Embedding-Enhanced Real Estate Valuation in Non-Metropolitan Sweden

dc.contributor.authorSallén, Teddy
dc.contributor.authorSmedenberg, Leonard
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.departmentChalmers University of Technology / Department of Physicsen
dc.contributor.examinerGranath, Mats
dc.contributor.supervisorGranath, Mats
dc.date.accessioned2025-06-16T13:28:54Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractAutomated valuation of residential properties in sparsely populated regions poses unique challenges due to thin transaction volumes, diverse housing stock, and lim ited comparables. This thesis presents a hybrid modeling approach combining an embedding-based artificial neural network (ANN) with a LightGBM gradient boost ing machine to predict sale prices in six Swedish municipalities, focusing specifically on houses in non-metropolitan areas. The ANN learns dense representations of categorical and geographic features that capture latent spatial and socioeconomic patterns, while the GBM leverages both raw features and ANN embeddings to refine residual errors. Model interpretability is achieved via SHAP values and case studies of embedding dimensions, revealing that distance to regional centers, living area, property condition, and proximity to points of interest are key value drivers, even where market data are scarce. The hybrid model demonstrates competitive accu racy, particularly for mid-priced homes, and offers transparent explanations for each valuation. However, large errors persist for rare, high-end properties and extremely remote dwellings, reflecting fundamental data limitations. The results highlight how AI-driven valuation tools can complement traditional appraisal methods by provid ing rapid, interpretable estimates for routine cases and flagging high-uncertainty transactions for expert review.
dc.identifier.coursecodeTIFX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309467
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectAutomated Valuation Model, real-estate appraisal, neural embeddings, gradient boosting, SHAP interpretability, non-metropolitan housing.
dc.titleEmbedding-Enhanced Real Estate Valuation in Non-Metropolitan Sweden
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Embedding_Enhanced_Real_Estate_Valuation_in_Non_Metropolitan_Sweden_final.pdf
Storlek:
3.7 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: