Reading out a qubit through an harmonic oscillator, Simulating the driven Jaynes-Cummings Hamiltonian with dissipation

Examensarbete för masterexamen

Please use this identifier to cite or link to this item:
Download file(s):
There are no files associated with this item.
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTornberg, Lars
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mikroteknologi och nanovetenskapsv
dc.contributor.departmentChalmers University of Technology / Department of Microtechnology and Nanoscienceen
dc.description.abstractIn this thesis we investigate the properties of a circuit proposed for reading out the state of a superconducting Cooper-pair box (SCB). The circuit consists of an LC-circuit capacatively coupled to the SCB. By probing the LC-circuit the state of the qubit can be determined. The Hamiltonian for the circuit is derived and found to be the well-known Jaynes-Cummings Hamiltonian. Using the properties of this we can understand why the proposal in question is a good candidate for doing a quantum non-demolition measurement. To model and understand the read-out process we have simulated the open system, including the enviroment. The susceptibility of the circuit is calculated. In an actual experimental situation, microwaves are used to probe the oscillator. Here we model these as quantum mechanical coherent states. Properties of coherent states are then used to device a simple model for calculating the measurement-time. To understand and model the decoherence induced by the measurement we have made numerical simulations of the driven system. These can be used to study the mixing and dephasing of the qubit as function of time and temperature.
dc.subjectÖvrig teknisk fysik
dc.subjectOther engineering physics
dc.titleReading out a qubit through an harmonic oscillator, Simulating the driven Jaynes-Cummings Hamiltonian with dissipation
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
Collection:Examensarbeten för masterexamen // Master Theses

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.