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Abstract
The growth of technology has led to much increase in pollution levels. The Euro-
pean Union has enforced strict rules for car manufacturers to reduce the emission
levels for vehicles. The regulation of the European Union includes a test for Real
Driving Emissions. The automobile manufacturers are forced to test their vehicles
for Real Driving Emissions. The available driving cycles like WLTC or NEDC lack
real-world driving characteristics. This makes it is highly essential to develop a driv-
ing cycle by using real driving data. An algorithm is created to produce a driving
cycle delivering the parameters within the Real Driving Emissions test parameters.

In this master thesis, micro-trip based construction model is applied for the vast
data collected from real driving trips. The process includes use of unsupervised
learning algorithm by utilizing k-means clustering technique to group the data. The
statistical CH index is used to evaluate the performance of clustering and the trips
are filtered with the Real Driving Emissions parameters before deploying D-optimal
design to maximize the created design matrix from the filtered data. The micro-
trips are selected in a ratio of 7:1:1 with urban, rural and motorway sections to stay
within the required duration limits. The selected micro-trips are combined to form
complete driving cycles, and are simulated using a simulation model constructed
by using QSS toolbox in Simulink. The model comprises a normal IC engine with
manual transmission, capable enough to determine the fuel consumption.

The developed driving cycles are analyzed and their parameters are compared with
real driving emission test criteria. The results show that the cycles are valid. The
results of the simulation are dependent on the engine operating points. The trans-
mission model needs to be calibrated and evaluated with the real scenario to increase
accuracy. The regression analysis carried forward from the simulations, predicts the
relation of VApos with fuel consumption. The aggressiveness of the cycle tends to
increase fuel consumption. Hence, it helps to understand the variation in fuel con-
sumption based on the driving cycle parameters

Keywords: Micro trip based construction model, K-means clustering, CH Index,
D-optimal design, Driving cycle, fuel consumption.
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Nomenclature

BCV Between-the-Cluster Variance
BSFC Brake Specific Fuel Consumption
CH Calinski-Harabasz
cm Centimeter
CO2 Carbon dioxide
CV Co-Variance
DB Davies-Bouldin
DC Driving Cycle
ECE Economic Commission of Europe
ED Euclidean Distance
EU European Union
EUDC Extra Urban Driving Cycle
GLS Generalised Least Squares
GPS Global Positioning System
HCCI Homogeneous Charge Compression Ignition
HEV Hybrid Electric Vehicles
ICE Internal Combustion Engine
kW Kilowatt
MVEG Motor Vehicles emission Group
NEDC New European Driving Cycle
NOx Oxides of Nitrogen (NO, NO2)
OLS Ordinary Least Squares
PCCI Premixed Charge Compression Ignition
RDE Real Driviing Emissions
RLS Recursive Least Squares
RPA Relative Positive Acceleration
RPM Revolutions per minute
SI Silhouette Coefficient
WCV Within-the-Cluster Variance
WLTC World harmonized Light vehicles Test Cycle
WLTP World harmonized Light vehicles Test Procedure
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1
Introduction

As technology is growing, the advances in the area of combustion engines have grown
rapidly. The emissions from automobiles have been devastating, leading to an in-
crease in global warming, adverse climatic changes, etc. To reduce the effects on
the environment due to the emission, certain conditions based on the parameters
causing the harmful emissions are induced on the automotive manufacturers in the
form of a speed chart or driving cycle. The vehicles are tested according to these
driving cycles before launching them in the market. From the year 2017, Euro-
pean Union introduced real-driving emissions test procedure on passenger cars and
light commercial vehicles. This procedure aimed to control the pollution caused
by vehicles, and this will apply to all new cars from 2021[1]. Hence, it is very im-
portant to understand the real-world driving behavior using real-world driving data.

In this report, data collected from privately driven vehicles in Sweden is evaluated.
The evaluated data is processed to create driving cycles as per the regulations im-
posed on real driving emission procedures. This is done at the Chalmers University
of Technology as a final project for a master’s degree in Automotive Engineering.

1.1 Background
Road traffic causes a dramatic increase in emission levels. The spike is boosted by
increasing car users, especially over the years. Over the last decade, an approximate
21% increase in the number of vehicles has caused air pollution to rise to a signifi-
cant level due to emissions[2],[3]. The emission of greenhouse gases during the 21st
century has led to a prediction of a 3oC rise in the global temperature[4]. Climatolo-
gists predict an increase of sea level, leading to a high risk of flood situations. From
the early stages, several norms to control various emission from vehicles have been
imposed by the European Union. The stringent rules to improve the air quality by
reducing the emission of NOx serves as a challenge for car manufactures globally.
The study of Hooftman et al.,[5] states that nearly 46% of NOx is by the automobile
sector globally, and 80% of those are from the combustion of diesel in cars, buses,
trucks. The strong drift of the European Union towards pollution control forced
the combustion researchers to experiment with different advanced technologies such
as homogeneous charge compression ignition (HCCI), premixed charge compression
ignition (PCCI)[6]. The various dramatic changes in the rules framed by Euro-
pean Union to cut down the air pollution have also led to introduction of electrified
vehicles. Thus, a new era with penetration of Hybrid electric vehicles began [7].
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1. Introduction

Since 1992, the goal of the European Union to reduce CO2 and NOx emissions led
to few important changes in the certification of vehicles[8]. Changes included uti-
lization of driving cycles like the New European Driving Cycle (NEDC), and lately
the more representative World harmonized Light vehicle Test Procedure (WLTP)
for vehicle certification.

The driving cycles like NEDC, WLTC are created for assessing the emission levels
and fuel economy of lightweight/passenger cars[9]. This is even referred to as Motor
Vehicles Emission Group Cycle (MVEG)[10]. The driving cycles are used for type
approvals using a chassis dynamometer. The NEDC cycle includes 2 segments of
cycles, wherein one cycle-ECE 15(fig:7.1) is repeated 4 times and concluded with
a high-speed cycle-EUDC(fig:7.2).The overall NEDC cycle is shown in fig:1.1. The
NEDC involves constant accelerations and decelerations. The WLTC test cycles are
based on the regions and used in Europe for vehicle type approval[11]. The test
cycle has 2 divisions, based on the maximum speed of the vehicle. The cycle has 4
segments based on the vehicle speed: Low, Medium, High, and Extra High (fig:1.2).

Figure 1.1: New European Driving Cycles (NEDC)

2



1. Introduction

Figure 1.2: World harmonized Light vehicles Test Cycle

Figure 1.3: Euro emission norms

However, there is a significant amount of difference in NOx emission between the
type approval test done using the representative cycles and Real-world situations.
For instance, a study from Chen et al.,[12] depicts that, the shift from Euro-1 to
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Euro-6 (fig:1.3) to reduce the emission of NOx has led to no significant reduction in
emissions from European diesel cars. Hence, it is very important to test the vehicles
under real-world driving conditions. Real driving emissions test poses as a hurdle to
manufacturers, as it is difficult to re-create real-world environmental changes, traffic
situations, the behavior of fellow drivers, etc.

A bad representativeness of the test cycle with the real driving conditions may lead
to major errors in the estimated emissions and fuel consumption[13]. Based on the
study by Lujan et al[8], the emission of NOx is highly dependent on the share of a
trip in the urban section, as well as the aggressiveness and driving behavior. This
makes it very much important to have test cycles to evaluate the engine performance
based on real driving characteristics[14]. The real driving data includes the driving
behavior of fellow drivers, aggressiveness, dynamics of driving[15].

1.2 Aim and Objectives

This thesis focuses on the development of an algorithm of a synthetic driving cycle
from the data of real driving trips logged through GPS from 378 privately driven
Swedish cars. The synthetic driving cycle shall involve the desired cycle characteris-
tics within the boundaries of the Real driving emission test protocol. The synthetic
driving cycle is developed based on statistical methods. In more detail, the aim of
the thesis was

• To develop a list of trip parameters that affect the emission and performance
of the vehicle.

• To analyze real driving trips and categorize them through a statistical ap-
proach.

• To group the trip segments and optimize in the most possible flexible way for
obtaining synthetic driving cycles.

• To simulate the driving cycles for estimating fuel consumption and compare
the trip parameters with RDE boundary conditions.

• To present the algorithm, capable to develop a driving cycle from the provided
trip data.

• To make recommendations and create guidelines for the developed driving
cycle.

• To present the method used in the algorithm and the driving cycle in the form
of a master thesis report.

4



1. Introduction

1.3 Outline
The structure of this thesis report is as follows: Chapter-2 describes the theory
for the algorithm development. The methods used are introduced in Chapter-3.
Chapter-4 contains all the essential results and a general discussion related to the
work and conclusions including possible future studies in Chapter-5.

5



1. Introduction

6



2
Theory

It is important to assess various ways to approach the driving cycle construction
and ways to process the available data. Hence, in this section, a brief overview is
provided of theoretical knowledge regarding different forms of approach to construct
a driving cycle, and techniques of data processing .

2.1 Construction models
The development or construction of the driving cycle is very important to determine
emission levels of vehicles under real-traffic driving conditions. A driving cycle de-
scribes the change in the speed of a vehicle throughout the driving. The construction
methods are classified based on the approach to develop the driving cycle.

There are few extensively used methods[16] in the development of driving cycle:

• Micro-Trip based construction.

• Segment based cycle construction.

• Modal based cycle construction.

• Pattern classification cycle construction.

2.1.1 Micro-Trip based construction model
The common approach in cycle construction is Micro-trip based cycle construction[16].
It involves selecting several micro-trips, which yields in better classification of driv-
ing patterns, bounded by a start and stop[17]. In this method of construction, a set
of micro-trips from the real driving data, which can represent the driving pattern
closely, is selected[18]. This method is generally based on specific speed, acceler-
ation, and duration of constraints. The method involves dividing the trips based
on the trip characteristics and assigning them into several bins[19]. This method
is highly suitable for its ’Stop-Go’ situation, to evaluate the emission and fuel con-
sumption under traffic conditions. The selection of several trips for a driving cycle is
supposed to meet the required target parameters. It involves filtering the trips based
on the target parameter as a constraint with the least possible tolerance. The reason
being the analogy - "lower the tolerance - higher the representativeness of trip". In a
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2. Theory

study from Gangamuwa et al.,[19], there are several ways to select the micro-trips;
quasi-random method, random selection, incremental method, statistical methods
like Fourier series, time series analysis, polynomial curve fitting technique.

2.1.2 Segment based cycle construction model

Segment-based cycle construction is based on the specific type of roadway, several
stops, traffic conditions to represent the real traffic conditions, and physical char-
acteristics of the road[19]. The method involves dividing the trips according to the
condition of traffic and physical characteristics based on the target parameters and
the mode of the trip can start with any speed and end with any speed. This method
of construction is highly recommended for the construction of a driving cycle to a
particular type of road due to the fewer number of stops. For better representa-
tiveness, it requires identification of various road categories like highly congested,
residential, highway situations based on their average speeds which increases the
difficulties to match the level of acceleration and speed of various consecutive trips
while chaining them together due to stratified data[20]. Further, this method is
much suitable to develop driving cycles for expressways. It lacks in adjacent starts
and stops. Hence, it is not suitable to measure the emissions level[19].

2.1.3 Modal based cycle construction model

Modal-based cycle construction is based on a specific frequency of driving. It in-
volves the process of dividing the pattern of driving into several dynamic patterns of
acceleration, deceleration, cruising, and idling components[19]. The generated snip-
pets of patterns using the Markov process are selected by assuming the maximum
likelihood through means of clustering a particular event of the modal pattern. The
selected trips are chained to form a driving cycle through a transition matrix based
on the probabilities of successive modal events. The generation of the driving cycle
requires a higher probability of several modal events. Since this method is required
for a larger number of data, it is highly suitable for the regional data population[18].

2.1.4 Pattern classification cycle construction model

This model of cycle construction is focused on the kinematic sequence of the trip.
The group of trips is divided into several classes by a statistical approach[19]. The
kinematic sequence is selected based on maximum likelihood estimation based on
succession probability. This form of approach is highly statistical and European driv-
ing cycles are constructed based on this form of approach. The selected kinematic
sequences are connected to form a certain driving cycle. The form of the driving
cycle entirely depends on the form of the selected kinematic sequence. There are
certain drawbacks to this approach. It requires more information to classify and
divide the kinematic sequences and is a time consuming approach.

8



2. Theory

2.2 Data processing
A fundamental base for any form of data analytical process is to consider the quality
of the primary data. There are several ways to process the data using algorithms
based on the availability of classifiers and predictor; ways which can be grouped
into Supervised learning algorithm and a Unsupervised learning algorithm. A su-
pervised learning algorithm mainly requires certain classifiers for grouping the data.
Regression analysis and Naive Bayes are some of the algorithms helpful under Su-
pervision learning. On the other hand, Unsupervised learning algorithms do not
need pre-determined classifiers to group the data[21]. The grouping of data is based
on the similarities between the data. K-means, Spectral and Hierarchical clustering
algorithms are some of the prominent Unsupervised learning algorithms making it
possible to distinguish the groups clearly.

2.2.1 Supervised learning algorithms
Data processing by the support of certain classifiers is termed as Supervised learning
algorithms. The most abundantly used method is Regression analysis[21]. It is
a classical approach for variables possessing linear variability. Depending on the
number of variables, the method is sub-classified as Simple and Multiple regression
methods. A linear function is modeled by the aid of a dependent and independent
set of variables. Considering regression coefficients (r) and an error parameter( (ε),
the general form of regression model is written as:

y = r0 + r1x1 + r2x2 + ......+ rnxn + ε = (xT
i r + ε) (2.1)

To obtain a full-rank regression model, certain approximation methods have to be
considered and are much necessary for estimating the regression coefficients. The
methods of approximations include Ordinary Least Squares [OLS], Generalized Least
Squares [GLS], Recursive Least Squares [RLS]. The method used to determine the
regression coefficients are different, still, the results appear to be the same. The
minimization approach to minimize the sum of squares of variable differences using
a cost function of order 2 is utilized in the OLS model. While the GLS model tends
to reduce the covariance between the error residuals. The RLS model follows the
same strategy as of OLS model with an addition of an assumption variable. The
models for the variable matrix (X) and co-variance (C) are written as:

OLS Model:
E(r) =

n∑
i=1

(yi − xT
i r)2 (2.2)

GLS Model:
E(r) = (XTC−1X)−1XTC−1y (2.3)

RLS Model:

E(r) + λr = (y −Xr)2

n
+ λr, λ > 0 (2.4)

9
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Another method to classify the dependant variable directly is the Logistic Regression
Method. This method is advantageous for a known categorical independent variable.
It is also possible to use logistic regression for the classification of multiple variables.
Logistic regression is based on the estimation of logarithmic odd values. In the
below equation, ’x’ represents the dependent variables, ’p’ is the probability of the
dependent variable.

ln( p

1− p) = w0 + w1x1 + w2x2 + ......+ wnxn (2.5)

2.2.2 Unsupervised learning algorithms

The method of Unsupervised learning is applicable during the absence of prede-
termined classifiers[21]. Unsupervised learning is focused on grouping the data ac-
cording to the available input features and similarities. It is called as Clustering
technique. The most performed methods are discussed below.

K-means clustering technique is the most popular method and groups the available
data into so called k-groups[22]. A highly efficient approach to make clusters of a
large volume of data is based on its kinematic segments[23]. It tries to group the
data to have large variation between the clustered groups by assigning random data
points, where the data sets are clustered based on the similarity of the classifying
feature[24]. This is made possible by using a k-means minimizing function (Cn)
which reduces the variance between the clusters.

Figure 2.1: The k-means clustering with 3 clusters
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Cn =
k∑

i=1
min(|| Cj − µi ||2) (2.6)

Cn = C1, C2, C3, ...., Ck ∀ k ≤ n (2.7)

A general procedure to perform k-means clustering is as follows:

• Select total number of clusters (k).

• Set the total number of iterations(i).

• Compute Euclidean distance and centroid (Cj) for each cluster (k).

• Initiate the minimization function (Cn).

• Repeat the process to attain convergence or reach maximum iterations.

Spectral clustering is an indirect mode of grouping by projecting the data in various
spatial dimensions. Spectral clustering uses the concept of Graph theory and min-
imizes the similarities between the clusters. It is done by determining the affinity
matrix using the Euclidean distance of the data and converting the affinity matrix to
the Laplace matrix. To keep the process simple and easy, eigenvalues of the Laplace
matrix are determined to reduce the spatial dimension. The obtained eigenvalues
are clustered into several clusters. The feature of the Laplace matrix eigenvalues
tends to be smooth at highly dense areas. This makes it easy to recognize and group
the data. Considering, Aij as the affinity matrix, the diagonal matrix of same order,
the Laplace matrix L, can be computed as:

Aij =
n∑

i=1

n∑
j=1
|| xi − xj ||2) (2.8)

L = D −W (2.9)

Figure 2.2: Cluster methods
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2.3 Performance Evaluation

One of the most important aspects after processing the data is to determine the per-
formance aspect of the applied method. When following the strategy of Supervised
learning, the performance is evaluated through the method of Cross-validation and
Train/Test split strategy. The performance of Unsupervised learning methods is de-
pendant on the number of clusters, and hence, it is required to determine the most
optimal number of clusters in an Unsupervised learning strategy[21]. Harabasz(CH)
index, Silhouette coefficient, and Davies - Bouldin (DB) index are the most effective
methods to determine the optimal number of clusters.

2.3.1 Supervised learning

The Train/Test split strategy is the simplest performance evaluation method for
Supervised learning. In this method, the provided data is partitioned rationally
into the training set and testing set. The Cross-validation methods are of different
types, such as, k-fold cross-validation, repeated k-fold cross-validation, leave-one-
out cross-validation, stratified k-fold cross-validation, leave P-out cross-validation.
They are similar to each other, though. The k-fold cross-validation process involves
dividing the data-set equally and training the model by using k-1 folds, repeating
the procedure until all the folds are tested and performance scores are evaluated
on each fold. The Stratified k-fold cross-validation is a systematic variation of k-
fold cross-validation. It involves maintaining the ratio between the target groups
and the same process is followed as k-fold cross-validation. Similarly, repeating the
k-fold validation process for pre-defined n-times yields the ’Repeated k-fold cross-
validation’ method.

Leave-one-out cross-validation involves the process of formulating subsets and test-
ing them by dropping one sample at a time and repeating the process until all sam-
ples are tested. For example, if the data set has n-samples, the supervised model
shall be trained for (n-1) samples. This makes it a complex approach of computation
due to the occurrence of variance in every iteration due to varying subsets. Further,
accuracy tends to be the performance factor in the above-said methods. Accuracy is
directly related to the performance of the supervised model. Care should be taken
since accuracy is not a strong classifier to differentiate between the methods.

2.3.2 Unsupervised learning

Estimating the optimal number of clusters is the main parameter in the performance
evaluation of the unsupervised model. There are various methods to determine the
optimal number of clusters based on the strategy, and the most popular methods
are discussed in this section.
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2.3.3 Silhouette coefficient
The Silhouette coefficient is the measure of similarity of observation in its cluster
group in comparison with the other cluster group. It is represented as :

SIc = Dc − di

max(Dc , di)
(2.10)

Here Dc is the average distance between objects in the set of the cluster (C). This is
termed as ’Distance within the clusters’. Average distance of an object from the near-
est cluster group di is termed as ’Distance between the clusters’. The performance
is evaluated on the value of the Silhouette coefficient. The higher the Silhouette
coefficient - the higher the number of distinguished cluster groups. The coefficient
ranges between -1 to +1: +1 denotes well-separated cluster groups and -1 means
the opposite.

2.3.4 Davies - Bouldin (DB) index
The coefficient of similarity, when measured as the average distance between the
centroids (Ci) of clusters (k) is termed as Davies - Bouldin index, or in short, DB
index. For a well-separated cluster set, the DB index lies close to 0, representing a
greater distance between the cluster centroids. DB index is given as:

DBc = 1
k

k∑
i=1

max(Ci) (2.11)

2.3.5 Calinski-Harabasz (CH) index
Amethod to evaluate the performance by considering ’within-the-cluster variance(WCV)’
and ’between-the-cluster variance (BCV)’ is Calinski-Harabasz index or CH index.
Considering the clusters k, BCV symbolizes the size of the variation between the
clusters. For ni samples in a dataset with Ci cluster centroids and mean distance
between the samples µ, BCV can be written as:

BCV (k) =
k∑

i=1
ni || Ci − µ ||2 (2.12)

Similarly, considering the Euclidean distance between the data sample x and cluster
centroid Ci, WCV, depicting the variation between the data samples in every cluster
group, can be determined as.

WCV (k) =
k∑

i=1
|| xi − C2

i || (2.13)

By definition of CH index, considering total n number of samples with k number of
cluster groups, higher CH index represents well-separated cluster groups. It can be
written as:

CH =
(
n− k
k − 1

)
BCV (k)
WCV (k) (2.14)
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In brief, due to the possibility of processing the available data in numerous ways us-
ing an unsupervised model, it is always a difficult task to choose a procedure to pro-
cess and evaluate the performance. Based on the study conducted by the authors[25],
for a moderate set of clinical data to compare the clustering algorithms, it is said
to be entirely dependent on the quantity of data set. Various algorithms exhibit
several different properties, making it difficult to draw a fair conclusion, although
the authors value using the k-means algorithm and evaluating the performance with
CH index[26] [27].

2.4 Simulation model

In this work, QSS toolbox in the Simulink is used to create a simulation model of
a vehicle system. The QSS toolbox is extremely helpful to determine the fuel con-
sumption of vehicle powertrain. The toolbox consists of various masks or blocks,
required for modeling in a quasi-static approach. In the quasi-static approach, forces
are computed within the masks from the provided velocity and acceleration data.
The toolbox consists of a library involving various blocks to model Electric vehicles,
Hybrid vehicles, Conventional vehicles with various forms of powertrain systems.

The important elements of the QSS library are:

• Driving cycle

• Controller

• Vehicle

• Gear system

• Energy converter

• Energy buffer

• Energy source

These elements have multiple blocks and are used in simulation models based on
the type of vehicle. Brief overviews about the blocks useful in this work are focused
in this section.

2.4.1 Vehicle model

A simple conventional vehicle model system was created in Simulink using the QSS
toolbox. The model is presented in fig:2.3. The model contains the Driving cycle,
Vehicle model, Wheel model, Transmission system, IC Engine and Fuel source.
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Figure 2.3: Simulation model with IC engine in Simulink

The QSS model uses a quasistatic approach. It requires input of velocity, accelera-
tion and distance. The block or mask Driving cycle (fig:3.2) is an input section for
the rest of the simulation model. The driving cycle should be present in the QSS
toolbox database in-order to select the cycle for simulation.

Figure 2.4: Driving cycle block

The vehicle block in the model requires the physical data of the vehicle. That
includes weight, the frontal area of cross-section, drag and rolling resistance coef-
ficients. Also, the diameter of the vehicle wheel is provided in the wheel block of
the model. These parameters are essential for the model to compute the driving
force required. The transmission is an essential part of the transfer of the power
from engine to wheel. Hence, the model has to be provided with gear ratios of
the powertrain in the transmission or Geax box block. The type of engine and the
maximum power of the engine is provided in the Combustion engine block. In the
final block, the type of fuel is provided to determine fuel consumption on simulation.
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3
Methodology

This chapter focuses in detail the used methodology. It includes sections on the
used real driving data, an approach using a construction model, various statistical
computations to initiate data processing, D-optimal design approach, acquisition
of the constructed driving cycle, and finally the simulation of the driving cycle in
Simulink. Matlab is used for computation and writing the algorithm.

3.1 Real driving data
The used driving data set is obtained from ’The Swedish car movement data project’ [28].
The project involved gathering and analyze a large amount of data regarding the
patterns of privately driven vehicles within Sweden. The data were collected using
GPS equipment between June 2010 and Sept 2012. The cars were chosen by a ran-
dom stratified selection from the Swedish vehicle registry. The data from the project
is confined to the use of type-1 passenger cars of model year 2002 or younger, reg-
istered in Västra Götaland county and Kungsbacka municipality. The stratification
was performed on the properties urban/rural, age, weight, fuel, private/company
car.

3.1.1 Data logger and data handling
The data logger unit utilized a GPS logger combined with a GSM modem available
from Host Mobility, which operates at 12VDC. The signals logged from this unit
are:

• Timestamp (current and last valid)

• Position (latitude, longitude and altitude)

• Velocity (speed and direction)

• Used satellites (identity)

• Dilution of precision (pdop, hdop, vdop)

• Over-the-air-provision OTAP

The data has been divided into trips and stored together with statistics on trip and
vehicle level. Filtered trip data in the form instant power at the wheels for a stan-
dardized vehicle derived for estimating the potential for brake energy regeneration
[26] makes up the input of real driving data to this study.
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3.2 Approach to construction model
There are multiple ways to construct a driving cycle from the available real-world
driving data. As mentioned in section 2.1, the models are differentiated through
the process of driving cycle construction using micro-trips, driving segments, modal
frequency, and driving patterns. The real driving data collected at various locations
contain dis-similar driving patterns and irregular driving routines. This makes it
easier to choose a micro-trip-based model to construct the driving cycle.

3.2.1 Micro-trips segmentation
A trip or driving pattern containing one-start and one-stop makes is here defined as
a micro-trip. The used real driving trips may contain long and continuous driving
patterns with multiple starts and stop as shown in fig:3.1. The real driving trips
are therfore segmented into numerous short-duration micro-trips involving one start
and one stop, which contains phases of acceleration, deceleration, cruising, etc.
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Figure 3.1: Real driving trip

3.2.2 Micro-trips calibration
The vehicles was logged with a sampling rate of 0.4 seconds. Some of the micro-trips
are prone to errors[29], for instance, due to the start-up delays in the GPS system.
Errors may include sudden rise or fall of vehicle velocity beyond the feasible limits.
Such micro-trips are grouped and are interpolated linearly to fill the gap in the
micro-trips data. This is much necessary to avoid discarding several trips that would
contain important characteristic features of real driving. It is highly important to
make it possible for testing in a test rig or virtual simulation.
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Figure 3.2: Example of segmented micro-trip
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Figure 3.3: Example of segmented micro-trip
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3.3 Data processing
The generated micro-trips are utilized to group them based on the similarities. Due
to the absence of classifiers to group the data, an unsupervised learning algorithm
method is applied using the k-means clustering technique. However, it is important
to compute vital necessary trip parameters prescribed by the European Union on
the test procedure for Real Driving Emissions (RDE) for light commercial vehicles
in Europe[1].

3.3.1 Trip parameters
Here it is focused on few vital parameters like trip distance, the average speed of trip,
and 95th percentile of VApos. VApos, which is the product of velocity and positive
acceleration. It describes the aggressiveness of the trip. These trip parameters
are computed for all the micro-trips and form the input features for the clustering
procedure. The available data is vast. It includes very long trips (fig:7.3 and 7.4)
and very short trips. Long trips greater than 3000 seconds and short trips less than
500 meters of distance traveled are excluded for further process.

3.3.2 k-means clustering
k-means clustering is the most popular method of grouping the data based on their
similarities and the one used here. The procedure of k-means clustering is followed as
explained in section 2.2.2. The computed trip parameters: trip distance, the average
speed of trip, and 95th percentile of VApos, are the input features for clustering.

Figure 3.4: k-means clustering with 22 clusters

A 3-dimensional k-means clustering is deployed in MatLab. Due to the vast set of
data, the iteration is limited to 10. The clusters are increased from few to many to
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determine an optimal number of clusters k. The k-means clustering data of various
clusters are further shown in the appendix.

3.3.3 Cluster performance evaluation
The performance of the clusters is evaluated based on CH Index. CH index is
obtained by determining BCV and WCV using the formulae 2.12 and 2.13. TThe
value of BCV tends to increase as the number of clusters increase. Similarly, on
increasing the number of clusters, the value of WCV decreases. Fig: 7.5 in the
appendix, shows the variations of BCV and WCV for various clusters. From the
value of BCV and WCV for every cluster k, the CH index is estimated using the
formula 2.14. The cluster with a high CH index tends to be the best cluster with
good data separation. Variation in CH index for various clusters is shown in fig:
3.5.
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Figure 3.5: Variation of CH index for various clusters
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3.3.4 Cluster grouping

From the evaluation of cluster performance, the cluster with the best CH index is
selected. To develop a Driving cycle from Real-world driving data, it is necessary to
consider the RDE requirements on the trip parameters for the test cycle. The trip
parameters requirements are presented in the table: 3.1

Parameter Segment Value

Distance
Urban >16 km
Rural >16 km
Motorway >16 km

Average Speed
Urban 15 - 40 km h−1

Rural 60 - 90 km h−1

Motorway >100 km h−1

95th VApos

Urban <18.7 m2 s−3

Rural <24.3 m2 s−3

Motorway <26.6 m2 s−3

*Source : Test procedure for RDE by European Union[1]

Table 3.1: Trip Parameters for Test cycle

Figure 3.6: Proposed driving cycle sequence
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Figure 3.8: Motorway group

In the RDE test procedure, the test cycle should contain Urban, Rural, and Motor-
way segments (fig: 3.6). Based on the average speed of the micro-trips, the clustered
data are grouped into such segments. fig: 3.7 shows the percentage of trips in each
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segment. For the motorway segment, variations between the micro-trips are pre-
sented in fig: 3.8. The variation graphs for the other two segments are depicted in
fig: 7.6 and 7.7

3.4 Cycle development
This work aims at developing an algorithm, that could potentially create a driving
cycle, according to the RDE test cycle conditions.Various conditions prescribed by
the European Union for the driving cycle are presented in the table: 3.2. A vast
amount of micro-trips are present in the Urban segment (fig:3.7). It is therefore
important to select those trips that are within the RDE test conditions.

Parameter Segment Value
Cycle duration - 90 to 120 minutes

Distance
Urban >16 km
Rural >16 km
Motorway >16 km

Average Speed
Urban 15 - 40 km h−1

Rural 60 - 90 km h−1

Motorway >90 km h−1

95th VApos

Urban <18.7 m2 s−3

Rural <24.3 m2 s−3

Motorway <26.6 m2 s−3

RPA
Urban >0.13 m s−2

Rural >0.06 m s−2

Motorway >0.03 m s−2

Maximum Speed - <160 km h−1

Stop Percentage - 6 to 30% Urban duration
*Source : Test procedure for RDE by European Union[1]

Table 3.2: Conditions for Real Driving Emission Test cycle

3.4.1 D-Optimal Design
A computer algorithm could be used to optimize and choose the data based on
desired criteria. The D-Optimal design tends to reduce the parametric variations
concerning desired parameters in the specified model. The D-Optimal design is car-
ried out in Matlab using its inbuilt algorithm ’Candexch’- representing row exchange
algorithm to determine an optimal design. A total of 3 design matrices comprising
of Average speed, 95th VApos, RPA, Maximum speed, are used. Distance are created
from the grouped trips in Urban, Rural, and Motorway segments. It is essential to
set constraints for optimization of data, hence, the design matrix is constrained by
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the parameters from table:3.2 specifically.

The created design matrix of each segment is filtered based on the design constraints
and are updated. The figure 3.9 presents the total percentage of micro-trips in each
segment after filtering the data. Then D-Optimal design is deployed on the design
matrices.
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Figure 3.9: Filtered micro-trips in segments
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Figure 3.10: Median duration of micro-trips in urban segment

It is necessary to select and combine a number of micro-trips to create a driving
cycle. The final driving cycle should have a total duration of between 90 to 120
minutes. Hence, the number of trips from each segment is determined based on the
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median micro-trips duration. From the fig:3.10 it can be deduced that the median
duration of the micro-trips in the urban segment is roughly 3 minutes. From the
fig:7.8 and fig:7.9, we get the median duration of approximately 31 and 35 minutes
for the rural and motorway segments, respectively. Based on the duration constraint
only one micro-trip can be chosen from the rural segment and motorway segment. A
total of 7 trips is possible to select from the urban segment. Hence, the trips ratio is
7:1:1 for urban, rural, and motorway segments. The D-optimal design optimizes the
design matrices of each segment and selects the mentioned number of micro-trips
from each design matrix to create a driving cycle.

3.5 Driving cycle formation and Simulation
The optimized micro-trips obtained from the D-optimal design are joined together.
The process of joining the micro-trips is based on the sequence illustrated in fig:3.6.
A total of 10 driving cycles are developed from the process using the algorithm.
Further, the thesis also strengthens the ability to simulate the derived driving cycle
by using a simulation model. The developed driving cycles are used to obtain the
required inputs for the simulation models in Simulink - velocity, time, acceleration.
.

3.5.1 Simulation settings
The simulation model requires certain data regarding gear ratios and maximum
power generated by the combustion engine at its rated rpm. For the simulation,
the technical features of the Volvo XC40 are chosen. These features are listed in
table:3.3.

Parameter
Engine Gasoline Diesel

Maximum Engine Speed (rpm) 6000 4500
Maximum Power Output (kW) 120 110
Rated Engine Speed (rpm) 5500 3750
First Gear 3.583 3.583
Second Gear 2.048 2.048
Third Gear 1.310 1.310
Fourth Gear 0.919 0.919
Fifth Gear 0.69 0.69
Sixth Gear 0.578 0.578
Reverse Gear 3.333 3.333
Final Drive 4.563 4.056
Payload (kg) 1900 1900

*Source : Volvo cars home page[30]

Table 3.3: Settings for Engine and Gear box block in simulation models
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Parameter
Engine

Gasoline Diesel

Area of cross-section (m2) 2.56 2.56
Drag co-efficient 0.34 0.34
Rolling resistance co-efficient 0.01 0.01
Wheel diameter (m) 0.4572 0.4572

*Source : Volvo cars home page[30]

Table 3.4: Settings for Vehicle block in simulation models

Figure 3.11: Screenshot of gearbox block settings in simulation model

27



3. Methodology

The upshift and downshift speeds in the gearbox settings are calculated based on
the engine rpm (fig:3.11) . The equation used to determine upshift speed is provided
in eq:3.1. The calculation is based on the rated engine speed (Ne), wheel radius (r),
gear ratios (ig), and final drive ratio (if ). The required driving cycle is selected
in the driving cycle selection block to proceed with simulation. Data of several
other settings are mentioned in table:3.4. A complete data of simulation settings
are presented in appendix-2, for reference. Also, for the diesel engine model another
set of gear ratios are used

V = Ne ∗ 2π ∗ r
ig ∗ if

(3.1)

3.5.2 Simulation Outputs
As explained in section:2.4 each driving cycle is selected manually from the library for
simulation. The output from the simulation is noted manually for each driving cycle
on each model separately. The fuel consumption and BSFC are used to determine
the efficiency of the engine. Along with fuel consumption and BSFC, it is also
possible to extract the information on engine operation points with BSFC iso-plots.
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Results

The developed cycles are analyzed for the trip parameters and compared with RDE
test cycle parameters. Those results are presented in this section, along with the
outputs from the simulation model, when using the developed cycles.

4.1 Developed driving cycles
The developed driving cycles are derived by combination of optimized trips of urban,
rural, and motorway sections, as discussed in the section:3.4. A total of 10 driving
cycles are created from the real driving data.

Figure 4.1: Synthetic Driving Cycle - 1

In figure:4.1, one of the developed cycles is presented. The combinations of micro-
trips are optimized to possess the required cycle criteria of the RDE test cycle. The
multiple starts and stops in the urban section tend to possess driving in city limits.
The urban section emulates stops due to signals, pedestrians crossing, etc. The rapid
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acceleration and deceleration in urban sections are a result of several interferences
in the path, such as lane additions, vehicle overtakes, etc. The rural and motorway
sections possess a long driving path with less change in vehicle velocity. The com-
bination of urban, rural and the motorway section resembles a real driving scenario
of the vehicle starting from home - moving across residential road way and joining
the motorway at the exit. It is important to compute the trip parameters and verify
them. It is also important to understand the aggressiveness of the driving cycle. As
per the RDE requirement, the cycle should not be too smooth. The second subplot
in figure:4.1 represents the 95th VApos of the cycle developed and presented in the
first subplot.

The tables:4.1 and 4.2 provides the values of trip parameters computed from the 10
developed cycles. The tabular columns show the comparison with the values of RDE
test cycle requirements. The trip parameters obtained by the developed cycles lie
within the boundary conditions of RDE requirements, making it useful for testing
and analysis of a vehicle’s RDE emission. The aggressiveness value of the cycles
in motorway segments tends to be lower than other segments. At high speeds, the
change in velocity is lower than at other speeds.

Parameters Segment RDE Cycle-1 Cycle-2 Cycle-3 Cycle-4 Cycle-5

Distance (km)
Urban >16 21.89 17.04 21.89 20.91 21.89
Rural > 16 44.49 43.49 32.64 40.04 44.46

Motorway > 16 52.59 56.56 61.70 52.59 56.56

Average Speed
(km h−1)

Urban 15 - 40 30.09 28.23 30.09 29.38 30.09
Rural 60 - 90 72.60 65.18 69.98 73.39 72.68

Motorway >100 101.68 109.9 108.46 101.68 109.9

95th VApos

(m2 s−3)

Urban < 18.7 15.89 16.37 15.89 16.11 15.89
Rural < 24.3 18.55 17.24 19.43 20.16 18.55

Motorway < 26.6 15.79 17.87 17.64 15.79 17.87
Total - 19.61 19.56 19.75 20.12 20.175

RPA (m s−2)
Urban > 0.13 0.144 0.146 0.144 0.14 0.144
Rural > 0.06 0.064 0.074 0.064 0.066 0.064

Motorway > 0.03 0.034 0.036 0.031 0.034 0.036
Max Speed
(km h−1)

- <160 138.17 134.48 124.26 138.17 134.42

Stop
Percentage %

- 6 - 30 18.32 22.08 18.32 19.92 18.32

Duration (min) - 90 - 120 111.58 107.28 105.9 105.6 111.41

Table 4.1: Parametric comparison of developed driving cycle with RDE - 1
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4. Results

Parameters Segment RDE Cycle-6 Cycle-7 Cycle-8 Cycle-9 Cycle-10

Distance (km)

Urban > 16 21.82 21.89 18.57 20.91 18.57

Rural > 16 44.33 38.10 42.75 33.62 38.64

Motorway > 16 56.34 52.59 52.59 52.59 61.70

Average Speed

(km h−1)

Urban 15 - 40 30.09 30.09 28.78 30.1 28.78

Rural 60 - 90 78.77 75.78 75.55 67.35 71.12

Motorway >100 100.31 101.68 101.68 108.46 101.68

95th VApos

(m2 s−3)

Urban < 18.7 15.87 15.87 15.91 16.117 15.91

Rural < 24.3 18.96 19.19 19.98 18.80 18.32

Motorway < 26.6 11.78 15.79 15.79 15.79 17.64

Total - 18.59 19.57 20.04 19.56 19.61

RPA (m s−2)

Urban > 0.13 0.144 0.144 0.145 0.144 0.145

Rural > 0.06 0.061 0.064 0.065 0.066 0.066

Motorway > 0.03 0.03 0.034 0.034 0.031 0.034

Max Speed

(km h−1)
- <160 124.29 138.17 138.17 124.26 138.17

Stop

Percentage %
- 6 - 30 18.32 18.32 20.66 19.19 20.62

Duration (min) - 90 - 120 111.28 105.017 103.86 102.81 105.61

Table 4.2: Parametric comparison of developed driving cycle with RDE - 2

4.2 Simulation results
The developed cycles are used to generate required input data for simulation. A
car model is simulated with two different combustion engines as mentioned in sec-
tion:3.5.1. The total fuel consumption is determined, along with a BSFC plot. The
BSFC contour plots in figure:4.2 and 4.3 represent gasoline engine and diesel engine,
respectively. The BSFC plots depict the engine operating points needed for achiev-
ing the force required for propulsion. In turn, the operating points determine the
fuel consumption of the vehicle to complete the driving cycle.

The fuel consumption and BSFC value of each cycle simulation for both the models
are tabulated in table:4.3. The simulation model is optimized with up-shifts and
down-shift speed limits for one driving cycle. The strategy of this optimization is to
run the engine at points facilitating low fuel consumption, in other words, trying to
run the engine at its ’sweet spot’. Varying the up and down-shift speeds will bring
a change in the engine operating point and results in different fuel consumption.
Hence, the speeds are (manually) optimized so as to obtain the required maximum
torque in the cycle.
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Figure 4.2: BSFC plot of Gasoline engine for Cycle - 1
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Figure 4.3: BSFC plot of Diesel engine for Cycle - 1
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4. Results

Cycle
Gasoline Diesel

Fuel Consumption BSFC Fuel Consumption BSFC
(ltrs/100km) (g kW−1 h) (ltrs/100km) (g kW−1 h)

Cycle-1 10.79 259.4 6.612 192.2
Cycle-2 10.49 248 6.395 182.9
Cycle-3 10.38 243.1 6.311 17.9
Cycle-4 10.74 245.9 6.583 182.5
Cycle-5 10.78 266.9 6.567 196.9
Cycle-6 10.51 258.7 6.39 190.8
Cycle-7 10.66 242.8 6.581 181.1
Cycle-8 10.98 251.6 6.749 187.4
Cycle-9 10.54 228.6 6.452 169.1
Cycle-10 10.43 249.5 6.353 184.2

Table 4.3: BSFC and fuel consumption from simulation

4.3 Regression analysis
The relation between the mean VApos and specific fuel consumption have been deter-
mined using a 1-degree linear regression. The figure:4.4 depicts the relation between
VApos and fuel consumption. The linear regression coefficients for Mean-VApos are
tabulated in table:4.4 for the equation:

Y = A ∗X +B (4.1)

where Y is the Fuel consumption, and X is the mean VApos.

Parameter Gasoline Diesel
A 0.307 0.215
B 8.2733 4.84

Table 4.4: Regression co-efficients

The fuel consumption is directly dependent on the VApos or aggressiveness: Higher
aggressiveness, leads to higher fuel consumption.

For comparison, the figures:7.40 and 7.41 show the relation of fuel consumption with
95thVApos, but the fit of this regression was worse. Further, linear regression was
carried out for RPA and the Mean velocity of each cycle. The correlations of RPA
to Mean velocity for various sections are shown in figures: 7.42, 7.43, 7.44, 7.45.)
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Figure 4.4: Fuel consumption dependency on Mean-VApos

4.4 Discussions
The obtained driving cycles from the algorithm show favorable values when com-
pared with the RDE test cycle requirements. The tables:4.1 and 4.2 show the trip
parameters in comparison with RDE requirements. The trip distance segments are
unevenly distributed due to the absence of short trips in the used data. From the
figure:4.1, the value of 95th VApos reduces with an increase in velocity of the vehicle.
As the velocity of the vehicle increases, the changes in velocity tends to decrease.
Due to the reduction in change of velocity, the overall value of 95th VApos starts to
decrease.

The results from the simulation for fuel consumption tabulated in table:4.3, shows
a large deviation between gasoline and diesel engine. This is because the engine
lacks calibration to operate at sweet spot, resulting in higher BSFC for a gasoline
engine than that of diesel engine. Calibration of the up-shift and down-shift speed
required for gear transmission will result in lower fuel consumption. The engine used
for simulation has different power for gasoline and diesel, since, original data of the
vehicle is used in simulation settings. Also, these simulations helps to understand
the variation in fuel consumption based on the driving cycle behaviour. Fuel con-
sumption tend to increase with mean-VApos. Trips with higher aggressiveness tend
to have higher fuel consumption than the trips with low aggressiveness.
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5
Conclusion

Real-world driving data obtained from 378 Swedish cars were used. The data com-
prised filtered velocity data derived from ´GPS measurement. An algorithm was
written to generate RDE driving cycles from the data.

The micro-trip-based construction model is found to be effective to analyse the vari-
ation of aggressiveness between cycles. The calibration of data in micro-trips to
remove the GPS errors uses the linear interpolation method. This makes it too
passive for and far from reality. The use of the unsupervised model in this thesis is
found to be highly efficient. It helped in grouping the data based on the trip pa-
rameters to comply with RDE test procedures. The CH-index method to determine
the best number of clusters resulted in grouping the trips to yield better between
the cluster variation and with-in-cluster variation. The number of clusters found to
be optimal to classify the data groups based on their parameters.

The importance to filter the data based on the RDE requirements is facilitated by
D-optimal design. It includes the filtration of data and the creation of a design ma-
trix for the filtered data. The D-optimal design led to maximization of the design
matrix to select the best possible trip relating closely to the required trip param-
eters in the RDE test procedure. The number of micro-trips for each segment of
the driving cycle is determined to have a total trip duration within the guidelines.
Hence, a ratio of 7:1:1 between Urban, rural, and Motorway micro-trips is chosen.
The selected micro-trips are joined to have a complete driving cycle from the real
driving data.

The simulation model developed in Simulink represents normal IC engines combined
with a manual gearbox. The driving cycles generated are simulated using the model
to determine the specific fuel consumption. This results in a considerably higher fuel
consumption in the gasoline engine than in the diesel engine. This is mainly due to
the engine operation points, though. Hence they should be properly calibrated as
much as close to reality to obtain better results in this part.

The results from a regression analysis focus on the relationship between the mean
value of VApos and fuel consumption. The fuel consumption increases with the mean
VApos. Due to the lack of well-spread data concerned to 95th VApos, it is a bit hard
to determine its relation with fuel consumption.
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5. Conclusion

The thesis is aimed at generating an algorithm to create a driving cycle from the
real driving data, including calibration, selection, and joining of trips. It begins with
data selection, trip segmentation, clustering, selection of best cluster, grouping the
clustered data in segments of urban, rural, motorway sections. D-optimal design
for each section is deployed and the algorithm completes with the generation of the
final driving cycle.

An analysis of the driving cycle is done separately based on the focus of the analysis
aspect. Hence, for future studies, it will be interesting to use a Supervised learning
algorithm to generate a driving cycle and visualize the changes in the developed
driving cycle. Using a more advanced model for simulation would be much more
helpful to determine highly satisfactory results in terms of fuel consumption.
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6
Appendix I

Symbol Meaning Unit

Accavg Average Positive Acceleration m s−2

Dccavg Average Negative Acceleration m s−2

Aavg Average Acceleration m s−2

Vavg Average Speed m s−1

Pavg Average Power kW kg−1

Tacc Duration of Positive acceleration s

Tdcc Duration of Negative acceleration s

Ttrip Duration of Trip s

Tidle Duration of Idle s

Vmax Maximum Speed m s−1

K Number of Clusters −

Tcycle Obtained Cycle Duration s

Ttarget Required Cycle Duration s

σacc Standard deviation of Positive acceleration m s−2

σdcc Standard deviation of Negative acceleration m s−2

Σstop Total Stops −

Σtrips Total trips −

δerror Relative error %

∆error Absolute error −

φA Calculated value −

φE Expected value −

Table 6.1: Acronyms
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Appendix II

7.1 Model testing cycles

Figure 7.1: ECE 15 Cycle

Figure 7.2: EUDC Cycle
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7. Appendix ii

7.2 Long haul trips
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A sample of long duration trip, removed from the accumulated real driving data. The trip shows
the driving pattern longing for several hours without a stop.

Figure 7.3: Long haul micro-trip - 1
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A sample of long duration trip, removed from the accumulated real driving data. The trip shows
the driving pattern longing for several hours without a stop.

Figure 7.4: Long haul micro-trip - 2
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7.3 Cluster variations
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Figure 7.5: Between and Within Cluster Variations
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7.4 Micro-trips grouped data

Figure 7.6: Urban Group

75 80 85 90 95 100

Distance travelled (Kms)

0

50

V
A

p
o

s
9

5
 (

m
2
/s

3
)

75 80 85 90 95 100

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

50 55 60 65 70

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

40 50 60 70

Distance travelled (Kms)

0

50

V
A

p
o

s
9

5
 (

m
2
/s

3
)

40 45 50 55 60 65

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

40 45 50 55 60 65

Distance travelled (Kms)

0

20

40

V
A

p
o

s
9

5
 (

m
2
/s

3
)

0 5 10 15 20 25

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

0 5 10 15 20 25

Distance travelled (Kms)

0

10

20

V
A

p
o

s
9

5
 (

m
2
/s

3
)

30 35 40 45

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

30 35 40 45

Distance travelled (Kms)

0

20

40

V
A

p
o

s
9

5
 (

m
2
/s

3
)

60 65 70 75 80

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

60 65 70 75 80

Distance travelled (Kms)

0

50

V
A

p
o

s
9

5
 (

m
2
/s

3
)

30 35 40 45 50 55

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

30 35 40 45 50 55

Distance travelled (Kms)

0

50

V
A

p
o

s
9

5
 (

m
2
/s

3
)

20 25 30 35

Distance travelled (Kms)

0

20

40

V
A

p
o

s
9

5
 (

m
2
/s

3
)

20 25 30 35

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

60 70 80 90 100

Distance travelled (Kms)

0

50

V
A

p
o

s
9

5
 (

m
2
/s

3
)

70 80 90 100

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

10 15 20 25 30

Distance travelled (Kms)

0

50

V
A

p
o

s
9

5
 (

m
2
/s

3
)

10 15 20 25 30

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

0 10 20 30

Distance travelled (Kms)

20

30

40

V
A

p
o

s
9

5
 (

m
2
/s

3
)

0 10 20 30

Distance travelled (Kms)

60

70

80

90

A
v
g
 s

p
d
 (

K
m

p
h
)

Figure 7.7: Rural Group
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7.5 Design constraints
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Figure 7.8: Median duration of micro-trips in rural segment
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Figure 7.9: Median duration of micro-trips in motorway segment
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7.6 Simulation settings

Figure 7.10: Screenshot of driving cycle block settings in simulation model

Figure 7.11: Screenshot of vehicle block settings in simulation model
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Figure 7.12: Screenshot of engine block settings in simulation model
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7.7 Developed driving cycles

Figure 7.13: Synthetic Driving Cycle - 2

Figure 7.14: Synthetic Driving Cycle - 3
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Figure 7.15: Synthetic Driving Cycle - 4

Figure 7.16: Synthetic Driving Cycle - 5

51



7. Appendix ii

Figure 7.17: Synthetic Driving Cycle - 6

Figure 7.18: Synthetic Driving Cycle - 7
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Figure 7.19: Synthetic Driving Cycle - 8

Figure 7.20: Synthetic Driving Cycle - 9
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Figure 7.21: Synthetic Driving Cycle - 10
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7.8 Simulation results - BSFC
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Figure 7.22: BSFC plot of Gasoline engine for Cycle - 2
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Figure 7.23: BSFC plot of Diesel engine for Cycle - 2
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Figure 7.24: BSFC plot of Gasoline engine for Cycle - 3
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Figure 7.25: BSFC plot of Diesel engine for Cycle - 3
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Figure 7.26: BSFC plot of Gasoline engine for Cycle - 4
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Figure 7.27: BSFC plot of Diesel engine for Cycle - 4
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Figure 7.28: BSFC plot of Gasoline engine for Cycle - 5
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Figure 7.29: BSFC plot of Diesel engine for Cycle - 5
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Figure 7.30: BSFC plot of Gasoline engine for Cycle - 6
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Figure 7.31: BSFC plot of Diesel engine for Cycle - 6
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Figure 7.32: BSFC plot of Gasoline engine for Cycle - 7
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Figure 7.33: BSFC plot of Diesel engine for Cycle - 7
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Figure 7.34: BSFC plot of Gasoline engine for Cycle - 8
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Figure 7.35: BSFC plot of Diesel engine for Cycle - 8
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Figure 7.36: BSFC plot of Gasoline engine for Cycle - 9
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Figure 7.37: BSFC plot of Diesel engine for Cycle - 9
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Figure 7.38: BSFC plot of Gasoline engine for Cycle - 10
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Figure 7.39: BSFC plot of Diesel engine for Cycle - 10
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7.9 Regression analysis
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Figure 7.40: Fuel consumption dependency on 95thVApos - Gasoline
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Figure 7.41: Fuel consumption dependency on 95thVApos - Diesel
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Figure 7.43: Fuel consumption dependency on RPA - Diesel
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8
Appendix III

8.1 Data division

8.1.1 Handling original data
The data set obtained from ’The Swedish car movement data project’ consists of
several data logs of each trip in form of .mat files. The data files are created based
on the vehicle numbers. Hence, a MATLAB script is used to extract the data from
all .mat files.

1 % To load f i l e s
2
3 f o r k = 1 : l ength ( matFi les ) % a l l t r i p s to be eva luated
4
5 f p r i n t f (1 , ’Now read ing %s \n ’ , matFi les ( k ) . name) ;
6 matData ( k ) = load ( matFi les ( k ) . name) ;
7
8 f o r i =1: l ength ( matData ( k ) . MasterThesis . Speed )
9

10 Speed{k } . Trip { i } =ce l l 2mat ( matData ( k ) . MasterThesis . Speed ( i ) ) ;
11 A c c e l e r a t i o n {k } . Trip { i } =ce l l 2mat ( matData ( k ) . MasterThesis . A c c e l e r a t i o n ( i ) )

;
12
13 end
14
15 f p r i n t f (1 , ’ Completed %s \n ’ , matFi les ( k ) . name) ;
16
17 end

8.1.2 K-means clustering method
The data set to begin with K-means clustering is stored as ’Grouped_Trips.mat’. This file
contains cell arrays of micro trips grouped into Urban trips, Rural trips, Motorway trips,
Long trips, and Extra-long trips. They are grouped based on the average speed and trip
duration. The results of K-means clusters are present in ’Clustered_data.mat’. It contains
a k-number of structures comprising cell arrays of velocity, average speed, VApos95 and
total distance of each micro trip. Since 22 is found to be the best k-value in this thesis
work, the data file has 22 structure groups. The ’Clustered_data.mat’ data file can be
utilized for various statistical plots. A brief script for deploying k-means clustering and
grouping the dataset is presented below.
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1 %% K−Means c l u s t e r i n g
2
3 Average_Spd_MT = All_Trips . Average_Speed ;
4 Distance_f ixed = All_Trips . Distance ;
5 VA_pos_95 = All_Trips . VA_pos_95 ;
6 Microt r ip s_f ixed = All_Trips . Speed ;
7
8 x = ce l l 2mat (Average_Spd_MT) ;
9 y = ce l l 2mat ( Distance_f ixed ) ;

10 z = ce l l 2mat (VA_pos_95) ;
11 opts = s t a t s e t ( ’ Display ’ , ’ f i n a l ’ ) ;
12 [ idx ,C] = kmeans ( [ x , y , z ] , 2 2 , ’ Distance ’ , ’ s q e u c l i d e a n ’ , ’ R e p l i c a t e s ’ , 5 , ’ Options ’ , opts )

;
13
14 %% Grouping the c l u s t e r s
15
16 f o r i = 1 : l ength ( idx )
17
18 i f idx ( i ) == 1
19 Group1 . V e l oc i t y { i , 1} = Micro t r ip s_f ixed { i , 1 } ;
20 Group1 . Average_SPD{ i , 1} = Average_Spd_MT{ i , 1 } ;
21 Group1 . VA_Pos_95{ i , 1} = VA_pos_95{ i , 1 } ;
22 Group1 . Distance { i , 1} = Distance_f ixed { i , 1 } ;
23
24
25 e l s e i f idx ( i ) == 2
26 Group2 . V e l oc i t y { i , 1} = Micro t r ip s_f ixed { i , 1 } ;
27 Group2 . Average_SPD{ i , 1} = Average_Spd_MT{ i , 1 } ;
28 Group2 . VA_Pos_95{ i , 1} = VA_pos_95{ i , 1 } ;
29 Group2 . Distance { i , 1} = Distance_f ixed { i , 1 } ;
30
31 . . . . . .
32 . . . . . .
33 . . . . . .
34 . . . . . .
35
36 e l s e i f idx ( i ) == 22
37 Group22 . V e l oc i t y { i , 1} = Micro t r ip s_f ixed { i , 1 } ;
38 Group22 . Average_SPD{ i , 1} = Average_Spd_MT{ i , 1 } ;
39 Group22 . VA_Pos_95{ i , 1} = VA_pos_95{ i , 1 } ;
40 Group22 . Distance { i , 1} = Distance_f ixed { i , 1 } ;
41
42 end
43 end
44 end
45 end
46
47 % To r e p l a c e empty c e l l s
48
49 f o r i = 1 : l ength ( Group1 . V e l oc i t y )
50
51 i f isempty ( Group1 . V e l oc i t y { i , 1 } )
52 Group1 . V e l oc i t y { i , 1} = 0 ;
53 end
54
55 i f isempty ( Group1 . Average_SPD{ i , 1 } )
56 Group1 . Average_SPD{ i , 1} = 0 ;
57 end
58
59 i f isempty ( Group1 . VA_Pos_95{ i , 1 } )
60 Group1 . VA_Pos_95{ i , 1} = 0 ;
61 Group1 . Distance { i , 1} = 0 ;
62 end
63
64 end
65
66 Group1 . V e l oc i t y = Group1 . V e l oc i t y ( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group1 . Ve lo c i ty ) ) ;
67 Group1 . Average_SPD = Group1 . Average_SPD( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group1 .

Average_SPD) ) ;
68 Group1 . VA_Pos_95 = Group1 . VA_Pos_95( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group1 . VA_Pos_95) )
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;
69 Group1 . Distance = Group1 . Distance ( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group1 . Distance ) ) ;
70
71
72 f o r i = 1 : l ength ( Group2 . V e l oc i t y )
73
74 i f isempty ( Group2 . V e l oc i t y { i , 1 } )
75 Group2 . V e l oc i t y { i , 1} = 0 ;
76 end
77
78 i f isempty ( Group2 . Average_SPD{ i , 1 } )
79 Group2 . Average_SPD{ i , 1} = 0 ;
80 end
81
82 i f isempty ( Group2 . VA_Pos_95{ i , 1 } )
83 Group2 . VA_Pos_95{ i , 1} = 0 ;
84 Group2 . Distance { i , 1} = 0 ;
85 end
86
87 end
88 Group2 . V e l oc i t y = Group2 . V e l oc i t y ( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group2 . Ve lo c i ty ) ) ;
89 Group2 . Average_SPD = Group2 . Average_SPD( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group2 .

Average_SPD) ) ;
90 Group2 . VA_Pos_95 = Group2 . VA_Pos_95( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group2 . VA_Pos_95) )

;
91 Group2 . Distance = Group2 . Distance ( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group2 . Distance ) ) ;
92
93 . . . . . .
94 . . . . . .
95 . . . . . .
96 . . . . . .
97
98 f o r i = 1 : l ength ( Group22 . Ve lo c i ty )
99

100 i f isempty ( Group22 . V e l oc i t y { i , 1 } )
101 Group22 . V e l oc i t y { i , 1} = 0 ;
102 Group22 . Average_SPD{ i , 1} = 0 ;
103 Group22 . VA_Pos_95{ i , 1} = 0 ;
104 Group22 . Distance { i , 1} = 0 ;
105 end
106
107 end
108
109 Group22 . V e l oc i t y = Group22 . Ve loc i t y ( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group22 . V e l oc i t y ) )

;
110 Group22 . Average_SPD = Group22 . Average_SPD( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group22 .

Average_SPD) ) ;
111 Group22 . VA_Pos_95 = Group22 . VA_Pos_95( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group22 .

VA_Pos_95) ) ;
112 Group22 . Distance = Group22 . Distance ( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) , Group22 . Distance ) )

;
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8.1.3 D-Optimal design

The data set to begin D-optimal design is stored as ’Grouped_Trips_final.mat’. This file
contains 3 structure groups named Urban, Rural, and Motorway. Each structure contains
an array of structure groups containing cell arrays corresponding to each micro trip. The
cell arrays present in each structure group are Velocity, Average speed, VApos95, Distance,
Acceleration, Positive acceleration, Total relative positive acceleration (TRPA), Relative
positive acceleration (RPA), and Area under the curve. A brief script to deploy D-optimal
design and generate a driving by utilizing the dataset is presented below.

1 %% To deploy D−Optimal des ign
2
3 % D− Optimal des ign Urban s e c t i o n
4
5 f o r u = 1:11
6 i f u <= 10
7
8 a1 = Urban . Groups . Group1 . Ve lo c i ty ;
9 a2 = Urban . Groups . Group5 . Ve lo c i ty ;

10 a3 = Urban . Groups . Group10 . Ve lo c i ty ;
11 a4 = Urban . Groups . Group11 . Ve lo c i ty ;
12 a5 = Urban . Groups . Group13 . Ve lo c i ty ;
13 a6 = Urban . Groups . Group17 . Ve lo c i ty ;
14 a7 = Urban . Groups . Group14 . Ve lo c i ty ;
15 a8 = Urban . Groups . Group15 . Ve lo c i ty ;
16 a9 = Urban . Groups . Group19 . Ve lo c i ty ;
17 a10 = Urban . Groups . Group22 . V e l oc i t y ;
18
19 Urban_Velocity = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 ) ;
20
21 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
22
23 a1 = Urban . Groups . Group1 . Average_SPD ;
24 a2 = Urban . Groups . Group5 . Average_SPD ;
25 a3 = Urban . Groups . Group10 . Average_SPD ;
26 a4 = Urban . Groups . Group11 . Average_SPD ;
27 a5 = Urban . Groups . Group13 . Average_SPD ;
28 a6 = Urban . Groups . Group17 . Average_SPD ;
29 a7 = Urban . Groups . Group14 . Average_SPD ;
30 a8 = Urban . Groups . Group15 . Average_SPD ;
31 a9 = Urban . Groups . Group19 . Average_SPD ;
32 a10 = Urban . Groups . Group22 . Average_SPD ;
33
34 D = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 ) ;
35
36 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
37
38 a1 = Urban . Groups . Group1 . VA_Pos_95 ;
39 a2 = Urban . Groups . Group5 . VA_Pos_95 ;
40 a3 = Urban . Groups . Group10 . VA_Pos_95 ;
41 a4 = Urban . Groups . Group11 . VA_Pos_95 ;
42 a5 = Urban . Groups . Group13 . VA_Pos_95 ;
43 a6 = Urban . Groups . Group17 . VA_Pos_95 ;
44 a7 = Urban . Groups . Group14 . VA_Pos_95 ;
45 a8 = Urban . Groups . Group15 . VA_Pos_95 ;
46 a9 = Urban . Groups . Group19 . VA_Pos_95 ;
47 a10 = Urban . Groups . Group22 . VA_Pos_95 ;
48
49 E = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 ) ;
50
51 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
52
53 a1 = Urban . Groups . Group1 .RPA;
54 a2 = Urban . Groups . Group5 .RPA;
55 a3 = Urban . Groups . Group10 .RPA;
56 a4 = Urban . Groups . Group11 .RPA;

70



8. Appendix iii

57 a5 = Urban . Groups . Group13 .RPA;
58 a6 = Urban . Groups . Group17 .RPA;
59 a7 = Urban . Groups . Group14 .RPA;
60 a8 = Urban . Groups . Group15 .RPA;
61 a9 = Urban . Groups . Group19 .RPA;
62 a10 = Urban . Groups . Group22 .RPA;
63
64 F = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 ) ;
65
66 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
67
68 a1 = Urban . Groups . Group1 . Distance ;
69 a2 = Urban . Groups . Group5 . Distance ;
70 a3 = Urban . Groups . Group10 . Distance ;
71 a4 = Urban . Groups . Group11 . Distance ;
72 a5 = Urban . Groups . Group13 . Distance ;
73 a6 = Urban . Groups . Group17 . Distance ;
74 a7 = Urban . Groups . Group14 . Distance ;
75 a8 = Urban . Groups . Group15 . Distance ;
76 a9 = Urban . Groups . Group19 . Distance ;
77 a10 = Urban . Groups . Group22 . Distance ;
78
79 G = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 ) ;
80
81 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10
82
83 f o r i = 1 : l ength ( Urban_Velocity )
84
85 H( i , 1 ) = max( s i z e ( Urban_Velocity { i , 1 } ) ) ;
86
87 end
88
89 Total_Design = z e r o s (max( s i z e (D) ) ,5 ) ;
90
91 Total_Design ( : , 1 ) = ce l l 2mat (D) ;
92 Total_Design ( : , 2 ) = ce l l 2mat (E) ;
93 Total_Design ( : , 3 ) = ce l l 2mat (F) ;
94 Total_Design ( : , 4 ) = ce l l 2mat (G) ;
95 Total_Design ( : , 5 ) = H;
96
97 c l e a r D E F G H
98
99 % S e t t i n g Optimal des ign c o n s t r a i n t s

100
101 f o r i = 1 : l ength ( Total_Design )
102
103 i f Total_Design ( i , 1 ) >= 15 && Total_Design ( i , 1 ) <= 40 && Total_Design ( i , 2 ) <=

18 .7 &&.. .
104 Total_Design ( i , 3 ) >= 0.13 && Total_Design ( i , 4 ) <= 30 && Total_Design ( i

, 4 ) <= 240
105
106 T( i , 1 ) = 1 ;
107
108 e l s e T( i , 1 ) = 0 ;
109
110 end
111 end
112
113 Valid_Design = z e r o s (max( s i z e ( Total_Design ) ) ,5 ) ;
114
115 f o r i = 1 : l ength (T)
116
117 i f T( i , 1 ) == 1
118
119 Valid_Design ( i , : )= Total_Design ( i , : ) ;
120
121 e l s e Valid_Design ( i ) = 0 ;
122
123 end
124 end
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125
126
127 f o r i = 1 : l ength (T)
128
129 i f T( i , 1 ) == 1
130
131 Urban_Velocity { i ,1}= Urban_Velocity { i , 1 } ;
132
133 e l s e Urban_Velocity { i , 1} = 0 ;
134
135 end
136 end
137
138 % To remove Zeros
139
140 Urban . Valid_Design = Valid_Design ( any ( Valid_Design , 2 ) , : ) ;
141
142 Urban . Urban_Velocity_Valid = Urban_Velocity ( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) ,

Urban_Velocity ) ) ;
143
144 c l e a r T Total_Design Urban_Velocity Valid_Design
145
146 % Deploying Candexch ( Candidate Exchange Method )
147
148 c l e a r C R Test_Constraints Test
149
150 C = [ ones ( s i z e ( Urban . Valid_Design , 1 ) ,1 ) Urban . Valid_Design Urban . Valid_Design . ^ 5 ] ;
151
152 R = candexch (C, 7 ) ;
153
154 c l o s e a l l
155
156 % Test c o n s t r a i n t s
157
158 f o r i = 1 :max( s i z e (R) )
159
160 Urban . Optimal_Constraints ( i , : ) = Urban . Valid_Design (R( i ) , : ) ;
161
162 end
163
164 f o r i = 1 :max( s i z e (R) )
165
166 Urban . Urban_trips_Final { i , 1} = Urban . Urban_Velocity_Valid {R( i ) , 1 } ;
167
168 end
169
170 % D− Optimal des ign Rural s e c t i o n
171
172 a1 = Rural . Groups . Group2 . V e l oc i t y ;
173 a2 = Rural . Groups . Group3 . V e l oc i t y ;
174 a3 = Rural . Groups . Group4 . V e l oc i t y ;
175 a4 = Rural . Groups . Group6 . V e l oc i t y ;
176 a5 = Rural . Groups . Group7 . V e l oc i t y ;
177 a6 = Rural . Groups . Group8 . V e l oc i t y ;
178 a7 = Rural . Groups . Group9 . V e l oc i t y ;
179 a8 = Rural . Groups . Group12 . V e l oc i t y ;
180 a9 = Rural . Groups . Group16 . V e l oc i t y ;
181 a10 = Rural . Groups . Group18 . Ve lo c i ty ;
182 a11 = Rural . Groups . Group21 . Ve lo c i ty ;
183
184 Rural_Velocity = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 , a11 ) ;
185
186 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
187
188 a1 = Rural . Groups . Group2 . Average_SPD ;
189 a2 = Rural . Groups . Group3 . Average_SPD ;
190 a3 = Rural . Groups . Group4 . Average_SPD ;
191 a4 = Rural . Groups . Group6 . Average_SPD ;
192 a5 = Rural . Groups . Group7 . Average_SPD ;
193 a6 = Rural . Groups . Group8 . Average_SPD ;
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194 a7 = Rural . Groups . Group9 . Average_SPD ;
195 a8 = Rural . Groups . Group12 . Average_SPD ;
196 a9 = Rural . Groups . Group16 . Average_SPD ;
197 a10 = Rural . Groups . Group18 . Average_SPD ;
198 a11 = Rural . Groups . Group21 . Average_SPD ;
199
200 D = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 , a11 ) ;
201
202 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
203
204 a1 = Rural . Groups . Group2 . VA_Pos_95 ;
205 a2 = Rural . Groups . Group3 . VA_Pos_95 ;
206 a3 = Rural . Groups . Group4 . VA_Pos_95 ;
207 a4 = Rural . Groups . Group6 . VA_Pos_95 ;
208 a5 = Rural . Groups . Group7 . VA_Pos_95 ;
209 a6 = Rural . Groups . Group8 . VA_Pos_95 ;
210 a7 = Rural . Groups . Group9 . VA_Pos_95 ;
211 a8 = Rural . Groups . Group12 . VA_Pos_95 ;
212 a9 = Rural . Groups . Group16 . VA_Pos_95 ;
213 a10 = Rural . Groups . Group18 . VA_Pos_95 ;
214 a11 = Rural . Groups . Group21 . VA_Pos_95 ;
215
216 E = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 , a11 ) ;
217
218 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
219
220 a1 = Rural . Groups . Group2 .RPA;
221 a2 = Rural . Groups . Group3 .RPA;
222 a3 = Rural . Groups . Group4 .RPA;
223 a4 = Rural . Groups . Group6 .RPA;
224 a5 = Rural . Groups . Group7 .RPA;
225 a6 = Rural . Groups . Group8 .RPA;
226 a7 = Rural . Groups . Group9 .RPA;
227 a8 = Rural . Groups . Group12 .RPA;
228 a9 = Rural . Groups . Group16 .RPA;
229 a10 = Rural . Groups . Group18 .RPA;
230 a11 = Rural . Groups . Group21 .RPA;
231
232 F = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 , a11 ) ;
233
234 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
235
236 a1 = Rural . Groups . Group2 . Distance ;
237 a2 = Rural . Groups . Group3 . Distance ;
238 a3 = Rural . Groups . Group4 . Distance ;
239 a4 = Rural . Groups . Group6 . Distance ;
240 a5 = Rural . Groups . Group7 . Distance ;
241 a6 = Rural . Groups . Group8 . Distance ;
242 a7 = Rural . Groups . Group9 . Distance ;
243 a8 = Rural . Groups . Group12 . Distance ;
244 a9 = Rural . Groups . Group16 . Distance ;
245 a10 = Rural . Groups . Group18 . Distance ;
246 a11 = Rural . Groups . Group21 . Distance ;
247
248 G = v e r t c a t ( a1 , a2 , a3 , a4 , a5 , a6 , a7 , a8 , a9 , a10 , a11 ) ;
249
250 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
251
252 f o r i = 1 : l ength ( Rural_Velocity )
253
254 H( i , 1 ) = max( s i z e ( Rural_Velocity { i , 1 } ) ) ;
255
256 end
257
258 Total_Design = z e r o s (max( s i z e (D) ) ,5 ) ;
259
260 Total_Design ( : , 1 ) = ce l l 2mat (D) ;
261 Total_Design ( : , 2 ) = ce l l 2mat (E) ;
262 Total_Design ( : , 3 ) = ce l l 2mat (F) ;
263 Total_Design ( : , 4 ) = ce l l 2mat (G) ;
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264 Total_Design ( : , 5 ) = H;
265
266 c l e a r D E F G H
267
268 % S e t t i n g Optimal des ign c o n s t r a i n t s
269
270 f o r i = 1 : l ength ( Total_Design )
271
272 i f Total_Design ( i , 1 ) > 70 && Total_Design ( i , 1 ) < 90 && Total_Design ( i , 2 ) <=

24 .3 &&.. .
273 Total_Design ( i , 3 ) >= 0.06 && Total_Design ( i , 4 ) <= 45 && Total_Design ( i

, 4 ) >= 20 && . . .
274 Total_Design ( i , 5 ) >= 26∗60 && Total_Design ( i , 5 ) <= 38∗60
275
276 T( i , 1 ) = 1 ;
277
278 e l s e T( i , 1 ) = 0 ;
279
280 end
281
282 end
283
284 Valid_Design = z e r o s (max( s i z e ( Total_Design ) ) ,5 ) ;
285
286
287 f o r i = 1 : l ength (T)
288
289 i f T( i , 1 ) == 1
290
291 Valid_Design ( i , : )= Total_Design ( i , : ) ;
292
293 e l s e Valid_Design ( i ) = 0 ;
294
295 end
296 end
297
298
299 f o r i = 1 : l ength (T)
300
301 i f T( i , 1 ) == 1
302
303 Rural_Velocity { i ,1}= Rural_Velocity { i , 1 } ;
304
305 e l s e Rural_Velocity { i , 1} = 0 ;
306
307 end
308 end
309
310 % To remove Zeros
311
312 Rural . Valid_Design = Valid_Design ( any ( Valid_Design , 2 ) , : ) ;
313
314 Rural . Rural_Velocity_Valid = Rural_Velocity ( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) ,

Rural_Velocity ) ) ;
315
316 c l e a r T Total_Design Rural_Velocity Valid_Design Optimal_Constraints
317
318 % Deploying Candexch ( Candidate Exchange Method )
319
320 c l e a r C R
321
322 C = [ ones ( s i z e ( Rural . Valid_Design , 1 ) ,1 ) Rural . Valid_Design Rural . Valid_Design . ^ 4 ] ;
323
324 R = candexch (C, 1 8 ) ;
325
326 c l o s e a l l
327
328 % Test c o n s t r a i n t s
329
330 f o r i = 1 :max( s i z e (R) )
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331
332 Rural . Optimal_Constraints ( i , : ) = Rural . Valid_Design (R( i ) , : ) ;
333
334 end
335
336 f o r i = 1 :max( s i z e (R) )
337
338 Rural . Rural_tr ips_Final { i , 1} = Rural . Rural_Velocity_Valid {R( i ) , 1 } ;
339
340 end
341
342 c l e a r C R
343
344 % To s e l e c t r u r a l t r i p from the sample
345
346 Rural . Se lect_Cycle = datasample ( Rural . Rural_trips_Final , 1 ) ;
347
348 % D− Optimal des ign motorway s e c t i o n
349
350 a1 = Motorway . Groups . Group20 . V e l oc i ty ;
351
352 Motorway_Velocity = a1 ;
353
354 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
355
356 a1 = Motorway . Groups . Group20 . Average_SPD ;
357
358 D = a1 ;
359
360 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
361
362 a1 = Motorway . Groups . Group20 . VA_Pos_95 ;
363
364 E = a1 ;
365
366 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
367
368 a1 = Motorway . Groups . Group20 .RPA;
369
370 F = a1 ;
371
372 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
373
374 a1 = Motorway . Groups . Group20 . Distance ;
375
376 G = a1 ;
377
378 c l e a r a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11
379
380 f o r i = 1 : l ength ( Motorway_Velocity )
381
382 H( i , 1 ) = max( s i z e ( Motorway_Velocity{ i , 1 } ) ) ;
383
384 end
385
386 Total_Design = z e r o s (max( s i z e (D) ) ,5 ) ;
387
388 Total_Design ( : , 1 ) = ce l l 2mat (D) ;
389 Total_Design ( : , 2 ) = ce l l 2mat (E) ;
390 Total_Design ( : , 3 ) = ce l l 2mat (F) ;
391 Total_Design ( : , 4 ) = ce l l 2mat (G) ;
392 Total_Design ( : , 5 ) = H;
393
394 c l e a r D E F G H
395
396 % S e t t i n g Optimal des ign c o n s t r a i n t s
397
398 f o r i = 1 : l ength ( Total_Design )
399
400 i f Total_Design ( i , 1 ) >= 100 && Total_Design ( i , 2 ) <= 26 .6 &&.. .
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401 Total_Design ( i , 3 ) >= 0.03 && Total_Design ( i , 5 ) >= 25∗60 && Total_Design
( i , 5 ) <= 50∗60

402
403 T( i , 1 ) = 1 ;
404
405 e l s e T( i , 1 ) = 0 ;
406
407 end
408 end
409
410 Valid_Design = z e r o s (max( s i z e ( Total_Design ) ) ,5 ) ;
411
412
413 f o r i = 1 : l ength (T)
414
415 i f T( i , 1 ) == 1
416
417 Valid_Design ( i , : )= Total_Design ( i , : ) ;
418
419 e l s e Valid_Design ( i ) = 0 ;
420
421 end
422 end
423
424
425 f o r i = 1 : l ength (T)
426
427 i f T( i , 1 ) == 1
428
429 Motorway_Velocity{ i ,1}= Motorway_Velocity{ i , 1 } ;
430
431 e l s e Motorway_Velocity{ i , 1} = 0 ;
432
433 end
434 end
435
436 % To remove Zeros
437
438 Motorway . Valid_Design = Valid_Design ( any ( Valid_Design , 2 ) , : ) ;
439
440 Motorway . Motorway_Velocity_Valid = Motorway_Velocity ( c e l l f u n (@( x ) ~ i s e q u a l (x , 0) ,

Motorway_Velocity ) ) ;
441
442 c l e a r T Total_Design Motorway_Velocity Valid_Design Optimal_Constraints
443
444 % Deploying Candexch ( Candidate Exchange Method )
445
446 c l e a r C R
447
448 C = [ ones ( s i z e ( Motorway . Valid_Design , 1 ) ,1 ) Motorway . Valid_Design Motorway .

Valid_Design . ^ 2 ] ;
449
450 R = candexch (C, 5 ) ;
451
452 c l o s e a l l
453
454 % Test c o n s t r a i n t s
455
456 f o r i = 1 :max( s i z e (R) )
457
458 Motorway . Optimal_Constraints ( i , : ) = Motorway . Valid_Design (R( i ) , : ) ;
459
460 end
461
462 f o r i = 1 :max( s i z e (R) )
463
464 Motorway . Motorway_trips_Final { i , 1} = Motorway . Motorway_Velocity_Valid{R( i ) , 1 } ;
465
466 end
467
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468 c l e a r C R
469
470 % To s e l e c t Motorway t r i p from the sample
471
472 Motorway . Se lect_Cycle = datasample ( Motorway . Motorway_trips_Final , 1 ) ;
473
474 % To c r e a t e a complete d r i v i n g c y c l e on each i t e r a t i o n
475
476 Driving_Cycle {u ,1} = v e r t c a t ( Urban . Urban_trips_Final , Rural . Select_Cycle , Motorway .

Se lect_Cycle ) ;
477
478 u = u+1;
479 e l s e
480 break
481 end
482 end
483
484 % Join ing c y c l e code
485
486 % To f i n d the t o t a l durat ion
487
488 f o r i = 1 : l ength ( Driving_Cycle )
489 f o r j = 1 : l ength ( Driving_Cycle { i , 1 } )
490
491 X{ i , 1 } ( j , 1 ) = (max( s i z e ( Driving_Cycle { i , 1}{ j , 1 } ) ) ) ;
492
493 end
494
495 end
496
497 f o r i = 1 : l ength (X)
498 Y{ i , 1} = sum(X{ i , 1 } ) ;
499 end
500
501 % Join the c y c l e s
502
503 c l c
504 c l e a r i
505 Driving_Cycle_Total = c e l l ( 10 , 1 ) ;
506
507 j = 1 ;
508 f o r i = 1 : l ength ( Driving_Cycle_Total )
509
510 f o r i = 1 : l ength ( Driving_Cycle )
511 Driving_Cycle_Total { i , 1} = v e r t c a t ( Driving_Cycle { i , 1}{ j , 1 } , Driving_Cycle { i ,

1}{ j +1 ,1} , Driving_Cycle { i , 1}{ j + 2 , 1 } , . . .
512 Driving_Cycle { i , 1}{ j +3 ,1} , Driving_Cycle { i , 1}{ j +4 ,1} , Driving_Cycle { i ,

1}{ j +5 ,1} , Driving_Cycle { i , 1}{ j + 6 , 1 } , . . .
513 Driving_Cycle { i , 1}{ j +7 ,1} , Driving_Cycle { i , 1}{ j +8 ,1}) ;
514
515 end
516
517
518 end

8.1.4 RDE qualified driving cycles
The RDE qualified driving cycles are the ultimate results of this thesis work. They are
stored in the ’Driving_Cycle_Total.mat’ file. This data file contains an array of driving
cycles, that could be used for future work.
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8.1.5 Data fit for simulation in Simulink model
A simulation model named ’ConventionalModel.slx’ is created for simulating the created
driving cycle for determining fuel consumption. The simulink model required 4 inputs
namely, ’V_z’, ’D_z’, ’T_z’, and ’G_z’. These inputs are obtained by using a MATLAB
script, provided in this section.

1 %% To f i t data f o r s imul ink
2
3 f o r j = 1 : l ength ( Driving_Cycle_Total )
4
5 V_z = ( Driving_Cycle_Total { j , 1 } ) / 3 . 6 ;
6
7 f o r i = 1 : l ength (V_z)
8
9 i f i == max( s i z e (V_z) )

10
11 D_z( i , 1 ) = 0 ;
12
13 e l s e
14
15 D_z( i , 1 ) = V_z( i , 1 ) − V_z( i +1 ,1) ;
16
17 end
18
19 end
20
21 f o r i = 1 : l ength (V_z)
22
23 i f V_z( i , 1 ) ∗3 .6 >= 0 && V_z( i , 1 ) ∗3 .6 < 15
24
25 G_z( i , 1 ) = 1 ;
26
27 e l s e i f V_z( i , 1 ) ∗3 .6 >= 15 && V_z( i , 1 ) ∗3 .6 < 45
28
29 G_z( i , 1 ) = 2 ;
30
31 e l s e i f V_z( i , 1 ) ∗3 .6 >= 45 && V_z( i , 1 ) ∗3 .6 < 70
32
33 G_z( i , 1 ) = 3 ;
34
35 e l s e i f V_z( i , 1 ) ∗3 .6 >= 70 && V_z( i , 1 ) ∗3 .6 < 105
36
37 G_z( i , 1 ) = 4 ;
38
39 e l s e i f V_z( i , 1 ) ∗3 .6 >= 105
40
41 G_z( i , 1 ) = 5 ;
42
43 end
44 end
45 end
46 end
47 end
48 end
49
50 T_z = ( 1 : max( s i z e (V_z) ) ) ’ ;
51
52 save ( [ ’ / Users / chinna /Documents/ Thes i s / Fina l Code/QSS_TB_2018b/Data/ Dr iv ingCyc les /

Europe/ Cycle ’ num2str ( j ) ’ . mat ’ ] , ’V_z ’ , ’D_z ’ , ’G_z ’ , ’T_z ’ )
53 f p r i n t f ( ’ Saved cycle_%d ’ , j ) ;
54
55 c l e a r T_z V_z G_z D_z
56
57 end
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