De Novo Molecular Generation of Molecules with Consistent Synthetic Strategy

dc.contributor.authorEkborg, Albin
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.departmentChalmers University of Technology / Department of Physicsen
dc.contributor.examinerGranath, Mats
dc.contributor.supervisorPaul Janet, Jon
dc.contributor.supervisorVoronov, Alexey
dc.date.accessioned2024-06-20T06:08:03Z
dc.date.available2024-06-20T06:08:03Z
dc.date.issued2024
dc.date.submitted
dc.description.abstractThe discovery of new pharmaceutical compounds is essential for developing novel medicines, a process that is both costly and time-consuming. In this context, generative Artificial Intelli gence (AI) methods offer a valuable, cost-effective approach for generating large amounts of de novo pharmaceutical candidates. However, these drug candidates must still be synthesized for use in in vitro and in vivo studies, necessitating the creation of efficiently synthesizable drug candidates. In this thesis, we explore two AI models for drug design developed by As traZeneca: REINVENT and AiZynthFinder. REINVENT is a generative AI model designed for creating small molecules fine-tuned with Reinforcement Learning (RL), whereas AiZyn thFinder is a framework for retrosynthesis. We explore the combination of these models through two novel reward functions and demonstrate that REINVENT, through querying of AiZynthFinder, can be conditioned to generate molecules that share an identical synthetic route. This is done in two ways, by provision of a template reaction, or by letting REINVENT independently find identical routes, allowing the generated molecules to be synthesized in parallel.
dc.identifier.coursecodeTIFX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/307945
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectREINVENT, AIZYNTHFINDER, DEEP LEARNING, DRUG DESIGN.
dc.titleDe Novo Molecular Generation of Molecules with Consistent Synthetic Strategy
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis___Albin_Ekborg_final.pdf
Storlek:
666.14 KB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: