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Abstract

The growth of technology has led to much increase in pollution levels. The Euro-
pean Union has enforced strict rules for car manufacturers to reduce the emission
levels for vehicles. The regulation of the European Union includes a test for Real
Driving Emissions. The automobile manufacturers are forced to test their vehicles
for Real Driving Emissions. The available driving cycles like WLTC or NEDC lack
real-world driving characteristics. This makes it is highly essential to develop a driv-
ing cycle by using real driving data. An algorithm is created to produce a driving
cycle delivering the parameters within the Real Driving Emissions test parameters.

In this master thesis, micro-trip based construction model is applied for the vast
data collected from real driving trips. The process includes use of unsupervised
learning algorithm by utilizing k-means clustering technique to group the data. The
statistical CH index is used to evaluate the performance of clustering and the trips
are filtered with the Real Driving Emissions parameters before deploying D-optimal
design to maximize the created design matrix from the filtered data. The micro-
trips are selected in a ratio of 7:1:1 with urban, rural and motorway sections to stay
within the required duration limits. The selected micro-trips are combined to form
complete driving cycles, and are simulated using a simulation model constructed
by using QSS toolbox in Simulink. The model comprises a normal IC engine with
manual transmission, capable enough to determine the fuel consumption.

The developed driving cycles are analyzed and their parameters are compared with
real driving emission test criteria. The results show that the cycles are valid. The
results of the simulation are dependent on the engine operating points. The trans-
mission model needs to be calibrated and evaluated with the real scenario to increase
accuracy. The regression analysis carried forward from the simulations, predicts the
relation of VA,,s with fuel consumption. The aggressiveness of the cycle tends to
increase fuel consumption. Hence, it helps to understand the variation in fuel con-
sumption based on the driving cycle parameters

Keywords: Micro trip based construction model, K-means clustering, CH Index,
D-optimal design, Driving cycle, fuel consumption.
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Nomenclature

BCV Between-the-Cluster Variance

BSFC Brake Specific Fuel Consumption

CH Calinski-Harabasz

cm Centimeter

COq Carbon dioxide

CV Co-Variance

DB Davies-Bouldin

DC Driving Cycle

ECE Economic Commission of Europe

ED Euclidean Distance

EU European Union

EUDC Extra Urban Driving Cycle

GLS Generalised Least Squares

GPS Global Positioning System

HCCI Homogeneous Charge Compression Ignition
HEV Hybrid Electric Vehicles

ICE Internal Combustion Engine

kW Kilowatt

MVEG Motor Vehicles emission Group

NEDC New European Driving Cycle

NO, Oxides of Nitrogen (NO, NOy)

OLS Ordinary Least Squares

PCCI Premixed Charge Compression Ignition
RDE Real Driviing Emissions

RLS Recursive Least Squares

RPA Relative Positive Acceleration

RPM Revolutions per minute

SI Silhouette Coefficient

WCV Within-the-Cluster Variance

WLTC World harmonized Light vehicles Test Cycle

WLTP World harmonized Light vehicles Test Procedure
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1

Introduction

As technology is growing, the advances in the area of combustion engines have grown
rapidly. The emissions from automobiles have been devastating, leading to an in-
crease in global warming, adverse climatic changes, etc. To reduce the effects on
the environment due to the emission, certain conditions based on the parameters
causing the harmful emissions are induced on the automotive manufacturers in the
form of a speed chart or driving cycle. The vehicles are tested according to these
driving cycles before launching them in the market. From the year 2017, Euro-
pean Union introduced real-driving emissions test procedure on passenger cars and
light commercial vehicles. This procedure aimed to control the pollution caused
by vehicles, and this will apply to all new cars from 2021[1]. Hence, it is very im-
portant to understand the real-world driving behavior using real-world driving data.

In this report, data collected from privately driven vehicles in Sweden is evaluated.
The evaluated data is processed to create driving cycles as per the regulations im-
posed on real driving emission procedures. This is done at the Chalmers University
of Technology as a final project for a master’s degree in Automotive Engineering.

1.1 Background

Road traffic causes a dramatic increase in emission levels. The spike is boosted by
increasing car users, especially over the years. Over the last decade, an approximate
21% increase in the number of vehicles has caused air pollution to rise to a signifi-
cant level due to emissions|2],[3]. The emission of greenhouse gases during the 21st
century has led to a prediction of a 3°C rise in the global temperature[4]. Climatolo-
gists predict an increase of sea level, leading to a high risk of flood situations. From
the early stages, several norms to control various emission from vehicles have been
imposed by the European Union. The stringent rules to improve the air quality by
reducing the emission of NO, serves as a challenge for car manufactures globally.
The study of Hooftman et al.,[5] states that nearly 46% of NO, is by the automobile
sector globally, and 80% of those are from the combustion of diesel in cars, buses,
trucks. The strong drift of the European Union towards pollution control forced
the combustion researchers to experiment with different advanced technologies such
as homogeneous charge compression ignition (HCCI), premixed charge compression
ignition (PCCI)[6]. The various dramatic changes in the rules framed by Euro-
pean Union to cut down the air pollution have also led to introduction of electrified
vehicles. Thus, a new era with penetration of Hybrid electric vehicles began [7].
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Since 1992, the goal of the European Union to reduce CO5 and NO, emissions led
to few important changes in the certification of vehicles[8]. Changes included uti-
lization of driving cycles like the New European Driving Cycle (NEDC), and lately
the more representative World harmonized Light vehicle Test Procedure (WLTP)
for vehicle certification.

The driving cycles like NEDC, WLTC are created for assessing the emission levels
and fuel economy of lightweight /passenger cars[9]. This is even referred to as Motor
Vehicles Emission Group Cycle (MVEG)[10]. The driving cycles are used for type
approvals using a chassis dynamometer. The NEDC cycle includes 2 segments of
cycles, wherein one cycle-ECE 15(fig:7.1) is repeated 4 times and concluded with
a high-speed cycle-EUDC(fig:7.2).The overall NEDC cycle is shown in fig:1.1. The
NEDC involves constant accelerations and decelerations. The WLTC test cycles are
based on the regions and used in Europe for vehicle type approval[11]. The test
cycle has 2 divisions, based on the maximum speed of the vehicle. The cycle has 4
segments based on the vehicle speed: Low, Medium, High, and Extra High (fig:1.2).
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Figure 1.1: New European Driving Cycles (NEDC)
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However, there is a significant amount of difference in NO, emission between the
type approval test done using the representative cycles and Real-world situations.
For instance, a study from Chen et al.,[12] depicts that, the shift from Euro-1 to
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Euro-6 (fig:1.3) to reduce the emission of NO, has led to no significant reduction in
emissions from European diesel cars. Hence, it is very important to test the vehicles
under real-world driving conditions. Real driving emissions test poses as a hurdle to
manufacturers, as it is difficult to re-create real-world environmental changes, traffic
situations, the behavior of fellow drivers, etc.

A bad representativeness of the test cycle with the real driving conditions may lead
to major errors in the estimated emissions and fuel consumption[13]. Based on the
study by Lujan et al[8], the emission of NO, is highly dependent on the share of a
trip in the urban section, as well as the aggressiveness and driving behavior. This
makes it very much important to have test cycles to evaluate the engine performance
based on real driving characteristics[14]. The real driving data includes the driving
behavior of fellow drivers, aggressiveness, dynamics of driving[15].

1.2 Aim and Objectives

This thesis focuses on the development of an algorithm of a synthetic driving cycle
from the data of real driving trips logged through GPS from 378 privately driven
Swedish cars. The synthetic driving cycle shall involve the desired cycle characteris-
tics within the boundaries of the Real driving emission test protocol. The synthetic
driving cycle is developed based on statistical methods. In more detail, the aim of
the thesis was

e To develop a list of trip parameters that affect the emission and performance
of the vehicle.

o To analyze real driving trips and categorize them through a statistical ap-
proach.

o To group the trip segments and optimize in the most possible flexible way for
obtaining synthetic driving cycles.

o To simulate the driving cycles for estimating fuel consumption and compare
the trip parameters with RDE boundary conditions.

o To present the algorithm, capable to develop a driving cycle from the provided
trip data.

o To make recommendations and create guidelines for the developed driving
cycle.

o To present the method used in the algorithm and the driving cycle in the form

of a master thesis report.
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1.3 Outline

The structure of this thesis report is as follows: Chapter-2 describes the theory
for the algorithm development. The methods used are introduced in Chapter-3.
Chapter-4 contains all the essential results and a general discussion related to the
work and conclusions including possible future studies in Chapter-5.
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Theory

It is important to assess various ways to approach the driving cycle construction
and ways to process the available data. Hence, in this section, a brief overview is
provided of theoretical knowledge regarding different forms of approach to construct
a driving cycle, and techniques of data processing .

2.1 Construction models

The development or construction of the driving cycle is very important to determine
emission levels of vehicles under real-traffic driving conditions. A driving cycle de-
scribes the change in the speed of a vehicle throughout the driving. The construction
methods are classified based on the approach to develop the driving cycle.

There are few extensively used methods[16] in the development of driving cycle:

e Micro-Trip based construction.
e Segment based cycle construction.
o Modal based cycle construction.

« Pattern classification cycle construction.

2.1.1 Micro-Trip based construction model

The common approach in cycle construction is Micro-trip based cycle construction[16].
It involves selecting several micro-trips, which yields in better classification of driv-
ing patterns, bounded by a start and stop[17]. In this method of construction, a set
of micro-trips from the real driving data, which can represent the driving pattern
closely, is selected[18]. This method is generally based on specific speed, acceler-
ation, and duration of constraints. The method involves dividing the trips based
on the trip characteristics and assigning them into several bins[19]. This method
is highly suitable for its ‘Stop-Go’ situation, to evaluate the emission and fuel con-
sumption under traffic conditions. The selection of several trips for a driving cycle is
supposed to meet the required target parameters. It involves filtering the trips based
on the target parameter as a constraint with the least possible tolerance. The reason
being the analogy - "lower the tolerance - higher the representativeness of trip". In a

7



2. Theory

study from Gangamuwa et al.,[19], there are several ways to select the micro-trips;
quasi-random method, random selection, incremental method, statistical methods
like Fourier series, time series analysis, polynomial curve fitting technique.

2.1.2 Segment based cycle construction model

Segment-based cycle construction is based on the specific type of roadway, several
stops, traffic conditions to represent the real traffic conditions, and physical char-
acteristics of the road[19]. The method involves dividing the trips according to the
condition of traffic and physical characteristics based on the target parameters and
the mode of the trip can start with any speed and end with any speed. This method
of construction is highly recommended for the construction of a driving cycle to a
particular type of road due to the fewer number of stops. For better representa-
tiveness, it requires identification of various road categories like highly congested,
residential, highway situations based on their average speeds which increases the
difficulties to match the level of acceleration and speed of various consecutive trips
while chaining them together due to stratified data[20]. Further, this method is
much suitable to develop driving cycles for expressways. It lacks in adjacent starts
and stops. Hence, it is not suitable to measure the emissions level[19].

2.1.3 Modal based cycle construction model

Modal-based cycle construction is based on a specific frequency of driving. It in-
volves the process of dividing the pattern of driving into several dynamic patterns of
acceleration, deceleration, cruising, and idling components[19]. The generated snip-
pets of patterns using the Markov process are selected by assuming the maximum
likelihood through means of clustering a particular event of the modal pattern. The
selected trips are chained to form a driving cycle through a transition matrix based
on the probabilities of successive modal events. The generation of the driving cycle
requires a higher probability of several modal events. Since this method is required
for a larger number of data, it is highly suitable for the regional data population[18].

2.1.4 Pattern classification cycle construction model

This model of cycle construction is focused on the kinematic sequence of the trip.
The group of trips is divided into several classes by a statistical approach[19]. The
kinematic sequence is selected based on maximum likelihood estimation based on
succession probability. This form of approach is highly statistical and European driv-
ing cycles are constructed based on this form of approach. The selected kinematic
sequences are connected to form a certain driving cycle. The form of the driving
cycle entirely depends on the form of the selected kinematic sequence. There are
certain drawbacks to this approach. It requires more information to classify and
divide the kinematic sequences and is a time consuming approach.

8



2. Theory

2.2 Data processing

A fundamental base for any form of data analytical process is to consider the quality
of the primary data. There are several ways to process the data using algorithms
based on the availability of classifiers and predictor; ways which can be grouped
into Supervised learning algorithm and a Unsupervised learning algorithm. A su-
pervised learning algorithm mainly requires certain classifiers for grouping the data.
Regression analysis and Naive Bayes are some of the algorithms helpful under Su-
pervision learning. On the other hand, Unsupervised learning algorithms do not
need pre-determined classifiers to group the data[21]. The grouping of data is based
on the similarities between the data. K-means, Spectral and Hierarchical clustering
algorithms are some of the prominent Unsupervised learning algorithms making it
possible to distinguish the groups clearly.

2.2.1 Supervised learning algorithms

Data processing by the support of certain classifiers is termed as Supervised learning
algorithms. The most abundantly used method is Regression analysis[21]. It is
a classical approach for variables possessing linear variability. Depending on the
number of variables, the method is sub-classified as Simple and Multiple regression
methods. A linear function is modeled by the aid of a dependent and independent
set of variables. Considering regression coefficients (r) and an error parameter( (e),
the general form of regression model is written as:

Y ="ro+rixy+reTo+ ... +rpx, + €= (:L’;‘FT +€) (2.1)

To obtain a full-rank regression model, certain approximation methods have to be
considered and are much necessary for estimating the regression coefficients. The
methods of approximations include Ordinary Least Squares [OLS], Generalized Least
Squares [GLS], Recursive Least Squares [RLS]. The method used to determine the
regression coefficients are different, still, the results appear to be the same. The
minimization approach to minimize the sum of squares of variable differences using
a cost function of order 2 is utilized in the OLS model. While the GLS model tends
to reduce the covariance between the error residuals. The RLS model follows the
same strategy as of OLS model with an addition of an assumption variable. The
models for the variable matrix (X) and co-variance (C) are written as:

OLS Model:
E(r)= i (y; — xlr)? (2.2)
i=1
GLS Model:
E(r)=(XTC'X)'XTCy (2.3)
RLS Model:
E(r)+ A\ = (?/—75(7“)2 + A, A >0 (2.4)
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Another method to classify the dependant variable directly is the Logistic Regression
Method. This method is advantageous for a known categorical independent variable.
It is also possible to use logistic regression for the classification of multiple variables.
Logistic regression is based on the estimation of logarithmic odd values. In the
below equation, 'x’ represents the dependent variables, 'p’ is the probability of the
dependent variable.

P
1—p

In(———) = wo + WiT1 + WaTs + ..cc. + W, (2.5)

2.2.2 Unsupervised learning algorithms

The method of Unsupervised learning is applicable during the absence of prede-
termined classifiers[21]. Unsupervised learning is focused on grouping the data ac-
cording to the available input features and similarities. It is called as Clustering
technique. The most performed methods are discussed below.

K-means clustering technique is the most popular method and groups the available
data into so called k-groups[22]. A highly efficient approach to make clusters of a
large volume of data is based on its kinematic segments[23]. It tries to group the
data to have large variation between the clustered groups by assigning random data
points, where the data sets are clustered based on the similarity of the classifying
feature[24]. This is made possible by using a k-means minimizing function (C,)
which reduces the variance between the clusters.

Iteration 1 Iteration 2 Iteration 3 Iteration 4
o x 7 Ay
% x
. X % X %5 X
X
Iteration 5 Iteration 6 Iteration 7 Iteration 8
X, X X X
% % X % X X X 35

Figure 2.1: The k-means clustering with 3 clusters
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k
C=>_min(|| C; — i |I) (2.6)

=1
ancl,CQ,Cg,....,Ck A kﬁn (27)

A general procedure to perform k-means clustering is as follows:
 Select total number of clusters (k).
« Set the total number of iterations(i).
« Compute Euclidean distance and centroid (C;) for each cluster (k).
« Initiate the minimization function (C,,).
o Repeat the process to attain convergence or reach maximum iterations.

Spectral clustering is an indirect mode of grouping by projecting the data in various
spatial dimensions. Spectral clustering uses the concept of Graph theory and min-
imizes the similarities between the clusters. It is done by determining the affinity
matrix using the Euclidean distance of the data and converting the affinity matrix to
the Laplace matrix. To keep the process simple and easy, eigenvalues of the Laplace
matrix are determined to reduce the spatial dimension. The obtained eigenvalues
are clustered into several clusters. The feature of the Laplace matrix eigenvalues
tends to be smooth at highly dense areas. This makes it easy to recognize and group
the data. Considering, A;; as the affinity matrix, the diagonal matrix of same order,
the Laplace matrix L, can be computed as:

S ey D) (2.8

=1 j=1

k-means Spectral clustering

Figure 2.2: Cluster methods
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2.3 Performance Evaluation

One of the most important aspects after processing the data is to determine the per-
formance aspect of the applied method. When following the strategy of Supervised
learning, the performance is evaluated through the method of Cross-validation and
Train/Test split strategy. The performance of Unsupervised learning methods is de-
pendant on the number of clusters, and hence, it is required to determine the most
optimal number of clusters in an Unsupervised learning strategy[21]. Harabasz(CH)
index, Silhouette coefficient, and Davies - Bouldin (DB) index are the most effective
methods to determine the optimal number of clusters.

2.3.1 Supervised learning

The Train/Test split strategy is the simplest performance evaluation method for
Supervised learning. In this method, the provided data is partitioned rationally
into the training set and testing set. The Cross-validation methods are of different
types, such as, k-fold cross-validation, repeated k-fold cross-validation, leave-one-
out cross-validation, stratified k-fold cross-validation, leave P-out cross-validation.
They are similar to each other, though. The k-fold cross-validation process involves
dividing the data-set equally and training the model by using k-1 folds, repeating
the procedure until all the folds are tested and performance scores are evaluated
on each fold. The Stratified k-fold cross-validation is a systematic variation of k-
fold cross-validation. It involves maintaining the ratio between the target groups
and the same process is followed as k-fold cross-validation. Similarly, repeating the
k-fold validation process for pre-defined n-times yields the 'Repeated k-fold cross-
validation” method.

Leave-one-out cross-validation involves the process of formulating subsets and test-
ing them by dropping one sample at a time and repeating the process until all sam-
ples are tested. For example, if the data set has n-samples, the supervised model
shall be trained for (n-1) samples. This makes it a complex approach of computation
due to the occurrence of variance in every iteration due to varying subsets. Further,
accuracy tends to be the performance factor in the above-said methods. Accuracy is
directly related to the performance of the supervised model. Care should be taken
since accuracy is not a strong classifier to differentiate between the methods.

2.3.2 Unsupervised learning

Estimating the optimal number of clusters is the main parameter in the performance
evaluation of the unsupervised model. There are various methods to determine the
optimal number of clusters based on the strategy, and the most popular methods
are discussed in this section.

12
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2.3.3 Silhouette coefficient

The Silhouette coefficient is the measure of similarity of observation in its cluster
group in comparison with the other cluster group. It is represented as :
Dc - dz

Sl. = maz Dy d) (2.10)
Here D, is the average distance between objects in the set of the cluster (C). This is
termed as 'Distance within the clusters’. Average distance of an object from the near-
est cluster group d; is termed as 'Distance between the clusters’. The performance
is evaluated on the value of the Silhouette coefficient. The higher the Silhouette
coefficient - the higher the number of distinguished cluster groups. The coefficient
ranges between -1 to +1: +1 denotes well-separated cluster groups and -1 means
the opposite.

2.3.4 Davies - Bouldin (DB) index

The coefficient of similarity, when measured as the average distance between the
centroids (C;) of clusters (k) is termed as Davies - Bouldin index, or in short, DB
index. For a well-separated cluster set, the DB index lies close to 0, representing a
greater distance between the cluster centroids. DB index is given as:

k
DB, = ]1 > maz(C;) (2.11)
i=1

2.3.5 Calinski-Harabasz (CH) index

A method to evaluate the performance by considering "within-the-cluster variance(WCV)’
and ’'between-the-cluster variance (BCV)’ is Calinski-Harabasz index or CH index.
Considering the clusters k, BCV symbolizes the size of the variation between the
clusters. For n; samples in a dataset with C; cluster centroids and mean distance
between the samples i, BCV can be written as:

:
BCV (k)= ni || Ci— p | (2.12)
i=1

Similarly, considering the Euclidean distance between the data sample z and cluster
centroid C;, WCV, depicting the variation between the data samples in every cluster
group, can be determined as.

k
WCV(k) =3 [l = CY | (2.13)
i=1

By definition of CH index, considering total n number of samples with & number of
cluster groups, higher CH index represents well-separated cluster groups. It can be
written as:

(2.14)

OH - (n - k) BCV (k)

k—1) WOV (k)
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In brief, due to the possibility of processing the available data in numerous ways us-
ing an unsupervised model, it is always a difficult task to choose a procedure to pro-
cess and evaluate the performance. Based on the study conducted by the authors[25],
for a moderate set of clinical data to compare the clustering algorithms, it is said
to be entirely dependent on the quantity of data set. Various algorithms exhibit
several different properties, making it difficult to draw a fair conclusion, although

the authors value using the k-means algorithm and evaluating the performance with
CH index[26] [27].

2.4 Simulation model

In this work, QSS toolbox in the Simulink is used to create a simulation model of
a vehicle system. The QSS toolbox is extremely helpful to determine the fuel con-
sumption of vehicle powertrain. The toolbox consists of various masks or blocks,
required for modeling in a quasi-static approach. In the quasi-static approach, forces
are computed within the masks from the provided velocity and acceleration data.
The toolbox consists of a library involving various blocks to model Electric vehicles,
Hybrid vehicles, Conventional vehicles with various forms of powertrain systems.

The important elements of the QSS library are:
e Driving cycle
o Controller
» Vehicle
o Gear system
o Energy converter
o Energy buffer
o Energy source

These elements have multiple blocks and are used in simulation models based on
the type of vehicle. Brief overviews about the blocks useful in this work are focused
in this section.

2.4.1 Vehicle model

A simple conventional vehicle model system was created in Simulink using the QSS
toolbox. The model is presented in fig:2.3. The model contains the Driving cycle,
Vehicle model, Wheel model, Transmission system, IC Engine and Fuel source.

14
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v_veh /_veh

aveh Lveh  dw_dt »

F : Trac L

fehicle ‘Simple wheel model

Figure 2.3: Simulation model with IC engine in Simulink

The QSS model uses a quasistatic approach. It requires input of velocity, accelera-
tion and distance. The block or mask Driving cycle (fig:3.2) is an input section for
the rest of the simulation model. The driving cycle should be present in the QSS
toolbox database in-order to select the cycle for simulation.

[ Block Parameters: Driving Cycle

Parameters

Choose a cycle
MNEDC

Step size [5]

1

Enable automatic simulation stop

- Cancel Help Apply

Figure 2.4: Driving cycle block

The vehicle block in the model requires the physical data of the vehicle. That
includes weight, the frontal area of cross-section, drag and rolling resistance coef-
ficients. Also, the diameter of the vehicle wheel is provided in the wheel block of
the model. These parameters are essential for the model to compute the driving
force required. The transmission is an essential part of the transfer of the power
from engine to wheel. Hence, the model has to be provided with gear ratios of
the powertrain in the transmission or Geax box block. The type of engine and the
maximum power of the engine is provided in the Combustion engine block. In the
final block, the type of fuel is provided to determine fuel consumption on simulation.
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3

Methodology

This chapter focuses in detail the used methodology. It includes sections on the
used real driving data, an approach using a construction model, various statistical
computations to initiate data processing, D-optimal design approach, acquisition
of the constructed driving cycle, and finally the simulation of the driving cycle in
Simulink. Matlab is used for computation and writing the algorithm.

3.1 Real driving data

The used driving data set is obtained from "The Swedish car movement data project’[28].
The project involved gathering and analyze a large amount of data regarding the
patterns of privately driven vehicles within Sweden. The data were collected using
GPS equipment between June 2010 and Sept 2012. The cars were chosen by a ran-
dom stratified selection from the Swedish vehicle registry. The data from the project

is confined to the use of type-1 passenger cars of model year 2002 or younger, reg-
istered in Vastra Gotaland county and Kungsbacka municipality. The stratification
was performed on the properties u