Extruded Vegetable Proteins An investigation of the influence of selected additives upon the texturization process of pea protein isolate during high moisture food extrusion

dc.contributor.authorEriksson, Johanna
dc.contributor.departmentChalmers tekniska högskola / Institutionen för biologi och biotekniksv
dc.contributor.examinerWassén, Sophia
dc.contributor.supervisorAlminger, Marie
dc.date.accessioned2019-10-22T12:13:19Z
dc.date.available2019-10-22T12:13:19Z
dc.date.issued2019sv
dc.date.submitted2019
dc.description.abstractThe demand for vegetable protein sources as substitutes for animal protein is increasing in the world due to the significant contribution to climate change from livestock. One alternative is to produce textured vegetable protein products with extrusion, which is a high-productivity process used in food industry to manufacture products with specific texture and structure. Pea protein has shown possibility to form textured protein structures like those in meat-substitutes when processed using high moisture food extrusion. In this project, formulations containing pea protein isolate together with four selected additives were processed with high moisture extrusion cooking. Additives investigated were potato fibre, wheat bran fibre, β-glucan fibre and rapeseed oil, in order to evaluate the influence of the additives upon the texturization process of pea protein during extrusion. The samples structure and texture was analyzed with light microscopy and texture analyzing tests together with information about the oil- and water holding capacities for the fibres and the pea protein isolate. The analysis of all extruded formulations indicated on a reduced ability for the protein phase to form a textured structure upon addition of the investigated additives. Fibres functioned as a filler phase that interrupted the protein network, where smaller fibres interrupted the protein network to a larger extent. Potato fibre and β-glucan fibre tended to add soluble starch and β-glucan to the protein network, leading to further decreased texturization and decreased layering, while wheat bran fibre was more rigid and increased the layered structure. Rapeseed oil functioned as a lubricant that reduced the directionality of the protein network and addition of rapeseed oil together with small potato fibre or β-glucan fibre resulted in surface changessv
dc.identifier.coursecodeBBTX03sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300488
dc.language.isoengsv
dc.setspec.uppsokLifeEarthScience
dc.subjectPea protein isolatesv
dc.subjectHigh moisture food extrusionsv
dc.subjectTextured vegetable proteinssv
dc.subjectDietary fibressv
dc.titleExtruded Vegetable Proteins An investigation of the influence of selected additives upon the texturization process of pea protein isolate during high moisture food extrusionsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeMaterials chemistry (MPMCN), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master's Thesis Johanna Eriksson 2019.pdf
Storlek:
6.69 MB
Format:
Adobe Portable Document Format
Beskrivning:
Master's Thesis, Johanna Eriksson
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: