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Abstract 

 
As architecture modeling becomes the trend in automotive 

industry, problems are raised regarding the gaining complexity 

in system design and safety analysis. The current safety 

analysis requires large amount of manual work and the result is 

usually unstable.  

 

This study follows design research methodology and four 

artifacts are designed, implemented and evaluated. The 

outcomes of this research improves the current safety analysis 

working process by automating the model transformation and 

controlling version consistency between dependent model 

aspects. Besides, it also provides the possibility to apply safety 

analysis in an early stage of the development to reduce the 

amount of later modifications. 
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Chapter 1   Introduction 
 

 

 

With the growing number of integrated functions in automotive systems, one of the main 

tasks is to solve the contradiction between the increasing complexity of the system and the 

demands on accuracy and efficiency in system development. In order to cope with this 

problem, it is getting more and more popular to use suitable levels of abstraction for 

representing the system architecture. Various kinds of models and the corresponding analysis 

approaches are introduced to handle different situations. Among these, safety analysis 

together with system architecture models, which are crucial for measuring the vehicle’s 

quality and safety in automotive industry, are chosen to be the topic in this study. 

 

Currently, plenty of tools and approaches are targeting to support safety analysis by 

transforming between models according to the reviewed literature. However, challenges 

remain in maintaining consistency among safety requirements and analysis results, which 

means the final architecture design may not satisfy the corresponding safety requirements 

because of the unavoidable modifications in evolutions. Besides, how to guarantee the overall 

quality with a limited effort in time and cost is another issue worthy of discussion.  

 

In this research, the researcher focuses on resolving those problems mentioned above by 

providing corresponding solutions together with relevant EAST-ADL artifacts. EAST-ADL is 

an Architecture Description Language (ADL) for automotive embedded systems (EAST-ADL 

specification). The overall goal of this study is providing automation and visualization support 

for current safety working flow. The error modeling is a concept in EAST-ADL which 

reflects the safety aspect from a system perspective. The research outcomes are evaluated by 

system engineers and safety engineers in order to collect feedback and improve the current 

and future solutions. 

 

1.1 Problem statement and Research Questions 
In order to apply the safety analysis to an architecture model, four steps are typically 

appropriate to conduct in automotive industry. First is defining an error propagation model 

from the architecture model, the error propagation model indicates the possible failures and 

how the failures are propagated in the architecture design. Fault tree analysis is the second 

step. Based on the information provided in the error propagation model, fault tree analysis 

provides a better understanding of how the system can fail. By taking the result from fault tree 

analysis into consideration, the third step is to find out how to reduce the risk of failures in the 

architecture model and modifying the architecture model is the fourth step. Those four steps 

are iteratively applied to eliminate the failure risks.  

 

http://en.wikipedia.org/wiki/Architecture_Description_Language
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However, problems exist in those working procedures, most of the work are done manually 

and redundancy occurs when different teams are working for the same goal. Besides, 

inconsistency among system architecture model and error model occurs as they evolve. After 

the modifications are made on either architecture or error model side, there is no efficient way 

in the system to detect and control these changes with corresponding model on the other side. 

 

 
Fig 1.1 Safety Analysis working process 

 

In order to cope with the problems explained above, five research questions are raised in order 

to provide a more efficient environment for safety analysis in EAST-ADL. Fig 1.1 illustrates 

the four procedures as mentioned above. The dependency between nominal and error model is 

illustrated as a tracing line. The numbers in this figure address the steps in working process 

and also corresponds to the section of research questions. 

 

1.1.1  Defining 
The first step, defining, is to create the error propagation model from the architecture nominal 

model, as shown by ① in the figure above. Decisions are needed to make which or what level 

of components is going to be used for generation. This is the first and most important step 

since only an accurate error model guarantees the quality for later steps. Alternatives exist 

while defining the error propagation model from the nominal model. Currently, manual work 

is required in order to determine which or what level error components are going to be 

generated. The problem comes to how to achieve an automated error propagation model 

generation which is not only adequate enough in capturing the error factors from nominal 

model but also flexible to be modified. So the first research questions is raised as RQ1: How 

to efficiently define an error propagation model from the nominal model? 

 

Depending on the usage of error model, it has different structure from its nominal model. 

There are several routine manual refactoring on error model side, for example, collapsing the 
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connections and ports which have the same source element and destination element. Some 

algorithms are needed to be defined in order to reduce the manual work of refactoring. The 

second research question is defining process is revealed as RQ2: How to reduce the manual 

work in refactoring the model? 

 

1.1.2  Analyzing 
The second step is the analysis process. In this step, the fault propagation data in the error 

model is synthesized and analyzed into fault tree. The analysis tool automatically generates 

the corresponding fault tree once the error logic is defined. There are several analysis tools 

available in fault tree analysis area, such as AltaRica, HiP-HOPS, Rodelica. In this research, 

we need to decide which tool is the most efficient for EAST-ADL Fault Tree Analysis and 

create the corresponding analysis algorithm for EATOP. In order to provide a more efficient 

environment for fault tree analysis in EATOP, an implementation is needed to integrate 

EATOP with the fault tree analysis tool. So the third research question is:  RQ3: How to apply 

Fault Tree Analysis on EAST-ADL error model and relate the generated Fault Tree result 

with both error model and nominal model in EATOP? 

 

1.1.3  Understanding 
As shown by ③ in Fig 1.1, this step is for evaluating and validating relations between the 

generated models after the previous two steps. In order to have a better understanding, a 

certain method of visualization between models is needed. The goal of this step is to help the 

user to understand how the error model is related with the corresponding architecture nominal 

model. The visualization should be able to reduce the manual work in the current status and 

provide a general view of corresponding models. For this reason, the fourth research question 

is revealed as RQ4: How to visualize the error propagation model together with nominal 

model and fault tree? 

 

1.1.4  Evolving 
After the models are evaluated, evolution is unavoidable. This step is about the modifications 

happening after the initial model generating stage, adjusting and improving the models in 

order to fit the constraints and fulfill the safety requirements. As shown in 1.1, the consistency 

between nominal model and error model are checked in this step. 

 

Error modeling is the bridge between nominal models and fault tree analysis. Since the fault 

tree is generated directly from the error model, the consistency problem between fault tree and 

nominal model is transferred as the consistency between error model and nominal model. The 

handling of components inconsistency is quite important in automotive structure development 

area. So in this step, the research question is raised as RQ5: How to ensure consistency 

between nominal architecture models and error models? 
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1.2 Overview 
The contribution of this study has been made in Electrical and Embedded System department 

at AB Volvo Group Trucks Technology, Advanced Technology and Research. Two 

supervisors from both industry and academic sides and a certain amount of safety engineers in 

this department were involved.  

 

In this study, we designed and implemented several features based on EATOP. EATOP is an 

eclipse based EAST-ADL platform. The aims of those features are solving the research 

questions revealed in the previous section. For the questions in step ① defining, a one to one 

mapping pattern is designed to define the corresponding error model from architecture model. 

And the mapping design is implemented into EATOP plugin which is able to automatically 

generate error model elements out of existing function model elements. The final outcomes in 

first step reduce the manual work in error model defining. For fault tree analysis in the step 

②, HiP-HOPS is integrated into EATOP and several fault tree analysis results are annotated 

in EATOP model. The graphic support for step ③ understanding in this research focuses on 

visualizing the relations between error modeling and architecture modeling since the relation 

visualization is the main topic in research question 4. For the inconsistency problem in step 

④, a version control feature is developed to help the user manage and synchronize the 

changes from version perspective. In order to prove the design and implementation of each 

feature solving the research questions and achieving their goals, an evaluation is executed 

among system engineers and safety engineers from different departments in Volvo Group 

Trucks Technology. Even the whole thesis is carried out in one single company, it still 

produces the academic value to improve the common safety analysis procedures in 

automotive area and the result of this research is able to generalize to automotive industry. 

 

This thesis report starts with a general introduction of the research background in chapter 2, 

which provides more detailed information about EAST-ADL function modeling along with 

error modeling and several concepts in safety analysis. Further elaboration and the solutions 

for each research question are presented from Chapter 5 to Chapter 8 respectively. Design use 

cases are demonstrated in each chapter and the final result screenshot are depicted in 

Appendix. Chapter 9 specifies how the evaluation data is collected in this study together with 

the collected data analysis. Chapter 10 draws a final conclusion with the outlines of future 

work. 
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Chapter 2   Background 
 

 

 

This research is mainly based on EAST-ADL, an Architecture Description Language for 

automotive embedded system. A description about EAST-ADL is provided in the first section 

followed by a detailed explanation of two modeling concepts. EATOP and the tooling 

environment are summarized in section 2.3 and it is followed with a description about Fault 

Tree Analysis. The related work is elaborated in the end of this chapter. 

2.1 EAST-ADL 
EAST-ADL is an Architecture Description Language (ADL) to model functional-, system-, 

software-, and hardware-architecture in the automotive domain (eclipse EATOP, 2013). It is 

initially defined in the European ITEA EAST-EEA project and maintained by EAST-ADL 

Association. The main role of EAST-ADL is to provide a sufficient detail for design, analysis, 

documentation and synthesis in automotive electronic system modeling, it provides various 

levels of concerns for organizing and representing the automotive system.  

 

 
 

Fig 2.1 EAST-ADL 2.1.12 Abstraction Representation 
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As shown in Fig 2.1, the functionality of the vehicle in EAST-ADL 2.1.12 is described at four 

levels of abstractions, which are Vehicle Level, Analysis Level, Design Level and 

Implementation Level. Among those four levels, only implementation does not have its own 

structure, all the elements are represented by AUTOSAR since AUTOSAR focuses more on 

software architecture and execution platform while EAST-ADL is used for features, 

functional architecture and topology. The intent of Vehicle level is to state what the vehicle 

should do, it contains the modeling elements which represent the intended functionality. 

Analysis level provides an abstract functional architecture while Design level has the detailed 

functional definition. The right hand side of Fig 2.1 illustrates the extensions in EAST-ADL, 

which include structural constructs, behavioral constructs, variability, requirements, timing, 

dependability and so on. Those extensions reference the core elements with all abstraction 

levels. More detailed information about structural constructs and dependability will be 

elaborated in next section. 

 

2.2 EAST-ADL Modeling Concept and Fault Tree Analysis 
As discussed above, the modeling concepts of EAST-ADL, or so called EAST-ADL 

extensions, cover various areas from requirements modeling to timing modeling. In this 

section, we will provide more details with an example model about function modeling and 

safety modeling.  

 

2.2.1 Function Modeling 
Function Modeling is performed in the Functional Analysis Architecture and Function Design 

Architecture, which are also the root components in Analysis Level as FAA and in Function 

Level as FDA. The Allocation of Function Design Architecture is represented in 

corresponding Hardware Design Architecture. The concept provided in function modeling is 

the functions interact with each other through their function ports and connectors. Each of the 

function is modeled by function prototypes and they can be typed by a function type. And a 

function type is where contains ports, connectors and other function elements. The general 

structure is illustrated in Fig 2.2 and the class diagram of function modeling is shown in 

Appendix B.1.  

. 

Fig 2.2 EAST-ADL 2.1.12 Function Modeling on Analysis Level and Design Level 
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As a standard example of EAST-ADL, “Brake_By_Wire_4Wheel” contains function 

modeling elements on both analysis level and design level. Those two levels are separated 

into two packages called “AnalysisLevelElements” and “DesignLevelElements”. As 

illustrated in Fig 2.3(a), the analysis function elements like AnalysisFunctionType(ABS_T, 

BatteryObserver..), FunctionalDevice(BatteryDoDSensor, BatteryVoltageSensor..) are 

directly located under the AnalysisLevelElements package. AnalysisFunctionType is used to 

model the functional structure on AnalysisLevel and the FunctionalDevice is the interface 

between the electronic architecture and the environment (EAST-ADL specification 2.1.12). 

While the DesignLevelElements are divided into function modeling and hardware modeling. 

“FCN” contains the function design architecture elements like DesignFunctionType(ABS_T, 

BBW_FDA..), used to model the functional structure on DesignLevel. And 

HardwareFunctionType (HW_Brake_T, HW_Encoder_T..) types DesignFuhnctionPrototypes 

(EAST-ADL specification 2.1.12). “HW” package, which means Hardware Modeling 

contains the elements to model physical entities of the embedded electrical/electronic system. 

The example DesignLevel elements are shown in Fig 2.3(b). 

       
Fig 2.3(a) Analysis Level Elements in BBW                               Fig 2.3(b) Design Level Elements in BBW 

 

Fig 2.3 EAST-ADL Brake-By-Wire Example of Function Modeling 
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2.2.2 Error Modeling 
EAST-ADL error modeling provides the concerns with faults, errors and failures throughout 

an architecture design process. It provides the support for safety engineering by representing 

possible incorrect behaviors of a system in its operation. (e.g., component errors and their 

propagations.) In this case, the abnormal behaviors of architectural elements as well as their 

instantiations in a particular product context can be captured and they are captured in one 

error modeling element called “Error Behavior”. An incoming flaw or an internal flaw 

represents a fault for the component which may or may not result in a component failure. 

While an outgoing flaw which is propagated from the component results a failure. (EAST-

ADL Domain Model Specification, V2.1.12). 

 
Fig 2.4  EAST-ADL 2.1.12 Error Modeling 

 

Figure 2.4 illustrates the relations between error model and function analysis model. Error 

Modeling is regarded as a separate view from nominal architecture. The related error models 

present traces to the nominal architecture and the hazard together with error relation between 

the components. As presented in Fig 2.4, EM1 in Dependability side under ErrorModel 

represents the failure logic of AF1 in SystemModel side under AnalysisLevel and EM2 

represnets both AF2 and AF3 in the system model, which means the tracing from error model 

to system model could be a one to one element mapping or one to many mapping according to 

the different situations. Besides providing the FaultFailure logic, error model elements also 

represent the ASIL level of its corresponding system model. More information about basic 

concept of failures is presented in section 2.2.3. The ASIL level is an automotive safety 

integrity level which expresses the required levels of safety in one system.  Each hazardous 

event is assigned an ASIL to each required error model element, which means the criticality 

of this hazard. As shown above, EM2 is assigned the ASIL as level C. In general, Error 

modeling concept in EAST-ADL is a language construct for associating the annotations of 

error descriptions to the target system entities for maintaining the traceability (Chen, et al. 

2013) and it is also the base of safety analysis which is elaborated in section 2.2.3. 

 

Taking the Brake-By-Wire model as an example, Fig 2.5 carries out more detailed 

information of how error modeling elements behave in a system. The Dependability package 

of a system contains all the related elements which represent the system’s ability to ensure 

service failures are at a level of frequency and severity that is acceptable and Error Modeling 
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is one of them. Inside DependabilityPackage, there are three ErrorModelTypes, one 

FaultFailure and one SafetyConstraint. A FaultFailure element represents a certain fault or 

failure on its refered anomal and a SafetyConstraint element represents the qualitative 

integrity constraints on a fault or failure. Since both FaultFailure and SafetyConstraint are 

belonging to SafetyConstraints concept in EAST-ADL and it is not the focus of this study, 

we’ll not going into detail of this concept, but more information can be found in EAST-ADL 

Domain Model Specification, V2.1.12. As an ErrorModelType, “BrakeTorqueCalc_EM” 

represents the internal faults and fault propagations of the nominal element that it targets. This 

target is the dependency between function modeling and error modeling mentioned above. 

“BrakeTorqueCalc_EM” contains two FaultFailurePorts which is used for propagating the 

fault or failure; one InternalFaultPrototype called “InternalFault” represents the internal 

conditions that can cause failures of its target element when it’s activated. And one Error 

Behavior which is called “BrakeTorqueFailureLogic” which contains the element’s failure 

logic. The failure logic describes how the failure propagates inside this element.  

 

 
 

Fig 2.5 Error Modeling in BBW 

 

2.2.3 Fault Tree Analysis 
Before the Fault Tree Analysis is explained, we would like to discuss about the relations 

between fault, error and failure. As illustrated in Fig 2.6 (Avizienis et al. 2004, p.21), an error 

is activated from a fault and a fault is the initial cause of a failure. Failure occurs when an 

error is propagated to a service, this propagation causes a deviation of the service delivery 

from correct service (Avizienis et al. 2004). Error propagation is defined as an error 

successfully transforms into other errors by Avizienis et al. An error propagates from one 

component to another causes a failure. 

 

 
Fig 2.6 Relationship among fault, error,failure (Source: Avizienis et al. 2004, p.21) 

 

Fault Tree Analysis is a systematic method of system analysis. It is a top down approach, 

which is used to analyze the system failure probability and resolve the causes of a system 

failure. This method is used to establish how the system can fail and identify the best ways to 
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reduce the risks in safety engineering area. Fault tree, as one outcome of the Fault Tree 

Analysis, is deductive models which deduce causes of the event backwardly, it’s conducted to 

show the possible causes and relationships which result in the top event. Besides the fault tree, 

the fault tree analysis also provides an analysis result based on the created fault tree. The 

analysis result contains a list of information behind the Fault Tree. Cutsets, for example, is 

one analysis result which illustrates the elements that must occur to cause the top event 

happen. Depending on different Fault Tree Analysis Algorithms, the analysis result also 

present the prioritization of the events leading to the top event or the optimized resources to 

avoid the top event.  

 

 

 
Fig 2.7 Example Fault Tree (source: Rupanov et al. 2012, p.7) 

 

Fig 2.7 (Rupanov et al. 2012, p.7) depicts one example Fault Tree of steer-by-wire system. In 

this example, the final failure “Uncontrolled steering” is caused by either the failure in 

steering actuator, driver interface, central platform computer, network, power management or 

other data providers. Among them the central platform computer failure is reasoned to bad 

command, bad timing and so on. The fault tree provides a graphical tree view of failure 

analysis which makes the result easy to understand. 
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2.3 EATOP 
 

 
 

Fig 2.8  EATOP tooling environment  

 

EATOP is an Eclipse-based implementation of EAST-ADL. It is an open source project under 

the Eclipse Modeling project. As illustrated in Fig 2.8, EATOP is based on Sphinx modeling 

tool platform and closely aligned with Artop. Artop is an AUTOSAR Tool Platform. One 

main feature of EATOP is providing one Eclipse-based tool platform implementation for the 

important versions and revisions of EAST-ADL. As an open source project, EATOP's goal is 

reconciling and consolidating these different implementations and enhancing the functionality 

supporting of EAST-ADL. EATOP could be installed in general Eclipse IDE as an external 

tool or as one standalone software. When the EATOP perspective is open in Eclipse IDE, it is 

available to create EAST-ADL project under EAST-ADL explorer and create multiple EAST-

ADL files under one EAST-ADL project.  

 

2.4 HiP-HOPS 
HiP-HOPS (Hierarchically Performed Hazard Origin & Propagation Studies) is a safety 

analysis tool. It is recognized as a state-of-the-art technique in the area of dependability 

analysis. The safety analysis tools play the part of a valuable aid in ensuring that the system 

designs meet their safety goals. Among these tools, HiP-HOPS takes place on the actual 

architectural model of the system with some annotations of the failure logic. It contains fast 

algorithms of Fault Tree analysis and Failure Models and Effects Analyses (FMEAs). The 

basis of the analysis in HiP-HOPS can be provided by architectural models which is described 

in single or multiple perspectives. The model file can be saved and re-used for different 

models and contexts (Papadopoulos, et al., 2011). 
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Chapter 3  Related Work 
 

Several areas are covered in this thesis, which are automotive modeling language, safety 

analysis process and development, Fault Tree Analysis and error propagation together with 

change propagation. In each area, several latest academic articles are studied as related work 

in this thesis. The related works play the role of navigator to lead the academic direction of 

this research. 

 

Cuenot, et al proposed a basic safety procedure as shown in Fig 3.1. This safety analysis 

process concept is raised in “Safe Automotive soFtware architecture” (SAFE) project and it is 

applicable for both AUTOSAR and EAST-ADL modeling language. This working procedure 

is used as a base in this research and several improvements are provided in this research. 

 

 
Fig 3.1 Safety analysis process overview for functional safety concept (Cuenot, et al., 2013) 

 

The automotive industry are using several modeling languages. Besides EAST-ADL, the 

AUTOSAR (AUTomotive Open System ARchitecture) standardized architecture is used for 

describing software component implementation and integration together with ECU 

configuration (Cuenot, et al., 2013). Delivered in 2012, AUTOSAR 4.0 contains a well-

defined set of safety mechanisms responsible for error detection and error handling. 

AUTOSAR does not, however, support modeling and analysis of error propagation. Since the 

EAST-ADL safety support are applicable to both AUTOSAR and EAST-ADL, we focus on 

the latter. 

 

The need of creating connections between architecture model and fault tree analysis addressed 

in third research is still a valid and common question in safety analysis area. Grunske and Han 

provide a comparison between existing safety evaluation methods and AADL’s error annex 

from modeling support, process support and tool support three perspectives (Grunske and 

Han, 2008). The pros and cons of applying HiP-HOPS Fault Tree Analysis is also addressed 

in comparison. Even this paper focuses on presenting the strength of AADL’s error annex, it 
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is still a valid guide and reference in terms of applying HiP-HOPS on the EAST-ADL error 

propagation model. There are several well-developed fault tree analysis tools in automotive 

area, while the demand from the user is having an early safety analysis for current working 

models, but no tool support is available for an early safety analysis without having a whole 

meaningful set of error propagation models. The challenge addressed in this research is to 

efficiently apply Fault Tree Analysis to early safety analysis. One solution and algorithm is 

provided in Systems Modeling with EAST-ADL for Fault Tree Analysis through HiP-

HOPS(Chen, et al., 2013) by applying HiP-HOPS Fault Tree Analysis to EAST-ADL error 

models. It proved the possibility of having Fault Tree Analysis in EAST-ADL safety analysis. 

But the solution is lacking of tool support. The use of HiP-HOPS is also presented in 

Engineering failure analysis and design optimisation with HiP-HOPS (Papadopoulos, et al., 

2011). This research proposed one solution to integrated HiP-HOPS Fault Tree Analysis into 

the research tool EATOP. This integrating makes it possible to apply safety analysis in an 

early stage of a design. In addition, the quality of the analyzed result is one most important 

factor for fault tree analysis. Since HiP-HOPS analysis highly depends on the structure and 

semantic meanings provided in error logic, it is important to form the error logic in a 

sufficient way. Several strategies are provided by Giese and Tichy (Giese and Tichy. 2006) in 

terms of optimizing the configuration for a component based error logic. Inspired from their 

proposal, one component based error logic is also addressed in this research. 

 

By providing several scenarios of architecture changes and the effects to fault tree analysis, 

Getir, et al. provides a sufficient algorithm to automatically analyze several specific types of 

model evolution with fault tree analysis (Getir, et al., 2013). Malik and Hassan (2008) provide 

several common change propagation heuristics in their paper and effort have also been put in 

adapting the common changes to a general circumstance. Not only the common changes have 

been investigated, the unpredictable changes are also defined by Salay et al(2013). They 

introduced the uncertainty change propagation concept and defined algorithms for computing 

those propagations by several use cases. Even more and more types of modifications are 

captured and analyzed under those articles, it is still not enough to address all the evolution 

possibilities in one research and needless to say a tool supporting to monitor those changes. 

Instead of increasing the amount of model evolution types to be automatic analyzed, this 

paper provide a solution to monitor all possible evolutions by version control. By performing 

this solution, any change is able to be monitored and the user is able to define their own 

strategy to cope with model evolution.  

 

  



14 

 

 

 

 

Chapter 4   Research Methodology 
 

 

According to the fact that this research aims at improving the safety analysis working process, 

action research and design research are taken into consideration since both of them could be 

used to address an improvement in information systems. Design research is a constitution of 

finding problem, design and development in information technology area. It is sometimes 

called as “Improvement Research”, which means the improving performance plays an 

important part in design research. Action research is a fundamentally change-oriented 

approach and it focuses on practical problems with theoretical relevance (Cole, et al., 2005). 

As specified by the name, action research applies changes through action. Even if both 

research methods aim at improvement, there are dissimilarities among them. Action research 

emanates from social science while design research emanates from engineering science. 

Design research demands innovation and novel technology and it aims for cutting-edge 

technology, where action research goes more for normal design practice and it demands rather 

safe solutions based on robust technology(Goldkuhl, 2013). Being related to an FFI (Strategic 

Vehicle Research and Innovation) project, this research applies more innovation and cutting-

edge technology than existing robust technology. Besides, new artifacts are designed and 

implemented in this research rather than improving by observing action. Due to the reasons 

above, design research is selected to be conducted in this thesis work. 

 

The research process in this study is listed in Table 4.1. It is based on the design science 

research model given by Vaishnavi and Kuechler (Vaishnavi and Kuechler, 2004). Step 1 is 

defining a problem. All the data for defining problems in this research are collected by 

industry supervisor among the experts working in system architecture and safety analysis area 

in Volvo Group Trucks Technology. By considering the probability of the problems to be 

solved and the priority of importance of each problem, five research questions are revealed. 

After the questions are defined, step 2 designing is performed. A design process is divided 

into implementing a design and modifying a design as shown in table 4.1. The critical 

elements defined in each research question are reflected in the design. For example, the 

critical elements of first research question “How to efficiently define an error propagation 

model from the nominal model?” are “efficiently define” and bridging two modeling concepts. 

In order to reflect those two aspects in the design, a sufficient mapping strategy is designed to 

bridge different modeling elements. The time performance is also taken into consideration 

when defining the algorithm in order to fulfill the demands of “efficiency”. More elaboration 

for this research question is presented in Chapter 5. Besides, several modifications are applied 

in order to finalize a design. When an initial design is released, an investigation is needed to 

prove the feasibility of the design and this investigation is executed by researcher. Whenever 

problems found in the investigated design, a discussion is arranged among supervisors and 

researcher to decide whether to modify the design and if yes, how to modify it. When a design 

is approved and available to develop, the research comes to step 4, the development stage 

which is listed as “Developing the design” in the table. The modification of design which is 
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step 3, also occurs during the development process in order to secure that the implementation 

meets the user’s expectation. For example, when designing the solution for the first research 

question “How to efficiently define an error propagation model from the nominal model?” 

different kinds of function ports are not taken into account until the problem revealed during 

development phase, so the design is modified during development. The boundary between 

design and development in this research is the design draws a concept of solution for each 

problem while the development implements the designed solution to artifact.  In the phase of 

developing the design, agile method is applied and each sprint lasts three weeks. The planning 

and retrospective in each week is performed among the author and the supervisor in Volvo. A 

final retrospective for each sprint is organized every three weeks among both supervisors and 

the author. 

 
Table 4.1 Guidelines of this research method process (Adapt Vaishnavi and Kuechler, 2004) 

Research Method Framework 

1. Defining a problem 

 Analyze the collected data 

 Define a problem from the analyzed result 

2. Implementing a design  

 Identify the critical elements of the design 

 Characterize how each design will be addressed in the implementation 

3. Modifying the design 

 If any part of the design does not work, modify the design 

 Clarify the reason of modification 

4. Developing the design 

 Implement the design 

 Address the critical elements in the design 

5. Modifying the development 

 If any part of the development does not work, modify the development 

 Review the design 

 If any part of the development does not fit the design, modify the development 

6. Measuring the outcome 

 Evaluate the outcome of the development 

 Analyze the result of the evaluation 

7. Reporting the result 

 Report the design and the development 

 Report the result of the evaluation 

 

The evaluation process is conducted to measure the research outcome and it is listed as step 6 

in table 4.1. Two evaluation stages are performed in the half-way and the end of the thesis 

project respectively. System engineers are involved in the first evaluation while the safety 

engineers participated in the second evaluation. Before the evaluation process, each design 

and development are repeated till a reasonable outcome is completed and approved by the 

supervisor. The feedbacks and valuable input are collected from both evaluations stages for 

drawing the final conclusion. The detailed evaluation methodology is reported in Chapter 9. 

Beside the formal evaluation, retrospective is performed in the end of each iteration in 

developing process. The main task of retrospective is to report what have been done during 

this iteration and what research question has been solved. If new question has been addressed, 

what efforts could be done in the future. The last step is step 7, it is applied as reporting the 
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result. A report which presents the design, development and evaluation in this research is the 

outcome of this step. 
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Chapter 5   Defining and 

Reorganizing Error Model 
 

 

In this chapter, the research questions “How to efficiently define an error propagation model 

from the nominal model?” and “How to reduce the manual work in refactoring the model?” 

will be addressed. As shown in Fig 5.0, both questions are revealed in defining process as 

number ① and the red arrow. The solution in defining process automates the generation and 

refactoring of error model from nominal model. 

 
Fig 5.0 Safety analysis process – defining 

 

In order to provide a better understanding of the nominal model concept before addressing the 

solutions for each research question, an example EAST-ADL model is presented in section 

5.1. It locates the nominal modeling in a whole picture of EAST-ADL and explains some 

specific elements mostly used in nominal models through the BrakeByWire example. 

Sections 5.2 and 5.3 explain the solution of defining error propagation model and 

reorganizing error model questions respectively. Each of the section starts with a concept 

description which briefly explains why and how the solution is applied to this specific 

question. More detailed information of how the solution is addressed is presented by different 

example use cases. Section 5.2.2 gives an example use case through BrakeByWire model of 
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how the error models are generated and section 5.3.2 provides the examples for error model 

reorganization. A one to one model mapping is designed and developed during error model 

generation and this is presented in section 5.2.3. The alternatives and decisions that have been 

made during resolving the research question is discussed in the end of each section.  

 

By showing explicit considerations of safety concerns throughout an architecture design 

process (Blom, et al.,2013), the functional safety modeling mitigates the risks in the long run. 

Error propagation modeling, as one part of safety modeling and an extension of the nominal 

architecture model, will be demonstrated in this section.  A one to one mapping pattern 

between EAST-ADL nominal model and error propagation model will be provided. An 

EATOP based plug-in is implemented according to this pattern in order to automatically 

generate an error propagation model. After the user selection, this error propagation auto-

generation plug-in is able to create all the error model elements together with error behavior 

under a suitable container and set all the corresponding targets and instance references 

according to EAST-ADL2.1.12. In order to enhance the user experience and reduce the 

manual work, collapsing error model elements and navigating targets are implemented as 

additional features in this error propagation plug-in. The result screenshots of both error 

model generation and error model re-organization are shown in Appendix A.  

 

5.1 EAST-ADL Example Model Structure Description 
 

The figure below illustrates the structure of top level packages defined in EAST- ADL 2.1.12. 

All elements, such as requirement, behavior, function type etc., are classified into the sub-

packages inside “EAST-ADL” package as shown in Fig 5.1.  

 

 
Fig 5.1 Packages in the EAST-ADL domain model 

 

The top container for each instance is called “EAXML”, the XML-based exchange format for 

EAST-ADL, supported e.g. by EATOP.  In order to allow information exchange between 

organizations and tools of design artifacts, this language specification describes how to 

capture the needed information for relevant analysis and synthesis but does not define how the 

analysis or synthesis should be done (EAST-ADL specification 2.1.12). Before we start with 

the example, several element concepts in EAST-ADL needed to be declared. All the 
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explanations are collected from EAST-ADL specification 2.1.12 and each of the element can 

also refer to Fig B.1 in Appendix B. 

 

Function modeling:  

“The function modeling is performed in the FunctionalAnalysisArchitecture (in the 

AnalysisLevel) and the FunctionalDesignArchitecture (in the DesignLevel). The main 

modeling concept applied here is functional component modeling:Functions interact with one 

another via ports that are connected by connectors owned by the composing function. 

Occurrences of functions are modeled by typed prototypes in the composing function. These 

occurrences are typed by types.”(EAST-ADL specification 2.1.12) 

 

Function Type 

“The Function Model Type includes DesignFunctionType and AnalysisFunctionType. It may 

interact with other Functions through their FunctionPorts. Furthermore, a FunctionType may 

be decomposed into the contained parts that are FunctionPrototypes. This allows the 

functionalities provided by the parent Function to be broken up hierarchically into sub-

functionalities.” (EAST-ADL specification 2.1.12) 

 

Function Prototype 

“The FunctionPrototype contains DesignFunctionPrototype and AnalysisFunctionPrototype. 

It represents references to the occurrence of the FunctionType that types it when it acts as a 

part. The FunctionPrototype is typed by a FunctionType. So the FunctionPrototype represents 

an occurrence of the FunctionType that types it.” (EAST-ADL specification 2.1.12) 

 

Function Port 

“Function Port contains FunctionFlowPort, FunctionPowerPort and 

FunctionClientServerPort. FunctionFlowPorts are single buffer overwrite and non-

consumable.They can be connected if their FunctionPort signatures match. Each 

FunctionFlowPort has a direction of “IN” or “OUT” or “IN/OUT”. The FunctionPowerPort 

is a FunctionPort for denoting the physical interactions between environment and 

sensing/actuation functions. The FunctionPowerPort conserves physical variables in a 

dynamic process. The FunctionClientServerPort is a FunctionPort for client-server 

interaction. A number of FunctionClientServerPorts of clientServerType "client" can be 

connected to one FunctionClientServerPort of clientServerType "server".” (EAST-ADL 

specification 2.1.12)The meta-model of Function Port is also shown in Fig B.3. 

 

Function Connector 

“Function Connector represents the connections between Function Ports. It could connect 

between FunctionPrototypes and between FunctionPrototype and its located FunctionType. 

The latter connection is called the delegation connection.” (EAST-ADL specification 2.1.12) 

The meta-model of Function Connector is also shown in Fig B.2. 
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Fig 5.2 BBW_4Wheel General TreeView Fig 5.3 GlobalBrakeController DesignFunctionType TreeView 

 

In this chapter, we take the BrakeByWire_4Wheel.eaxml as the example model. This model is 

a factious Brake-By-Wire system represented in EAST-ADL. As depicted in Fig 5.2, different 

model elements are divided into different packages. The function modeling or the so called 

nominal modeling are located in AnalysisLevelElements as analysis function model elements 

and in DesignLevelElements as design function model elements. The focus of this chapter is 

the design function model elements sit in FCN package. According to the structure of each 

function element under FCN package, we select the GlobalBrakeController 

DesignFunctionType to be the example model in this chapter since it contains sufficient 

elements for explaining the error model generating and reorganizing concepts.  

 

The tree view of The DesignFunctionType GlobalBrakeController is shown in Fig 5.3. It 

contains two DesignFunctionPrototypes and several function ports. Among them, the 

DesignFunctionPrototype BrakeBlending_pt has a type of BrakeBlending_T and 

BrakeControllerRequests_pt has a type which is called BrakeControllerRequests_T in 

package FCN. A prototype inherits all the sub-elements of its type. In this case, 

BakeBlending_pt inherits the function ports BrakeRequest and BrakeRequestBlended from 

BrakeBlending_T together with the DesignFunctionPrototype Diag_pt is a 

DesignFunctionPrototype typed by Diag_T inside BrakeBlending_pt. Another 

FunctionPrototype BrakeControllerRequests_pt contains several function ports, which are 

BrakeRequest, BrakeTorqueFL/FR and BrakeTorqueRL/RR. The whole structure can also 

been seen in the graphical view in Fig 5.4. Besides the inner structure of 

GlobalBrakeController, Fig 5.4 also captures the structure of its prototypes 
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(DesignFunctionType BrakeBlending_T, DesignFunctionType BrakeControllerRequests_T) 

and their sub-prototypes (Diag_T). The container are the FunctionTypes while the contained 

boxes are the FunctionPrototypes. As explained in the tree view, the dependencies exist from 

BrakeBlending_pt to BrakeBlending_T and from BrakeControllerRequests_pt to 

BrakeControllerRequests_T. Besides, inside BrakeBlending_T, the Diag_pt is typed by 

Diag_T. 

 

 
Fig 5.4 GlobalBrakeController DesignFunctionType Structure 

 

All the function InPorts are located on the left side of each component and the OutPorts are on 

the right side. Normally, OutPort is the source for a connector while InPort is the destination. 

A connector is used to bridge components and support the signal transition. According to the 

structure of FunctionType GlobalBrakeController, there are no connectors defined. Except the 

port "DiagRequest" located in FunctionType Diag_T, the rest are all FunctionFlowPort, which 

means there is only signal in or out from this port. While the "DiagRequest" is a 

ClientServerPort, the signal could go two directions through this port. As a ClientPort, the 

DiagRequest could send the request to a ServerPort and receive the response from that 

ServerPort. More detailed information is elaborated in section 5.2.3 one to one mapping.  
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Fig 5.5 BrakeTorqueFR FunctionPort 

 

 
Fig 5.6 AA_TorqueType DataType 

 

Since each of the ports is responsible for supporting the signal transition and different data are 

contained in different signals. There is an attribute called "Type" for each FunctionPort 

pointing out what data can be carried through this port. As illustrated in Fig 5.5, the 

AA_TorqueType is defined to be the type of FunctionFlowPort BrakeTorqueFR which is an 

OutPort of FunctionType GlobalBrakeController. The AA_TorqueType is defined as a 

Rangeable Value Type as seen in Fig 5.6. We are not going into detail of each data type since 

it's not highly related to the problems we are going to solve. More detailed information of data 

type can be found in EAST-ADL 2.1.12 specification. 

 

5.2 Error Model Auto-generation 

5.2.1 Concept Description 
Error modeling and function modeling are defined as separated concepts in EAST-ADL. The 

generated error model elements reflect the structure of selected function elements in error 

modeling concept. And they are used for analyzing the error propagation in the architecture 

design and preparing for later Fault Tree Analysis. In order to provide a sufficient error 

propagation model for later usage and integration, a reasonable mapping pattern is defined 

between function modeling and error modeling in this section and an example use case of 

error model generation are demonstrated in the next section.  According to the mapping 

pattern, the existing function model elements are analyzed and transferred into corresponding 

error model elements. As a separated concept from function modeling, the concept of error 

modeling elements are presented as follow and the meta-model of each element can also be 

found in Appendix B. 

 

Error Modeling 

“The EAST-ADL error modeling provides support for safety engineering by representing 

possible incorrect behaviors of a system in its operation (e.g., component errors and their 

propagations). The purpose of the error models is to represent information relating to the 

anomalies of a nominal model element.” (EAST-ADL specification 2.1.12) 

 

Error Model Type 

“An ErrorModelType represents the internal faults and fault propagations of the nominal 

element that it targets. Typically the target is a system/subsystem, a function, a software 

component, or a hardware device.” (EAST-ADL specification 2.1.12) 
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Error Model Prototype 

“The ErrorModelPrototype is used to define hierarchical error models allowing additional 

detail or structure to be described in the error model of a particular target. An 

ErrorModelPrototype represents an occurrence of the ErrorModelType that types it.” (EAST-

ADL specification 2.1.12) 

 

Fault-Failure Port 

“Fault-Failure Port could be divided into FaultInPort and FailureOutPort according to the 

error propagation direction. The FaultInPort represents a propagation point for faults that 

propagate to the containing ErrorModelType. The FailureOutPort represents a propagation 

point for failures that propagate out from the containing ErrorModelType.” (EAST-ADL 

specification 2.1.12) 

 

Fault-Failure Propagation Link 

“The FaultFailurePropagationLink represents the links for the propagations of faults/failures 

across system elements. In particular, it defines that one error model provides the 

faults/failures that another error model receives. A fault/failure link can only be applied to 

compatible ports, either for fault/failure delegation within an error model or for fault/failure 

transmission across two error models.” (EAST-ADL specification 2.1.12) 

 

Internal FaultPrototype 

“The InternalFault represents the particular internal conditions of the target 

component/system that are of particular concern for its fault/failure definition. The system 

anomaly represented by an InternalFault, which when activated, can cause errors and 

failures of the target element.” (EAST-ADL specification 2.1.12) 

 

Error Behavior 

“ErrorBehavior represents the descriptions of failure logics or semantics that the target 

element identified by the ErrorModelType exhibits. Typically the target is a system, a 

function, a software component, or a hardware device. Each ErrorBehavior description 

relates the occurrences of internal faults and incoming external faults to failures. The faults 

and failures that the errorBehavior propagates to and from the target element are declared 

through the ports of the error model. ErrorBehavior defines the error propagation logic of its 

containing ErrorModelType.” (EAST-ADL specification 2.1.12) 

 

5.2.2 Example Use Case 
In previous working procedure, defining the system error model manually is usually tedious 

and error-prone. The use case below will explain how the automatic error model generation 

works and how it is related with nominal model. 

 

GlobalBrakeController ErrorModelGeneration 
When “CreateErrorModel” function is triggered by FunctionType GlobalBrakeController, the 

following error modeling elements in Fig 5.7 are generated.  
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Fig 5.7 Generated GlobalBrakeController ErrorModel Structure 

 

Four ErrorModelTypes and three ErrorModelPrototypes target to the corresponding functional 

model. The target dependency is shown as an attribute in ErrorModel as illustrated in Fig 5.8.  

 

 
Fig 5.8 ErrorModelType GlobalBrakeController_EMT Attributes 

 

By parsing all the subelements under the selected “GlobalBrakeController”, the generator 

generates all the corresponding error model elements, relations and dependencies under 

“GlobalBrakeController_EMT”. Whenever a new FunctionType is detected to be the type of 

the selected or contained FunctionPrototype, the whole procedure is executed recursively until 

no more type dependencies exists. In this example, after detecting two prototypes inside the 

selected GlobalBrakeController, the plugin starts to generate the All the generated 

ErrorModelTypes are located flatted under Dependability element called “Dependability#” 

inside packages “EASTADLExtensionElements/DependabilityPackage” under the root 

EAXML. If this path does not exist in the required root element, the function would create 

one in order to keep the location of Error Modeling consistent. The symbol “#” is a replace of 

a number, which means the times of CreateErrorModel function has been triggered in one 

Eclipse runtime instance.  
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All FaultInPorts generated from the FunctionFlowPorts which have the Direction as “IN”, and 

when the Direction equals “Out”, it is realized as FailureOutPort in error propagation model. 

As specified in EAST-ADL 2.1.12 ErrorModel class diagram in Appendix B, each 

FaultFailurePort and FaultFailurePropagation has its instanceReference relation to the 

targeted functionPort, which is another way of showing dependency. For the datatype each 

port carries, the corresponding ErrorType is generated under the "Dependability#". As shown 

in Fig 5.9, Instead of mimicking the datatype of the ports, the ErrorType is an enumeration 

with values failure and non-failure. This corresponds to the property of FaultFailurePort as 

explained before, each FaultFailurePort represents whether a failure going through the port or 

not. In this case, when a failure goes out from a FailureOutPort, its ErrorType is simply set as 

“Failure”. And if no failure is going out, a “NonFailure” is applied in this FaultFailurePort 

element. 

 

 
Fig 5.9 ErrorType of GlobalBrakeController_EMT Generation 

 

Comparing the structures between the function modeling in Figure 5.4 and the generated error 

modeling in Fig 5.7, we can tell that this generation follows a one to one mapping pattern. All 

error model elements can be easily tracing back to function model elements through the 

dependency attribute which is named as “target” in error model elements. This use case 

provides a general view of what are generated by applying error model auto generation and 

why it is generated in this pattern will be explained in next one to one mapping section. How 

these elements are generated are elaborated in Algorithm section. 

 

5.2.3 One to One Mapping  
The Error Model Generation performs one to one mapping between function modeling and 

error modeling, the section below provides more detailed information of how the one to one 

mapping pattern is designed and the corresponding algorithm in error model generation. 

 

One to One Mapping Pattern Design 
The error model generator plug-in, as an output for the first research question, defines a one to 

one mapping pattern from function modeling to error modeling. By comparing the structures 

and connections between function modeling and error modeling, the mapping rule is designed 

for error model generating. The detailed mapping definition is shown in Table 5.1. Table 5.1 

provides a defined one to one mapping pattern from nominal model to error propagation 
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model along with the naming rule. Each element in “Error Model” column targets to the 

corresponding element in “Nominal Model” column. The naming rule is also applied in error 

model generator Plug-in, which auto-generates the error model element with the given name. 
 

 

Table 5.1 One to one Mapping Rule 

Nominal Model Error Model  Error Model Naming 

Rule 

Package Dependability Dependability_# 

FunctionType Error Model Type FunctionType_EMT 

FunctionPrototype Error Model Prototype FunctionPrototype_EMp 

FunctionConnector FaultFailurePropagationLink FunctionConnector_ffpl 

FunctionConnectorPort(In) FaultFailurePropagationLink_ 

toPort 

N/A 

FunctionConnectorPort(Out) FaultFailurePropagationLink_ 

fromPort 

N/A 

FunctionFlowPort(In) Fault in port FunctionFlowPort_fip 

FunctionFlowPort(Out) Failure out port FunctionFlowPort_fop 

DataType(Type of Port) Enumeration DataType_ErrorType 

N/A EnumerationLiteral(child) Failure 

N/A EnumerationLiteral(child) NonFailure 

N/A ErrorBehavior ErrorModelType_ 

ErrorBehavior 

 

As depicted in Fig 5.1 EAST-ADL Domain model, the FunctionModeling is located in 

“Structure” concept from Domain Model while the ErrorModel is from “Dependability”. So 

for each nominal model in the same package, the corresponding error model belongs to the 

same Dependability element. The reason of having error model locating inside Dependability 

element is depending on the structure in EAST-ADL 2.1.12. As shown in Fig 5.1, the 

Structure concept which contain the function modeling is under EAST-ADL package while 

the error modeling is under Dependability Package. 

 

The mapping rules of FunctionType, FunctionPrototype, together with FunctionFlowPort 

have been explained in the previous use case. Each matching rule are following the definition 

and structure of each elements. The FunctionType in function modeling has the same position 

as ErrorModelType in error modeling and it is a target of an ErrorModelType. The same 

reason applied to FunctionPrototype to ErrorModelPrototype and FunctionPort to 

FaultFailurePort. In each FunctionPort, DataType is included as the type of the port. In error 

model, each of the FaultFailurePort contains an Enumeration type acting as the DataType and 
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the Enumeration type has two child which means failure and nonfailure for each 

FaultFailurePort and the reason of this matching is elaborated in 5.2.2 example use case.  

 

The FunctionConnector is used for supporting the signal transmitting between ports and the 

FunctionConnectorPort helps the FunctionConnectors bridge different FunctionPorts. Each 

FunctionConnectorPort points to a FunctionPort and FunctionConnector, which means this 

FunctionConnector connects this FunctionPort. Each valid FunctionConnector has to have 

two FunctionConnectorPorts in order to bridge the connection. But each FunctionPort could 

be pointed by more than one FunctionConnectorPort which means each port is able to carry 

more than one kind of signal. Since the connector in error model has the responsibility to 

connect between ports, when bringing this function connector to Error Models, the 

FunctionConnector is realized to be FaultFailurePropagationLink and the 

FunctionConnectorPort with IN direction is performed as FaultFailurePropagationLink_toPort 

while the OUT direction is FaultFailurePropagationLink_fromPort.  

 

When all the structure of the error model has been set, one ErrorBehavior would be generated 

for each ErrorModelType, this ErrorBehavior does not have any mapping element from the 

Nominal model, it is used for describing the error logic and behaviors in error model. The 

logic included in the ErrorBehavior are applied in Fault Tree Analysis in Chapter 6 and more 

detailed information about the syntax of the error logic is explained in section 5.2.5 the 

Alternatives and Decisions. 

 

 

5.2.4 Alternatives and Decisions 
In order to meet user’s needs and keep the system efficient at the same time, several 

alternatives have been taken into consideration during design stage. In this section, those 

decisions and alternatives will be discussed and explained. 

 

Different Realization of different function ports 
In EAST-ADL2.1.12, there are three kinds of function ports belong to the function modeling, 

which are FunctionFlowPort, FunctionPowerPort and FunctionClientServerPort. 

FunctionFlowPort, as a symbol of data transmission, is typed by EADatatype. The 

transformation of flowPort between function modeling and error modeling has been depicted 

in use case 1 and in table 5.1. FunctionFlowPort has a direction which indicates the containing 

function either requires or provides the data. Whereas, for both FunctionPowerPort and 

FunctionClientServerPort, the power transmission and require-response transmission are 

bidirectional. The previous unidirectional one to one error model mapping does not support 

this anymore. For this reason, we decided to have a two to one mapping for only 

FunctionPowerPort and FunctionClientServerPort along with their connectors. The 

FunctionPowerPort is a FunctionPort for denoting the physical interactions between 

environment and sensing/actuation functions. As shown in table 5.2, it has two direction 

called “across” and “through”. The through FunctionPowerPort is responsible for sending out 

the power signal and across FunctionPowerport is able to receive the signal. According to this 

one direction property, we define the mapping from through FunctionPowerPort to 

FailureOutPort and from across FunctionPowerPort to FaultInPort. The 

FunctionClientServerPorts perform the signal sending in two directions. A FunctionClientPort 

is responsible for sending the request and receive the response from FunctionServerPort while 

the FunctionServerPort is responsible for receiving the request from FunctionClientPort and 

send back the response. So there are one FaultInPort and one FailureOutPort matching with 



28 

 

either FunctionClientPort or FunctionServerPort. The example ClientServerPort generation 

object diagram is illustrated in Fig 5.10. 

 
Table 5.2 FunctionClientServerPort and FunctionPowerPort mapping 

Nominal Model Error Model  Error Model Naming Rule 

FunctionClientServerPort 

(Client) 

FaultInPort FCP_receive_fip 

FunctionClientServerPort 

(Client) 

FailureOutPort FCP_request_fop 

FunctionClientServerPort 

(Sever) 

FaultInPort FSP_receive_fip 

FunctionClientServerPort 

(Sever) 

FailureOutPort FSP_response_fop 

FunctionPowerPort(across) FaultInPort FAP_across_fip 

FunctionPowerPort(across) FailureOutPort FAP_through_fop 

FunctionPowerPort(through) FaultInPort FTP_across_fip 

FunctionPowerPort(through) FailureOutPort FTP_through_fop 

 

 

To make the mapping concept easier to understand, the object diagram below illustrates how a 

FunctionConnector together with two FunctionPowerPorts are defined and generated in Error 

Model. This FunctionPowerPort concept is also applicable for FunctionClientServerPort. Fig 

5.10(a) illustrates a scenario of one FunctionConnector "t3" connects two FunctionPowerPorts 

which are "ap3" in FunctionPrototype "a_FP" and "bp1" in FunctionPrototype "b_FP". 

 

 
(a) FunctionModeling(FunctionPowerPort) 
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(b) Error Modeling(FunctionPowerPort) 

 

Fig 5.10 FunctionPowerPort Transformation 

 

While Fig 5.10(b) is the generated Error Model elements, one FunctionConnector "t3" in 

function model is realized as "t3_ffpl" and "t3_back_ffpl" two FaultFailurePropagationLinks. 

For each power port, one FailureOutPort with suffix “_through_fop” and one FaultInPort with 

suffix “_across_fip” are generated and are connected by the corresponding 

FaultFailurePropagationLink. This design in the end makes it easier to point out the error and 

its direction in order to address the failure. 

 

 

 

Error Behavior 
In order to check whether the safety requirements are met or not, EAST-ADL error modeling 

supports safety analysis by providing detailed information about the failure behavior. Error 

behavior, which plays this specification role, captures what output failures of the target 

architecture component are caused by what faults of this component (Blom, et al., 2013). In 

this error model auto-generation design, one error behavior is added in each ErrorModelType 

when system generates a one to one mapping pattern. As a way of showing error propagation, 

an ErrorBehavior is only generated when the corresponding FunctionType has at least one 

OutPort and one InPort. And for each ErrorBehavior, only FaultInPorts and FailureOutPorts 

are captured in failure logic description. No internal failure will be presented since the 

automatically generated failure logic is provided as a base, not all error model elements 

contain internal failure. For this reason, user has to modify the error logic manually when an 

internal failure is needed. Each equation indicates if any failure comes in from the Failure-

inport, it is propagated as a Failure to the outPort. If an internal failure is detected, all the 
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Failure-outports are effected and the internal failure is propagated to other Function element 

which has connection with the outPort contains a failure. Since HiP-HOPS is chosen to be the 

safety analysis tool, according to the HiP-HOPS error logic structure rule, the failure error 

behavior description has the following syntax and/or semantics and the reason of choosing 

HiP-HOPS will be explained in Chapter 5. The reason of providing “OR” instead of “AND” 

between each potential failure is that the safety analysis is used to capture a worst case 

scenario which causes a failure. “OR” expresses that any possible event’s occurance leads to a 

failure. All the possibilities are considered in the error logic as the input of fault tree analysis. 

In the syntax below, each outport propagates the failure from each of the inport. In this case, 

the presented error element has N outports and M inports. 

 

Failure-outport1= Failure-inport1 OR Failure-inport2 OR … Failure-inportm; 

Failure-outport2= Failure-inport1 OR Failure-inport2 OR … Failure-inportm; 

… OR ... 

Failure-outportn= Failure-inport1 OR Failure-inport2 OR … Failure-inportm; 

 

Constraints 
Several constraints are applied when generating an error model. Those constraints are 

classified into severe and non-severe. Any severe violation will stop the system from 

execution while the non-severe violation is a warning which may lead to further problems but 

system is still available for execution. When a user’s request violates the severe constraint, an 

error message will pop up describing the constraint and the user has to redo the request. When 

a non-severe violation has been detected, the system will throw the warning message in error 

log which can be seen by opening “Problem” view in EATOP and keep executing the request. 

The table below lists all events which violate the constraints in Error Model Generating. The 

constraints in Error Model Generating are all applied for detecting whether there is a warning 

exists in the demanding function model. These three non-severe constraints are not regarded 

as errors in the model. For example, a FunctionPrototype is a meaningless prototype when it 

has no type to be inherited. And a FunctionConnector needs two ConnectorPorts to be 

connected between function types and prototypes, otherwise, it becomes a single connector 

without connections. Besides, each FunctionConnectorPort points to a FunctionPort which the 

connector connected with, if it has no functionPort, the connector will not be able to find its 

source or destination. Those are the potential faults in function modeling, but it doesn’t effect 

to generate the error model by one to one mapping. At this point, each of them is defined as a 

non-severe constraints which need to be modified after the request has been executed by the 

system. 

 
Table 5.2 Constraints in Error Model Auto Generating 

Request Description Severity 

Generating A FunctionrPototype has no type non-severe 

Generating A FunctionConnector has no FunctionConnectorPort non-severe 

Generating A FunctionConnectorPort has no FunctionPort non-severe 
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5.3 Error Model Reorganization 

5.3.1 Concept Description 
The reason of having the error model reorganization is the one to one mapping pattern is not 

specific or customized enough for real work. Besides, most projects are rather big, it is time 

consuming to deploy changes by hand. Error Model Reorganization aims at reducing the 

manual modifications among error model elements, the frequently manually routine 

modifications are be done by machine. 

 

Since at the error propagation perspective, engineers will not care about the original ports, 

only whether there is a failure propagated from the element or not. In addition, the complete 

structure inherited from function modeling is also overwhelmed when it comes to error 

propagation analysis. Based on these facts, we decided to design and implement the 

collapsing feature based on error model prototypes and error model FaultFailurePorts.  

 

5.3.2 Example Use Case 
 

Collapsing ErrorModelPrototypes 
The collapsing ErrorModelPrototype function is only applicable for selecting more than one 

ErrorModelPrototypes under the same container (Usually the container is ErrorModelType). 

Otherwise, it is regarded as illegal modification. In order to hide the lower level 

ErrorModelPrototypes which does not affect the failure result, system will bring them to a 

new ErrorModelType which only contains the selected ErrorModelPrototypes, create a new 

ErrorModelPrototype under where the previous ErrorModelPrototypes sit in and typed it by 

the newly created ErrorModelType with modified connections. In order to make this 

understandable, we assume ErrorModelPrototype BrakeControllerRequest_pt_EMp and 

BrakeBlending_pt_EMp under “GlobalBrakeController_EMT” shown in Fig 5.7 are selected 

to be collapsed. The result model is illustrated in Fig 5.11.  
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Fig 5.11 Prototype Collapsed BlobalBrakeController_EMT Structure 

 

A new ErrorModelType CollapsedErrorModelType_EMT is generated which contains the 

selected ErrorModelPrototypes. Besides, a new ErrorModelPrototype called 

CollapsedErrorModelPrototype_EMp takes the place of previous two elements. The dashed 

boxes represent the previous structure in GlobalBrakeController. And the 

CollapsedErrorModelPrototype_EMp is typed by CollapsedErrorModelType_EMT. Since 

there is no connectors exist between the error elements, no external port is generated for the 

ErrorModelType. Fig 5.12 captures another use case when the selected prototypes are 

connected with each other. 

 

 
(a) Top_FT_EMT ErrorModelType Structure  
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(b) Prototype Collapsed Top_FT_EMT ErrorModelType Structure  

Fig 5.12 Top_FT_EMT Structure Diagram 

 

The original Top_FT_EMT ErrorModelType shown in Fig 5.12(a) has two 

ErrorModelPrototypes and three FaultFailurePropagationLinks connect those three elements. 

In Fig 5.12(b), two new FaultFailurePropagationLinks are created in “Collapse_FT_EMT” to 

connect from new created ErrorModelType to the extracted ErrorModelPrototypes. Cc1 is 

created to connect between cp1_fip and the inport of A_FP_EMp and cc2 connects one of the 

outport of A_FP_EMp with cp2_fop. Tc3 has been remained since this is regarded as an 

internal connector among the selected ErrorModelPrototypes. This change will be useful 

when the lower level elements are needed to be ignored when analyze the failure, so whether 

the failure happens in “a_FP_EMp” or “b_FP_EMp” is only seen as a failure in 

“Collapse_FP_EMp”.  

 

Collapsing FaultFailurePorts 
In function modeling, different signals and data are transmitted through different ports, while 

in error modeling, whether there is a fault goes in or a failure come out is the only factor will 

be concerned.  

 

 
Fig 5.13 Port Collapsed FlobalBrakeController_EMT Structure 
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For the same purpose as Collapsing ErrorModelPrototypes, Collapsing FaultFailurePorts 

combined more than one ports into one and reset all their instanceReferences. The collapsing 

ports function is only available for either FaultInPorts or FailureOutPorts which sit in the 

same container. In the example model, we assume all the WheelSpeed_fip Inports can be 

regarded as one for the error propagation perspective. Fig 5.13 depicts the result error 

modeling when FaultInPorts WheelSpeed_FLIn_fip, WheelSpeed_FRIn_fip, 

WheelSpeed_RLIn_fip and WheelSpeed_RRIn_fip are selected to be collapsed. One 

FaultInPort called “collapsedPort1_fip” is created and it has the same ErrorType as the 

collapsed Ports. Since those WheelSpeed ports are removed from their ErrorModelType, if 

there are connectors connecting with those ports, they will be adjust to connect the newly 

created CollapsedPort1_fip instead. 

5.3.3 Alternatives and Decisions 
The alternatives and decisions have been made in error model reorganization will be 

presented in this section. 

 

Constraints 
Several constraints are applied when Collapsing ErrorModelPrototypes and FaultFailurePorts. 

Similar as section 5.2.5, those constraints are divided into severe and non-severe. Table 5.3 

lists all events which violate the constraints.  
 

Table 5.3 Constraints in Collapsing ErrorModel Elements 

Request Description Severity 

Collapsing 

ErrorModelPrototypes 

The collapsed ErrorModelPrototypes sit in 

different  ErrorModelTypes 

severe 

Collapsing ErrorModel 

FaultFailurePorts 

The collapsed FaultFailurePorts sit in 

different  ErrorModelTypes 

severe 

Collapsing ErrorModel 

FaultFailurePorts 

The collapsed ports include both FaultInPort and 

FailureOutPort 

severe 

For example, it is not allowed to collapsing two ErrorModelPrototypes are located in different 

ErrorModelTypes since the collapsing should not change the model structure. The same rule 

is applicable for collapsing ErrorModel FaultFailurePorts. Besides, the FaultInPort and 

FailureOutPort should not be collapsed since it also changes the Error Model structure and the 

data or signal between those ports might be missing from collapsing. Those rules are strict 

when collapsing. An error message pops up when those situations have been requested. The 

system will not execute those commands till the user changes his request. 

 

5.4 Algorithm 
This section focuses on explaining how the features described in this chapter are 

implemented. The critical functions for each feature are presented in pseudocode for easy 

understanding. 

5.4.1 Error Model Auto-generation 
The ErrorModel Auto-Generation allows user to selected more than one FunctionType 

elements and it generates all the corresponding error elements for the selected function 
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elements and generates the related function elements recursively. The pseudocode below 

shows the general algorithm of the main function in ErrorModel Generation. 

 
1. Get selected function elements as SelectedFunctionTypes 
2. For each SelectedFunctionType in SelectedFunctionTypes 

1. Create ErrorModelType 
2. Get DataTypes of FunctionPorts 
3. Generate Corresponding ErrorTypes for each DataType 
4. For each FunctionPort in FunctionPorts 

1. If FunctinFlowPort; Generate corresponding FaultFailurePorts 
according to one to one mapping pattern 

2. If FunctionPowerPort; Generate corresponding FaultFailurePorts 
according to one to one mapping pattern 

3. If FunctionClientServerPort; Generate corresponding 
FaultFailurePorts according to one to one mapping pattern 

5. Refer ErrorType to corresponding FaultFailurePorts 
6. Get FunctionConnectors in SelectedFunctionType 
7. For each FunctionConnector in FunctionConnectors 

1. Create Corresponding FaultFailurePropogationLink  
2. Add FaultFailurePropagation_fromPort and 

FaultFailurePropagation_toPort 
8. Get FunctionPrototypes in SelectedFunctionType 
9. For each FunctionPrototype in FunctionPrototypes 

1. Generate ErrorModelPrototype 
2. Get FunctionType typed by FunctionPrototype 
3. Check the existence of FunctionType’s corresponding 

ErrorModelType  
1. If Exist  

1. Continue 
2. Else 

1. Call 2.1, SelectedFunctionType = FunctionType 
 

10. Generate ErrorBehaviour according to the ErrorModelType’s structure 

 
 
The system goes through all the selected function elements and generate corresponding error 

model elements. Whenever a new FunctionType is detected to be related, the system will set 

the new FunctionType as the new function element parameter for next recursion. 

5.4.2 Error Model Reorganization 
For Error Model Reorganization, we will explain both the algorithms in feature collapsing 

error model prototypes and collapsing error model ports. The pseudocode below shows the 

general algorithm of the main function in Collpasing ErrorModelPrototypes. 

 
1. If selected ErrorModelPrototypes all belong to the same container 
2. Yes; 

1. Create CollapsedErrorModelType 
2. Create CollapsedErrorModelPrototype 
3. Type CollapsedErrorModelPrototype by CollapsedErrorModelType 
4. For each SelectedErrorModelPrototype in SelectedErrorModelPrototypes 

1. Get FaultFailurePropagationLinks of 
SelectedErrorModelPrototype 

2. For each FaultFailurePropagationLink in 
FaultFailurePropagationLinks 

1. Get the ConnectedErrorModelPrototype in the other 
direction of the FaultFailurePropagationLink 



36 

 

2. Check whether the connectedErrorModelPrototype is in 
SelectedErrorModelPrototypes 

1. Yes; innerLinks.add(FaultFailurePropagationLink) 
2. No; outerLinks.add(FaultFailurePropagationLink) 

3. Get FaultFailurePorts of SelectedErrorModelProtype, 
fromPorts.add(FaultFailure_fromPort), 
toPorts.add(FaultFailure_toPort) 

4. Create a copy of SelectedErrorModelProtoype in 
CollapsedErrorModelType 

5. For each outerLink in outerLinks 
1. Get fromPort and toPort of OuterLink 
2. If fromPort is in fromPorts 

1. Yes, innerFromPorts.add(fromPort) 
2. Else, outerFromPorts.add(fromPort) 

3. If toPort is in toPorts 
1. Yes, innerToPorts.add(toPort) 
2. Else, outerToPorts.add(toPort) 

6. Add outerFromPorts to CollapsedErrorModelType as 
FaultFailurePort_from 

7. Add outerToPorts to CollapsedErrorModelType as FaultFailurePort_to 
8. Create DelegationFaultFailurePropagationLink_from to connect 

FaultFailurePort_from with corresponding outerFromPort 
9. Create DelegationFaultFailurePropagationLink_to to connect 

FaultFailurePort_to with corresponding outerToPort 
10. Link outerLinks to corresponding FaultFailurePort_from and 

FaultFailurePort_to 
3. Else; 

1. Stop program from executing 
2. Send Error Message to Interface 

The main procedure in collapsing ErrorModelPrototypes is find the external links which are 

not connected with the selected ErrorModelPrototypes on both sides. Because when those 

ErrorModelPrototypes are collapsed to a higher level, the external links need to link to the 

newly generate ErrorModelType. So the critical part is adding the correct ports on the 

Collapsed ErrorModelType and link them with the previous external links. 

 

The collapsing ports and prototypes have similar algorithm while the prototypes takes a few 

more steps than collapsing ports. The pseudocode below shows the general algorithm of the 

main function in Collpasing ErrorModelPorts. 

 
1. If selected ErrorModelPorts all belong to the same container 
2. Yes; 

1. If the selected ErrorModelPorts are all FaultInPorts 
1. Create new FaultInPort under the same container 
2. For each selected FaultInPort 

1. Add the target reference to the newly created 
FaultInPort 

2. Adjust the connectors which connected to this port to 
the newly created FaultInPort 

3. Provide a short name and UUID to the newly created FaultInPort  
2. If the selected ErrorModelPorts are all FailureOutPorts 

1. Create new FailureOutPort under the same container 
2. For each selected FailureOutPort 

1. Add the target reference to the newly created 
FailureOutPort 

2. Adjust the connectors which connected to this port to 
the newly created FailureOutPort 
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3. Provide a short name and UUID to the newly created 
FailureOutPort 

3. Else; 
1. Stop program from executing 
2. Send the Error Message of the selected ports have different 

directions(Both FaultInPort and FailureOutPort exist) 
3. Else; 

1. Stop program from executing 
2. Send Error Message  

 
 

5.5 Summary  
In this chapter, a one to one mapping concept between nominal and error model is proposed 

and addressed. The feature is designed and implemented to be efficiently defining error model 

elements out of nominal model elements, which is related with RQ1 How to efficiently define 

an error propagation model from architecture model. In addition, RQ2 How to reduce the 

manual work in refactoring the model is also addressed in this chapter. In order to reduce the 

manual work in refactoring error model elements, two model collapsing strategies is designed 

and implemented. From function perspective, both artifacts automate model transformation 

and error model generation connects the different aspects from system architecture to safety 

architecture. From performance perspective, error model generation’s time performance 

become weak when handling a large system model. And besides collapsing as one type of 

refactoring, there are more types of manually routine refactoring are under investigation. 
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Chapter 6   HiP-HOPS Fault Tree 

Analysis in EATOP 
 

 

As the third research question addressed, there is a need to apply the Fault Tree Analysis on 

EAST-ADL error models and relate the generated Fault Tree result with both the error model 

and the nominal model. As explained in chapter 2, fault tree analysis is used to analyze the 

system failure probability and resolve the causes of a system failure. To get an automatically 

analyzed system failure is also the final goal of generating error model out of function model. 

There are currently several tools supporting fault tree analysis, but none of them are directly 

available for EAST-ADL models. So the first challenge is looking for a suitable tool to get 

EAST-ADL models supported in a short time. When EAST-ADL model is parsed by one of 

the Fault Tree Analysis solution tools, the rest of the work is to connect the generated Fault 

Tree with the error model and nominal model in EATOP. Among all existing Fault Tree 

Analysis solutions, HiP-HOPS is selected as the Fault Tree Analysis tool to be integrated in 

this research. Since the HiP-HOPS error logic is supported in EATOP Error Behavior element 

as described in section 6.2.4 and the tool itself is handy and easy to be downloaded and 

integrated. Besides, the support from the founder of HiP-HOPS in this research is also a great 

help. In all, we believe HiP-HOPS is most suitable tool for this project. Section 6.1 presents 

the different goals for solving this problem since several unstable factors exist in this research. 

Section 6.2 provides the design and solution for each goal revealed in section 6.1 together 

with their final result.  

6.1 Different Levels of Goals  

 
Fig 6.1 Safety Analysis process –Fault Tree Analysis 
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Fault Tree Analysis analyses the failure logic in the EAST-ADL error model, the final goal of 

this feature is connecting error model and Fault Tree as shown in the figure below. Besides, it 

requires an easy and efficient way to present the result after analyzing, in order to trace back 

to the error model and even the nominal model. Since this feature requires outsourced work, 

the completion time becomes hard to measure. According to this, we planned to have different 

levels of goal to achieve in the end. 

 

1. Supporting Fault Tree Analysis of EAST-ADL 

2. Easily Generating Fault Tree in EATOP 

3. Relate the generated result with EAST-ADL model 

 

The first and lowest level is getting HiP-HOPS support Fault Tree Analysis of EAST-ADL 

model. Currently, HiP-HOPS is available for e.g. Simulink models. So we contacted Professor 

Yiannis Papadopoulos in University of Hull, who is also one of the founder of HiP-HOPS. 

They provide a solution for making HiP-HOPS support EAST-ADL model language. When 

the first level goal is achieved, we say that a primitive connection between EAST-ADL and 

Fault Tree Analysis is built but the usability at this level is rather low since user has to 

manually provide the input file and required information to HiP-HOPS. In addition, the 

generated result can only be viewed through a web browser by opening the generated html file. 

So the second level of goal is easily generating Fault Tree in EATOP. What we expect to have 

at this level is user easily selecting the system (ErrorModelType in EAST-ADL) and 

generating the corresponding Fault Tree and other related results. Instead of going through a 

bunch of steps, user could easily get the result by clicking one button in EATOP platform. 

The highest level goal is relating the generated result with EAST-ADL model. To make the 

connection not only one way from EAST-ADL to Fault Tree but also trace back from Fault 

Tree to EAST-ADL model, some visual connection is shown in the error model by parsing the 

result. This function not only enhances the functionality of this feature, but also increases the 

usability of the whole connection and provide an easier working basis for the safety engineers. 

Before getting into details, several terms used in Fault Tree Analysis should be introduced. 

 

Fault Tree 

As the Fault Tree Analysis explained in section 2.5, Fault Tree is one main output generated 

from Fault Tree Analysis. Each fault tree is composed by different symbols, which represents 

the event, gate and transfer and one example fault tree is captured in Fig 2.7. 

 

CutSet 

Analysis result which illustrates the set of events which must occur to cause the top event to 

happen. This is also addressed in section 2.4. 

 

ASIL Level 

The ASIL level is an automotive safety integrity level which expresses the required levels of 

safety in one system.  Each hazardous event is assigned an ASIL, and failure in the error 

model corresponding to this event are given the same ASIL. 

6.2 Design and Result 
In this section, the design and outcomes are demonstrated corresponding to each level of goal. 

For easy understanding, the same model will be used as the example for all three goals. Since 

a meaningful model is required for Fault Tree Analysis, a new model called 
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“EMSimple_2FT.eaxml” including internal failures are introduced and explained in later 

paragraph. 

 

6.2.1 Error Model for Fault Tree Analysis  
Since the relation between function model and error model has been explained in Chapter 5, 

we omit the corresponding function model description here to avoid redundancy. Besides, the 

new Error Model is illustrated in both model diagram and object diagram. 

 

As shown in the figure 6.2, ErrorModelType “s1” is the top element which contains the 

failure and fault information and it has two FailureOutPorts, which are “SystemFailure” and 

“SystemFailure2”. Four ErrorModelPrototypes are part of s1. They are typed by three 

ErrorModelTypes respectively and this will be illustrated in later object diagram. Among 

those four prototypes, three of them contain internal fault. Since “Pfrontlefts11” and 

“Pfrontrights11” are typed by the same ErrorModelType, they both contain the internal fault 

called “s11InternalFault” and prototype “PInputs” has “InputBE” as its internal fault. There 

are two paths among “PInputs” and “Pcombiner”. One of them starts from “FL” out port of 

“PInputs”, passes through “Pfrontlefts11” and ends up in “FL” in port of “PCombiner”. The 

other one goes through the right line. In ErrorModelPrototype “PCombiner”, the 

FailureOutPort “CombinedFailure” combines the failures from “FL” and “FR” and separates 

them into “SystemFailure” and “SystemFailure2” by FaultFailurePropagationLink “Out” and 

“Out2”. 

 

 
Fig 6.2 Error Model Diagram of “s1” 
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EMT1: ErrorModelType

ShortName: Inputs

EMT2: ErrorModelType

ShortName: s111

EMT3: ErrorModelType

ShortName: s11

EMT4: ErrorModelType

ShortName: Combiner

FFP1: FaultFailurePort

ShortName: FL

FFP2: FaultFailurePort

ShortName: FR

FFP3: FaultFailurePort

ShortName: s111in

FFP4: FaultFailurePort

ShortName: s111out

FFP6: FaultFailurePort

ShortName: s11out

FFP5: FaultFailurePort

ShortName: s11in

FFP7: FaultFailurePort

ShortName: FL

FFP8: FaultFailurePort

ShortName: FR

FFP9: FaultFailurePort

ShortName: CombinedFailure

+Port

+Port

+Port

+Port

+Port

+Port

+Port

+Port
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EMP1: ErrorModelPrototype

ShortName : Ps111

Type: s111

EMP2: ErrorModelPrototype

ShortName : PInputs

Type: Inputs

EMP3: ErrorModelPrototype

ShortName : Pfrontlefts11

Type: s11

EMP4: ErrorModelPrototype

ShortName : Pfrontrights11

Type: s11

EMP5: ErrorModelPrototype

ShortName : Pcombiner

Type: Combiner

《isOfType》

《isOfType》

《isOfType》

《isOfType》

《isOfType》

+part

FFPL1: FaultFailurePropagationLink

ShortName: FLinLink

FFPL2: FaultFailurePropagationLink

ShortName: FRinLink

FFPL3: FaultFailurePropagationLink

ShortName: FLoutLink

FFPL4: FaultFailurePropagationLink

ShortName: FRoutLink

FFPL5: FaultFailurePropagationLink

ShortName: out

FFPL6: FaultFailurePropagationLink

ShortName: out2

FFPL7: FaultFailurePropagationLink

ShortName: InDelegation

FFPL8: FaultFailurePropagationLink

ShortName: OutDelegation
《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》

《instanceRef》
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EMT5: ErrorModelType

ShortName: s1

FFP10: FaultFailurePort

ShortName: SystemFailure

FFP11: FaultFailurePort

ShortName: SystemFailure2

+Port

+Port

《instanceRef》

《instanceRef》

+errorBehavior

IFP1: InternalFaultPrototype

ShortName: InputBE

IFP2: InternalFaultPrototype

ShortName: s11InternalFault

+InternalFault

+InternalFault

+errorBehavior

+errorBehavior

EB1: ErrorBehavior

FailureLogic:  Failure-FL= InputBE; Failure-FR = InputBE; 

Type: HiP-HOPS

EB2: ErrorBehavior

FailureLogic:  Failure-s111Out = Failure-s111In; 

Type: HiP-HOPS

EB3: ErrorBehavior

FailureLogic:   Failure-s11Out = Failure-s11In OR s11InternalFault; 

Type: HiP-HOPS

 
Fig 6.3 Detailed Diagram of Elements and relations in ErrorModel 

 

To make the model information more straightforward, the diagrams have been separated into 

one general which contains the model elements of “s1” no lower than ErrorModelPrototype in 

Fig 6.4, and the other provides the detailed information between those ErrorModelPrototypes 

and their typed ErrorModelType in Fig 6.3. From the object diagram 6.4, we can easily tell 
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that ErrorModelType “s1” has four ErrorModelPrototypes and six 

FaultFailurePropagationLink. Besides, “SystemFailure” and “SystemFailure2” are the ports 

belong to s1.  

 

EMT5: ErrorModelType

ShortName: s1

FFP10: FaultFailurePort

ShortName: SystemFailure

FFP11: FaultFailurePort

ShortName: SystemFailure2

+port

+port

EMP2: ErrorModelPrototype

ShortName : PInputs

Type: Inputs

EMP3: ErrorModelPrototype

ShortName : Pfrontlefts11

Type: s11

EMP4: ErrorModelPrototype

ShortName : Pfrontrights11

Type: s11

EMP5: ErrorModelPrototype

ShortName : Pcombiner

Type: Combiner

+part

+part

+part

FFPL1: FaultFailurePropagationLink

ShortName: FLinLink

FFPL2: FaultFailurePropagationLink

ShortName: FRinLink

FFPL3: FaultFailurePropagationLink

ShortName: FLoutLink

FFPL4: FaultFailurePropagationLink

ShortName: FRoutLink

FFPL5: FaultFailurePropagationLink

ShortName: out

FFPL6: FaultFailurePropagationLink

ShortName: out2

+part

+faultfailureconnector

+faultfailureconnector

+faultfailureconnector

+faultfailureconnector

+faultfailureconnector

 
Fig 6.4 Detailed Diagram of Elements and relations for ErrorModelType “s1” 

 

All the relations between ErrorModelType and ErrorModelPrototype in 

“EMSimple_2FT.eaxml” are illustrated as above Fig 6.3 and Fig 6.4. For better 

understanding, ErrorModelType, ErrorModelPrototype and their ErrorBehavior are listed in 

the left column. The elements in the middle column are mostly FaultFailurePorts and the right 

side elements are the FaultFailurePropagationLink connect different ports. The 

InternalFaultPrototype are shown in the middle column which are numbered as “IFP1” and 

“IFP2” which belong to ErrorModelType “Inputs” and “s11” respectively. One part is not 

explained in the model diagram is ErrorModelType “s11” contains one ErrorModelPrototype 

“Ps111” which is typed by “s111”. 

6.2.2 Generating Fault Tree in EATOP 
 

Goal 1 - Supporting Fault Tree Analysis of EAST-ADL 

The work of parsing eaxml file in EATOP to hipxml was handed out on 22 of April and it is 

done on June 12th. Septavera Sharvia, a phD in Computer Science and a researcher at 

University of Hull, provided on important element.  She has completed a feature of translating 

an eaxml file to hipxml by giving the directory of the source eaxml and the short name of the 

selected top system. The provided “EAXML2HIPXML.jar” which is added in dependency to 

a java class. The corresponding hipxml will be generated in the same directory as “filePath”. 

In order to parse the generated hipxml, the HiP-HOPS tool is needed. It can be downloaded 

from its official website at: http://www.hip-hops.eu/index.php/downloads. There is 

commercial version for analyzing bigger models, while in this research we choose the 

evaluation version which has a limitation of 20 components. In order to create Fault Tree by 

http://www.hip-hops.eu/index.php/downloads
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using HiP-HOPS analysis, the generated file should be located in a folder called “HiP-

HOPS_FailureEditor”. After the xml file is moved to the right folder, HiP-HOPS is available 

to parse it by running in the command line. The input parameter should be “hipop 

filename.xml outputtype=XML”. 

 

When a full analysis is complete, the result Fault Tree and the corresponding fault tree 

analysis information is carried in an html file which is opened in a web browser. The final 

fault trees of the example error model presented in section 6.2.1 are shown as follow. 

 
Fig 6.5(a) FaultTree Result of Failure-s1.pfrontlefts11.s11Out 

 

 
Fig 6.5(b) FaultTree Result of Failure-s1.pCombiner.CombinedFailure 

 

Fig 6.5 FaultTree Result 

The result Fault Trees showing that there are two possible paths conduct the final failure in 

element “s1”. We will not discuss more about how the Fault Trees are generated and why it’s 

generated in this way since our research work is improving the usability of EATOP and 
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makes the Fault Tree Analysis available for EAST-ADL model. So from the description 

above we draw a conclusion that the first goal is achieved and HiP-HOPS is available for 

analyzing EAST-ADL models. 
  

 

Goal 2 - Easily Generating Fault Tree in EATOP 

Taking the work of the first goal as a basis, the second goal is to improve the ease of use when 

making Fault Tree Analysis in EATOP. It is designed to automating the manual work of the 

previous section and let the user be able to see the result as shown in Fig 6.5 by clicking one 

button in EATOP. Instead of passing the eaxml file path and the element name which is going 

to be analyzed, the user could easily select the element and choose “HiP-HOPS - Fault Tree 

Analysis”. The result screenshot is presented in Fig 6.6. 

 
Fig 6.6 Select element for Fault Tree Analysis 

 

The same example as previous section, the ErrorModelType “s1” is selected to be analyzed. 

By clicking the Fault Tree Analysis option, user gets the result view as shown in Fig 6.5 in 

EATOP instead.  
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6.2.3 Relate Fault Tree with EAST-ADL 
 

Goal 3- Relate the generated result with EAST-ADL model 
In the end, we would like to have a feature not only to generate the Fault Tree from EAST-

ADL model, but to trace back from the analyzed result to the error elements. The first 

challenge is what to relate. Since the result image is generated as html file, it is hard to relate 

it with EATOP elements by clicking in the image. But the analyzed result also contains one 

xml file which keeps the information of all the CutSets. CutSet here is the element which 

must occur to cause the top event happen. It can be seen as a pre-condition of the top element 

failure. This is useful information to show on the EAST-ADL tree view to guide the user find 

the possible faults. So for this relating part, we selected to show the cutset information in the 

“Error Log” view in EATOP. Besides, the elements which are defined as cutsets are marked 

in the tree view, if this marked error model element has a function target which is introduced 

in 6.2, the targeted function elements are also be marked in the end. 

 

In the previous example, the cutsets include the internal fault “InputBE” in prototype “pInputs” 

and the internal fault “s11InternalFault” in prototypes “pfrontlefts11” and “pfrontrights11”. It 

is depicted in the browser as the figure below. 

 
Fig 6.7 CutSets in Browser View 

 

There are possibilities that overlapping exists in different sets of cutset. As shown in Fig 6.8, 

there are two sets of CutSets when s1 is selected as the top event, which are 

s1.pInputs.InputBE and s1.pfrontlefts11.s11InterFault as one stream and s1.pInputs.InputBE, 

pfrontlefts11.s11InternalFault and s1.pfrontrights11.s11InternalFault as another stream. This 

means either the failure exists in InputBE, s11InternalFault cause the final failure in s1. In 

addition, the message in Fig 6.8 also shows that the s11InternalFault can be either in 

pfrontlefts11 or pfrontrights11. 

 

 
 

Fig 6.8 CutSets information 

 

The left hand side of Fig 6.9 is the initial tree view of EMSimple_2FT.eaxml before running 

the Fault Tree Analysis. On the right hand side, the elements analyzed as CutSet are decorated 

with a red dot on the top right of each icon. In the tree view, all the elements are decorated no 

matter which cutset it is from. But by selecting the decorated element, user is able to read the 

information of which cutset it belongs to from the attribute view. The function modeling in 

Fig 6.10 illustrates the relation from Fault Tree Analysis to nominal model, not only the error 

model elements are marked as cut sets, the error model elements targeted function model 

elements are also marked to be related with CutSets. 
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Fig 6.9 CutSets Marking 

 
Fig 6.10 CutSets Marking on Function Element  

 

Not only marking the CutSets, a feature is also implemented to remove the marks when they 

are not needed any more. It is called “Ignore CutSets” shown in Fig 6.6. By running this 

feature, all the cutset decorations which belong to the selected element and its target element 

will be erased. 

 

 

6.3 Summary 
In this chapter, a design and implementation of integrating HiP-HOPS Fault Tree Analysis 

into EATOP is addressed and this is related with RQ3: How to apply Fault Tree Analysis on 

EAST-ADL error model and relate the generated Fault Tree result with the model. The 
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feature is able for user to apply Fault Tree Analysis to EAST-ADL error model in EATOP 

and it also supports applying Fault Tree Analysis at an early age of a system design which 

reduce the failures in later design. Besides, it also reflects the analysis result into the model 

view which enhance the usability of Fault Tree Analysis. Automating Fault Tree Analysis for 

EAST-ADL is a fair effort. By using a third party commercial artifact (HiP-HOPS), existing 

tooling can be used, although extra installation needs to be purchased for industrial use.  
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Chapter 7 Graphical Support in 

EATOP 
 

 

In this chapter, we will focus on providing a valid solution for the research question about 

visualization, which is about visualizing the error propagation model together with nominal 

model. As shown in fig 7.0. Visualization between error model and nominal model improves 

the readability of the error model structure. A user could check out the relation between the 

error model and its targeted nominal model through a graphical view instead of going through 

the tree view to find out the targeting information. It increases the efficiency of the safety 

analysis effort and reduces the manual work in understanding. 

 
Fig 7.0 Safety Analysis Process - Understanding 

 

7.1 Investigations in model visualization 
The goal of this task is to visualize the dependency from error propagation model to nominal 

model by using an existing diagram editor. The dependency here means the target attribute in 

error model element which points to its targeted nominal model element as elaborated in 
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Chapter 5. Some investigation is needed in order to find a proper graphical tool to be 

integrated to solve the research question in a limited time. 

 

7.1.1 Integrate Continental Graphical Editor 
The first option is the graphical editor developed by Continental (“conti-”). This graphical 

editor supports different concepts of EAST-ADL in EATOP by dragging and dropping the 

model element from EATOP navigation tree to the diagram panel.  

 

 
Fig 7.1 example view in continental graphical editor 

As shown in Fig 7.1, a lower level hierarchy in the diagram panel is reached by double click 

the container. There are restrictions for what elements can be dragged into what level’s 

diagram. For example, the diagram above is a DesignPackage Level which contains three 

DesignFunctionTypes. When user double click “GlobalBrakeController”, a blank page is 

opened which is available for having DesignFunctionPrototype level elements to be 

contained.  One disadvantage of this editor is that user may destroy the element structure by 

dragging the wrong prorotypes elements to another type. Not only by dragging the elements to 

the diagram panel, it also allows user to create new elements from Palette on the right hand 

side. As shown in Fig 7.1, there are eleven objects and one modeling element is available to 

be drawn on this level of diagram. As issue with editor is that it only supports EAST-ADL 

2.1.10 and an older EATOP version. Another more recent version of of conti-graphical editor 

aims to support EAST-ADL 2.1.11, but is is still buggy. Right now, there is no graphical 

editor available in EATOP which supports EAST-ADL 2.1.12. In order to integrate the conti-

graphical editor with the feature for visualizing the dependency, we need to adapt the editor to 

EAST-ADL 2.1.12 with EATOP 0.5.0. The amount of work to adapt the conti-graphical 

editor to a new version is beyond this research. So we decided to skip this approach. 

7.1.2 Integrate Diagram Viewer 
This approach requires the generation from EATOP model object to xml schema. The 

graphical xml generator will use visualizerdiagram schema. Visualizerdiagram is an EATOP 

specified diagram schema which is created by AB Volvo. A visualizer diagram reader plugin 

is required in order to visualize the xml file. The diagram viewer generates a read-only view 
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from its xml file and present the file in diagram editor in EATOP. As shown in Fig 7.2, the 

*.visualizerdiagram can be read in EATOP, but it does not allow the user to edit the diagram 

directly. Instead, if some changes is needed, user should go to the model element and after the 

modification is done, an update is needed for the the generated *.visualizerdiagram files. 

 

 
Fig 7.2 xml file generating 

 

The EATOP internal diagram viewer is convenient to use and the appearance of the graph 

depends on how the algorithm handles complicated situations, for example, the element 

overlapping or huge amount of connectors.  

 

7.2 Different views generated by Diagram generator 
Different views which are generated by the diagram generator are presented in this section 

Identifiable element view, realizes a single box in the graph with its name for each of the 

selected element. It is applicable for any kind of EAST-ADL element. Error Model Type view 

& target and Error ModelPrototype view & target are shown when ErrorModelType element 

is selected in EATOP. And the diagram is generated according to the selected elements’ 

structure. The later subsections will explain how and what elements are generated in different 

views respectively. 

7.2.1 Identifiable Element 

 
Fig 7.3 Identifiable View – Package View 



51 

 

The identifiable element in the superclass of most elements EAST-ADL and provides an 

identity attribute (UUID). Fig 7.3 is one example view of IdentifiableView in EATOP. The 

left hand side shows the model elements of the EAST-ADL explorer navigation while the 

right hand side is the generated diagram by selecting all the packages under EAXML which 

belongs to the file BBW_4Wheel_2.1.12.eaxml. 

 

7.2.2 ErrorModelType and ErrorModelPrototype View 
Instead of using the GlobalBrakeController in BrakeByWire example which is presented in 

Chapter 5 we are going to create a new example nominal model for presenting the graphical 

visualization in different views and in consistency checking in chapter 8. Different diagram 

views for the GlobalBrakeController model are provided in Appendix C-I and Appendix C-II, 

but the new example provides a simpler and more illustrative structure. 

 

 
Fig 7.4 Structure of the Example Nominal Model 

 

Fig7.4 presents the structure at Function Prototype level of the example nominal model. Three 

FunctionTypes are named as “A_FT”, “B_FT” and “Top_FT”. As a container, “Top_FT” 

contains two FunctionPrototypes and three FunctionConnectors. Among them, “tc1” and 

“tc2” are delegated connectors, which connect between higher level element and the lower 

ones. Each FunctionPrototype has its FunctionType. In this case, “A_FP” is typed by “A_FT” 

and “B_FP” is typed by “B_FT”. The typed FunctionPrototype will inherit all the 

subcomponents contained in its type.  

 

By using the error model auto-generation artifact which is developed and explained in 

Chapter 5, we created an example error model depends on the example nominal model by 

selecting all three Function Types a_FT, b_FT and top_FT. The ErrorModelType view and 

ErrorModelPrototype view supported by diagram generator is presented in Fig 7.5 and Fig 7.6 

respectively.  
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Fig 7.5 example error model – ErrorModelType view 

 

The ErrorModelType view presents the structure of the selected ErrorModelTypes at a type 

level. In type level, only in ports and out ports are visible. The size of each ErrorModelType 

depends on the amount of ports it has. For easy viewing, all the types are shown in a vertical 

order and the space between two types are the same and predefined for each type, so there is 

no overlapping in different types and user could easily scroll up and down to view all the 

selected types in one diagram. 

 
Fig 7.6 example error model – ErrorModelPrototype view 

 

The ErrorModelPrototype view presents the ErrorModelPrototypes in the selected 

ErrorModelType. Fig 7.6 illustrates a prototype view when a_FT_EMT, b_FT_EMT and 

top_FT_EMT are selected to be presented. From the presentation in Fig 7.6, we can tell that 
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there is no prototype located in a_FT_EMT and b_FT_EMT and there are two 

ErrorModelPrototypes a_FP_EMp and b_FP_EMp in top_FT_EMT. They are connected with 

each other and their container with FaultFailurePropagationLink. As the error model showing 

in this section is generated by one to one generation elaborated in Chapter 5. The whole 

structure in nominal model has been kept in error model, so as we can see the structure of 

error model in Fig 7.6 is the same as the structure of nominal model in Fig 7.4. Besides, in 

order to provide a clear structure when it comes to a big model with quite a lot prototypes sit 

in one type, we designed and implemented a three-column algorithm when it comes to 

arranging the positions of each prototype in ErrorModelPrototype view. The three-column 

algorithm divided all the prototypes in one type into three area, which are left, middle and 

right. And locate them according to the connection and its own properties. More detailed 

information about this algorithm are elaborated in section 7.3 and Appendix A – III.  

 

7.2.3 ErrorModelType and ErrorModelPrototype Target View 
Introducing the dependency concept with tracing line between error modeling and nominal 

modeling is the main purpose to visualize the error model elements together with their targets. 

In EATOP, the target is presented as one attribute in each of the error model element. It 

means this error model element illustrates the error propagation of the targeted element. 

Normally, the targeted element is a nominal model element at the same level. For example, 

one ErrorModelType has a DesignFunctionType or an AnalysisFunctionType as a target. 

While one ErrorModelPrototype has a target as a DesignFunctionPrototype or an 

AnalysisFunctionPrototype. In this section, ErrorModelType and target view and 

ErrorModelPrototype and target view are presented with the same example model as 

elaborated in section 7.2.2. 

 
Fig 7.7 example error model – ErrorModelType with Target view 

 

Fig 7.7 presents an example view at type level when a_FT_EMT, b_FT_EMT and 

top_FT_EMT are selected to be shown with their targets. The left hand side are the selected 

ErrorModelTypes and the right hand side are each of the selected ErrorModelType’s target. 

The line between each ErrorModelType and it’s target presents the tracing line. Not only the 

element which is targeted is shown in the diagram, but also it’s structure. As illuatrated above, 
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a_FT_EMT’s target a_FT has one in port and two out port while b_FT holds only one inport 

and top_FT has one inport and one outport. The targeted element have exactly the same 

structure as their ErrorModelTypes.  

 
Fig 7.8 example error model – ErrorModelPrototype with Target view 

 

Fig 7.8 is an example target view at ErrorModelPrototype level when a_FT_EMT, 

b_FT_EMT and top_FT_EMT is selected. Since no other line type is supported in this 

visualizerdiagram schema, in order to not mix the FaultFailureConnector with the tracing line, 

the connections in each ErrorModelType is not shown in target view. But the position of each 

prototype in error model side still applies ErrorModelPrototypes and the right hand side 

presents each ErrorModelPrototype’s target. As shown above, a_FP_EMp’s target is a_FP 

which belongs to the type called top_FT and b_FP_EMp has a target as b_FP which is also 

located in top_FT. The targeted type is repeatable since there could be more than one 

prototype targeted by the selected ErrorModelPrototypes are sitting in the same type which is 

also the case above. The reason of this design is that in ErrorModelPrototype’s target view, 

each of the targeted element should be drawn by ErrorModelPrototype perspective, so the 

selected ErrorModelTypes which have no ErrorModelPrototype (a_FT_EMT,b_FT_EMT for 

example) is not necessarily to be presented in the targeted side. Allow the targeted type to be 

repeatable is also according to this concern.  

 

7.3 Structure and Algorithm 
The diagram generator plugin is structured in three parts. Diagram folder is responsible for 

generating XML file entries from the Java diagram objects. Action folder handles all the 

actions response to user’s request and it uses the corresponding files in draw folder to relate 

the requested Java EObject with XML schema element. JAXB(Java Architecture for XML 

Binding) is used for handling the transmission between java object and xml element. JAXB 

provides marshalling (writing) Java content trees into XML instance documents and 

unmarshalling (reading) XML instance documents into Java content trees. In diagram 

generator, JAXB is used to generate XML schema from Java objects and unmarshall the 
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generated xml instance when the information is needed for java element, for example, when 

drawing the connection between ports, the location of different ports are unmarshalled from 

its xml instance.  

 

Since the diagram generator creates a read only view, it’s quite important to keep the diagram 

clean and clear, especially when it comes to a big system. For this reason, we have designed 

and developed a three column algorithm when locating the prototypes in its type. Since there 

are connectors link between different prototype ports or between prototype ports and the type 

ports as delegation connectors. The main purpose of the three column algorithm is by re-

organizing the location of the prototypes to make connectors between elements more readable 

and understandable. As a result, the prototypes which only have outports or the ones only 

have the connections with the type’s inports are located in the left column. The prototypes 

which have connections with type’s both inports and outports or the ones have no connections 

with the type are located in the middle column. The rest prototypes which only have inports or 

the ones only have the connections with the type’s outports are located in the right column. 

The piece of code of three columns algorithm is shown in Appendix A – III Three Columns 

Algorithm. 

 

7.4 Summary 
In general, diagram generator plugin is able to present several different views for visualizing 

the error propagation model together with the nominal model. And it addresses one possible 

solution according to RQ4, which is How to visualize the error propagation model together 

with architecture model. It fulfills the requirement of showing the tracing dependency line 

between error model and its targeted nominal model at both type and prototype levels. But it 

also provides a base support for all identifiable elements in EAST-ADL. The usage of three 

columns algorithm enhances the presentation of a large system’s structure in a more 

reasonable and clear way. Depending on the support of diagram viewer, each generated file is 

easily opened and reviewed in EATOP. But there are inconveniences exist while using it. For 

example, the generated diagram is not editable, user has to go back to the model element in 

order to make a change. The generated file is not generic, they are parsed by diagram viewer 

in EATOP, and no other external tool support this visualizerdiagram xml schema. Besides, the 

non-standard schema does not support other kind of lines than solid lines, like dashed lines. 

This makes the tracing link and connections to be hard to differ in the diagram. From the 

above, we can tell that even flaws exist, but the diagram generator plugin in general is a quick 

and easy tool in providing specific visualization in EATOP.   
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Chapter 8   Consistency Checking 

between nominal model and error 

model  
 

 

As described in the problem statement chapter, evolution is an unavoidable process during 

architecture design and safety checking. In this case, it is reflected as the changes in either 

nominal model or error model. When changes happen in either side and its related models are 

not updated in time, this normally leads to an inconsistency problem. Unfortunately, there is 

no automated feature to check the consistency in EATOP. Which means that after the models 

have been modified, there is no other way than checking all the related models manually 

which is time consuming and imprecise. In this chapter, we would address the solution of last 

research question as illustrated in Fig 8.0 by explaining how the inconsistency is prevented in 

our work in terms of EAST-ADL 2.1.12 function modeling and error modeling. The 

alternative design and final design for version control is elaborated in section 8.1. And the 

output from implementation are presented in section 8.2. 

 
Fig 8.0 Safety Analysis Process - Evolving 
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8.1 Design Specification 

8.1.1 Alternatives for consistency checking 
Several alternatives are available for handling the consistency checking between function 

modeling and error modeling. EMF compare is an eclipse based model comparing tool for 

EMF model. In this case, the model before changes or after last consistency checking is stored 

for comparison. Whenever user requires checking the consistency, the current model is used 

to compare with the stored model and the result are the differences between those two models, 

for example, the deletion, addition or modification of elements. When inconsistence exists, 

the differences are reported to the user. But the problem here is that EMF compare only 

handles a settled complexity of evolution by the customized comparison strategy. While in 

real life work, not all the changes are able to be predicted in advance and there is no exact 

definition of being consistent or not for one element. For example, the function type “ABS_T” 

in BBW example could be consistent with one error model type with different structure in 

different situations. This makes the EMF compare not applicable for automate the consistency 

checking between heterogeneous targets. Another alternative is keeping a hash code for each 

element. Since the UUID as a unique ID for each element in EAST-ADL modeling is not 

fulfilled in EATOP in default. One alternative is keeping each element’s generated time as the 

“hash code” in UUID attribute. And this can keep each element unique. So whenever the 

system detects there is one element have two different UUID, it informs the user as 

inconsistency may exist since the element has been updated. But considering the initial goal 

of UUID is not for save the time stamp and there might be other features read the elements by 

its UUID, we decided to drop this idea for consistency checking. 

 

From the discussion above, the automatic detecting way seems not totally applicable for this 

situation. But there is one way called version control has been conducted in several 

automotive applications for checking the modeling consistency. It requires manual decision 

for the version increase and whether there is consistency or not is decided by the user. After 

setting the version for each element, system checks whether there is a different between the 

targeted version and the error model version. Comparing with other alternatives, version 

control do requires more manual work, but it is the most efficient way for handling the 

complex situation during consistency checking. Therefore, version control is designed to be 

the way for checking the consistency between nominal model and error model in this research.  

 

8.1.2 Version Control Design Specification 
Fig 8.1 illustrates one example workflow when applying consistency checking for the user’s 

intended file. As shown in the Figure, if one “*.eaxml” file has not been version initiated, user 

has to run “Initiate version” function in order to set version element for all existing nominal 

and error elements. All the versions and targeted versions are set according to the user’s input. 

The targeted version here is only available for the error model element, it is used for recording 

the matching targeted version to compare with the current target version, and more detail 

information will be explained in next section.  

 

When all the elements needed for consistency checking contain a version number, they are 

available for consistency checking. If one element has been modified, user has the authority to 

either select increase the version of this element or stay the same as before. The version can 

be changed by manually typing or by automatically increasing. In manual typing, user needs 

to locate the new version number to the corresponding version element and the version can be 

modified to any number he needs, while letter is not allowed in a version number. In 
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automatic increasing, the version of each error/function type element are changed by right 

clicking the desired element. The function called “version increase” is used for modifying the 

element version while decreasing version number is not available for this situation. Two 

options are available for the automatic increasing, each click of “Major Increase” adds “1” to 

the precious version while “Minor Increase” adds “0.1” instead. For example, if the current 

version number is “1.2”, by selecting the major increase function, the version number 

becomes “2.2”. If take minor increase on the basis of “2.2”, the new version will be “2.3”. 

Both major increase and minor increase are repeatable. There is no defined meaning of the 

version number, but usually, each “1” increasing means a new release for this component 

while each “0.1” increase means small changes, but it is still open for users to specify the 

version meaning by their own. The advantage of manual typing is that user defines the version 

number by his own but it is hard to find the location of the version element for a large system 

since it has different hierarchy from the function or error modeling elements. Conversely, the 

auto increase function is available by simply right clicking the desired element, but it is only 

available for increasing a limited number for each time. So user chooses either way depending 

on the situation.  

 

 

 
Fig 8.1 Consistency Checking Workflow Chart 
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User does not need to check consistency for each change, he/she could wait till it is time to 

revise the whole project or at any time he/she decide to be. But after running the consistency 

checking, the user will either be informed that all versions are consistent. Or get the 

inconsistency elements message in both information view in EATOP (same as Eclipse) and 

the tree view. The version consistency checking does not require any manual work, the 

system analyses each element’s version and provide the result of whether it is consistent or 

not between the function modeling and nominal modeling. If the goal is to make sure all 

elements are consistent with each other, several modifications needed to be done, and after all, 

there is an option for the user to finalize the targeted version, which the system helps the user 

to make the selected error model elements version match their target versions. If user is 

satisfied with the current state of the project, they could start with a new working stage. 

Otherwise, they continue with the check consistency from beginning. The consistency 

checking in this work does not support the following situations: 

1. No version number is set  

2. Those error elements which have no target function model  

3. Those function elements are not targeted in the error model 

 

8.2 Result Specification 
After the “why” has been explained in previous section, this section solves the “how” 

question for each function by a short description and one example use case. All use cases 

follow the working flow shown in Fig 8.1.Besides, sequence diagrams and the result 

snapshots will be presented assisting the explanation in order to make each case easy to 

understand. 

 

8.2.1 Initiate Version 
In order to create a version for each model element in EATOP, an Initiate Version step is 

needed. While it is only needed to be done once when an architecture design is currently 

finished. After running the initiate version function, each existing function and error element 

is attached with a version element. The version element attached to function element contains 

a version number which means the corresponding function element’s current version number. 

While for each error model element, a target version number is also recorded in its version 

element which is used for pointing out the consistent target version number. So if the targeted 

function element has a version number not equaling to its error element’s target version, then 

there must be an inconsistency between them. Any additional function or error element is 

allowed to be added into the system after running the initiate version function, but it requires 

rerunning the initiate version step. After each rerunning, a new set of version elements are 

added and new version number and target version number are required to be set by user. 
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Fig 8.2 Initiate Version Sequence Diagram 

 

As illustrated in Fig 8.2, a request to initiate version is sent by user right clicking on one 

EAST-ADL top level element and select “Initiate Version”, system responds by asking for 

version number and target version number, the target version number is only applicable for 

error element as explained above. In this case as shown in the figure, both versions are set as 

“1” as initial, which means all the function and error elements have a version number of “1”, 

and all the error model’s target version number should be “1”, so it is regarded as all elements 

are consistent in this example. It is designed to use the EAST-ADL 2.1.12 

UserAttributedElement to record the version number. Each of this element contains one or 

two Numerical Value which is the value of the version number. One example of VersionType 

elements are depicted in the picture 8.3. “a_FT_VersionType” is the version element for 

element “a_FT” and it means element “a_FT” is currently in version “1”. 

 

There is a distinction between the VersionType for function element and error element. Each 

error model element has one extra version number called “TargetVersion” as shown in Fig 8.4. 

This extra version is used to record this error element’s target version. In this example, the 

“a_FT_EMT” is in version “1” and its matching target element “a_FT” version should be “1”. 

So if “a_FT” has a version other than “1”, it means there is a version inconsistency exist 

between those two elements. This strategy is used for later consistency checking. According 

to user’s requirements, system sets the entire versions into different folders which separates 

the function modeling elements and error modeling elements. 

  
                     Fig 8.3 Error Modeling Version                  Fig 8.4 Function Modeling Version                       
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8.2.2 Version Increase 
The Version Increase function is used to increase the modeling version number. By selecting 

one element, user select whether major increase or minor increase the version number. The 

snapshot of this function can be seen in Fig 8.6(a). The reason of having two different 

increase levels is considering the version number is also responsible for representing the 

status of the element. A major increase means a new release while a minor increase means a 

modification. Since the version increase is only meaningful on a function type or error model 

type level, this function is not applicable for any other elements than those meaningful version 

increasable elements. 

 

 
Fig 8.5 Increase Version Sequence Diagram 

 

One example use case of increasing function element version is shown in figure 8.4. User first 

requires to minor increase the version of function type “top_FT” and then major increase the 

version of it. The result are presented in Fig 8.6(b1) and Fig 8.6(b2) respectively. After two 

times increase, the version number of “top_FT” comes to “2.1” from the initial “1”. Except 

increasing the defined number for each function type and error model type element, it is also 

possible for the user to decide and set a new version number for any element which has a 

corresponding version element. User could easily go to the selected element’s version and 

type the new version in property view. The reason of having the additional defined increasing 

version function is to keep the version in a more formal style and also it’s easier to reach than 

manual typing. Even the version number can be changed for all the version tagged elements, 

the only part affects the model consistency between nominal model and error model is when a 

function type’s version has been changed. The version of the other elements will not be 

considered in consistency checking since the version consistency is at function type and error 

model type level. While the version of error model type will not affect the model consistency 

whenever it’s TargetVersion equals to its targeted element’s version. More detailed 

information about consistency checking will be elaborated in checking version consistency 

section. 

 

 
Fig 8.6(a) Increase Version SnapShot 



62 

 

 

 
Fig 8.6(b1) Minor Increase Version  Fig 8.6(b2) Major Increase Version 

 

Fig 8.6 Increase Version 

 

8.2.3 Checking Version Consistency 
The checking version consistency is the main function in this feature. In this function, user 

could simply right-click on one EAXML file element needs to be checked and select Check 

Version Consistency. As explained in initiate version, the way this function to check 

consistency is comparing all error element’s TargetVersion with its target element’s Version, 

an inconsistency exists when there is a difference between them.  

 
Fig 8.7  top_FT Version & top_FT_EMT TargetVersion 

 

We use the same use case as above procedures, “top_FT” is the target element of 

“top_FT_EMT”, the Error Model Type has a TargetVersion as “1” while the Function Type 

holds a Version as “2.1” as shown in Fig 8.7. When user run Check Consistency at this time, 

it shows both inconsistency error message and an inconsistency image on the error model side, 

those are seen in Fig 8.8. 
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Fig 8.8(a) Inconsistency icon on top_FT_EMT 

 

 
Fig 8.8(b) Inconsistency Message 

 
Fig 8.8 Inconsistency checking Result 

The descriptions above are all about when inconsistency exists, while if all elements’ versions 

are consistent in the selected file, a message in the picture below will pop up showing the 

information. 

 

 
Fig 8.9 Consistent Message 

 

8.2.4 Synchronizing Target Version 
The synchronizing target version function is designed to improve the usability of the 

consistency checking feature. The user does not need to manually modify the version number 

to make the inconsistent ones consistent. Instead, he/she can select all the elements at once 

and run finalize target version to make all TargetVersion the same as the current targets’ 

Version. In this case, user selects Error Model Type “ top_FT_EMT” and run this function, 

the result is shown as follow. And when we run the check consistency again now, it shows all 

consistent and the inconsistent icon is removed from top_FT_EMT. 
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Fig 8.10 Synchronize Version of “top_FT_EMT” 

 

 

8.3 Summary 
In order to cope with the inconsistency problem addressed in RQ5 How to ensure consistency 

between nominal architecture models and error models, a version control concept is 

illustrated in this chapter. In general, version control concept provides the possibility of 

informing when inconsistency exists. But it doesn’t avoid inconsistency from happening. It 

informs the current state of consistency when the function is triggered. But it doesn’t detect 

and define any modification as inconsistency. On the one hand, it reduce the real-time 

performance of the function. But on the other hand, it provides the possibility for user to 

customize the definition of consistency since not every modification will cause an 

inconsistency. It fulfills in coping with inconsistency problems in a research level. But by 

adding the version tag elements, it increases the size of the model. And this will be an issue 

for a large system. Overall, it handles the problem raised by research question while evolving.  
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Chapter 9   Evaluation 
 

 

As specified in the concept of design research, design and development processes take a main 

part of the whole research procedure and are responsible for generating the outcome. After the 

outcome is established, it is important to evaluate the successfulness in order for later 

modifying. At this point, different kinds of evaluation techniques, including observation, 

interviewing and questionnaire are conducted. 

 

The goal of the evaluation process in this research is to get the expert feedback for measuring 

the successfulness of the current result. While, the success or failure of the outcome 

knowledge and artifact cannot simply be evaluated in terms of how much it fulfill the 

expected functionality. Carvalho, Alvaro and Azurem(Carvalho,Alvaro,Azurém 2012) 

provide a validation criteria for measuring the outcome of a design research and it will be 

applied in this research evaluation. 

 

9.1 Evaluation Criteria 
In Carvalho, Alvaro and Azurems’ validation criteria, four general aspects of the outcome are 

measured, which are artifact success, generalization, novelty and explanation capability. 

Artifact success, as shown by name, is used for measuring whether the artifact is success or 

not from usefulness, efficacy and efficiency. An unsuccessful artifact also has the value of 

providing ways that are not worth of pursuing in later work. “Generalization” defines the 

range of applicability for the outcome, so whether the applicability is restricted to specific 

situations or universal is measured. “Novelty” indicates the improvements of the measured 

outcome comparing with existing knowledge. The evaluation result of novelty are usually 

phrased as: this outcome is better compare with before or this concept does not exist. The last 

element “explanation capability” considers whether the designed objects are explained well 

enough in the outcome description or not. And in this criterion, the best situation is the 

outcome meets the designed expectation in general. Considering the diversity and 

applicability of different works, detailed measurements for this research are provided as 

follow. 

 

9.1.1 Artifact success 
 

Usefulness 

Since the goal of this research is to improve the current working flows for safety engineers 

and architecture engineers. The usefulness of the outcome is judged by those experts that 

whether it solve or mitigate the current problems or not. 
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Efficacy 

The efficacy is defined as the degree to which the artifacts achieve the expected results 

(Carvalho,Alvaro,Azurém 2012). In this research, the efficacy is measured by comparing the 

research questions, user expectation and the outcome functions as described above in this 

section. 

 

Efficiency 

As specified in software quality standard metrics ISO-9126(Software Product Quality). 

Efficiency is considered in both amount of time and resources. This measurement is done by 

researcher. All the measured results are applied to the measurement algorithms provided in 

ISO-9126.  

 

9.1.2 Novelty & Explanation capability 
The novelty and explanation capability of the outcome is measured and evaluated through the 

feedback from experts.  The result of former measurement reflects the significance of the new 

concept or knowledge revealed in this study. While the explanation capability is used to 

measure the researcher’s capability of bringing ideas into practice and whether the designed 

objects are well explained. Those two metrics focus on evaluating the knowledge aspect of a 

study.  

 

9.2 Data Collection 
Based on the thesis progress and outcomes, the data collection together with data analysis is 

performed in two stages. The EAST-ADL and EATOP experts are involved in first stage and 

the Safety engineers participate the second stage. There are several reasons to have two 

evaluation stages. The first is in order to make sure everything goes on the right direction and 

speed, an evaluation is needed in the mid of the thesis to judge the completed work and 

reorder the later work. The second reason is time limitation, since it takes time to recruit 

interviewees from two departments, we decided to separate those experts into two groups. 

Besides, those two groups have different focuses, it also makes the data collection and 

analysis easier to perform. According to this, the interviews in first stage lays emphasis on the 

general process from nominal model to error model in EAST-ADL while the second focuses 

more on the usability of the auto-generated Fault Tree through HiP-HOPS. 

 
Table 9.1 Outcomes to be presented in different Interview Stages 

Outcomes Stage 1 Stage 2 

Auto-generating EAST-ADL nominal model from Simulink model Concept Concept 

Auto-generating EAST-ADL error model out of existing nominal model Artifact Artifact 

Re-patterning error model elements in EATOP Artifact Artifact 

Use of HiP-HOPS for Fault Tree Analysis with EATOP Concept Artifact 

Graphical representations for error model elements in EATOP Concept Concept 

Version consistency checking between nominal model elements and 

error model elements 
Artifact Artifact 
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The outcomes of this research are divided into concept and artifact. The concept includes 

ideas for improving the working flow and the artifact outcome contains four eclipse EATOP 

plug-ins achieve different goals. The outcomes to be presented in different interview stages 

are depicted in Table 9.1 as either concept or artifact. And it is annotated under the stage 

column for each interview stage. Currently, EATOP is only used for research while Simulink 

is the tool has been widely used in practice. The interviewees may not be familiar with the 

EATOP or hard to relate the thesis work with their current working process. For this reason, 

we present the concept as auto generating EAST-ADL nominal model from Simulink model 

to link the gap. This concept presents a complete model transformation from current working 

Simulink model to the EAST-ADL nominal model and rest of the thesis work are depending 

on this concept.  

 

9.2.1 Data Collection Method 
There are several commonly used methods of collecting data in design research, which are 

observation, interview, experiment and survey. Considering the goal of this evaluation 

process and the amount of data are collected, we perform the data collection in qualitative 

methods. Among those qualitative methods, one to one semi-structured interview is chosen to 

be conducted in this research.  

 
Fig 9.1 Data collection methods 

 

The figure above illustrates the general ideas of narrowing down to one to one semi-structured 

interview to be the data collection method in this research. As explained before, the 

qualitative methods fit better in this research. Since the outcome of this result is in incubation 

stage and the whole evaluation period should not be too long during the thesis work, the 

observation is not applicable for this situation. When it comes to whether group or one to one, 

our consideration is the summer vacation is approaching and it’s always easier to find a 

separate time for each participant than bring everyone together in a set amount of time. 

Besides, one to one interview guarantees the feedback reflect all the participants opinions and 
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the collected data are more objective. Before the interview, there are some prepared questions 

for each interviewee. However, different interviewee holds different background knowledge 

and a variety of perspectives are provided for the same issue. According to this, some follow-

up questions are provided when necessary. For these reasons, the Semi-structured interview is 

selected. 
 

9.2.2 Data Collection Procedure 
As explained above, the data is collected by interviewing. The interviewer, who is also the 

researcher, starts each interview with a short self-introduction which provides a general 

concept of the research and background knowledge. Afterwards, all the outcomes described in 

table 9.1 are presented one by one. A short demo is conducted following the presentation for 

each artifact. In order to get both specific and general feedback, a set of specific questions are 

revealed in the end of each feature and the general questions are performed in the end of the 

presentation. The whole procedure could also be seen in Fig 9.2 and all the questions are 

depicted in section 9.2.4. 

 

 

 
Fig 9.2 Interview Procedure 

 

As shown above, the whole interview takes approximately one hour, among them, the 

question process takes totally 25 minutes and the other half an hour for presentation and 

demonstration. All the data from interviews are recorded and summarized.   

 

9.2.3 Participants 
All the participants are recruited by a gatekeeper in Volvo. The participants in the first stage 

are from the same team where the researcher works in, they are aware of the research work 

and are able to provide suggestions for later work.  The second stage experts are all safety 

engineers, the selected participants are either have interests in or work closely to this thesis 

work. 

 

 Interviewer: Researcher 

 Background: Master program in Software Engineering in CHALMERS. Master thesis 

in Volvo GTT. Research work is about model transformation and safety analysis in 

EAST-ADL. 

5 min

• Introduction

• Back-Ground

30 min

• Presentation

• Demo

25 min

• Specific Questions

• General Questions
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Stage 1: 

 Interviewee A:  

 Background: Systems Engineer, Methods Expert 

 
 Interviewee B:  

 Background: Systems Engineer, Tools Expert 

 
 Interviewee C: 

 Background: Systems Engineer, Safety Expert 

 
 Interviewee D:  

 Background: Systems Engineer, Methods Expert 

 

Stage 2: 

 Interviewee E:  

 Background: Interviewee E is a Product Quality Assurer. He is working with assessing 

safety and quality of electrical and electronic functions by means of fault tree analysis, 

failure modes and effects analysis, etc. 

 
 Interviewee F:  

 Background: Interviewee F is a Diagnostic Engineer. He is working on a daily basis 

with modeling components and their error behavior, with the purpose of configuring 

error detection systems for use in workshops and during operation. 

 

 Interviewee G:  

 Background: Interviewee G is Diagnostics and Logging Technology Strategy 

responsible.  He identifies and plans technology for detecting and recording errors as a 

basis for error correction in the field and in workshops. 

 

9.2.4 Questions 
Question, as an approach to get interviewee feedback, plays an important role in this data 

collection. The predefined questions are listed as follow. The questions revealed during 

interviews are recorded and depicted in data analysis section. In order to get a more 

measureable data from the interviewees, several features are graded corresponds to the 

evaluation criteria explained in section 9.1. 

 

There are two kinds of questions among all outcomes corresponds to whether the presented 

outcome is a completed feature or a concept. For each outcome, the artifact success is 

measured by interviewees’ grading. In addition, the graded feature needs to be compared with 

existing tools to get the benefits and drawbacks. What we care most is whether a feature or a 

product is applicable for the current working process, and if not, why it doesn’t fit. Besides, 

general questions in the end are more open, they are used to get the interviewees’ general 

feeling about this thesis work and their opinions of any improvements are applicable for this 

thesis or future work. The answers from interviewees are all valuable information to improve 

the current research and inspire the future work.  
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Since the presented outcomes of the thesis work vary for different evaluation stages. Besides, 

the focuses and interviewees’ background of the two evaluation stages are different. Not all 

the questions are applicable for both stages. Some questions for the first evaluation stage are 

modified, added or deleted in the second one. The numbers “① ②” in front of each question 

indicate the evaluation stage the question is used for.  In the second evaluation stage, no 

questions are performed for the features Generating Nominal Model from Simulink and 

Graphical Representation during the interview. The reason is that the participants in the 

second evaluation are safety engineers, they have more knowledge on Error Propagation and 

Fault Tree Analysis and also be able to provide more inputs in those two parts. Besides, some 

questions about the implementation and later expectation are not applicable anymore since the 

concept in the first stage evaluation are developed as artifacts in the second stage evaluation. 

 

Question topic 1 : Generating Nominal Model from Simulink 

• ① In your opinion, will this concept help the safety work?  

• ① In order to get similar result, how the current working procedures look like for 

you?  

• ① Is it necessary to bring this concept into reality? If not, why?  

Question topic 2: Error Model Auto Generation 

• ①② On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are 

you with this product in terms of the following? And please specify the reason.  

– Ease of Use 

– Ease of Understanding(description) 

– How well the product achieves its goal 

• ①② Is there any other product you know has a similar feature?  

– If yes, how does it work in this category? And compare with the presented 

artifact, what are the advantages and disadvantages? 

– If no, how satisfied are you with this product? Any improvements or 

suggestions? 

• ①② Is this applicable for the current development process in your opinion? If not, 

what are the missing parts?  

Question topic 3: Re-organize Error Model 

• ①② On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are 

you with this product in terms of the following? And please specify the reason. 

– Ease of Use 

– Ease of Understanding(description) 

– How well the product achieves its goal 

• ①② Is this applicable for the current development process in your opinion? In not, 

what are the missing parts? 

• ①② Any other manually done modifications you think is necessary to be automated? 

Question topic 4: HiP-HOPS Fault Tree Analysis 

• ①② In your opinion, will this concept help the safety work? How? 

• ①② Is there anything you think is missing in the design or need to improve? 

• ② On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are 

you with this product in terms of the following? And please specify the reason. 

– Ease of Use 

– Ease of Understanding(description) 
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– How well the product achieves its goal 

Question topic 5: Graphical Representation 

• ① In your opinion, does anything missing in the design? 

• ① Is a graphical editor needed in order to understand the previous result and 

relations? 

Question topic 6: Consistency Checking 

• ①② On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are 

you with this product in terms of the following? And please specify the reason. 

– Ease of Use 

– Ease of Understanding(description) 

– How well the product achieves its goal 

• ① What do you think by using the user attribute to record the version? For feature 

“Increase Version” 

• ①② Is there any other product you know has a similar feature?  

– If yes, how does it work in this category? And compare with the presented 

artifact, what are the advantages and disadvantages? 

– If no, how satisfied are you with this product? Any improvements or 

suggestions? 

• ①② Is this applicable for the current development process in your opinion? In not, 

what are the missing parts? 

• ② What do you think about this way of handling version control? 

 

Question topic 1 is used to provide a background knowledge to bridge the gap between the 

current working knowledge and the technology developed in this research. Except topic 1, 

each question topic aims to solve one or several research questions. Question topic 2 aims to 

solve RQ1 which is How to efficiently define an error propagation model from architecture 

model? And RQ2 How to reduce the manual work in refactoring the model? is addressed in 

question topic 3. Hip-HOPS Fault Tree Analysis in question topic 4 aims to solve RQ3, which 

is How to apply Fault Tree Analysis on EAST-ADL error model and relate the generated 

Fault Tree result with the model? And RQ4 How to visualize the error propagation model 

together with architecture model? is covered in Question topic 5. Consistency Checking 

stated in Question topic 6 allows to collect feedbacks to answer RQ 5 How to ensure 

consistency between nominal architecture models and error models? 

 

After all the RQs are addressed and features are presented, several general questions are 

performed in the end of each interview. The purpose of the general questions is getting a 

whole picture of the thesis work from the interviewees’ point of view. Besides, this is also a 

step for the interviewee to order and prioritize the later work and provide any additional ideas 

they think are related and effect future work.    

Question topic 7: General 

• ① Pritorize the concept to be implementated(Importance) 

– Concistency Checking 

• Increase Version 

– HiP-HOPS FTA 

• Generating .hipxml in EATOP by clicking generating button 

• Showing the Fault Tree and Cut sets result in eclipse instead of a web 

browser 
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• Marking the cut sets on the model tree 

• Save the generated files in a path decided by user 

– Graphical Representation 

• Showing a view of the error modeling and function modeling element 

• Showing the target relation between error and function model 

• ① Improvements for short/long term 

• ② General feeling of this thesis work 

• ② Future expectation 

 

9.3 Data Analysis 
As a way of deriving conclusion from the collected data, data analysis is carried out in parallel 

with data collection in order to adjust and improve later design and implementation process 

(Runeson, Höst 2009). Commonly used qualitative data analysis methods are generation of 

theory and confirmation of theory (Seaman 1999). Generation of theory is intend to find 

theory or hypotheses from the collected data while confirmation of theory is applied to 

confirm a predefined hypothesis is true or not. Since several experts opinions are reflected in 

the design and implementation, some hypothesis are highly predictable. In this case, 

confirmation of theory is selected as the data analysis method in this evaluation. 

 

9.3.1 Hypotheses 
The hypotheses are mostly generated according to the research questions. The purpose of 

these hypotheses is to predict the feedbacks of the interviews and narrow them to a more 

structured conclusion. Each of the hypothesis corresponds to one or several research questions 

and one general hypothesis in the end indicating the acceptableness of the thesis work. 

Hypothesis 2 refers to RQ 1 and hypothesis 3 relate with RQ1 and RQ2. Hypothesis 4 

corresponds to RQ3 while hypothesis 5 states the importance of RQ5. RQ4 is related with 

hypothesis 6. There is no question about the last hypothesis, but it will be validated by 

checking the confirmed rate of all hypotheses and the average score in evaluation criteria. 

Since confirmation of the theory is selected as the analysis method, after all feedbacks are 

collected, there will be a section in the end drawing the conclusion and confirm the 

hypotheses. 

 

1. The transformation between Simulink and EATOP is a must in future work 

2. Error model generation feature is easy to use and understand. There is no existing tool 

which has a similar function. 

3. Error model generation and reorganization will be useful for future work 

4. Integrating HiP-HOPS to EATOP will enhance the usability of EATOP when applying 

Fault Tree Analysis 

5. The consistency checking is quite necessary for both architecture design and safety 

analysis. 

6. Graphical Representation is the most important feature to be implemented and it makes 

the modeling in EATOP much easier to work with. 

7. The whole thesis research is acceptable in general. (On a scale of 1 to 5, with 1 being 

poor and 5 being excellent, if the overall average scale is more than 3, it is regarded as 

acceptable.) 
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9.3.2 Data analysis framework 
As a research study, the outcomes will not directly affect the current work. So the goal of this 

evaluation is to know whether this study provides a better understanding and improvements 

for later work. Besides, the feedbacks we are collecting are mostly about whether the outcome 

is acceptable and improvements for this study, the terms are mentioned by the interviewee are 

limited and mostly predictable. A summary for each topic is concluded and compared. As 

illustrated in Fig 9.3, the whole evaluation is a bottom-up procedure. The acceptableness is 

measured through summaries and conclusions. The summary is derived from the feedback for 

each question and the hypothesis is concluded from all summaries. The acceptableness also 

reflects whether the hypotheses are confirmed or not.  

 

 
Fig 9.3 Data Analysis Framework 

 

9.3.3 Summary of interview findings 
For each topic, a list of transcripts from each interviewee is presented. Those transcripts have 

been rephrased by the interviewer without changing the meaning of interviewees’ statements. 

All the questions for both evaluation stages are listed at the beginning of each feature with the 

applicable stage numbers and the transcripts are divided into each interviewee, the number of 

answered question are listed at the beginning of each answer. A summary is summarized from 
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those transcripts in the end of each topic and these summaries are the basis of later hypothesis 

confirmation.    

Question topic 1: Generating Nominal Model from Simulink 

1. ① In your opinion, will this concept help the safety work? 

2. ① In order to get similar result, how the current working procedures look like for 

you? 

3. ① Is it necessary to bring this concept into reality? If not, why? 

 

Interviewee A: 

1. This concept will enhance the model traceability in general. There should be some standard 

to support this transformation.  

2 & 3. As far as I know, there is no similar features like that, but we do have some tools could 

work for the other way around, from EAST-ADL model to Simulink. But I guess, this is quite 

hard to do, especially difficult to integrate for the whole truck. So it’s not so necessary. 

 

 

Interviewee B: 

1. This concept could help the safety work, but there are still several steps to take.  

2. There is no existing EATOP plugin does this function. As I remember, Meta Edit may have 

something similar.  

3. It’s hard to say whether it’s necessary or not, since it will change the way we work. 

 

Interviewee C: 

1. It makes EAST-ADL easier to work with, but the question is how? How to relate those two 

models.  

2. As far as I know, there is no such tool doing this work.  

3. Isn’t the final goal of the safety work is to generate Fault Tree. HiP-HOPs already supports 

the Simulink model, so why we would take more effort to get the same result. While, anyway, 

I think this is a good idea in general. 

 

Interviewee D: 

1. It’s hard to say whether it would help or not, but I would guess it would influence the future 

work. And it depends on how it would be implemented.  

2. I’m not so familiar with this area actually, there is no such tool from my experience 

3. I couldn’t tell whether it’s necessary or not to bring this concept into reality. 

 

Summary: 

The generating nominal model from Simulink would make EAST-ADL easier to understand 

and work with. But it may not be necessary to be implemented since how much it would 

affect the later work is still unknown and how to relate those two models would be a big 

challenge. 

 

Question topic 2: Error Model Auto-generation 

1. ①② On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are 

you with this product in terms of the following? And please specify the reason. 

a. Ease of Use 

b. Ease of Understanding(description) 

c. How well the product achieves its goal 
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2. ①② Is there any other product you know has a similar feature? 

a. If yes, how does it work in this category? And compare with the presented 

artifact, what are the advantages and disadvantages? 

b. If no, how satisfied are you with this product? Any improvements or 

suggestions? 

3. ①② Is this applicable for the current development process in your opinion? If not, 

what are the missing parts? 

 

 
Table 9.2 List of results for Error Model AutoGeneration Question 1(Itve. Short for Interviewee) 

 Itve. A Itve. B Itve. C Itve. D Itve. E Itve. F Itve. G 

Ease of Use 5 4 4 4 4 4 3 

Ease of Understanding 5 5 4 4 4 4 3 

Achieving its Goal 4 4 4 5 4 4 3 

 

 

Interviewee A: 

2. No, there is no such tool does the error model generation. If what I understand correctly, 

this nominal model and error model do not handle the model behavior, so it would be good to 

have some kind of skeleton to contain the model behavior.  

3. It should be a part of development process in the future. 

 

Interviewee B: 

2. Yes, there are error model tools existing, but I’m not sure whether it has this feature. For 

this case which you have been implemented, I think it would be good to have a progress bar 

when generating, this may not be necessary for a small model, but when it comes to the whole 

truck, the user need something to indicate this is working and how much left. Besides, it 

would be good to contain the model behavior which is similar as the ones in Simulink. But of 

course, this would be a big project to do, I just provide some ideas for future work.  

3. It would be quite useful if also takes the memory consumption and big models into 

consideration. 

 

Interviewee C: 

1. I’m not so familiar with this tool, so I could only measure it and give suggestions depends 

on the first impression.  

2. I don’t know if there is any other product has a similar feature. One thing I think would 

make it more understandable for me is adding Internal Fault for each Error Model Type. 

 

Interviewee D: 

1. Everything looks fine for me. It’s easy to use by clicking one button and easy to understand 

from your explanation. And it does what the requirement says.  

2. But it would be better to have a graphical view showing the different models. Besides, I 

have no other comments. 

 

Interviewee E: 

1. It’s not too difficult to use and learn. The description is understandable and yes, achieve its 

goal, so give it a 4 for each of them 
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2. Yes, absolutely. If there is a view of showing overview and layout would be nice. For the 

missing parts, I don’t know and hard to think any for now.  

3. Generating error modeling elements could also be done in SE tool, SystemWeaver and 

Simulink, but of course, those have to be done manually. So we can manually create error 

model and add fault probability for any of them if needed. But it would be good if we can also 

set the probability in this tool.  

 

Interviewee F: 

1. It seems easy to use and I understand what it does. But it’s quite hard to say or give it a 

number for how well achieves its goal, but if the goal is auto generating the error model, yes it 

does. 

2. Since there are many people working with this concept in another way, it would be hard to 

create or change the process. But it’s possible to apply. I would like to see how the Fault Tree 

Analysis works before I find out the missing parts. But hardware is missing and I guess 

whenever an error model has been changed, and I use the automatic feature to regenerate a 

new version of error model, the previous change would not be able to reuse, this is not that 

convenient. 

3. While, SE tool does not support this. But Rodon is able to handle that, manually. This kind 

of generation can be very complex for a big project. 

 

Interviewee G: 

1. I’m not so familiar with this area or concept. So it’s not that easy for me to use, at least I 

need to learn the knowledge first. But it’s also not that hard, so I would say it’s at an average 

level. For achieving its goal, the auto-generation is one thing(goal), but whether it fits the 

current process is another thing(goal). 

2. It’s not possible to report DTCs(Diagnostic Trouble Code) from the error event and neither 

to generate the variant information. 

3. I don’t think there is any current tool has this feature, as far as I know. 

 

Summary: 

• Ease of Use: 4 in Average 

• Ease of Understanding: 4.1 in Average 

• Achieving its goal: 4 in Average 

The feature Error Model Auto-generation is easy to understand and use and it achieves its 

goal from automate the error model generation perspective. The current tool has limited 

functions in this feature and it would help the current process by applying this feature. It 

would be better to take the model behavior into account in the future. 

 

Question topic 3 : Re-organize Error Model 
1. ①② On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are 

you with this product in terms of the following? And please specify the reason. 

a. Ease of Use 

b. Ease of Understanding(description) 

c. How well the product achieves its goal 

2. ①② Is this applicable for the current development process in your opinion? In not, 

what are the missing parts? 

3. ①② Any other manually done modifications you think is necessary to be automated? 

 
Table 9.3 List of results for Re-organize Error Model Question 1(Itve. Short for Interviewee) 
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 Itve. A Itve. B Itve. C Itve. D Itve. E Itve. F Itve. G 

Ease of Use 5 3 4 4 4 n/a n/a 

Ease of Understanding 1&4 2 2 4 3 n/a n/a 

Achieving its Goal 4&5 4 4 4 4 n/a n/a 

 

Interviewee A: 

1. It’s quite easy to use in general and both features achieve their goals. But I don’t get where 

the collapsing ports would be used for, so I give it “1”, while collapsing prototypes is easy to 

understand.  

2 & 3. I’m not involved in this part of work, so I don’t know whether this feature is applicable 

for the current development process and no other manual modifications I could think about.  

 

Interviewee B: 

1. This feature is hard to understand, but it achieves its goal in general.  

2. We don’t use EAST-ADL in practice, so it’s hard to measure the applicability. But 

graphical view would make it easier to understand the concept.  

3. I’m relating this to Eclipse, there is a function called “Refactor” in eclipse, which would 

change all the related functions and so on. So I think it would be nice to have something 

similar in this model modification. 

 

Interviewee C:  

1. The “collapsing ports” is hard to understand.  

2. I have no idea of whether this would be applicable for the safety work. But it would be 

better to show not only what, but how the error propagates. 

 

Interviewee D: 

1. It’s clear in general.  

2. I think it would be applicable for the later development.  

3. I couldn’t name any of the manual modifications to be automated.  

 

Interviewee E: 

1. I don’t really get the collapsing ports, but it seems work as it suppose to 

2. Yes, it is. 

3. Yeah, there are a lot modifications needed to be done manually. When need to update the 

model, add or move hardware or functions, those changes are quite common. But it may not 

be able to automate since the machine cannot make decision for that. But it would be good to 

have something automatic for a complex project. 

 

Interviwee F: 

This feature is not shown during the interview. We skipped this feature according to the 

reasons below: 

1. Time Limitation 

2. The interviewee requested  to focus more on fault tree analysis 

 

Interviwee G: 

This feature is not shown during the interview. We skipped this feature according to the 

reasons below: 
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1. Time Limitation 

2. The interviewee’s background knowledge does not support this feature 

 

Summary: 

• Ease of Use: 4 in Average 

• Ease of Understanding: 2.7 in Average 

• Achieving its goal: 4.2 in Average 

The feature Re-organize Error Model is easy to use and it achieves its goal in general. But 

“Collapsing Ports” function is hard to understand. Since this tool is not widely used yet, it’s 

hard to measure the applicability and name any improvements.  

 

Question topic 4: HiP-HOPS Fault Tree Analysis 

1. ①② In your opinion, will this concept help the safety work? How? 

2. ①② Is there anything you think is missing in the design or need to improve? 

3. ② On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are 

you with this product in terms of the following? And please specify the reason. 

a. Ease of Use 

b. Ease of Understanding(description) 

c. How well the product achieves its goal 

 
 Table 9.4 List of results for HiP-HOPS Fault Tree Analysis Question 3(Itve. Short for Interviewee) 

 Itve. A Itve. B Itve. C Itve. D Itve. E Itve. F Itve. G 

Ease of Use n/a n/a n/a n/a 4 3.5 4 

Ease of Understanding n/a n/a n/a n/a 4 3.5 4 

Achieving its Goal n/a n/a n/a n/a 4 4 4 

 

Interviewee A: 

1. Yes, I think it would make the error model easier to work with. I would like this feature to 

be straightforward. The best would be showing the corresponding Fault Tree by clicking 

one button. Besides, how to save the generated file would be a problem.  

2. It would be nice to somehow navigate or relate error model and Fault Tree Analysis. 

 

Interviewee B: 

1. Yes, in my opinion, it’s useful to connect between error model and Fault Tree.  

2. A progress bar would also be an improvement here. In addition, decorating the graphical 

tree and visualize the cut sets would be interesting to see. 

 

Interviewee C: 

1. Yes, if all the elements fit together.  

2. Right now I couldn't think any to improve. 

 

Interviewee D: 

1. Yes, it saves time in general.  

2. I’m not sure if this is possible, but relating the Fault Tree with nominal model would give 

the user some inspiration. 
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Interviewee E: 

1. Definitely! Showing the minimal cutsets is good and it’s actually better than the tool we use 

today since it brings the fault tree analysis and the model designing and modification to the 

same tool. 

2. I don’t know if anything is needed to improve. But it’s really good to have this picture and 

it helps to understand the error propagation and improve the current working process. 

 

Interviewee F: 

1. This concept will help for sure. We have problems in current working, for example, timing 

issue is hard to catch from FTA, so it would be great help if it does help to find those kind of 

problems. 

2. Still the probability issue, the error logic for severability of each error. 

3. This feature is easy to use, but setting the logic probability is hard to achieve. But it 

achieves its goal quite well. 

 

Interviewee G: 

1. There are two perspectives I consider in safety work, one is hardware and one is logic. So it 

helps the safety work from the logic way. It’s always hard to get everything in one tool, this 

tool makes it better at this point. 

2. It would be good to provide suggestions and improvements to the system. Something like 

optimizer provides the optimization solution for the system. 

 

Summary: 

• Ease of Use: 3.8 in Average 

• Ease of Understanding: 3.8 in Average 

• Achieving its goal: 4 in Average 

The HiP-HOPS Fault Tree Analysis is a useful feature to be integrated into EATOP. It’s an 

improvement to bring the fault tree analysis and the model designing and modification to the 

same tool. 

 

Question topic 5: Graphical Representation 

1. ① In your opinion, does anything missing in the design? 

2. ① Is a graphical editor needed in order to understand the previous result and 

relations? 

 

Interviewee A: 

1. In my opinion, it would be better to highlight the corresponding element in the tree view 

when clicking its graphical representation. Otherwise, it seems good enough.  

2. Well, this graphical editor may not help too much for understanding since it is clear enough 

from the tree view and it requires quite a lot work, but it would make the modeling better to 

work with. 

 

Interviewee B: 

1. The connection between the graphical view and the tree view is a weak part here.  

2. Yes, it’s necessary to have this graphical view to support the manual work. But consider the 

working effort needed in this, bring a better design is more important for a thesis work. 

 

Interviewee C: 

1. Nothing missing as what I can think about.  
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2. It is quite important, at least for me, to understand the models and relations. 

 

Interviewee D: 

1. Showing the failures would be good to relate this with the previous Fault Tree Analysis. 

Besides, provide different colours for different elements or properties would be a plus for user 

to understand.  

2. This graphical view is pretty much needed from my point of view. 

 

 

Summary: 

Graphical Representation is highly needed for easy understanding. But considering the work 

requires for graphical editor, it would be good to bring a concept for future work. 

 

Question topic 6 : Consistency Checking 

1. ①② On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are 

you with this product in terms of the following? And please specify the reason. 

a. Ease of Use 

b. Ease of Understanding(description) 

c. How well the product achieves its goal 

2. ① What do you think by using the user attribute to record the version? For feature 

“Increase Version” 

3. ①② Is there any other product you know has a similar feature? 

a. If yes, how does it work in this category? And compare with the presented 

artifact, what are the advantages and disadvantages? 

b. If no, how satisfied are you with this product? Any improvements or 

suggestions? 

4. ①② Is this applicable for the current development process in your opinion? If not, 

what are the missing parts? 

5. ② What do you think about this way of handling version control? 

 
Table 9.5 List of results for Consistency Checking Question 1 (Itve. Short for Interviewee) 

 Itve. A Itve. B Itve. C Itve. D Itve. E Itve. F Itve. G 

Ease of Use 3 3 5 4 4 4 4 

Ease of Understanding 4 4 4 4 4 4 4 

Achieving its Goal 4 3 4 4 4 4 4 

 

Interviewee A: 

1. There are several procedures needed in order to check the consistency, so not so easy to use 

for me at least. But easy to understand and do achieve its goal.  

2. By using user attribute to set the version is quite clear.  

3. “SE tool” which is a customized version of SystemWeaver has something to check the 

version. So inspired from this, it would be good to be able to check the history of versions.  

4. The version control is definitely applicable for the current work and it is always a big issue 

to handle. 

 

Interviewee B: 
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2. From what I understand, it may have time consuming issue when comes to a big model and 

the set version procedure is a little bit too manual.  

3. There are lots of tools are doing the version control. I would like to get a warning message 

says “Changes happen in element X”, for example, when X has been changed, and ask the 

user whether you would like to increase the version or not. So it’s like auto-updating version. 

 

Interviewee C: 

1. It seems easy to use and easy to understand.  

2. I have no opinion about using this user attribute element to record the version.  

3. “SE tool”, as I know, has the version control function.  

4. Yes, this feature is useful everywhere and highly needed. 

 

Interviewee D: 

1. Works well for me in general.  

2. Using this way to set version is easy to understand and seems easy to control.  

3. In SE tools, there are several working stages which control the version, there are working 

stages, frozen stage and release stage. In working stage, the version could be modified, but 

when it comes to the frozen stage, everything should be freezed, but it’s possible to unfreeze 

it to working stage. The last stage is release, at this level, everything should be settled and no 

more changes are needed.  

4. I’m sure the version control feature would be quite useful for later work, but this is a big 

issue to manage.  

 

Interviewee E: 

3. SE tool can do the version control, but not in this way. The part is different or I would say 

which is missing here is checking more detailed information in the version control, for 

example, check if the calibration, connections have been changed. 

4. Yes, this way is good and applicable. 

 

Interviewee F: 

3. Other tools have similar features, but not for this propose. For example, Rodon also does 

version control. 

4. Very applicable 

 

Interviewee G: 

3. I’m not involved in this area, so I’m not aware of any tools with this feature 

4. Yes, I would say it is applicable in many areas 

4. It’s a good way of doing it for me, easy to understand. 

 

Summary: 

• Ease of Use: 3.9  in Average 

• Ease of Understanding: 4  in Average 

• Achieving its goal: 3.9  in Average 

Checking the consistency is a common feature for most of the work and it is highly needed. 

The way of checking the consistency between nominal model and error model is easy to 

understand and well achieve its goal. But it requires a little bit more procedures to do.  Among 

all the current tools, SE tool has been mentioned as a good example of handling consistency 

by version control.  
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Question topic 7: General 

1. ① Prioritize the concept to be implemented(Importance/ Step to do) 

a. Consistency Checking 

i. Increase Version 

b. HiP-HOPS FTA 

i. Generating .hipxml in EATOP by clicking generating button 

ii. Showing the Fault Tree and Cut sets result in eclipse instead of a web 

browser 

iii. Marking the cut sets on the model tree 

iv. Save the generated files in a path decided by user 

c. Graphical Representation 

i. Showing a view of the error modeling and function modeling element 

ii. Showing the target relation between error and function model 

2. ① Improvements for 

a. Short term 

b. Long term 

3. ② General feeling of this thesis work 

4. ② Future expectation 

 

The two tables below list the feedback for the first question. The numbers in the first table 

indicates the importance of each feature for the current process according to the interviewees’ 

opinions. “1” means most important while “3” means least important. The numbers in the 

second table indicates the feature to do for later work by interviewees’ suggestion. “1” here 

means first to do and “3” means last to do. 

 
Table 9.6(a) Order of Feature importance 

Importance Interviewee A Interviewee B Interviewee C Interviewee D 

Consistency Checking 3 3 3 3 

HiP-HOPS FTA 1 2 2 2 

Graphical Representation 2 1 1 1 

 

Table 9.6(b) Order of feature implementation 

Step To Do Interviewee A Interviewee B Interviewee C Interviewee D 

Consistency Checking 2 1 x 2 

HiP-HOPS FTA 1 2 x 1 

Graphical Representation 3 3 x 3 

 

Interviewee A: 

1. The most important I would say is HiP-HOPS Fault Tree Analysis, since this is the last step 

to finish the whole safety analysis procedure. And then it’s graphical view to help user to 

understand. The last is consistency checking. But for what to do next, I would say HiP-HOPS 

is still the first one, but since not so much left in consistency checking at this stage, so this 

should be the second. Consider the amount of effort to put in a graphical editor, this could be 

in the end or even for later work. 
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Interviewee B: 

1. As importance, I would give it bottom-up, so the most important is graphical editor, follow 

with Fault Tree Analysis and Consistency Checking. But if I’m the one doing it, I would do 

the other way around, finish Consistency Checking first, and then is Fault Tree Analysis and 

last if possible is Graphical Editor, considering the time I have the effort each feature is 

needed.  

2. For later, it would be good to provide a manual or documentation for the user. 

 

Interviewee C: 

2. For the short term, I would like to have an Internal Fault for each Error Model Type as I 

said before. For long term, it would be nice to have some logical analysis which takes the 

actual functions to fault tree analysis with, for example, strong/weak relation and so on. 

 

Interviewee D: 

1. I would give graphical representation as most important, since the understanding is an issue 

here for beginners.  

2. As a thesis work, the more important is to reveal concept and design than developing a fine 

product, so a good design is better than partly done for this graphical editor. 

 

Interviewee E: 

3. Yes, it’s good and quite advanced and completed. Compare to the manual way, it’s 

definitely an improvement and especially when model is needed to be updated. It requires a 

lot manual work when updating a model, so this is really helpful at least for my work. 

4. Maybe should talk to the function developer to get more ideas and inputs. For the future, it 

would be good to have some features handles eliminating the possibility or causes to the 

failure.  

 

Interviewee F: 

3. It’s good and useful in general. Easy to perform and seems matching the current work. And 

I’m looking forward to see the final result. 

4. First is setting probability and severability in Fault Tree Analysis, which means a complete 

logic can be contained in the tool. 

 

Interviewee G: 

4. The work is good in general. It would be nice if you can make a demo showing the steps 

you’ve done today and we would like to have a group meeting with you which involve more 

related persons or if you would like to perform a presentation for us. It would be interesting to 

see for us all. 

 

Summary: 

Order of Feature Importance: 

1. Graphical Representation  75% (3/4) 

2. HiP-HOPS FTA                75% (3/4) 

3. Consistency Checking      100%(4/4) 

 

Order of Feature Implementation: 

1. HiP-HOPS FTA               66.7% (2/3) 

2. Consistency Checking       66.7% (2/3) 

3. Graphical Representation  100% (3/3) 
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From the above statistic we can see even Graphical Representation is rated as the most 

important feature, it is listed by 3 out of 4 interviewees to be the last to be implemented 

consider the workload it requires. And HiP-HOPS Fault Tree Analysis is the first feature for 

later implementation. Besides, documentation and several modifications in auto-generating 

Error Model are the future improvements mentioned by the participants. 

 

All participants in the second stage evaluation show their interests in this thesis work and 

accept this research and development as useful and helpful in general for safety work. Further 

expectations are related to the current working problems and it’s highly expected to be solved 

in future work. 

 

9.3.4 Hypotheses Confirmation and Reflection  
The previous hypotheses are confirmed or modified in this section according to the feedback 

and summaries. Since several problems are revealed from the interviewees’ comments, there 

will be a researcher’s reflection section in the end to address the solutions to corresponding 

problems. 

 

Confirmed Hypotheses 

2. Error model generation feature is easy to use and understand. There is no existing tool 

which has a similar function 

From the score all the interviewees provided, the Error Model Generation is easy to use and 

understand. Except interviewee B said there are error model tools existing, which does not 

mean those tools have auto-generating function, the other interviewees all agreed with no 

current tool has a similar function. 

 

4. Integrating HiP-HOPS to EATOP will enhance the usability of EATOP when applying 

Fault Tree Analysis 

Seven out of seven interviewees agreed the HiP-HOPS Fault Tree Analysis feature will help 

the safety work and enhancing the usability of EATOP. 

 

5. The consistency checking is quite necessary for both architecture design and safety 

analysis. 

Consistency Checking is mentioned by interviewee A, C, D and F as a highly useful feature in 

most of the current tools. Besides, interviewee A and D bring one example which handles 

consistency checking by version control to address the relation with the thesis work and they 

point out consistency checking is and will be a big issue to work with in the future. 

 

7. The whole thesis research is acceptable in general. (On a scale of 1 to 5, with 1 being poor 

and 5 being excellent, if the overall average scale is more than 3, it is regarded as acceptable.) 

As a general hypothesis, this item will be confirmed using the evaluation criteria explained 

in section 9.1. 

 Artifact success 

For all tree artifacts presented in the interview, they get an average 4 out of 5 as the ease of 

use. So in general, the outcome artifacts are easy to use. 

𝐸𝑎𝑠𝑒 𝑂𝑓 𝑈𝑠𝑒 𝐴𝑣𝑒𝑟𝑎𝑔𝑒
= (𝑓𝑒𝑎𝑡𝑢𝑟𝑒1)𝐴𝑣𝑔 +  (𝑓𝑒𝑎𝑡𝑢𝑟𝑒2)𝐴𝑣𝑔 +  (𝑓𝑒𝑎𝑡𝑢𝑟𝑒3)𝐴𝑣𝑔 +  (𝑓𝑒𝑎𝑡𝑢𝑟𝑒4)𝐴𝑣𝑔

= (4 + 4 + 3.8 + 4.9)/4 = 3.925 
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Since the efficacy is defined as the degree to which the artifacts achieve the expected results, 

the answer of question “how well the feature achieves its goal” answers this question. The 

general efficacy got 4.07 out of 5 in general, so we could say it is success in efficacy. 

𝐴𝑐ℎ𝑖𝑒𝑣𝑒𝑔𝑜𝑎𝑙 𝐴𝑣𝑒𝑟𝑎𝑔𝑒
= (𝑓𝑒𝑎𝑡𝑢𝑟𝑒1)𝐴𝑣𝑔 +  (𝑓𝑒𝑎𝑡𝑢𝑟𝑒2)𝐴𝑣𝑔 +  (𝑓𝑒𝑎𝑡𝑢𝑟𝑒3)𝐴𝑣𝑔  +  (𝑓𝑒𝑎𝑡𝑢𝑟𝑒4)𝐴𝑣𝑔

= (4 + 4.2 + 4 +  3.9)/4 = 4.025 
 

 Efficiency 

Efficiency in this evaluation is measured according to the metrics in ISO-9126(Software 

Product Quality-Part2), an international standard for the evaluation of software quality. In this 

standard, efficiency is divided into three parts, which are time behavior, resource usage and 

efficiency compliance. In this study, we measure the response time in time behavior for each 

feature. The response time is defined as the wait time the user experiences when issuing a 

request till the application finishing the process. Since the response time is applicable for 

many functions in one feature, we randomly sample one function in each feature for this 

efficiency measurement. The selected samples are “Create Error Model” in error model 

generation, the “Collapsing the selected prototypes” in re-organize error model, “HiP-HOPS 

Fault Tree Analysis” in HiP-HOPS integration and “Check Consistency” in consistency 

checking. Since the size of the model is a factor which affects the response time. We perform 

the evaluation shots under each feature’s example model. They can be traced and found from 

Chapter 5 to Chapter 8 and this is also for easy understanding. 

 

Response time(T):   

T(second) = (time of gaining the result) - (time of command entry finished)  

 
Table 9.7 Response Time(time unit: second) 

 T(shot 1) T(shot 2) T(shot 3) 

Create Error Model 4:21 4:09 3:78 

Collapsing Prototypes 2:56 2:54 2:67 

HiP-HOPS FTA 3:05 3:12 2:42 

Check Consistency 0:90 0:76 0:72 
 

Mean response fulfillment ratio(X): 

Ti = response time for i-th evaluation(shot)  

N = number of evaluations(sampled shots) = 3 

Tmean = (Ti)/N, (for i=1 to N) 

TXmean = required mean response time 

X = Tmean / TXmean 

 
Table 9.8 Mean response fulfillment ratio(time unit: second) 

 Ti Tmean TXmean X 

Create Error Model 12:08 4:02 5 0.804 

Collapsing Prototypes 7:77 2:59 2 1.295 

HiP-HOPS FTA 8:59 2:86 2 1.43 

Check Consistency 2.38 0:79 1 0.79 

 

The TXmean value in Table 9.8 is provided by researcher according to the general feedback 

from participants. For interpretation of measured value, the response time is explained as 0<T, 

the sooner is the better. And the mean response fulfillment ratio is explained as 0<X, The 

nearer to 1 and less than 1 is the better. So as we can see all response times are less than 4 
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seconds, among them, the check consistency is even under 1 second. For the ratio X, two of 

them are less than 1 while the other two are over. But all of them are close to 1 and under 0.45 

difference. It is unavoidable that it takes longer time for a bigger size model and this is 

common for all current tools. But according to the data above and participants’ feedback, the 

response time of each feature is under a tolerance time. 

 

 Novelty 

 “Novelty” indicates the improvements of the measured outcome comparing with existing 

knowledge. In this research, totally five concepts are provided in the interviews. Among all, 

except “consistency checking” and “graphical representation” has been handled in other 

existing tools, the rest are new knowledge in this area. While, even those two features have 

similar realization in other tools, but there is no existing knowledge support the same tool. So 

we could draw a conclusion that this research designed and created new knowledge in 

automotive field.  

 

 Explanation capability 

“Explanation capability” considers whether the designed objects are explained well enough in 

the outcome description or not.  

𝐸𝑎𝑠𝑒 𝑂𝑓 𝑈𝑛𝑑𝑒𝑟𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 𝐴𝑣𝑒𝑟𝑎𝑔𝑒
= (𝑓𝑒𝑎𝑡𝑢𝑟𝑒1)𝐴𝑣𝑔 +  (𝑓𝑒𝑎𝑡𝑢𝑟𝑒2)𝐴𝑣𝑔 +  (𝑓𝑒𝑎𝑡𝑢𝑟𝑒3)𝐴𝑣𝑔  +  (𝑓𝑒𝑎𝑡𝑢𝑟𝑒4)𝐴𝑣𝑔

= (4.1 + 2.7 + 3.8 + 4 )/4 = 3.65 
 

Most artifacts and all concepts are reflected as easy to understand according to the feedback. 

But feature “collapsing ports” is pointed out as hard to understand by most interviewees, 

which means the description is not clear enough for the user to understand in general.  

 

Since the ease of use and achieve goal averages are both over 3 and close to 4, the artifact 

success metric is adequately acceptable. Each feature’s response time is under a tolerance 

time and the overall ease of understanding gets 3.64. There are flaws needed to be solved in 

the future design and implementation, but this thesis work is successful and acceptable in 

general. So we can draw the conclusion as “The whole thesis research is acceptable in 

general”. 

 

Rejected Hypotheses 

1. Rejected:  The transformation between Simulink and EATOP is a must in future work 

1. Reformed: The transformation between Simulink and EATOP may not be necessary in a 

short term 

The transformation makes EAST-ADL easier to understand and work with. But it may not be 

necessary to be implemented since how much it will affect the later work is still unknown and 

how to relate those two models is a big challenge. 

 

3. Rejected: Error model generation and reorganization will be useful for their work 

3. Reformed: Error Model generation will be useful for their work 

Indicated by the score, error model auto-generation is quite useful for later work. But none of 

the participant is aware of whether the error model reorganization will be applicable or not in 

the future. 

 

6. Rejected: Graphical Representation is the most important feature to be implemented 

and it makes the modeling in EATOP much easier to work with. 
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6. Reformed: Graphical Representation is the most important feature and it makes the 

modeling in EATOP much easier to work with. But according to the workload, it is not 

needed to be implemented in the thesis work 

All interviewees indicate this fact in the graphical representation section. Besides, interviewee 

D brought this idea in Error Model generating section and emphasis it again in the end of the 

interview. In general question section, 75% of the interviewees prioritize graphical 

representation as the most important feature. While, three out of three interviewees suggest to 

provide a graphical design than implementing it in this thesis work.  

 

Reflection 

 Error Model Generation:  

Interviewee A, B, C and E, F all mentioned to add the model behavior information in the 

nominal model or error model will be a future work. While currently, the failure logic is 

complete, i.e. all inputs affect all outputs, and the user is expected to tidy this manually. A 

refinement to be explained but not implemented is to parse the Simulink model (as this is a 

relevant source) to establish internal connectivity between ports as a basis for the failure logic 

expressions. It will still require manual intervention, as it is not possible to know which faults 

generate which failures, but it is a more precise starting point than now.  

 

 Re-organize Error Model:  

The goal of collapsing ports seems not easy for people to understand. This may due to the 

example demonstrated in the interviewees does not address the real problem this feature 

handles.  

 

 HiP-HOPS Fault Tree Analysis: 

Fault Tree Analysis is the final goal of building the error models. In this work, it gathers the 

architecture design, error model building and fault tree analysis into the same tool, this is 

regarded as a step forward compare with the current tool. More information about the failure 

type and possibility is needed to add in later work. 

 

 Consistency Checking: 

Several participants mentioned SE tool is a good example handling the consistency checking, 

it has three states of versions called work, frozen and release. The work version means this 

element is possible to modify. Frozen stage freezes the possibility of modification but it’s 

possible to change it back to work stage. The release stage is a strict stage which cannot be 

transferred to other version stage nor modify the element. In the thesis work, we have two 

kinds of versions, since all the versions are specified in number, so each increase in integer is 

a release and the increase in decimal part indicates the working stage.  

 

 Later work: 

In short term, we focus on enhance the usability of EATOP and create better connection 

between HiP-HOPS and EATOP. For long term which is also future work, more attention will 

be paid on different aspects including enhancing the graphical representation and adding error 

behavior, possibility, severability for example, to the error logic.  

 

 

9.3.5 Threats to Validity 
Several threats to validity are taken into consideration in this evaluation. Those threats which 

could affect the validity result are categorized into threats to construct validity, to external 
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validity and to reliability. This validity category is provided in a guideline article of 

conducting and reporting case study research in software engineering (Runeson and Höst, 

2009). Since the interview data collection and data analysis processes presented by Runeson 

and Höst are taken as a reference in this evaluation. The threats to validity provided by them 

then is regarded as highly related with this research evaluation and worth to be referred. Since 

the threats to validity are considered at the beginning of the evaluation, several adjustments 

have been applied in order to mitigate or avoid the expectable threats. 

 

Construct validity is defined as how well the operational measures that are studied has 

captured the concepts under study (Bjarnason et al., 2013). One possible threat to construct 

validity is that the design of the interview may mislead the interviewees which affects the 

evaluation result. In order to reduce this risk, the interview is designed based on 5 research 

questions and reviewed for applicableness and consistency by both supervisors. Besides, a test 

interview between the researcher and the industry supervisor is conducted before any official 

evaluation is performed. All the variables in the interview design are kept the same in the test. 

The problems discovered during the test interview are avoided when it comes to later 

evaluation.  

 

External validity refers to how well the findings are able to be generalized and to what extent 

the findings are of interest to other people outside the investigated case (Runeson and Höst, 

2009). It’s obvious that the selection bias is the main threat in this evaluation which prevent 

the findings to be generalized. To mitigate the selection bias, experts with different 

backgrounds from system area and safety area are selected as sampling. Even though, there 

might still be bias since all the interviewees are selected from the same company, but since 

most of the interviewees only hold the background knowledge but not the technology 

presented in this research, it is possible to assert that the analysis result can also be applied to 

other companies within the same area.  

 

Reliability is also stated as one kind of validity which refers to how well the data and the 

analysis are independent from the specific researchers (Runeson and Höst, 2009). The threats 

to reliability are usually due to, for example, unclear questions during the interview or the 

unstructured coding. To increase the reliability in this evaluation, each question presented in 

the interview has been revised several times until get confirmation by both supervisors. 

Besides, to reduce the influence by single researcher, each transcript objectively depends on 

the record taking from each interview. So few researcher’s subjective opinions affected the 

analysis result.  
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Chapter 10   Conclusion 

10.1 Summary 
The gaining complexity of architecture modeling in automotive industry makes the safety 

analysis error prone and hard to applying in an early phase. At the same time, safety analysis 

also faces the time consuming issue when all processes are done manually. The purpose of 

this study is investigating and improving EAST-ADL safety analysis working process. Five 

research questions are raised in four safety analysis working steps and each of them is 

addressed from Chapter 5 to Chapter 8. By performing design research methodology, four 

feature artifacts have been designed, implemented and evaluated. Each artifact is implemented 

as an Eclipse EATOP plugin coping with research questions in each safety analysis process. 

The evaluation of research outputs is performed as one to one interviews with system 

engineers and safety engineers in Volvo Group Trucks Technology. The whole evaluation is 

addressed as a data collection phase and data analysis phase in Chapter 9. 

 

RQ1: How to efficiently define an error propagation model from architecture model 

A one to one mapping is defined in order to match the architecture model element into error 

propagation model element. Besides, an error model auto generation feature is implemented 

based on the one to one mapping. The error model auto generation feature is evaluated as easy 

to understand and use and it achieves its goal to answer RQ1. 

 

RQ2: How to reduce the manual work in refactoring the model? 

This research focuses on reducing the manual work regards to collapsing error model 

prototypes and fault failure ports. A feature is designed and developed to automate the 

collapsing function. During the evaluation session, several interviewees pointed out that it 

will take time till applying this feature into their daily work, but this is useful for their future 

work and it does reduce the manual work while refactoring the model. So we draw the 

conclusion that the manual work is reduced to some extent in this research. 

 

RQ3: How to apply Fault Tree Analysis on EAST-ADL error model and relate the generated 

Fault Tree result with the model? 

By integrating HiP-HOPS into EATOP, it makes Fault Tree Analysis possible to be applied 

on EAST-ADL error model. At the same time, the Fault Tree Analysis result cutsets are 

related from Fault Tree perspective to EAST-ADL modeling perspective. This feature is 

evaluated as highly useful during safety analysis and it improves the current safety analysis 

status from late stage of an architecture design into early stage. RQ3 is well answered in this 

research. 

 

RQ4: How to visualize the error propagation model together with architecture model? 

By providing a graphical representation feature, the structure and relation between error 

propagation model and architecture model are visualized to some extent. The feedback from 
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evaluation proves that visualization is highly needed in order to better understand an 

architecture design and safety analysis.  

 

RQ5: How to ensure consistency between nominal architecture models and error models? 

The Version Control plugin handles the inconsistency problem between nominal models and 

error models by checking the version number. The majority of the interviewees state that 

version inconsistency is one of the biggest problem during system development and this 

research provides one possible solution while coping with model inconsistency. 

 

10.2 Contribution and Limitation 
This research improves safety analysis process in the automotive domain. It automates the 

manual work in different safety analysis processes and bridges the gap between system design 

and safety design in EAST-ADL. It provides a new concept and artifact for handling model 

inconsistency and visualize the model dependency at a certain level. In addition, it brings fault 

tree analysis to an early stage of a system design which reduce the flaws in later work.  

 

At the same time, there are limitations in this research. No other experts than the research 

supervisors and interviewees are involved in providing feedback. EATOP is selected as the 

research platform and only limited attention is given to other tooling. Besides, during the 

given period of time, the design and implementation are not able to cover all possible reality 

situations. The resources that have been collected and analyzed are also in a limited amount. 

 

10.3 Future Work 
The research presented in this thesis has raised some further questions that are needed to be 

answered. From the evaluation feedback, error logic will be taken into consideration in 

addressing the error probability for error model generation and further investigation is needed 

for proving the usability of error model reorganization. Currently, different cutsets by Fault 

Tree Analysis cannot be different from the cutset decoration. So the future work will include 

finding a way to efficiently present different cutsets in EAST-ADL Fault Tree Analysis. As 

Interviewee A mentioned, consistency checking is and will always be a big issue to handle in 

system architecture design area, the artifact developed in this research is needed to be 

improved from both performance and functionality perspectives. And the future work for 

graphical support could be seen in two approaches. The first is applying the generated 

diagram to a generic schema, which can be imported and exported through a third party tool 

for diagram editing. Another approach is integrating the existing graphical editor to be 

compatible with the latest EAST-ADL version.  
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Appendix A – I  

BBW_4Wheel 

ErrorModelGeneration Screenshot 
 

 
Fig A.1 Example Function Model 
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Fig A.2 Example Error Model 
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Appendix A – II  

BBW_4Wheel ErrorModel Re-

organization Screenshot 
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Fig A.3 Collapsed ErrorModelPrototypes 

 
Fig A.4 Collapsed FaultFailurePorts 
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Appendix A – III 

Three Columns Algorithm 
/***  
* Reorganize the ErrorModelPrototype to empLeft,empMid,empRight according to the 
connection       
***/ 
private void ReorganizeEMP(ErrorModelType selectedEMT) { 
 EList<FaultInPort> emtInPorts = selectedEMT.getExternalFault(); 
 EList<FailureOutPort> emtOutPorts = selectedEMT.getFailure(); 

EList<FaultFailurePropagationLink> ffCs = 
selectedEMT.getFaultFailureConnector(); 

 for(FaultFailurePropagationLink ffC: ffCs){ 
FaultFailurePropagationLink_fromPort fromPort =    
ffC.getFromPort(); 
FaultFailurePropagationLink_toPort toPort = 
ffC.getToPort(); 
FaultFailurePort fromffPort = 
fromPort.getFaultFailurePort(); 

  FaultFailurePort toffPort =toPort.getFaultFailurePort(); 
EList<ErrorModelPrototype> fromPortEMPs = 
fromPort.getErrorModelPrototype(); 
EList<ErrorModelPrototype> toPortEMPs = 
toPort.getErrorModelPrototype(); 

  if(emtInPorts.contains(fromffPort)){ 
   empLeft.add(toPortEMPs.get(0)); 
  } 
  if(emtInPorts.contains(toffPort)){ 
   empLeft.add(fromPortEMPs.get(0)); 
  } 
  if(emtOutPorts.contains(fromffPort)){ 
   empRight.add(toPortEMPs.get(0)); 
  } 
  if(emtOutPorts.contains(toffPort)){ 
   empRight.add(fromPortEMPs.get(0)); 
  } 
 }// End of each FaultFailurePropagationLink ffCs 
   
 EList<ErrorModelPrototype> emps = selectedEMT.getPart(); 
 for(ErrorModelPrototype emp:emps){ 
  ErrorModelType empType = emp.getType(); 
  // When one prototype only has outports 

if(empType.getFailure().size()>0 && 
empType.getExternalFault().size()==0){ 

   // Get the elements for empExactLeft 
   empExactLeft.add(emp); 
  } 
  // When one prototype only has inports 

if(empType.getFailure().size()==0 && 
empType.getExternalFault().size()>0){ 

   // Get the elements for empExactLeft 
   empExactRight.add(emp); 
  } 
 } 
 empAll = selectedEMT.getPart(); 
 //intersection of empLeft amd empRight 
 Set interLR = new HashSet(); 
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 interLR.addAll(empLeft); 
 interLR.retainAll(empRight); 
 // Union of empLeft and empRight 
 Set unionLR = new HashSet(); 
 unionLR.addAll(empLeft); 
 unionLR.addAll(empRight); 
 // Remove the intersection from both Left and Rigth and add to Mid 
 empLeft.removeAll(interLR); 
 empRight.removeAll(interLR); 
 empMid.addAll(interLR); 
 // Add the complementary set of union to Mid 
 Set compLR = new HashSet(); 
 compLR.addAll(empAll); 
 compLR.removeAll(unionLR); 
 empMid.addAll(compLR); 
 // Resolve Repetition in each collection 
 empLeft = ResolveCollectionRepetition(empLeft); 
 empMid = ResolveCollectionRepetition(empMid); 
 empRight = ResolveCollectionRepetition(empRight);  

// Remove all empExactLeft from Mid and add to Left 
 empMid.removeAll(empExactLeft); 
 empLeft.addAll(empExactLeft); 
 // Remove all empExactRight from Mid and add to Right 
 empMid.removeAll(empExactRight); 
 empRight.addAll(empExactRight); 
 
 } 
 
 /***  
  * Resolve Repetition in each collection  
    
 ***/ 
 private Collection<ErrorModelPrototype> ResolveCollectionRepetition( 
   Collection<ErrorModelPrototype> col) { 
 // TODO Auto-generated method stub 
 HashSet hs = new HashSet(); 
 hs.addAll(col); 
 col.clear(); 
 col.addAll(hs);  
 return col; 
} 
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Appendix B – EAST-ADL 2.1.12 

Class Diagram 
 

 
Fig B.1 Function Modeling 

 

 
Fig B.2 Function Connector 
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Fig B.3 Function Port 

 

 
Fig B.4 Error Modeling 
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Fig B.5 Error Behavior 
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Appendix C – I Example Views in 

GlobalBrakeController Model – 

Diagram 
ErrorModelType view 
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ErrorModelPrototype view 
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ErrorModelType with Target view 

 

 
 

 

 

 

 

 

 

 

 



107 

 

ErrorModelPrototype with Target view 
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Appendix C – II Example Views in 

GlobalBrakeController Model – 

XML 
The XML generated and presented follow a preliminary graphical exchange format. 

 

ErrorModelType view 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<Diagram> 
    <ModelFile>BBW_4Wheel_2.1.12EM.eaxml</ModelFile> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeBlending_T_
EMT</Element-Ref> 
        <Name>BrakeBlending_T_EMT</Name> 
        <Box> 
            <xPos>400</xPos> 
            <yPos>50</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="120"/> 
            <Color r="255" g="200" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeBlending_T_
EMT/BrakeRequest_fip</Element-Ref> 
        <Name>BrakeRequest_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>70</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeBlending_T_
EMT/BrakeRequestBlended_fip</Element-Ref> 
        <Name>BrakeRequestBlended_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>120</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
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        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT</Element-Ref> 
        <Name>BrakeControllerRequests_T_EMT</Name> 
        <Box> 
            <xPos>400</xPos> 
            <yPos>220</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="220"/> 
            <Color r="255" g="200" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeRequest_fip</Element-Ref> 
        <Name>BrakeRequest_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>240</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeTorqueFL_fop</Element-Ref> 
        <Name>BrakeTorqueFL_fop</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>240</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeTorqueFR_fop</Element-Ref> 
        <Name>BrakeTorqueFR_fop</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>290</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeTorqueRL_fop</Element-Ref> 
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        <Name>BrakeTorqueRL_fop</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>340</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeTorqueRR_fop</Element-Ref> 
        <Name>BrakeTorqueRR_fop</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>390</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/Diag_T_EMT</Elem
ent-Ref> 
        <Name>Diag_T_EMT</Name> 
        <Box> 
            <xPos>400</xPos> 
            <yPos>490</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="70"/> 
            <Color r="255" g="200" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/Diag_T_EMT/DiagR
equest_receive_fip</Element-Ref> 
        <Name>DiagRequest_receive_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>510</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/Diag_T_EMT/DiagR
equest_request_fop</Element-Ref> 
        <Name>DiagRequest_request_fop</Name> 
        <Box> 
            <xPos>590</xPos> 
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            <yPos>510</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT</Element-Ref> 
        <Name>GlobalBrakeController_EMT</Name> 
        <Box> 
            <xPos>400</xPos> 
            <yPos>610</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="320"/> 
            <Color r="255" g="200" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeRequest_fip</Element-Ref> 
        <Name>BrakeRequest_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>630</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/DriverReqTorqueIn_fip</Element-Ref> 
        <Name>DriverReqTorqueIn_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>680</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/WheelSpeed_FLIn_fip</Element-Ref> 
        <Name>WheelSpeed_FLIn_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>730</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
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            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/WheelSpeed_FRIn_fip</Element-Ref> 
        <Name>WheelSpeed_FRIn_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>780</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/WheelSpeed_RLIn_fip</Element-Ref> 
        <Name>WheelSpeed_RLIn_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>830</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/WheelSpeed_RRIn_fip</Element-Ref> 
        <Name>WheelSpeed_RRIn_fip</Name> 
        <Box> 
            <xPos>390</xPos> 
            <yPos>880</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeTorqueFL_fop</Element-Ref> 
        <Name>BrakeTorqueFL_fop</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>630</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
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    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeTorqueFR_fop</Element-Ref> 
        <Name>BrakeTorqueFR_fop</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>680</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeTorqueRL_fop</Element-Ref> 
        <Name>BrakeTorqueRL_fop</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>730</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeTorqueRR_fop</Element-Ref> 
        <Name>BrakeTorqueRR_fop</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>780</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
</Diagram> 

 

 

ErrorModelType with Target view 
<?xml version="1.0" encoding="UTF-8" standalone="yes"?> 
<Diagram> 
    <ModelFile>BBW_4Wheel_2.1.12EM.eaxml</ModelFile> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeBlending_T_
EMT</Element-Ref> 
        <Name>BrakeBlending_T_EMT</Name> 
        <Box> 
            <xPos>150</xPos> 
            <yPos>50</yPos> 
            <zPos>0</zPos> 
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            <Size x="200" y="120"/> 
            <Color r="255" g="200" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeBlending_T_
EMT/BrakeRequest_fip</Element-Ref> 
        <Name>BrakeRequest_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>70</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeBlending_T_
EMT/BrakeRequestBlended_fip</Element-Ref> 
        <Name>BrakeRequestBlended_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>120</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-Ref>/DesignLevelElements/FCN/BrakeBlending_T</Element-Ref> 
        <Name>BrakeBlending_T</Name> 
        <Box> 
            <xPos>600</xPos> 
            <yPos>50</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="120"/> 
            <Color r="200" g="255" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/BrakeBlending_T/BrakeRequest</Element-Ref> 
        <Name>BrakeRequest</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>70</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
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        <Element-
Ref>/DesignLevelElements/FCN/BrakeBlending_T/BrakeRequestBlended</Element-Ref> 
        <Name>BrakeRequestBlended</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>120</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT</Element-Ref> 
        <Name>BrakeControllerRequests_T_EMT</Name> 
        <Box> 
            <xPos>150</xPos> 
            <yPos>220</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="220"/> 
            <Color r="255" g="200" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeRequest_fip</Element-Ref> 
        <Name>BrakeRequest_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>240</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeTorqueFL_fop</Element-Ref> 
        <Name>BrakeTorqueFL_fop</Name> 
        <Box> 
            <xPos>340</xPos> 
            <yPos>240</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeTorqueFR_fop</Element-Ref> 
        <Name>BrakeTorqueFR_fop</Name> 
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        <Box> 
            <xPos>340</xPos> 
            <yPos>290</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeTorqueRL_fop</Element-Ref> 
        <Name>BrakeTorqueRL_fop</Name> 
        <Box> 
            <xPos>340</xPos> 
            <yPos>340</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/BrakeControllerR
equests_T_EMT/BrakeTorqueRR_fop</Element-Ref> 
        <Name>BrakeTorqueRR_fop</Name> 
        <Box> 
            <xPos>340</xPos> 
            <yPos>390</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-Ref>/DesignLevelElements/FCN/BrakeControllerRequests_T</Element-
Ref> 
        <Name>BrakeControllerRequests_T</Name> 
        <Box> 
            <xPos>600</xPos> 
            <yPos>220</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="220"/> 
            <Color r="200" g="255" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/BrakeControllerRequests_T/BrakeRequest</Element-Ref> 
        <Name>BrakeRequest</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>240</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
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            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/BrakeControllerRequests_T/BrakeTorqueFL</Element-Ref> 
        <Name>BrakeTorqueFL</Name> 
        <Box> 
            <xPos>790</xPos> 
            <yPos>240</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/BrakeControllerRequests_T/BrakeTorqueFR</Element-Ref> 
        <Name>BrakeTorqueFR</Name> 
        <Box> 
            <xPos>790</xPos> 
            <yPos>290</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/BrakeControllerRequests_T/BrakeTorqueRL</Element-Ref> 
        <Name>BrakeTorqueRL</Name> 
        <Box> 
            <xPos>790</xPos> 
            <yPos>340</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/BrakeControllerRequests_T/BrakeTorqueRR</Element-Ref> 
        <Name>BrakeTorqueRR</Name> 
        <Box> 
            <xPos>790</xPos> 
            <yPos>390</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
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        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/Diag_T_EMT</Elem
ent-Ref> 
        <Name>Diag_T_EMT</Name> 
        <Box> 
            <xPos>150</xPos> 
            <yPos>490</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="70"/> 
            <Color r="255" g="200" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/Diag_T_EMT/DiagR
equest_receive_fip</Element-Ref> 
        <Name>DiagRequest_receive_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>510</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/Diag_T_EMT/DiagR
equest_request_fop</Element-Ref> 
        <Name>DiagRequest_request_fop</Name> 
        <Box> 
            <xPos>340</xPos> 
            <yPos>510</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-Ref>/DesignLevelElements/FCN/Diag_T</Element-Ref> 
        <Name>Diag_T</Name> 
        <Box> 
            <xPos>600</xPos> 
            <yPos>490</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="20"/> 
            <Color r="200" g="255" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT</Element-Ref> 
        <Name>GlobalBrakeController_EMT</Name> 
        <Box> 
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            <xPos>150</xPos> 
            <yPos>610</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="320"/> 
            <Color r="255" g="200" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeRequest_fip</Element-Ref> 
        <Name>BrakeRequest_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>630</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/DriverReqTorqueIn_fip</Element-Ref> 
        <Name>DriverReqTorqueIn_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>680</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/WheelSpeed_FLIn_fip</Element-Ref> 
        <Name>WheelSpeed_FLIn_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>730</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/WheelSpeed_FRIn_fip</Element-Ref> 
        <Name>WheelSpeed_FRIn_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>780</yPos> 
            <zPos>0</zPos> 
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            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/WheelSpeed_RLIn_fip</Element-Ref> 
        <Name>WheelSpeed_RLIn_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>830</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/WheelSpeed_RRIn_fip</Element-Ref> 
        <Name>WheelSpeed_RRIn_fip</Name> 
        <Box> 
            <xPos>140</xPos> 
            <yPos>880</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeTorqueFL_fop</Element-Ref> 
        <Name>BrakeTorqueFL_fop</Name> 
        <Box> 
            <xPos>340</xPos> 
            <yPos>630</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeTorqueFR_fop</Element-Ref> 
        <Name>BrakeTorqueFR_fop</Name> 
        <Box> 
            <xPos>340</xPos> 
            <yPos>680</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
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        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeTorqueRL_fop</Element-Ref> 
        <Name>BrakeTorqueRL_fop</Name> 
        <Box> 
            <xPos>340</xPos> 
            <yPos>730</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/EASTADLExtensionElements/DependabilityPackage/Dependability2/GlobalBrakeContr
oller_EMT/BrakeTorqueRR_fop</Element-Ref> 
        <Name>BrakeTorqueRR_fop</Name> 
        <Box> 
            <xPos>340</xPos> 
            <yPos>780</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-Ref>/DesignLevelElements/FCN/GlobalBrakeController</Element-Ref> 
        <Name>GlobalBrakeController</Name> 
        <Box> 
            <xPos>600</xPos> 
            <yPos>560</yPos> 
            <zPos>0</zPos> 
            <Size x="200" y="320"/> 
            <Color r="200" g="255" b="200"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/BrakeRequest</Element-Ref> 
        <Name>BrakeRequest</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>580</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/DriverReqTorqueIn</Element-Ref> 
        <Name>DriverReqTorqueIn</Name> 
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        <Box> 
            <xPos>590</xPos> 
            <yPos>630</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/WheelSpeed_FLIn</Element-Ref> 
        <Name>WheelSpeed_FLIn</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>680</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/WheelSpeed_FRIn</Element-Ref> 
        <Name>WheelSpeed_FRIn</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>730</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/WheelSpeed_RLIn</Element-Ref> 
        <Name>WheelSpeed_RLIn</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>780</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/WheelSpeed_RRIn</Element-Ref> 
        <Name>WheelSpeed_RRIn</Name> 
        <Box> 
            <xPos>590</xPos> 
            <yPos>830</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
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        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/BrakeTorqueFL</Element-Ref> 
        <Name>BrakeTorqueFL</Name> 
        <Box> 
            <xPos>790</xPos> 
            <yPos>580</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/BrakeTorqueFR</Element-Ref> 
        <Name>BrakeTorqueFR</Name> 
        <Box> 
            <xPos>790</xPos> 
            <yPos>630</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/BrakeTorqueRL</Element-Ref> 
        <Name>BrakeTorqueRL</Name> 
        <Box> 
            <xPos>790</xPos> 
            <yPos>680</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Element> 
        <Element-
Ref>/DesignLevelElements/FCN/GlobalBrakeController/BrakeTorqueRR</Element-Ref> 
        <Name>BrakeTorqueRR</Name> 
        <Box> 
            <xPos>790</xPos> 
            <yPos>730</yPos> 
            <zPos>0</zPos> 
            <Size x="20" y="30"/> 
            <Color r="0" g="0" b="0"/> 
            <Outline>true</Outline> 
        </Box> 
    </Element> 
    <Connector> 
        <From x="350" y="110"/> 
        <To x="600" y="110"/> 
    </Connector> 
    <Connector> 
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        <From x="350" y="330"/> 
        <To x="600" y="330"/> 
    </Connector> 
    <Connector> 
        <From x="350" y="525"/> 
        <To x="600" y="500"/> 
    </Connector> 
    <Connector> 
        <From x="350" y="770"/> 
        <To x="600" y="720"/> 
    </Connector> 
</Diagram> 

 

  



125 

 

Appendix D – I  Interview 

Presentation Slides
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Appendix D – II Interview 

Questionaire 
Date:                                        Participant: 

Question : Error Model Auto Generation 

• On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are you 

with this product in terms of the following? And please specify the reason. 

– Ease of Use 

– Ease of Understanding(description) 

– How well the product achieves its goal 

 

 

• Is this applicable for the current development process in your opinion? If not, what are 

the missing parts? 

 

 

• Is there any other product you know has a similar feature?  

– If yes, how does it work in this category? And compare with the presented 

artifact, what are the advantages and disadvantages? 

– If no, how satisfied are you with this product? Any improvements or 

suggestions? 

 

 

Question : Re-organize Error Model 

• On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are you 

with this product in terms of the following? And please specify the reason. 

– Ease of Use 

– Ease of Understanding(description) 

– How well the product achieves its goal 

 

 

• Is this applicable for the current development process in your opinion? In not, what are 

the missing parts? 

 

 

• Any other manually done modifications you think is necessary to be automated? 

 

 

Question : HiP-HOPS Fault Tree Analysis 

• On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are you 

with this product in terms of the following? And please specify the reason. 

– Ease of Use 

– Ease of Understanding(description) 

– How well the product achieves its goal 
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• In your opinion, will this concept help the safety work? How? 

 

 

• Is there anything you think is missing in the design or need to improve? 

 

Question : Consistency Checking 

• On a scale of 1 to 5, with 1 being poor and 5 being excellent, how satisfied are you 

with this product in terms of the following? And please specify the reason. 

– Ease of Use 

– Ease of Understanding(description) 

– How well the product achieves its goal 

 

 

• What do you think this way of handling version control? Is this applicable for the 

current development process in your opinion? In not, what are the missing parts? 

 

 

• Is there any other product you know has a similar feature?  

– If yes, how does it work in this category? And compare with the presented 

artifact, what are the advantages and disadvantages? 

– If no, how satisfied are you with this product? Any improvements or 

suggestions? 

 

 

Question : General 

• General feeling of this thesis work 

 

 

 

 

 

 

 

 

• Future expectation 

 


