Deep Learning for Optical Tweezers DeepCalib Implementation for Brownian Motion with Delayed Feedback

dc.contributor.authorPahlevi, Yanuar Rizki
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.examinerVolpe, Giovanni
dc.contributor.supervisorArgun, Aykut
dc.date.accessioned2022-06-15T11:28:53Z
dc.date.available2022-06-15T11:28:53Z
dc.date.issued2022sv
dc.date.submitted2020
dc.description.abstractBrownian motion with delayed feedback, theoretically studied to take control of Brownian particle movement’s direction. One can use optical tweezers to implement delayed feedback. Calibrating optical tweezers with delay implemented is not an easy job. In this study, Deep learning technique using Long Short Term Memory (LSTM) layer as main composition of the model to calibrate the trap stiffness and to measure the delayed feedback employed, using the trapped particle trajectory as an input. We demonstrate that this approach is outperforming approximation method in order to calibrate stiffness and to measure the delay in harmonic trap case.sv
dc.identifier.coursecodeTIFX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/304712
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectDeep Learningsv
dc.subjectOptical Tweezerssv
dc.subjectOptical Tweezerssv
dc.subjectDelayed Feedbacksv
dc.titleDeep Learning for Optical Tweezers DeepCalib Implementation for Brownian Motion with Delayed Feedbacksv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
MasterThesis_Yanuar_R_Pahlevi.pdf
Storlek:
3.56 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.51 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: