concepts

Master’s thesis in Systems, control and mechatronics

OSKAR ANDERSSON
OTTO ÄRLIG

DEPARTMENT OF ELECTRICAL ENGINEERING

CHALMERS UNIVERSITY OF TECHNOLOGY
Gothenburg, Sweden 2025
www.chalmers.se

www.chalmers.se




Master’s thesis 2025

Data Hide and Seek is Over!

Automatic annotation of vehicle data from onboard car sources with
predefined annotation concepts

OSKAR ANDERSSON
OTTO ÄRLIG

Department of Electrical Engineering
Systems and Control

Chalmers University of Technology
Gothenburg, Sweden 2025



Data Hide and Seek is Over!
Automatic annotation of vehicle data from onboard car sources with predefined
annotation concepts
OSKAR ANDERSSON
OTTO ÄRLIG

© OSKAR ANDERSSON, 2025.
© OTTO ÄRLIG, 2025.

Supervisor: Nastaran Dashti, Volvo Cars, Safe Vehicle Automation
Examiner: Jonas Sjöberg, Department of Electrical Engineering, Systems and Con-
trol

Master’s Thesis 2025
Department of Electrical Engineering
Systems and Control
Chalmers University of Technology
SE-412 96 Gothenburg
Telephone +46 31 772 1000

Cover: Visualization of a driving scene from the constructed dataset, showing the
camera image alongside its corresponding LiDAR point cloud.

Typeset in LATEX, template by Kyriaki Antoniadou-Plytaria
Printed by Chalmers Reproservice
Gothenburg, Sweden 2025

iv
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Automatic annotation of vehicle data from onboard car sources with predefined
annotation concepts.
OSKAR ANDERSSON
OTTO ÄRLIG
Department of Electrical Engineering
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Abstract
A complete pipeline is presented for automatic annotation and retrieval of mul-
timodal vehicle data, using synchronized front-facing camera images and LiDAR
point clouds. Driving scenes are classified across four categories: road condition,
road type, lighting, and visibility. A dataset of 1,878 one-minute segments is con-
structed from over 200 hours of real-world driving. Segments are manually labeled
to provide ground-truth annotations for training and evaluation, and selected to
ensure an even distribution across all scenario categories.

Separate models are trained for each sensor: a VGG19-based CNN for image clas-
sification and a lightweight PointNet for LiDAR point clouds. The best-performing
vision model achieves strong results across all categories, while the LiDAR model
performs best on road condition and visibility. A fusion model, implemented as a
small multilayer perceptron, combines outputs from both sensors and outperforms
the individual models, particularly on more difficult scenarios and categories.

Sequence-level aggregation of predictions is applied to reduce frame-level variation
and improve accuracy. A proof-of-concept data retrieval interface is also presented,
enabling users to filter and inspect data based on predicted labels and confidence
scores, and to explore both camera images and LiDAR point clouds for each retrieved
segment.

Keywords: Automatic Annotation, Multimodal, Camera, LiDAR, CNN, PointNet,
Data Retrieval.
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List of Acronyms

Below is the list of acronyms that have been used throughout this thesis listed in
alphabetical order:

CLIP Contrastive Language–Image Pretraining
CNN Convolutional Neural Network
FN False Negative
FP False Positive
LiDAR Light Detection and Ranging
MLP Multi-Layer Perceptron
RBF Radial Basis Function
ReLU Rectified Linear Unit
TN True Negative
TP True Positive
VGG19 Visual Geometry Group 19-layer network

ix





Nomenclature

Below is the nomenclature of indices, parameters, and variables that have been used
throughout this thesis.

Indices

i Index of an individual frame within a sequence
s Index of a sequence
c Index of a class

Parameters

Ns Number of datapoints in sequence s

Npts Number of points sampled per LiDAR point cloud
B Batch size during training
C Number of classes in the classification category

Variables

Li,c Logit, before softmax, for class c on frame i

L̄s,c Sequence-level logit for class c, averaged over all frames in s

ŷs Predicted class for sequence s, ŷs = arg max
c

L̄s,c

xi



xii



Contents

List of Acronyms ix

Nomenclature xi

List of Figures xv

List of Tables xvii

1 Introduction 1
1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Illustrative Example . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Dataset for Model Development 3
2.1 Database and Data Source Sensors . . . . . . . . . . . . . . . . . . . 3
2.2 Construction of a Custom Dataset . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Defining Categories and Classes . . . . . . . . . . . . . . . . . 4
2.2.2 Extracting our Dataset from the Database . . . . . . . . . . . 4
2.2.3 Processing of our extracted Dataset . . . . . . . . . . . . . . . 5
2.2.4 Manual Ground-Truth Annotation of our Dataset . . . . . . . 5
2.2.5 Training and Validation Split . . . . . . . . . . . . . . . . . . 5
2.2.6 Class Distribution Over our Dataset . . . . . . . . . . . . . . 6

3 Vision-Based Classification Models 9
3.1 Vision Model Architectures . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Experiment with Masking Images . . . . . . . . . . . . . . . . . . . . 10
3.3 Training Classification Heads and Fine-Tuning . . . . . . . . . . . . . 11
3.4 Evaluation of Vision Models . . . . . . . . . . . . . . . . . . . . . . . 11

3.4.1 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . 11
3.4.2 Validation and CNN Evaluation . . . . . . . . . . . . . . . . . 12
3.4.3 CLIP Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.4.4 Comparison of Vision Model Variants . . . . . . . . . . . . . . 13

4 LiDAR-Based Classification Model 15
4.1 Model Architectures . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4.1.1 Theory behind PointNet . . . . . . . . . . . . . . . . . . . . . 15
4.1.2 Customized PointNet . . . . . . . . . . . . . . . . . . . . . . . 16

xiii



Contents

4.2 LiDAR Point Cloud Sampling . . . . . . . . . . . . . . . . . . . . . . 17
4.3 Training of the PointNet Model . . . . . . . . . . . . . . . . . . . . . 18
4.4 Comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Fusion Model 23
5.1 Fusion Model Architecture . . . . . . . . . . . . . . . . . . . . . . . . 23
5.2 Training of the MLP Models . . . . . . . . . . . . . . . . . . . . . . . 24
5.3 Fusion Model Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 25

6 Sequence Prediction Aggregation and Model Comparisons 29
6.1 Sequence Prediction Aggregation . . . . . . . . . . . . . . . . . . . . 29
6.2 Prediction Aggregation for Vision Model . . . . . . . . . . . . . . . . 30
6.3 Prediction Aggregation for LiDAR Model . . . . . . . . . . . . . . . . 31
6.4 Prediction Aggregation for Fusion Model . . . . . . . . . . . . . . . . 33
6.5 Comparative Model Performance . . . . . . . . . . . . . . . . . . . . 35

7 Proof-of-Concept Data Retrieval Interface 37
7.1 Interactive Query Construction and Filtering . . . . . . . . . . . . . . 37
7.2 Multimodal Record Inspection . . . . . . . . . . . . . . . . . . . . . . 37

8 Discussion 39
8.1 Dataset Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

8.1.1 Class Balance Across Categories . . . . . . . . . . . . . . . . . 39
8.1.2 Annotation Errors . . . . . . . . . . . . . . . . . . . . . . . . 40
8.1.3 Broader Reuse of the Constructed Dataset . . . . . . . . . . . 40

8.2 Discussion of Classification Results . . . . . . . . . . . . . . . . . . . 40
8.2.1 Model Comparison and Category-Level Analysis . . . . . . . . 40
8.2.2 Analysis of Sequence Aggregation . . . . . . . . . . . . . . . . 41

8.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
8.3.1 Additional Modalities and Annotation Categories . . . . . . . 41
8.3.2 Dataset Construction for Expanded Annotations . . . . . . . . 42
8.3.3 Integration into Volvo Car’s Production Environment . . . . . 42

9 Conclusion 43

Bibliography 45

A Appendix: Machine Learning Models I

B Appendix: User Interface III

xiv



List of Figures

2.1 Pie chart showcasing the class distributions for the full dataset. . . . 6
2.2 Class distributions for the validation subset. . . . . . . . . . . . . . . 7

3.1 Model overview: An input image is processed by a VGG19 backbone
consisting of 16 convolutional layers followed by two fully connected
layers to produce a single feature vector. The feature vector is then fed
into four parallel classification heads that predict the corresponding
class within each category: road condition, road type, lighting, and
visibility. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.2 Comparison of the same scene: (a) the full original image and (b) the
same image with a mask applied to show only road and sky regions. . 10

3.3 Confusion matrix for the Full-Frame CNN without fine-tuning on the
validation set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

4.1 Distribution of number of points over all point clouds, with no partic-
ular filtering. Bins displayed in red correspond to point clouds with
less than 16 384 points, that were discarded when loading the dataset
for the model using 16 384 points. . . . . . . . . . . . . . . . . . . . . 17

4.2 Distribution of number of points over all point clouds where clouds
have been filtered to retain only the ground-level points. Bins dis-
played in red correspond to point clouds with less than 2 048 points,
that were discarded when loading the data for the model trained on
ground-level points. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

4.3 Training and validation accuracy for the full-scene model with Npts =
16 384. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4.4 Training and validation accuracy for the full-scene model with Npts =
2 048. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.5 Training and validation accuracy for the ground-only model with
Npts = 2 048. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

5.1 Automatic annotation pipeline: 10 logits each from the CNN vision
model and the PointNet LiDAR model are fused by an MLP to pro-
duce the final labels. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

5.2 Training and validation accuracy per epoch for the MLP for each
category. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Confusion matrix for the MLP fusion model on the validation set,
showing per-class accuracy. . . . . . . . . . . . . . . . . . . . . . . . . 26

xv



List of Figures

6.1 Confusion matrices for the Full-Frame CNN after sequence-level logit
averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

6.2 Absolute change in F1-score (%) per category for the Full-Frame CNN
after logit averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.3 Confusion matrices for the LiDAR model after sequence-level logit
averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6.4 Absolute change in F1-score (%) per category for the LiDAR PointNet
model after logit averaging. . . . . . . . . . . . . . . . . . . . . . . . 33

6.5 Confusion matrices for the fusion model after sequence-level logit av-
eraging. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

6.6 Absolute change in F1-score (%) per category for the fusion model
after logit averaging. . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

B.1 Screenshot of the user interface. . . . . . . . . . . . . . . . . . . . . . VI

xvi



List of Tables

2.1 Annotation categories and their corresponding classes. . . . . . . . . 4

3.1 F1 scores by model and category (FF = Full-Frame, M = Masked). . 13

4.1 Architecture of the multi-task PointNet model. . . . . . . . . . . . . . 16
4.2 Validation F1-scores for each LiDAR sampling strategy. . . . . . . . . 22

5.1 Structure of each decision MLP. C is the number of classes for the
given category (2 or 3). . . . . . . . . . . . . . . . . . . . . . . . . . . 24

5.2 Validation F1-scores (%) for each category and overall average for
four classification models. . . . . . . . . . . . . . . . . . . . . . . . . 25

5.3 Performance of the MLP fusion model on validation sets. . . . . . . . 27

6.1 Sequence-level performance of the Full-Frame CNN after logit aver-
aging and softmax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

6.2 Sequence-level performance of the LiDAR model after logit averaging. 32
6.3 Sequence-level performance of the fusion model after logit averaging. 34
6.4 Sequence-level F1-scores for the best Vision, LiDAR, and Fusion mod-

els after logit averaging. . . . . . . . . . . . . . . . . . . . . . . . . . 36

A.1 Architecture and training settings for the Masked and Full-Frame
CNNs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

A.2 CLIP text prompts used for zero-shot classification. Categories: RC
= Road Condition, VIS = Visibility, RT = Road Type, L = Lighting. II

A.3 Full-Frame CNN performance: initial vs. fine-tuning. . . . . . . . . . II
A.4 Masked CNN performance: inital vs. fine-tuning. . . . . . . . . . . . II
A.5 Zero-shot CLIP performance on each category. . . . . . . . . . . . . . II

xvii



List of Tables

xviii



1
Introduction

This report presents the design and implementation of a complete pipeline for auto-
matic annotation and retrieval of multimodal vehicle data. The pipeline integrates
camera images and LiDAR point clouds to assign reliable labels across four scenario
categories: road condition, road type, lighting, and visibility. The system was built
to support engineers at Volvo Cars in locating relevant driving scenarios from large
sensor datasets.

Manual annotation of multimodal sensor data is time-consuming, subjective, and
often infeasible at scale. Many segments in the existing database are either unlabeled
or inconsistently annotated, making it difficult for engineers to retrieve data for
specific test scenarios. This report addresses the problem by using machine learning
models to assign semantic labels based on visual and spatial sensor inputs and
demonstrates how these predictions can be used for efficient scenario-based retrieval.

1.1 Background and Motivation
The work was conducted in collaboration with Volvo Cars’ Data Platform and Man-
agement department, which oversees the company’s centralized database of sensor
recordings. These recordings are collected from test vehicles equipped with front-
facing cameras, LiDAR sensors, and various internal state sensors. The resulting
data is therefore multimodal, meaning that each segment contain multiple types of
information, synchronized over time.

This database is meant to support the development of sensor-based features and
functions. However, effective use of the data requires accurate metadata that de-
scribes driving conditions, so that relevant data can be easily retrieved. Currently,
many sequences contain inconsistent and unreliable manual annotations, and some
lack this sort of metadata entirely. As a consequence, engineers must often resort to
manually reviewing large amounts of footage or even collecting new data altogether,
which is expensive and inefficient. This motivated the development of a unified
pipeline for automatic annotation and retrieval of data.

1.2 Illustrative Example
Consider two engineering teams that both need access to driving data recorded
under snowy conditions. One team is developing a LiDAR-based object detection
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1. Introduction

algorithm and requires data recorded during active snowfall to study how falling
snowflakes affect detection performance. The second team is focused on traction
control and needs segments with snow or ice on the road surface to analyze slip
events.

If the database only contains vague annotations—such as a generic snow label that
does not specify whether the snow is on the road, on the sides, or falling—it becomes
difficult to retrieve relevant data. And if there are no labels at all, the situation is
even worse, as neither team can reliably find the data they need. They may need
to spend hours manually reviewing footage or even schedule new test drives. To
address this challenge, this report describes the development of a tool that auto-
matically assigns clearly defined and accurate class labels in chosen categories, such
as road condition and visibility. With the help of these labels, the most relevant
data segments can be selected, based on the specific needs and specifications of each
engineering team.

1.3 Contributions
This thesis contributes to solving the annotation and retrieval challenge by designing,
implementing, and evaluating the following components:

• Dataset Creation: We constructed a high-quality dataset of 1,878 one-
minute sequences, synchronized across camera and LiDAR modalities. Each
sequence was manually annotated across four categories: road condition, road
type, lighting, and visibility using a class-balanced sampling strategy. We used
this dataset to train and evaluate machine learning models, and it may also
serve as a valuable resource for future research.

• Sensor-Specific Classifiers: We implemented and evaluated deep learning
models for each modality. For camera data, a fine-tuned VGG19 CNN achieved
high classification performance. For LiDAR, we trained a custom lightweight
PointNet architecture on sampled point clouds, exploring both full-scene and
ground-level variants.

• Fusion and Temporal Aggregation: We developed a multi-layer percep-
tron (MLP) to fuse predictions from both sensors into a final decision. In
addition, we applied sequence-level aggregation of logits, averaging per-frame
predictions to produce a single robust prediction per one-minute segment.

• Retrieval Interface: We designed and implemented a web-based proof-of-
concept interface that enables engineers to filter sequences based on predicted
labels and confidence thresholds. The interface supports multimodal inspec-
tion and CSV export for integration into downstream workflows.
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2
Dataset for Model Development

This chapter describes how raw vehicle recordings from Volvo Cars database, are
transformed into a structured, labeled dataset suitable for developing and evaluating
annotation models. We describe how raw camera and LiDAR streams captured dur-
ing real driving are synchronized, and how segments are selected from the database.
We also describe how each of the segments is reviewed and assigned ground-truth
labels for road condition, road type, lighting, and visibility. It is then explained how
the annotated segments are split into training and validation sets.

2.1 Database and Data Source Sensors
The need for automatic annotations stems from the fact that Volvo Cars governs
a large database of vehicle sensor data that lacks sufficient labels, as detailed in
Section 1.1. The database is a multi-server PostgreSQL system comprising:

• Primary server: Maintains the authoritative archive of all raw data.

• Replica server: Offers read-only access for large-scale querying and analysis.

• Development server: Used for testing new data ingestion and processing
pipelines.

We utilized the Replica server to explore the data through querying and analysis,
without risking altering the structure or data used in production. The vehicle sensor
data in the database is sourced from a large number of drives with Volvo Cars
test vehicles equipped with multiple sensors and data loggers. These drives are in
turn divided into shorter, one-minute segments of data recordings, each indexed by
timestamp, vehicle identifier, and additional metadata. Out of the sensors on the
test vehicles, the ones whose recordings we explore for our automatic annotation
pipeline are the following:

• Camera: A high-resolution front-facing camera recording images with a cap-
ture frequency of 30 Hz.

• LiDAR: Light Detection and Ranging sensors that emits rapid laser pulses to
generate three-dimensional point clouds, capturing time-of-flight, pulse angle
and return reflectance.

3



2. Dataset for Model Development

2.2 Construction of a Custom Dataset
This section describes how raw LiDAR and camera data are processed, synchronized
and manually annotated to support training and evaluation of models for automatic
annotation.

2.2.1 Defining Categories and Classes
In order to evaluate the feasibility of automatic annotation based on the raw data,
we defined four label categories related to driving conditions to serve as these an-
notations. These categories were established in consultation with the data gover-
nance team at Volvo Cars, with consideration for what might be useful to engineers
searching for particular driving scenarios. Labels cannot be too generic but must
be sufficiently specific to be useful, as described in Section 1.2. We also took into
account that it must be feasible to create reliable ground-truth annotations using
these labels—meaning they need to be clearly defined and relatively constant over
the one-minute segments in the database. Based on these considerations, the final
categories and class labels are presented in Table 2.1.

Table 2.1: Annotation categories and their corresponding classes.

Category Class 1 Class 2 Class 3
Road condition Dry Wet Snow/Ice
Road type City Road Country Road Highway/Large Road
Lighting Light Dark –
Visibility Clear Not Clear –

The Road condition category captures the surface state of the road to facilitate data
retrieval from scenarios with varying traction. Road type distinguishes between
urban, rural, and highway environments, which may be relevant since each corre-
sponds to distinct driving patterns and potential hazard risks. Lighting indicates
whether the recording was made during daytime or nighttime. Visibility groups the
weather conditions rainfall, fog, and snowfall under the class Not Clear, to facilitate
retrieval of data recorded under different visibility conditions, which could be useful
for evaluation of certain sensors.

2.2.2 Extracting our Dataset from the Database
When developing our custom dataset, the focus was on extracting sequences from
the database across a wide range of driving conditions and locations, in order to
ensure data diversity. This resulted in 1878 one-minute sequences from a large num-
ber of unique drives, evenly distributed over more than 200 driving hours, where
one one-minute sequence was sampled every five minutes in the original data. Two
sets of such sequences were created, one for each of the two sensors used: camera
and LiDAR. These sequences were extracted at matching timestamps to ensure syn-
chronization between the two modalities. Within each sequence, one image–LiDAR
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2. Dataset for Model Development

pair was sampled per second, resulting in 60 such pairs per sequence. In total, this
yielded a dataset containing 112 680 synchronized image–LiDAR pairs.

2.2.3 Processing of our extracted Dataset

To prepare the data for usage in the development of the automatic annotation mod-
els, the data had to be processed. The camera data in the database is stored in the
proprietary .zvlf archive format. This data cannot be viewed or interpreted using
standard applications, and the images were therefore decoded and saved as JPEG
files. The LiDAR data is stored in HDF5 files, from which we extracted the indi-
vidual point clouds and saved them as arrays in NumPy files. These arrays consist
of one 4-dimensional vector per point in the point cloud, where the four dimensions
correspond to the x, y, z coordinates and the reflectance intensity recorded by the
LiDAR sensor. The dataset was organized using a master CSV file, where each
row corresponds to one sequence and includes information about file paths to the
LiDAR and camera data, together with other metadata from the database such as
timestamps.

2.2.4 Manual Ground-Truth Annotation of our Dataset

The dataset was manually annotated with ground-truth labels, using the labels
defined in Section 2.2.1. Annotations were performed per sequence by manually
observing a sample of images from each sequence and determining which labels best
corresponded to it across the four categories. Sequences were excluded if the camera
view was obscured, LiDAR data were incomplete, or labeling confidence was low,
in order to maintain high accuracy and confidence in the labels. The result is a
diverse dataset with 1,878 one-minute sequences, carefully and manually annotated
with ground-truth labels.

2.2.5 Training and Validation Split

The manually annotated dataset was split into a training set and a validation set to
support both training and evaluation of automatic annotation models. This ensures
that the validation set serves as an independent benchmark, measuring how well
the model performs on data it has never seen during training. The validation split
was roughly 10% of the full annotated dataset, corresponding to 199 one-minute
sequences, while the remaining 1679 sequences form the training set.

The split was performed at the level of entire drives, meaning that all sequences
from a particular drive were assigned to either the training set or the validation
set. This approach ensures that the validation set has no overlap with the training
set, allowing for a proper assessment of annotation models abilities to generalize to
unseen data.
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2. Dataset for Model Development

2.2.6 Class Distribution Over our Dataset

The distribution of classes over all 1878 sequences in our dataset is presented in in
Figure 2.1. Similarly, distribution of classes over the 199 sequences in the validation
set is seen in the Figure 2.2.

Wet

34.0%

Snow/ice

33.1%

Dry

32.9%

Clear

68.6%

Rainy
19.8%

Foggy

6.3%

Snowy

5.3%

(a) Road Condition (b) Visibility

Highway
41.2%

Country road

29.6%

City road

29.2%

Light

73.1%

Dark

26.9%

(c) Road Type (d) Lighting

Figure 2.1: Pie chart showcasing the class distributions for the full dataset.
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Figure 2.2: Class distributions for the validation subset.
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3
Vision-Based Classification Models

This chapter details the training and evaluation of three vision-based classifiers on
the manually annotated dataset from Chapter 2. A two-stage training strategy
is described, showing how classification heads were attached to a frozen VGG19,
trained, and then fine-tuned to optimize automatic annotation of road condition,
visibility, road type, and lighting. The performance of each model is evaluated on
the validation set.

3.1 Vision Model Architectures
To extract information from images such as the ones in our dataset, the most com-
mon approach is to use a Convolutional Neural Networks (CNN). CNN’s lever-
age stacks of convolutional filters to hierarchically extract features from images
[1, 2]. Early convolutional layers detect patterns like edges, corners, textures, while
deeper layers combine these into object-level representations. This hierarchical fea-
ture learning, coupled with pooling operations for translation invariance and shared
weights for parameter efficiency, enables CNNs to generalize across visual tasks, such
as automatic annotation [3, 4].

We use the pre-trained feature extractor VGG19 to extract features that are used for
automatic annotation. This is accomplished by transfer learning. Transfer learning
retains a network’s convolutional layers and replaces its top layers for new tasks [5, 6].
By freezing the parameters of VGG19, we preserve generic visual representations
while adding classification heads tailored for our annotation categories, as defined
in Section 2.2.1. An overview of the multi-head architecture is shown in Figure 3.1.
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3. Vision-Based Classification Models

Figure 3.1: Model overview: An input image is processed by a VGG19 backbone
consisting of 16 convolutional layers followed by two fully connected layers to produce
a single feature vector. The feature vector is then fed into four parallel classification
heads that predict the corresponding class within each category: road condition,
road type, lighting, and visibility.

3.2 Experiment with Masking Images

An experiment was conducted to investigate whether predictions can be improved
by masking certain parts of the images, we employ a semantic segmentation mask on
input images generated by Detectron2 [7, 8]. By isolating the road and sky regions,
a CNN trained on masked images will not be influenced by features on the side of
the roads, as illustrated in Figure 3.2.

(a) Original image (b) Masked image showing road and sky

Figure 3.2: Comparison of the same scene: (a) the full original image and (b) the
same image with a mask applied to show only road and sky regions.
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3.3 Training Classification Heads and Fine-Tuning
From the pre-trained VGG19 model, classification heads were created and added as
the new output layers for our annotation categories. These heads were then trained
on the training portion of the dataset constructed in Chapter 2. During this train-
ing, all convolutional layers of the pre-trained VGG19 feature extractor remained
frozen so that only the parameters of the newly added heads were updated.

Each input image is first downsized to 224 x 224 pixels, and normalized. The input
is then propagated through the frozen feature extractor and collapsed by global aver-
age pooling into a 4096-dimensional feature vector. That vector is fed independently
into each head, two heads in the Masked-CNN variant for road condition and road
type, and four heads in the Full-Frame-CNN variant adding visibility and lighting.
This parallel head structure ensures that adjusting parameters in one head does
not influence the others. Training is carried out for a predefined number of epochs,
with checkpoints assessed on the validation set to identify the best-performing epoch.

After the heads reach their best performance, all convolutional layers of the back-
bone are unfrozen and training resumes in a process known as fine-tuning. The same
annotated images continue to drive learning, but now both the original backbone
and the added heads adjust their parameters. Learning rates are reduced and regu-
larization is applied to prevent overfitting. After each training epoch, the updated
model is evaluated on the validation set to determine the best-performing epoch.
The hyperparameters used during training are listed in Appendix A.

3.4 Evaluation of Vision Models
In this section, the procedure for evaluating all classification models is outlined.
Performance metrics are calculated for each Vision Model and the results for the
are presented and compared.

3.4.1 Performance Metrics
To assess each model’s performance across the four classification categories, four
metrics are computed:

Accuracy = TP + TN
TP + TN + FP + FN ,

Precision = TP
TP + FP ,

Recall = TP
TP + FN ,

F1-score = 2 · Precision × Recall
Precision + Recall
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These metrics are calculated using the values:

• True Positives (TP): Sequences where the model correctly predicts the class
assigned in the ground-truth label.

• False Positives (FP): Sequences where the model predicts a class that does
not match the ground-truth label.

• False Negatives (FN): Sequences where the model fails to predict the class
assigned in the ground-truth label.

• True Negatives (TN): Sequences where the model correctly identifies that
a specific class is not the ground-truth label.

Of the presented metrics, the F1-score is used as the primary performance indicator,
since it combines precision and recall into a single measure and thus provides the
most balanced overview of model performance.

3.4.2 Validation and CNN Evaluation
Model performance was assessed on the validation set by comparing each model’s
predicted labels against the manually annotated ground truth. For every category,
predictions were scored using the metrics defined in Section 3.4.1, and confusion
matrices were generated to highlight patterns of misclassifications.

Both the Masked CNN and Full-Frame CNN variants were evaluated in this man-
ner. Each model processed its respective input, masked or full-frame images, and
produced one label per category. Those labels were then directly compared to the
ground truth annotations, yielding per-category performance scores and confusion
matrices that reveal how each architecture handles different classes.

3.4.3 CLIP Evaluation
In addition to CNN-based classifiers, we also investigated whether a pre-trained
Contrastive Language-Image Pretraining (CLIP) model could be feasible to use for
automatic labeling, without any additional training. CLIP pairs an image encoder
and a text encoder, learning to align their outputs in a shared embedding space
through contrastive pretraining on large-scale image–text datasets [9].

For each of the four annotation categories, a set of descriptive text prompts, one
per class, is created. During inference, each validation image is passed through
CLIP’s image encoder to produce an image embedding. Cosine similarities are then
computed between this embedding and each class’s text-prompt embedding and the
highest-scoring class is selected as the prediction. The prompts used for the CLIP
model can be found in Appendix A.

These prediction are evaluated with the same metrics defined in Section 3.4.1, en-
abling a direct comparison of CLIP’s performance against that of the CNN variants.
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3.4.4 Comparison of Vision Model Variants
To determine the strongest performing vision model, the following five models were
evaluated: two Full-Frame CNNs under frozen and fine-tuned configurations, two
Masked CNNs under frozen and fine-tuned configurations, and a CLIP model. For
each variant, the checkpoint achieving the highest average F1 score on the validation
set was selected for comparison. Table 3.1 reports the per-category and overall F1
results.

Evaluation shows that the Full-Frame CNN under frozen configuration delivers the
highest overall average F1, driven by its performance on road condition, lighting
and visibility. The fine-tuned variant of the same architecture yields a improvement
on road type but shows a slight decline in the other categories. The masked CNN
benefit significantly from fine-tuning in the road condition and road type anno-
taion. The CLIP model, while offering competitive performance on road condition,
underperforms compared to all CNN variants across the remaining categories.

Table 3.1: F1 scores by model and category (FF = Full-Frame, M = Masked).

Model Road
Condition

(%)

Road
Type (%)

Lighting
(%)

Visibility
(%)

Average
(%)

FF CNNa 88.07 85.23 99.10 61.04 83.36
FF CNNb 87.26 86.44 98.45 60.10 83.06
M CNNa 75.13 80.56 – – –
M CNNb 78.64 81.17 – – –
CLIP 81.40 63.47 87.47 40.20 68.13

a frozen configuration b fine-tuned configuration
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Based on these results, the frozen Full-Frame CNN is chosen as the vision model
for the annotation pipeline. Its confusion matrix in Figure 3.3, further illustrates
strong diagonal accuracy across most classes.
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Figure 3.3: Confusion matrix for the Full-Frame CNN without fine-tuning on the
validation set.
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LiDAR-Based Classification Model

To evaluate whether the LiDAR point clouds in our dataset can effectively con-
tribute to automatic annotation, we train and evaluate a PointNet-based classifier
that predicts the four target categories—road condition, road type, lighting and
visibility. We explore different sampling strategies for the raw LiDAR point clouds,
evaluating both points sampled from the full-scenes, and points sampled exclusively
from the ground level.

All variants share the same network architecture and are evaluated on the same
validation set, detailed in Section 2.2.5. By comparing accuracy, generalization
behavior and the feasibility of each sampling strategy given our dataset, we assess
which configuration is most suitable for the annotation pipeline. The following
sections describe point-cloud sampling, the PointNet model architecture, training
process and final performance.

4.1 Model Architectures
To efficiently utilize the LiDAR data in our dataset for automatic annotation, a
model architecture capable of processing raw 3D point clouds was required. Point-
based models are therefore a natural choice, since they operate directly on unordered
point sets, like the ones present in our dataset. Among these methods, PointNet
has emerged as a straightforward yet effective approach [10]. It is efficient, scales
to large point sets, and preserves each scene’s geometric structure, making it well
suited for annotating driving scenarios directly from LiDAR point clouds.

4.1.1 Theory behind PointNet
PointNet is a neural network architecture designed specifically for unordered point
clouds, such as those recorded by LiDAR [10]. It works by applying a series of
shared multilayer perceptrons (MLPs) independently to each point, producing per-
point feature vectors. These features are then combined into a single representation
of the entire cloud. To do this, PointNet uses a symmetric aggregation function,
typically max-pooling, that takes the maximum activation over all points for each
feature dimension.

Because max-pooling is permutation invariant, the resulting global feature does
not depend on the order in which points are presented. Permutation invariance
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means that any order of the same set of points yields the same aggregated output,
which is essential for point clouds that have no ordered structure. This aggregated
feature therefore captures the overall shape and structure of the scene in a consistent
manner, and the resulting global descriptor can be used for downstream prediction
tasks such as scene classification.

4.1.2 Customized PointNet
We created a custom version of PointNet, tailored for multi-task classification. The
model follows the general theory of PointNet by applying shared transformations
to each point and aggregating them into a global representation using a symmetric
function. Specifically, we implement the shared MLPs using 1×1 convolutional lay-
ers combined with batch normalization and ReLU activations, as this is equivalent
to applying fully connected layers independently to each point. This produces per-
point features that are then aggregated using a global max-pooling operation over
all Npts points.

The resulting global feature vector of size 512 is used as a common representation
across categories. This vector is passed to multiple fully connected heads, one for
each classification category: road condition, road type, lighting, and visibility. Each
head outputs class logits corresponding to its category. This modular design allows
the model to learn shared geometric features while also specializing to the individual
categories.

The input size of the network depends on the number of points Npts sampled from
each point cloud. During data loading, point clouds with fewer than Npts points are
discarded, and those with more are downsampled randomly to exactly Npts points.

Table 4.1: Architecture of the multi-task PointNet model.

Component Layer Output Shape
Backbone 1×1 conv (4→64), batch norm, ReLU 64×Npts

1×1 conv (64→128), batch norm, ReLU 128×Npts
1×1 conv (128→256), batch norm, ReLU 256×Npts
1×1 conv (256→512), batch norm, ReLU 512×Npts
Max-pool over points 512

Heads Fully connected (512→3) for road condition 3
Fully connected (512→3) for road type 3
Fully connected (512→2) for lighting 2
Fully connected (512→2) for visibility 2

Table 4.1 outlines the layers and output shapes of the model. The shared backbone
transforms each input point independently and produces a global feature through
max-pooling. This feature vector is then used for classification by each of the
category-specific heads. The design leverages the strengths of the original PointNet
framework while adapting it for efficient multi-task learning on large point clouds.
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4. LiDAR-Based Classification Model

4.2 LiDAR Point Cloud Sampling
LiDAR point clouds naturally vary in size because the number of returns recorded
by the sensor depends on the environment. For example: urban scenes with many
objects produce dense clouds, while rural roads over open fields produce more sparse
clouds. Before training any neural network, this variability must be addressed, since
neural networks generally requires a fixed input size for every sample.

To enforce a consistent input shape, we sample a fixed number of points Npts from
each cloud. Retaining more points naturally preserves more details but increases
memory use and computation time. Furthermore, raising Npts forces more clouds
to be discarded as only those with at least Npts points can be used, meaning that
there is a trade-off between model performance and dataset coverage.

We examined the distribution of number of points per cloud across all LiDAR
data in our dataset, as visualized in Figure 4.1. Based on this analysis, we chose
Npts = 16 384 as our upper limit because it retains 93.8% of the dataset. Any higher
threshold would have forced us to discard a substantial number of samples, reducing
the amount of data available for training and limiting the portion of the dataset that
could be automatically annotated. The red bars in Figure 4.1 show the amount of
LiDAR data that that needs to discarded with the chosen threshold of Npts = 16 384.
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Figure 4.1: Distribution of number of points over all point clouds, with no partic-
ular filtering. Bins displayed in red correspond to point clouds with less than 16 384
points, that were discarded when loading the dataset for the model using 16 384
points.

To evaluate differences in prediction accuracy across sampling strategies, two full-
scene models were selected to determine the best way to sample the LiDAR point
clouds. One used our chosen maximum number of points Npts = 16 384 but was
trained only on every fourth point cloud to reduce training time. The other used
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Npts = 2 048, allowing training on every point cloud in the training set. Both models
were trained to predict all four categories: road type, road condition, lighting and
visibility.

An additional experiment investigated whether focusing exclusively on road-surface
points could yield better results for predicting road condition and road type. We
found that the LiDAR sensor used to record the LiDAR data is mounted roughly
two meters above ground at the front center of the vehicles, with the point-cloud
origin aligned to the sensor. Based on this setup, we applied a filter that removes all
points outside a lateral range of ±10 m, eliminating points from objects at the side
of the road. Similarly, every point with height z > –1.25 m was removed to exclude
points more than 75 cm above the estimated road plane.

Filtered clouds containing fewer than Npts = 2 048 points were excluded, and the
remaining clouds were randomly downsampled to that size. We chose 2 048 points
after examining the distribution of post-filter counts shown in Figure 4.2, this thresh-
old retains the majority of ground-level clouds. Using a higher threshold would have
removed an excessive number of point clouds, reducing training coverage and a lower
threshold would have sacrificed geometric detail. Because this setup focuses exclu-
sively on road-surface points, the model was trained only on the two most relevant
categories for this case: road condition and road type.
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Figure 4.2: Distribution of number of points over all point clouds where clouds
have been filtered to retain only the ground-level points. Bins displayed in red
correspond to point clouds with less than 2 048 points, that were discarded when
loading the data for the model trained on ground-level points.

4.3 Training of the PointNet Model
Training of our customized LiDAR PointNet model is performed over 30 epochs
with a learning rate of 1×10−3. We use the Adam optimizer which is well-suited for
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handling sparse gradients and noisy data as commonly found in point cloud classifi-
cation tasks [11]. We apply the same network architecture across all three sampling
strategies, and use the predefined train and validation split from Section 2.2.5, en-
suring that validation sequences come from drives unseen during training. This
setup provides a realistic measure of each sampling strategy’s generalization.

In each iteration, we sum the classification losses from all output heads to update
model weights. After every epoch, we record validation performance and save the
checkpoint with the highest average accuracy across categories. All metrics are
logged for subsequent analysis.

Figure 4.3 shows the training and validation curves for the full-scene model with
Npts = 16 384. Training accuracy steadily increases for all categories, while valida-
tion accuracy fluctuates more. Road condition validation closely follows training,
indicating good generalization. In contrast, road type, visibility and especially light-
ing show some divergence, suggesting mild overfitting.
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Figure 4.3: Training and validation accuracy for the full-scene model with Npts =
16 384.

Figure 4.4 presents the curves for the full-scene model with Npts = 2 048, trained on
every point cloud. Road condition and road type achieve stable convergence, but
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lighting validation accuracy drops sharply after about five epochs, indicating over-
fitting. Visibility follows the training trend more closely but still shows fluctuations.
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Figure 4.4: Training and validation accuracy for the full-scene model with Npts =
2 048.

Figure 4.5 shows training for the ground-only model with Npts = 2 048. This con-
figuration converges rapidly, and validation closely tracks training for both road
condition and road type, reflecting that focusing on surface points reduces noise for
those tasks.
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Figure 4.5: Training and validation accuracy for the ground-only model with
Npts = 2 048.
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4.4 Comparison
For each sampling strategy, we retain the checkpoint with the highest validation
accuracy and generate predictions on the full validation set. We compute F1-score
as our primary metric, balancing precision and recall, as detailed in Section 3.4.1.
Table 4.2 summarizes performance across categories.

Table 4.2: Validation F1-scores for each LiDAR sampling strategy.

Model Road
Condi-

tion

Road
Type

Lighting Visibility Average

Full scene (Npts = 16 384) 88.73 79.92 40.57 75.72 71.24
Full scene (Npts = 2 048) 82.51 72.10 40.05 73.28 66.99
Ground only (Npts = 2 048) 89.73 80.92 — — —

The results show that the sampling strategy using full-scene clouds with Npts =
16 384 outperforms the reduced full-scene strategy (Npts = 2 048) across all cate-
gories. However, for road condition and road type, the ground-only strategy slightly
outperforms both full-scene strategies. The gain is marginal, around 1% compared
to the larger full-scene approach, and since the ground-only strategy cannot address
lighting or visibility, it would need to be combined with a full-scene strategy in a
production setup.

Given this trade-off, the full-scene sampling strategy with Npts = 16 384 was chosen
for integration in the annotation pipeline, as further described in Chapter 5.
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To determine whether combining camera and LiDAR predictions can contribute to
more accurate automatic annotations, we develop and evaluate a fusion model that
ingests outputs from the vision model detailed in Chapter 3, and the LiDAR model
detailed in Chapter 4. These models produces raw logits for our four category labels
and the fusion layer learns to integrate these complementary signals into a single
prediction.

We present a lightweight Fusion MLP and compare it against three baseline models,
logistic regression, support vector machine and decision tree. All fusion methods
are evaluated on the same validation set defined in Section 2.2.5, with a focus on
performance, generalization, and practical integration into our annotation pipeline.
Subsequent sections present the fusion architectures, training procedure, and final
evaluation results.

5.1 Fusion Model Architecture
In order to leverage both the images and LiDAR point clouds available in our dataset
for automatic annotation, a fusion model was developed to combine the outputs
of the vision model presented in Chapter 3 and the LiDAR model presented in
Chapter 4. An overview of the automatic annotation pipeline is shown in Figure 5.1.
When used independently, each classifier applies an arg-max to its raw output scores,
called logits, to select the most likely class per category. However, to preserve the
full predictive information, the fusion module instead uses the complete vector of
raw logits from each model rather than their arg-maxed predictions.

Figure 5.1: Automatic annotation pipeline: 10 logits each from the CNN vision
model and the PointNet LiDAR model are fused by an MLP to produce the final
labels.
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Both the LiDAR and Vision models predict four categories: road condition (3
classes), road type (3 classes), lighting (2 classes) and visibility (2 classes), yielding
a total of 10 raw logits per model. Consequently, the fusion module receives 20
input features: 10 logits from the Vision model and 10 from the LiDAR model. A
compact MLP then combines these inputs to produce a unified prediction per scene.
Separate MLPs are trained for each classification category. The chosen architecture
of the MLP used for fusion is presented in Table 5.1.

Prior to training, each block of logits is normalized via softmax and then standard-
ized using a scaler fitted on the training data, ensuring consistent preprocessing
across all fusion models.

Table 5.1: Structure of each decision MLP. C is the number of classes for the given
category (2 or 3).

Component Layer Output Shape
Hidden transformation Fully connected (20 → 16), ReLU 16
Regularization Dropout (p=0.5) 16
Output projection Fully connected, no activation C

As a baseline comparison, three simpler decision models were also evaluated: logistic
regression, support vector machine, and decision tree. These models were trained on
the same 20-dimensional input vector. As with the MLP, logits from each sensor were
first passed through a softmax function to normalize them to pseudo-probabilities,
and then standardized.

Logistic regression is a linear model that estimates class probabilities using a softmax
over linear combinations of input features. The support vector machine with an RBF
kernel is a non-linear classifier that separates classes by maximizing the margin
in a high-dimensional feature space. The decision tree classifier splits the feature
space into axis-aligned regions by recursively selecting thresholds that maximize
class separation. Each of these models was trained independently for each category.
These comparisons serve as baseline alternatives to the MLP.

5.2 Training of the MLP Models
All four category-specific fusion MLPs were optimized with the Adam optimizer.
Early stopping with a patience of eight epochs, monitored on validation accuracy,
prevented overfitting, and the best checkpoint for each category was saved for eval-
uation.

Figure 5.2 shows the training and validation accuracy curves for each category.
Across road condition, road type, and lighting, training and validation accuracy
track closely, indicating stable generalization. The visibility model’s validation ac-
curacy begins to diverge after roughly 20 epochs, at which point training was halted.
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Because of early stopping, the total number of epochs varies by category, but in every
case the model state with peak validation accuracy was retained.
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Figure 5.2: Training and validation accuracy per epoch for the MLP for each
category.

5.3 Fusion Model Evaluation
The performance of all four evaluated fusion methods is summarized in Table 5.2,
which reports the validation F1-score per category and the overall average. The
MLP achieved the highest overall performance, especially on the visibility category,
which proved challenging for other models.

Table 5.2: Validation F1-scores (%) for each category and overall average for four
classification models.

Model Road
Cond.
(%)

Road
Type (%)

Lighting
(%)

Visibility
(%)

Overall
(%)

Logistic Regression 85.4 88.0 97.6 57.6 82.1
Support Vector Machine 85.0 88.0 97.7 57.7 82.1
Decision Tree 84.5 87.2 97.5 57.5 81.7
MLP 86.1 86.4 97.6 74.4 86.1
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The MLP achieved the best overall average across all categories, 86.1% compared to
the seconds best model at 82.1%. It also outperformed all baseline classifiers on the
most difficult category, visibility, with a validation F1-score of 74.4%. This strong
performance, combined with its fast training time and capacity to model interac-
tions between input features, makes the MLP the most suitable decision layer in the
annotation pipeline.

Further insight into the MLP’s performance is given by the confusion matrix in
Figure 5.3.
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Figure 5.3: Confusion matrix for the MLP fusion model on the validation set,
showing per-class accuracy.

A detailed breakdown of the MLP’s performance on the validation set is provided
in Table 5.3. Accuracy, precision, recall, and F1-score are reported for each cate-
gory. These results indicate that fusing vision and LiDAR inputs yields improved
performance compared to using a single sensor modality.
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Table 5.3: Performance of the MLP fusion model on validation sets.

Category Accuracy (%) Precision (%) Recall (%) F1 Score (%)
Road Condition 86.4 88.6 86.4 86.1
Road Type 86.3 86.8 86.3 86.4
Lighting 97.7 97.7 97.7 97.6
Visibility 74.3 78.6 74.3 74.4
Average 86.1 87.9 86.1 86.1
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6
Sequence Prediction Aggregation

and Model Comparisons

This chapter describes a sequence-level prediction aggregation method that trans-
forms per-frame logits into a single, one-minute prediction by averaging logits. It
then reports performance metrics for the Vision, LiDAR and Fusion models, high-
lighting the improvements gained by smoothing frame-level noise. Finally, a direct
comparison of all three approaches to demonstrate the additional gains achieved
through multi-sensor fusion.

6.1 Sequence Prediction Aggregation
The Vision, LiDAR, and Fusion models all predict a category label for each indi-
vidual scene, whereas the ground-truth labels were annotated for entire one-minute
sequences comprising 60 scenes each, as the labels remain constant throughout the
sequence. To align model outputs with the annotation format, we leverage predic-
tion aggregation to convert the 60 scene-level predictions into a single prediction per
sequence. The scene-level outputs from the models consist of raw logits, one logit
per class label.

Aggregation of scene-level predictions is performed by averaging the logits over the
entire sequence, followed by applying softmax to obtain the final sequence-level pre-
diction. This approach not only matches the format of the ground-truth labels but
also improves predictive reliability. As demonstrated in [12], averaging logits across
multiple samples yields better confidence calibration and higher overall accuracy
than either majority voting or direct averaging of class probabilities.

Mathematically, the aggregation works by averaging the logits for each class across
all frames in the sequence. For each driving sequence s, consisting of data points
i = 1, . . . , Ns, we let Li,c denote the logit for class c on frame i. The sequence-level
logit is then computed as:

L̄s,c = 1
Ns

Ns∑
i=1

Li,c,

and the predicted class is selected as

ŷs = arg max
c

L̄s,c.
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Averaging in this way smooths out frame-by-frame noise and yields a single, robust
prediction per category for the entire sequence.

6.2 Prediction Aggregation for Vision Model
To evaluate the effect on the vision model of aggregating predictions over sequences,
we apply this aggregation to the predictions from the best vision model from Chap-
ter 3, namely the Full-Frame CNN. We use this model to perform inference on the
validation set and record the raw logits for each scene. These predictions are then
aggregated across sequences, and the resulting accuracies per category are shown in
Figure 6.1.
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Figure 6.1: Confusion matrices for the Full-Frame CNN after sequence-level logit
averaging.

Table 6.1 presents the sequence-level evaluation metrics for the Vision model fol-
lowing the application of logit averaging. Figure 6.2 illustrates the absolute changes
in F1-score for each annotation category when comparing sequence-level predictions
against their single-frame counterparts. The most obvious improvement occur in the
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6. Sequence Prediction Aggregation and Model Comparisons

road type category and in the overall average F1-score, whereas the road condition
and lighting categories show slight reductions.

Table 6.1: Sequence-level performance of the Full-Frame CNN after logit averaging
and softmax.

Category Accuracy
(%)

Precision
(%)

Recall (%) F1-score
(%)

Road Condition 88.44 90.29 88.44 87.35
Road Type 88.94 89.78 88.94 88.99
Lighting 98.99 99.01 98.99 98.99
Visibility 62.81 61.51 62.81 61.04
Average 84.80 85.15 84.80 84.09
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Figure 6.2: Absolute change in F1-score (%) per category for the Full-Frame CNN
after logit averaging.

6.3 Prediction Aggregation for LiDAR Model
Similar to the Vision model, we apply sequence-level prediction aggregation to eval-
uate its effect on the LiDAR-based classifier. The model used is the best-performing
LiDAR model from Chapter 4, specifically the full-scene PointNet trained on 16 384
points per scan.
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6. Sequence Prediction Aggregation and Model Comparisons

The aggregation is performed in the same way as for the Vision model, by averaging
logits across each one-minute sequence to produce a single prediction per category.
The resulting sequence-level predictions are visualized as confusion matrices in Fig-
ure 6.3, and the corresponding accuracy, precision, recall, and F1-score per category
are reported in Table 6.2.
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Figure 6.3: Confusion matrices for the LiDAR model after sequence-level logit
averaging.

Table 6.2: Sequence-level performance of the LiDAR model after logit averaging.

Category Accuracy
(%)

Precision
(%)

Recall (%) F1-score
(%)

Road Condition 93.47 93.71 93.47 93.43
Road Type 83.92 85.23 83.92 83.69
Lighting 69.35 51.74 69.35 59.26
Visibility 80.40 83.85 80.40 78.91
Average 81.79 78.88 81.79 78.82
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6. Sequence Prediction Aggregation and Model Comparisons

Figure 6.4 shows the absolute change in F1-score for each annotation category when
comparing sequence-level predictions to their per-scan counterparts. Road condition
improves by roughly 5 percentage points, road type by about 4 points, and visibility
by around 3 points. The most substantial gain occurs in the lighting category, with
an increase of approximately 18 points. On average, sequence-level aggregation
boosts the F1-score by about 7.5 points, highlighting its effectiveness in producing
more reliable LiDAR-based annotations.
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Figure 6.4: Absolute change in F1-score (%) per category for the LiDAR PointNet
model after logit averaging.

6.4 Prediction Aggregation for Fusion Model

Similar to the vision and LiDAR models, we apply sequence-level prediction aggre-
gation to evaluate its effect on the fusion model. The classifier used is the fusion
MLP described in Chapter 5, which combines per-frame logits from the Vision and
LiDAR models.

The aggregation is performed in the same way as for the other models, by averaging
logits across each one-minute sequence to produce a single prediction per category.
The resulting sequence-level predictions are visualized as confusion matrices in Fig-
ure 6.5, and the corresponding accuracy, precision, recall, and F1-score per category
are reported in Table 6.3.
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Figure 6.5: Confusion matrices for the fusion model after sequence-level logit
averaging.

Table 6.3: Sequence-level performance of the fusion model after logit averaging.

Category Accuracy
(%)

Precision
(%)

Recall (%) F1-score
(%)

Road Condition 90.91 92.22 90.91 90.34
Road Type 89.90 90.63 89.90 89.95
Lighting 98.99 99.00 98.99 98.98
Visibility 78.28 82.97 78.28 78.41
Average 89.27 91.20 89.27 89.42

Figure 6.6 shows the absolute change in F1-score for each annotation category when
comparing sequence-level predictions to their per-datapoint counterparts. Road
condition improves by approximately 4 percentage points, road type by about 3.5
points, visibility by roughly 4 points, and lighting by around 1.5 points. On aver-
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age, sequence-level aggregation increases the F1-score by approximately 3.5 points,
indicating that fusion benefits similarly from smoothing of per-frame noise.
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Figure 6.6: Absolute change in F1-score (%) per category for the fusion model
after logit averaging.

6.5 Comparative Model Performance

To conclude our evaluation, we compare the final sequence-level F1-scores of the
best-performing models from each modality: the Full-Frame CNN for vision, the
full-scene PointNet for LiDAR, and the Fusion MLP. All models are evaluated after
applying the sequence-level prediction aggregation described in Section 6.1.

Table 6.4 presents the resulting per-category F1-scores side by side. This comparison
summarizes the results of the report and highlights the performance gains from both
aggregation and multi-sensor fusion.
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Table 6.4: Sequence-level F1-scores for the best Vision, LiDAR, and Fusion models
after logit averaging.

Model Road
Condition

(%)

Road
Type (%)

Lighting
(%)

Visibility
(%)

Average
(%)

Vision 87.35 88.99 98.99 61.04 83.84
LiDAR 93.43 83.69 59.26 78.91 78.82
Fusion 90.34 89.95 98.98 78.41 89.42

The fusion model achieves the highest average F1-score across all categories, out-
performing both the vision and LiDAR models at the sequence level. By leveraging
the complementary strengths of camera and LiDAR data—combining visual context
with spatial geometry—it provides a more balanced and reliable basis for classifica-
tion. Its performance is further improved through sequence-level aggregation, which
helps reduce frame-level noise and increases prediction stability.

Given its strong overall performance and ability to combine information from both
sensor modalities, the fusion model is well suited to serve as the final output of our
automatic annotation pipeline and is integrated accordingly. To further improve
robustness, sequence-level aggregation is applied on top of the fusion output.
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7
Proof-of-Concept Data Retrieval

Interface

This chapter introduces a proof-of-concept user interface designed to facilitate the
retrieval of multimodal vehicle data using annotations from the automatic anno-
tation pipeline. By combining query filters with visualizations of camera frames
and LiDAR point clouds, the interface enables users to quickly locate, inspect, and
validate driving scenarios.

7.1 Interactive Query Construction and Filtering
To facilitate exploration of large-scale driving data, a user interface was developed
that leverages annotations from our pipeline. For every one-minute sequence, the
pipeline assigns a label for each of the four categories: road condition, road type,
lighting, and visibility. Each label is accompanied by a confidence score. These
confidence scores are computed by applying the softmax function across all classes
within a category. This produces scores between 0 and 1 for each possible label,
where higher values indicate greater certainty in the prediction.

The interface provides controls to select one or more of these predicted annota-
tions in each category and to specify minimum confidence thresholds. Each an-
notation–threshold pair defines a filter for that category, and the interface returns
only the sequences that satisfy all selected filters. For instance, a user may retrieve
sequences annotated as wet at or above 0.8 confidence while simultaneously requir-
ing highway at or above 0.7 confidence. Only sequences that meet every specified
criterion are included in the results.

Results are displayed in a table listing all sequences that match the selected criteria.
Confidence scores for model predictions are shown alongside each label to support
informed selection of sequences for retrieval. To facilitate downstream analysis, the
table can be exported as a CSV file.

7.2 Multimodal Record Inspection
In addition to tabular summaries, the user interface provides a record-level inspec-
tion view. Upon selecting an entry, the corresponding camera frame and LiDAR
point cloud are displayed side by side. The camera view shows the image frame,
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7. Proof-of-Concept Data Retrieval Interface

while the LiDAR view renders the three-dimensional point cloud with interactive
rotation and zoom controls. By situating each prediction within its original multi-
modal context, the interface enables users to visually inspect the raw sensor data
alongside the model’s predicted annotations.

By combining flexible filtering controls with synchronized image and point cloud
views, this proof-of-concept interface demonstrates how users can locate and vali-
date driving scenarios using predicted annotations from our annotation pipeline. A
screenshot of the interface can be seen in Appendix B.
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8
Discussion

This chapter discusses the dataset composition, annotation quality, and model per-
formance across the four scenario categories. It includes an analysis of class balance,
annotation errors, and the potential for reusing the dataset in other research. It also
discusses the results from the Vision, LiDAR, and Fusion models, with a focus on
how their performance is affected by sensor characteristics and sequence-level ag-
gregation. The chapter ends with suggestions for future work, including extensions
to the dataset, annotation categories, and integration into Volvo’s data pipeline.

8.1 Dataset Discussion
This section discusses class balance, edge cases, and broader reuse potential of our
dataset, which is introduced in Chapter 2. We examine how the four annotation
categories are distributed across our one-minute segments, highlight examples of
annotation errors revealed by model predictions, and outline how the synchronized
camera–LiDAR data can support future research.

8.1.1 Class Balance Across Categories
When assembling our dataset from Volvo Cars test-drive database, driving sessions
were selected to maximize diversity and balance across our four annotation cate-
gories. Figure 2.1 in Chapter 2 shows that Road condition and Road type each have
near-equal representation among the 1878 one-minute segments, reflecting the fact
that each class for these categories had good representation in the database.

In contrast, the proportion of classes for the categories Visibility and Lighting is
more skewed. Only 31.4% of segments are labeled "Not Clear" as a consequence
of the fact that very few non-clear recordings were available in the database. This
imbalance may contribute to the lower F1-score for visibility. Regarding the lighting
category, "Light" recordings comprise 73.1% of the dataset due to the fact that we
limited the number of "Dark" scenes, as producing accurate ground-truth annota-
tions at night proved more challenging. Despite this imbalance, the clear contrast
between light and dark scenes likely explains the high accuracy achieved by the vi-
sion model for this category.

However, for the Visibility category, the class imbalances may have affected model
performance negatively, as the models struggle with this category and the differences
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between the classes are not as clear to see. The models would likely have benefited
from more evenly distributed classes, meaning more data in the class "Not Clear".
Another way to address this could have been through loss weighting, which could
have been applied to underrepresented classes.

8.1.2 Annotation Errors
While the evaluation metrics provide insights into the model’s performance, they in-
herently rely on the accuracy of the ground-truth labels. As such, it is important to
consider the potential for labeling inconsistencies. Despite the careful manual anno-
tations, it can be assumed that a small number of segments might still be mislabeled.
For instance, in the validation set, the fusion model sometimes predicts “Wet” when
the ground-truth label is “Dry.” We observed that one such case occurred at the
very onset of rainfall: the road surface was transitioning from dry to wet, and initial
droplets on the windshield signaled wet conditions. The ground-truth annotation,
however, remained “Dry,” making this an instance where the fusion model’s predic-
tion was more accurate than the assigned label. This suggests that there may be a
small number of cases where the model is correct despite being different from the
ground-truth label.

8.1.3 Broader Reuse of the Constructed Dataset
In addition to supporting the development of our classification models, the con-
structed dataset has potential value for a broader range of research applications. Be-
yond its immediate role in training the vision and LiDAR models, our synchronized
camera–LiDAR dataset could likely offer value across multiple research directions.
Because each image–point-cloud pair is precisely time-aligned and manually anno-
tated, the dataset provides a strong benchmark for evaluating other multimodal ar-
chitectures, such as LidarCLIP [13], that fuse visual and spatial information. More-
over, the raw, synchronized data can facilitate unsupervised and self-supervised ap-
proaches: models can exploit the natural correspondence between images and point
clouds to learn joint representations without requiring manual labels.

8.2 Discussion of Classification Results
This section discusses the performance of the Vision, LiDAR, and Fusion models
across the four annotation categories. We explore factors such as sensor character-
istics, data distribution, and temporal aggregation that likely explain each model’s
strengths and weaknesses.

8.2.1 Model Comparison and Category-Level Analysis
The Vision model performs best on the lighting and road type categories, as seen
by its high F1-scores in Table 6.1. This is likely because the images contain useful
information, such as overall brightness for lighting and road markings, or road width
for road type. Its scores on visibility and surface condition are lower. This may be
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because rain, snow, or subtle pavement details are harder to identify in camera data,
especially since the images are downsampled before being fed into the Vision model,
causing some fine-grain detail to be lost, see Section 3.3.

The LiDAR model instead performs best on road condition and visibility, as shown
in Table 6.2. This might be because point clouds are able to capture changes in sur-
face geometry and return reflectance values that indicate wet or snowy roads, and
they are not blurred or obscured as images can be in certain conditions. The LiDAR
model performs poorly on lighting, likely because LiDAR does not measure ambi-
ent illumination and its point clouds are therefore unaffected by environmental light.

As concluded in Chapter 6, combining the LiDAR and Vision models using a simple
MLP fusion yields better predictions than the individual models. It can be assumed
that the Fusion model is able to draw on the Vision model’s strengths in lighting and
road type and the LiDAR model’s strengths in road condition and visibility. This
results in more balanced performance across all four categories, as seen in Table 6.4.

8.2.2 Analysis of Sequence Aggregation
It was found that aggregating frame-level prediction logits over each one-minute se-
quence consistently improved performance for the models, as shown in Figures 6.2,
6.4, 6.6. This aggregation serves as a smoothing function and can be assumed to
reduce sensor noise, such as sun glare, sparse LiDAR returns or momentary occlu-
sions and produces more stable confidence estimates.

The two-step process of first fusing camera and LiDAR logits, then averaging those
fused scores over each one-minute sequence, yields the strongest results. The fusion
MLP integrates complementary information, visual cues for lighting, and geometry
cues for surface state into a single per-frame prediction. Sequence-level aggregation
then smooths out any remaining frame-to-frame noise, producing the most accurate
and stable scenario labels across all four categories.

8.3 Future Work
This thesis has demonstrated that multimodal automatic annotation using camera
and LiDAR data is effective. However, there are still several ways to improve and
expand this pipeline.

8.3.1 Additional Modalities and Annotation Categories
The presented annotation pipeline serves as a proof of concept. To become a more
functional and fully customizable tool for engineering applications, it would need
to support a wider range of scenario categories, as well as additional sensor inputs.
Expanding both the sensor suite and the annotation schema would cover more use
cases and potentially further improve accuracy under varied driving conditions.
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8.3.2 Dataset Construction for Expanded Annotations
To support additional scenario categories such as traffic density, road curvature, or
weather conditions, the dataset would need to be expanded to include these new
labels. This could be done by applying the existing preprocessing and annotation
workflow to new data containing the relevant conditions. Such data may be sourced
from the current database or collected through new test drives. Once selected, the
data would need to be annotated according to the extended label set to enable
training and evaluation of an updated model.

8.3.3 Integration into Volvo Car’s Production Environment
Moving from a proof of concept to a production environment would require inves-
tigating how to embed the inference, fusion, and smoothing steps into Volvo’s data
flow. It would need to be determined where and when in the process of injecting new
data, the annotation pipeline would come into play. The process for storing gener-
ated labels alongside sensor data in the central database also needs to be defined.
Finally, appropriate monitoring tools and retraining workflows must be developed
so the models can be updated as new sensors are added or annotation requirements
change.
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9
Conclusion

It has been demonstrated that integrating camera and LiDAR sensors into a unified
annotation pipeline enables automatic generation of accurate driving scene labels.
We leveraged a pre-trained VGG19 CNN for image feature extraction, combined
with customized trained classification heads for scene labeling. A lightweight Point-
Net was used for point-cloud interpretation, a compact multilayer perceptron for
modality fusion, and sequence-level aggregation was applied to smooth noise and
improve stability. With this approach, we consistently achieved F1 scores above
90 % for road-condition, above 89 % for road type, over 98 % for lighting classifica-
tion, and above 78 % for visibility estimation.

These results confirm that metadata can be automatically and efficiently retrieved
directly from onboard vehicle sensors without any manual intervention. This annota-
tion pipeline can be integrated into the data ingestion stage following the collection
or generation of new raw data, automatically inserting labels into the database.
This enables engineers to query annotated vehicle data for specific conditions and
significantly accelerates the development and verification of sensor-based vehicle
functions.
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A
Appendix: Machine Learning

Models

In this appendix, additional details of the machine learning models are provided.
Here you’ll find more detailed evaluation tables.

Table A.1: Architecture and training settings for the Masked and Full-Frame
CNNs.

Parameter Masked CNN Full-Frame CNN
Backbone VGG19 VGG19
Dropout 0.30 0.30
Input size 224 × 224 224 × 224
Optimizer Adam Adam
LR (Heads) 1 × 10−4 1 × 10−4

LR (Fine-tuning) 1 × 10−6 1 × 10−6

Weight decay (L2 Reg) — 1 × 10−4

Epochs (heads) 3 3
Epochs (fine-tuning) 3 3
Batch size 128 128
Loss function Cross-entropy Cross-entropy
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A. Appendix: Machine Learning Models

Table A.2: CLIP text prompts used for zero-shot classification. Categories: RC =
Road Condition, VIS = Visibility, RT = Road Type, L = Lighting.

Category Class Text Prompt
RC Wet A photo of a road surface that is wet or has puddles.
RC Dry A photo of a road surface that is completely dry.
RC Snow/Ice A photo of a road surface covered in snow or ice.
VIS Clear A photo taken in clear weather with unobstructed view.
VIS Rain A photo showing active rainfall and wet surroundings.
VIS Fog A photo depicting foggy conditions with reduced visibility.
VIS Snowfall A photo capturing snowfall obscuring visibility.
RT City A photo of an urban street with buildings and traffic signals.
RT Country A photo of a rural country road bordered by vegetation.
RT Highway A photo of a multi-lane highway with guard rails.
L Daylight A photo captured in bright daylight with clear details.
L Low Light A photo captured under low-light or nighttime conditions.

Table A.3: Full-Frame CNN performance: initial vs. fine-tuning.

Initial Fine-Tuned
Category Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
Road Condition 0.8850 0.8948 0.8850 0.8807 0.8796 0.8939 0.8796 0.8726
Visibility 0.6345 0.6221 0.6345 0.6104 0.6181 0.6039 0.6181 0.6010
Road Type 0.8540 0.8639 0.8540 0.8523 0.8651 0.8731 0.8651 0.8644
Lighting 0.9910 0.9911 0.9910 0.9910 0.9846 0.9849 0.9846 0.9845

Table A.4: Masked CNN performance: inital vs. fine-tuning.

Initial Fine-Tuned
Category Acc. Prec. Rec. F1 Acc. Prec. Rec. F1
Road Condition 0.7530 0.7547 0.7530 0.7513 0.7906 0.7887 0.7906 0.7864
Road Type 0.8073 0.8087 0.8073 0.8056 0.8133 0.8144 0.8133 0.8117

Table A.5: Zero-shot CLIP performance on each category.

Category Accuracy Precision Recall F1
Road Condition 0.8198 0.8147 0.8198 0.8140
Visibility 0.4815 0.6848 0.4815 0.4020
Road Type 0.6362 0.7461 0.6362 0.6347
Lighting 0.8686 0.9109 0.8686 0.8747
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Appendix: User Interface

This appendix showcases the user interface built for visualizing input data streams,
inspecting model prediction, and adjusting inference parameters.
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Query & Inspection (Model
Predictions)

1) Pick labels & confidence thresholds
Road Condition

dry

Road Type

highway/large ro…

Lighting

light

Visibility

Choose an option

Road Condition confidence ≥

0.00 1.00

0.70

Road Type confidence ≥

0.00 1.00

0.80

Lighting confidence ≥

0.00 1.00

0.90

Visibility confidence ≥

0.00 1.00

0.00

Search

394 records matched your criteria.
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B. Appendix: User Interface

Image path: /shared/vcc/users/team-insight-master-
thesis/dataset/images/mule19_ohs1311_202210_03T053251_job-

Figure B.1: Screenshot of the user interface.
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