Predicting Position and Volume of Hemorrhagic Strokes

dc.contributor.authorNirvin, Emma
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.examinerGustavsson, Kristian
dc.contributor.supervisorGarcía Gómez, André
dc.contributor.supervisorHilkert, Ann-Sophie
dc.date.accessioned2022-01-19T09:21:18Z
dc.date.available2022-01-19T09:21:18Z
dc.date.issued2022sv
dc.date.submitted2020
dc.description.abstractThis study has explored different neural network methods for position and volume prediction of hemorrhagic strokes. Three different data sets of microwave data were used as input for the different networks. A simple diagnostic classifier was used as benchmark to help in evaluating success. The two largest challenges of the study was instrument variations in the data as well as the limited data available. A Multi- Source Adversarial Domain Adaptation (MSADA) network was introduced to lower the effect of the instrument variations, and a Divergence Based Domain Adaptation (DBDA) network was implemented to attempt to resolve the limited number of data samples. The networks showed promising results for both position and volume in all three data sets used. The MSADA network successfully lowered the instrument specific noise when predicting volumes, but was concluded to be unnecessary for position classification. The DBDA network was not enough to remedy the lack of sufficient data.sv
dc.identifier.coursecodeTIFX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/304436
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectDeep neural networkssv
dc.subjectmachine learningsv
dc.subjectadversarial domain adaptationsv
dc.subjectmulti-source adaptationsv
dc.subjectmicrowave datasv
dc.subjectstroke detectionsv
dc.titlePredicting Position and Volume of Hemorrhagic Strokessv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Report_Nirvin.pdf
Storlek:
1.82 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.51 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: