Karakterisering och spårning av nanopartiklar med djupinlärning

Publicerad

Typ

Examensarbete för kandidatexamen

Program

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Föreliggande arbete använder maskininlärningsmetoden YOLOv3 för att utveckla en metod för spårning och karakterisering av partiklar som görs tillgängligt för allmänheten. Modellen presterar bättre än traditionella algoritmiska metoder för partikeligenkänning och lokalisering av partiklar men något sämre för karakterisering och bestämmande av partiklars egenskaper jämfört med traditionella algoritmer. Modellen har dessutom visat resultat i linje med tidigare djupinlärningsmetoder. Dessa resultat ges också utan samma krav på användaren för detaljstyrning av processen. Modellen har vidare möjlighet att förbättras över tid genom att iterativt tränas på större mängder data vilket ger möjligheter för framtida utveckling. Träningen av modellen utfördes med simulerade holografiska mikroskopbilder som genererades med python-biblioteket DeepTrack. Från biblioteket användes funktioner för att simulera bilder från en off-axis-konfiguration. Parametrar för partiklars x-, y-, z-positioner, brytningsindex, radie samt antal partiklar per bild tillskrevs slumpmässiga värden i lämpliga intervall representativa för en experimentuppställning. Modellen testades efter träningen på både simulerade och experimentella bilder. Tester på den simulerade datan bestod av 5000 bilder med 448x448 pixlar med 0-10 partiklar i varje bild. Modellens resultat visar på en recall på 0,96 samt en precision på 0,87 vilket ger ett F1- score på 0,91. Modellen jämfördes även med traditionella algoritmer för partikelspårning. Tydliga fördelar med djupinlärning motiveras genom bättre hantering av flera partiklar, överlappande partiklar samt olika brusförhållanden. Vår modell visar också på möjligheten att förutsäga partiklars brytningsindex och radie med en end-to-end-metod. Kod och modellvikter finns tillgängliga här: https://github.com/Deep-learning-for-particl e-tracking/YOLOv3-for-Particle-Tracking.

Beskrivning

Ämne/nyckelord

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced