Error correction for depolarising noise on a quantum system using deep RL

dc.contributor.authorFitzek, David
dc.contributor.authorEliasson, Mattias
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.examinerGranath, Mats
dc.contributor.supervisorGranath, Mats
dc.date.accessioned2019-08-05T10:21:20Z
dc.date.available2019-08-05T10:21:20Z
dc.date.issued2019sv
dc.date.submitted2019
dc.description.abstractWe implement a quantum error correction algorithm for the depolarized noise model on the topological toric code using deep reinforcement learning. An action-value Q-function encodes the discounted value of applying any of the three pauli operators ( x, y, z) to a specific qubit given the entire set of excitations on the torus. The Q-network is defined by a convolutional neural network (CNN), with one fully connected layer at the end. Considering the translational invariance of the torics code we can center every qubit and therefore naturally simplify the state space representation independently of the number of excitation pairs. We train the agent using experience replay and store the state from the algorithm to use it for mini-batch updates of the Q-network. We conclude that this approach, considering all three pauli operators, outperforms the Minimum Weight Perfect Matching (MWPM) algorithm and for small error rates is close to the asymptotic solution for very low error probabilites.sv
dc.identifier.coursecodeTIFX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/300073
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.titleError correction for depolarising noise on a quantum system using deep RLsv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_Thesis_Fitzek_Eliasson.pdf
Storlek:
1.68 MB
Format:
Adobe Portable Document Format
Beskrivning:
License bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.14 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: