Aqueous Electrolytes for Next Generation Batteries

dc.contributor.authorHamrin, Alice
dc.contributor.authorScott, Ellen
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysik (Chalmers)sv
dc.contributor.departmentChalmers University of Technology / Department of Physics (Chalmers)en
dc.date.accessioned2019-07-03T14:49:18Z
dc.date.available2019-07-03T14:49:18Z
dc.date.issued2018
dc.description.abstractIn today’s society the demand for green energy is increasing, which in turn increases the demand for batteries to store the energy with. Facing a large expansion in battery production, the demands on batteries being safe, environmentally friendly and economical with natural resources are raised. This thesis aims to investigate the possibility of using water-based electrolytes in batteries, to mitigate safety problems usually associated with solvents for electrolytes. The thesis digs deeper into the area of highly concentrated aqueous electrolytes and investigates which properties in the salts are responsible for the expanded voltage window seen in previous research on the subject. The study comprises a range of combinations in anions and cations chosen by cost, abundance and previous results. The anions chosen were triflate (Tf), thiocyanate (SCN−) and bis(trifluoromethane)sulfonimide (TFSI) and the cations were lithium (Li+), sodium (Na+) and magnesium (Mg2+). Three main properties were in focus; the ionic conductivity, the solvation structure and the electrochemical stability window (ESW). The properties were examined experimentally with Raman spectroscopy, dielectric broadband spectroscopy and linear sweep voltammetry, and computationally with semi-empirical and density functional theory (DFT) calculations. The study found LiTf to have the largest ESW at 3.25 V. The majority of the investigated systems show potential for solidelectrolyte interphase (SEI) formation for highly concentrated aqueous electrolytes, and an expanded ESW, possibly as a result of this SEI formation.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/255595
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectEnergi
dc.subjectGrundläggande vetenskaper
dc.subjectHållbar utveckling
dc.subjectInnovation och entreprenörskap (nyttiggörande)
dc.subjectAnnan naturvetenskap
dc.subjectAnnan teknik
dc.subjectEnergy
dc.subjectBasic Sciences
dc.subjectSustainable Development
dc.subjectInnovation & Entrepreneurship
dc.subjectOther Natural Sciences
dc.subjectOther Engineering and Technologies
dc.titleAqueous Electrolytes for Next Generation Batteries
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
local.programmeApplied physics (MPAPP), MSc
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
255595.pdf
Storlek:
3.56 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext