Neural Network Driven Locomotion of General Bodies

dc.contributor.authorKammerland, Jonathan
dc.contributor.authorHjolman, Ulf
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysik (Chalmers)sv
dc.contributor.departmentChalmers University of Technology / Department of Physics (Chalmers)en
dc.date.accessioned2019-07-03T14:55:31Z
dc.date.available2019-07-03T14:55:31Z
dc.date.issued2018
dc.description.abstractProducing locomotion controllers for general bodies has multiple applications, foremost in robotics. Most robot controllers are today developed through the use of autonomous control, trying to deviated as little as possible from some target gait. This target is usually supplied in the form of motion capture data or determined by a human. This work attempts to instead use machine learning methods to allow simulated agents to learn locomotive behaviour. The environment is void of any preconceived notions regarding what the resulting gait should look like, and simply encourages the agents to maintain forward velocity. The controllers are represented in the form of neural networks mapping sensory inputs to actuator outputs. Three machine learning methods are explored for training these networks; evolutionary algorithms with niches, the reinforcement learning algorithm Proximal Policy Optimization, and a novel algorithm combining the two previous methods. The hybrid algorithm out-performs the rest. It works well on simpler problems such as a 2-dimensional biped, but struggles on the difficult unstable 3-dimensional problem of a full humanoid robot. The results are not competitive with traditional autonomous control results when controlling well understood bodies like humanoids. However the algorithm does succeed in finding creative gaits for less structured problems and odd bodies, something that a human might find difficult.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/256208
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectFysik
dc.subjectPhysical Sciences
dc.titleNeural Network Driven Locomotion of General Bodies
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
256208.pdf
Storlek:
3.37 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext