Reduction of parasitic diffraction effects in reflective microscope objectives

dc.contributor.authorLarsson, Rasmus
dc.contributor.departmentChalmers tekniska högskola / Institutionen för mikroteknologi och nanovetenskapsv
dc.contributor.departmentChalmers University of Technology / Department of Microtechnology and Nanoscienceen
dc.date.accessioned2019-07-05T11:52:14Z
dc.date.available2019-07-05T11:52:14Z
dc.date.issued2019
dc.description.abstractImaging systems employing reflective elements for focusing light can be superior to traditional lens-based systems for use in broadband applications, or at wavelengths where lenses are unavailable. They are, however, hampered by stray intensity spikes caused by diffraction against the secondary mirror support structure. The use of curved vanes for reducing the intensity spikes present for conventional straight supports has previously been investigated[1, 2] but their implementation in short focal length systems, such as microscope objective lenses, has until now remained fairly unexplored. This thesis investigates the reduction of intensity spikes in 15X and 40X reflective Schwarzschild microscope objective lenses, where, among different support geometries, the use of curved vanes is further analysed. By simulating diffraction of various support designs it was found that a constant curvature structure, comprising three arms, each with a subtended arc angle of 70° minimised the intensity spikes whilst still performing well with regard to other image quality criteria. In addition, the use of non-constant curvature structures for compensation of Gaussian beams was shown beneficial using numerical methods. Practical implementation was carried out in the design of a 15X curved support structure Schwarzschild objective lens and was further experimentally tested and compared to a 15X Schwarzschild objective lens employing straight vanes. Results show a clear improvement in reduction of intensity spikes in favour of the curved vane structure. The measured data furthermore indicate a minor degradation with respect to other image quality criteria, in accordance with simulations.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/256712
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectInformations- och kommunikationsteknik
dc.subjectMaterialvetenskap
dc.subjectNanovetenskap och nanoteknik
dc.subjectÖvrig elektroteknik, elektronik och fotonik
dc.subjectInformation & Communication Technology
dc.subjectMaterials Science
dc.subjectNanoscience & Nanotechnology
dc.subjectOther electrical engineering, electronics and photonics
dc.titleReduction of parasitic diffraction effects in reflective microscope objectives
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeWireless, photonics and space engineering (MPWPS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
256712.pdf
Storlek:
31.57 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext