Music Audio Signal Prediction using Machine Learning

dc.contributor.authorGentile, Ivan
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.examinerGranath, Mats
dc.contributor.supervisorPedersen, Jesper
dc.contributor.supervisorSantesson, Gustav
dc.contributor.supervisorKrstulovic, Sacha
dc.contributor.supervisorStasis, Spyros
dc.contributor.supervisorBolla, Carlo
dc.date.accessioned2022-06-15T05:08:38Z
dc.date.available2022-06-15T05:08:38Z
dc.date.issued2022sv
dc.date.submitted2020
dc.description.abstractEven though considerable advancements have been made in time series forecasting for audio, there are still many unexplored aspects. An objective of the analysis is to develop a viable product to replace the look-ahead functions of audio dynamic range compressors. Towards this end, and given the suitability of neural networks for predictive purposes, this project discusses the application of MultyLayer Perceptrons (MLPs) and Long-Short Term Memory (LSTMs) for addressing this research question. The numerical experiments focuses on the predictions of this systems. It is analyzed how changing window length (number of inputs), prediction steps (number of outputs), and sampling frequency (dataset resolution) affects prediction quality. The findings indicate that, after a threshold, increasing number of inputs yields diminishing rewards.sv
dc.identifier.coursecodeTIFX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/304688
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectAudio Digital Signal Processingsv
dc.subjectMachine Learningsv
dc.subjectArtificial Intelligencesv
dc.subjectTime Series Forecastingsv
dc.subjectAudio Machine Learning Applicationsv
dc.subjectSignal Predictionsv
dc.subjectTime Samples Predictionsv
dc.titleMusic Audio Signal Prediction using Machine Learningsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Ivan_Gentile_Master_Thesis_Final.pdf
Storlek:
970.73 KB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.51 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: