Near-Time Predictions of Future Truck Locations

dc.contributor.authorSrinivasan, Abhishek
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysik (Chalmers)sv
dc.contributor.departmentChalmers University of Technology / Department of Physics (Chalmers)en
dc.date.accessioned2019-07-03T14:49:20Z
dc.date.available2019-07-03T14:49:20Z
dc.date.issued2018
dc.description.abstractLocation-based services are becoming an increasingly valuable service in the transportation sector. These location-based services rely on current location, but a better service can be provided by predicting the future location. So this thesis aims to investigate near-future location prediction of a specific vehicle using Recurrent Neural Networks (RNNs) and its different variants (a time-series approach). In addition, we discuss the required data pre-processing steps, the architecture of RNNs and the experiments to compare the different variants of RNNs. These experiments show that Long Short-Term Memory Networks (LSTM) have better predictions when compared to simple RNNs and Bi-directional Recurrent Neural Networks (BRNN). The results from this work will be helpful in developing a better short-term location prediction model and will provide better services to SCANIAs customers.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/255599
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectTransport
dc.subjectGrundläggande vetenskaper
dc.subjectHållbar utveckling
dc.subjectInnovation och entreprenörskap (nyttiggörande)
dc.subjectAnnan teknik
dc.subjectTransport
dc.subjectBasic Sciences
dc.subjectSustainable Development
dc.subjectInnovation & Entrepreneurship
dc.subjectOther Engineering and Technologies
dc.titleNear-Time Predictions of Future Truck Locations
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
255599.pdf
Storlek:
3.62 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext