Anisotropy Engineering in 3D Magnetoplasmonic Nanoantennas

dc.contributor.authorGurunarayanan Prakash, Surya
dc.contributor.departmentChalmers tekniska högskola / Institutionen för teknisk fysiksv
dc.contributor.departmentChalmers University of Technology / Department of Applied Physicsen
dc.date.accessioned2019-07-03T13:35:29Z
dc.date.available2019-07-03T13:35:29Z
dc.date.issued2014
dc.description.abstractThe interaction between light and ferromagnetic nanostructures is investigated in this thesis. Studying the in uence of magnetic field on the surface plasmon properties and the associated enhancement of the magneto-optical (MO) response is becoming increasingly interesting due to advancements in nanofabrication and characterization [1]. Magnetoplasmonic devices find applications in sensing and telecommunication. In ferromagnetic materials the off-diagonal terms of the dielectric tensor can be activated (i.e., made non-zero) by the external magnetic field. These terms play a key role in the interaction of ferromagnets with light, producing interest- ing phenomena like Kerr and Faraday effects [2]. Ferromagnetic nanostructures of varying size, shape and thickness were fabricated in this work on glass substrates using hole mask colloidal lithography [3]. The optical and magnetic properties of these nanostructures can be controlled by these parameters. At the same time, their magneto-optical response can be effectively tuned by the localized plasmon excitations. Circular and elliptical nickel 2D nanostructures were investigated, followed by the increase in their height towards truly 3D magnetoplasmonic nanoantennas. The nanostructures were characterized by absorption spectroscopy and by the spec- troscopic magneto-optical Kerr effect (MOKE). Anisotropy in the particles played a key role in the tunability of the resulting Kerr polarization rotation. Different plasmon resonances (along x, y and z) of the nanostructures were engineered indi- vidually to achieve large enhancements in Kerr rotation. The out-of-plane plasmon resonance (along z) is shown to become more and more dominant in the definition of MO response as the structures grew in height,. This ultimately leads to a strong enhancement of MO response in these systems.
dc.identifier.urihttps://hdl.handle.net/20.500.12380/211265
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectFysik
dc.subjectEnergi
dc.subjectGrundläggande vetenskaper
dc.subjectHållbar utveckling
dc.subjectInnovation och entreprenörskap (nyttiggörande)
dc.subjectPhysical Sciences
dc.subjectEnergy
dc.subjectBasic Sciences
dc.subjectSustainable Development
dc.subjectInnovation & Entrepreneurship
dc.titleAnisotropy Engineering in 3D Magnetoplasmonic Nanoantennas
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster Thesisen
dc.type.uppsokH
Ladda ner
Original bundle
Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
211265.pdf
Storlek:
3.61 MB
Format:
Adobe Portable Document Format
Beskrivning:
Fulltext