Superconducting CPW resonators for measurements on molecular spins

Publicerad

Författare

Typ

Examensarbete för masterexamen
Master Thesis

Program

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Quantum information processing (QIP) concerns communication between qubits in quantum computer. Coplanar waveguide (CPW) resonators which could easily be fabricated with the micro-techniques in integrated circuits started to show its potentiality in QIP in last few years. So far CPW resonators were used to arrange communication between Josephson q-bits which have relatively short decoherence time. The q-bits based on molecular spins mountain quantum coherence for much longer time, but they have too weak coupling to microwave field to allow effective spin manipulation. In this project we aimed to optimize CPW resonators in order to achieve strong coupling to molecular spins. We present results for standard Coplanar Waveguide (CPW) Nb resonators fabricated on sapphire substrate. To achieve strong coupling between microwave field and molecular spins constrictions of the central conductor at the antinode of current were made to get local enhancement of magnetic field. We also present the simulation results for the key design elements: T-junctions and constrictions, which gave a good guideline for design and fabrication. Low temperature measurements of resonators with (and without) local constrictions were made and verified the accuracy of simulations. Finally, we discuss the temperature and power dependence of resonators transmission spectra.

Beskrivning

Ämne/nyckelord

Nanovetenskap och nanoteknik, Fysik, Den kondenserade materiens fysik, Nanoscience & Nanotechnology, Physical Sciences, Condensed Matter Physics

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced