More Reliable Binding Affinity Prediction of Protein Ligands Combining Molecular Dynamics Simulations and Machine Learning Models

dc.contributor.authorHansen, Marcus
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.departmentChalmers University of Technology / Department of Physicsen
dc.contributor.examinerErhart, Paul
dc.contributor.supervisorKlähn, Marco
dc.date.accessioned2025-06-26T08:30:35Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractEfficient and accurate prediction of protein-ligand binding affinities is essential for advancing drug discovery. This thesis presents a novel approach that combines molecular docking results with features derived from short molecular dynamics (MD) simulations to enhance the prediction accuracy of binding affinities. The thesis aims to bridge the efficiency of traditional docking methods with the more accurate Free Energy perturbation (FEP) techniques. MD simulations were conducted on a dataset of around 5,000 protein-ligand complexes and extracted features related to binding enthalpy and dynamic behavior related to the more complex binding entropy. These features, alongside molecular docking scores, were used to train machine learning models. The CatBoost regressor was identified as the most effective model, achieving better predictive accuracy than Molecular Docking alone. This method facilitates more reliable binding affinity predictions by successfully integrating docking insights with dynamic protein-ligand behavior, thereby accelerating the early stages of drug discovery. Keywords:
dc.identifier.coursecodeTIFX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309699
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectProtein-Ligand Binding
dc.subjectBinding Affinity Prediction
dc.subjectMolecular Docking
dc.subjectMolecular Dynamics (MD)
dc.subjectMachine Learning
dc.subjectBinding Enthalpy
dc.subjectBinding Entropy
dc.subjectDrug Discovery
dc.subjectFree Energy Perturbation (FEP)
dc.titleMore Reliable Binding Affinity Prediction of Protein Ligands Combining Molecular Dynamics Simulations and Machine Learning Models
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Marcus_Hansen_2025_Master_Thesis.pdf
Storlek:
1.84 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: