Alternative Energy Storage System for Hybrid Electric Vehicles

Publicerad

Typ

Examensarbete för masterexamen
Master Thesis

Program

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

In this thesis an alternative energy storage system in the drive train of a hybrid electric vehicle is investigated. In particular, it concentrates on the potential reduction of the stresses of the battery when electrochemical capacitors, a.k.a supercapacitors, are added as a high power energy storage. The energy storage system is described and a simplified drive train is simulated in the simulation software MATLAB®/SIMULINK®. Different control strategies are tested and an estimation of the performance is given. With the simulation results at hand, a downscaled HEV drive train consisting of NiMH batteries, electrochemical capacitors, a DC/DC converter and an external load, is built and tested. A comparison between simulated and experimental results is made, in terms of estimated battery stresses and efficiency. The results show a significantly reduction in battery stresses and a good agreement between the models used in simulations and the laboratory system. To further investigate the potential of a battery-electrochemical capacitor system, a full-scale system for a city bus is dimensioned and simulated. This simulation shows that the total weight of the energy storage system could be reduced significantly when batteries are combined with a bank of electrochemical capacitors. Moreover, an increased durability of the battery would be expected by this alternative energy storage system.

Beskrivning

Ämne/nyckelord

Elkraftteknik, Electric power engineering

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced