Evolutionarily Emergent Foraging Strategies for Active Agents

Publicerad

Författare

Typ

Examensarbete för masterexamen

Program

Modellbyggare

Tidskriftstitel

ISSN

Volymtitel

Utgivare

Sammanfattning

Microbes, insects, birds, and mammals. Many forms of life depend on the search for food to survive. One search strategy that has been observed in nature is a levy flight, where an animal moves from area to area in long stretches to then explore the local environment. Levy flights can be described as statistical mathematical phenomena where the steps lengths of the agent’s movement follow a heavy tailed distribution. Earlier studies have shown that in certain environments, a middle ground between ballistic Levy flights and Brownian motion is more efficient than the outlier strategies. This thesis expands on those results by investigating which strategies perform best in an environment where local conditions change as one moves through space. We find that using a strategy that adapts to local conditions is not necessarily efficient if it does not consider the changing nature of the environment. We also let a neural network evolve using a genetic algorithm and let it optimize the movement of an agent which leads to efficient searches.

Beskrivning

Ämne/nyckelord

earch strategies, active agents, changing environment, genetic algorithm

Citation

Arkitekt (konstruktör)

Geografisk plats

Byggnad (typ)

Byggår

Modelltyp

Skala

Teknik / material

Index

item.page.endorsement

item.page.review

item.page.supplemented

item.page.referenced