Towards artificially playing the game of double pong Combining learning and search algorithms

dc.contributor.authorRemgård, Marcus
dc.contributor.authorNilsson, Christian
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.examinerEkström, Andreas
dc.contributor.supervisorHellgren, Jonas
dc.date.accessioned2022-06-17T05:36:37Z
dc.date.available2022-06-17T05:36:37Z
dc.date.issued2022sv
dc.date.submitted2020
dc.description.abstractThis thesis work investigates ways of enhancing search methods used in reinforcement learning by utilizing neural networks. The environment in which the methods are tested is the classical game of pong. Two primary networks were used called Deep value network (DVN) and Fail-state network (F-Network). The first network aids the search by estimating state-values, the second network is used to detect search paths that lead to certain losses. Regarding the search methods, two algorithms were implemented, Random rollouts and Monte Carlo tree search (MCTS). It was concluded that the combination of search together with DVN drastically outperforms plain search methods, especially in environments where deep searches are unfeasible and CPU resources are restricted. The F-Network did not show any promising results in our study, however, possible improvements are discussed.sv
dc.identifier.coursecodeTIFX05sv
dc.identifier.urihttps://hdl.handle.net/20.500.12380/304754
dc.language.isoengsv
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectNeural networkssv
dc.subjectQ-learningsv
dc.subjectMonte Carlo tree searchsv
dc.subjectPongsv
dc.subjectSearch algorithmssv
dc.subjectReinforcement learningsv
dc.subjectDeep Q-learningsv
dc.titleTowards artificially playing the game of double pong Combining learning and search algorithmssv
dc.type.degreeExamensarbete för masterexamensv
dc.type.uppsokH

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Master_s_Thesis_Remgård_Nilsson.pdf
Storlek:
3.17 MB
Format:
Adobe Portable Document Format
Beskrivning:

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
1.51 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: