An Investigation of using Simulated Data for Machine Learning

dc.contributor.authorBroback, Erik
dc.contributor.departmentChalmers tekniska högskola / Institutionen för fysiksv
dc.contributor.departmentChalmers University of Technology / Department of Physicsen
dc.contributor.examinerVolpe, Giovanni
dc.contributor.supervisorPérez Guerrero, Daniel
dc.date.accessioned2025-06-23T08:50:35Z
dc.date.issued2025
dc.date.submitted
dc.description.abstractMonitoring meiofauna is an effective way of assessing the effects of pollution in an environment. The current method of manually extracting data from samples is, however, very time consuming. If one instead uses a machine learning model for image recognition and segmentation a lot of this manual work can be automated. Furthermore, if one can use simulated data for training the model then new models can be created more easily. This work therefore investigates the possibility of simulating two groups of meiofauna, Nematodes and Nodosarias, by developing its own simulations and measuring the performance of a model trained on them. The found results shows promise both in terms of results and methodology. The findings also highlight the fact that simulations are not necessarily easily created and require new effort for every new group that should be simulated.
dc.identifier.coursecodeTIFX05
dc.identifier.urihttp://hdl.handle.net/20.500.12380/309593
dc.language.isoeng
dc.setspec.uppsokPhysicsChemistryMaths
dc.subjectSimulated Data
dc.subjectSegmentation
dc.subjectDeepTrack
dc.subjectMeiofauna
dc.titleAn Investigation of using Simulated Data for Machine Learning
dc.type.degreeExamensarbete för masterexamensv
dc.type.degreeMaster's Thesisen
dc.type.uppsokH
local.programmeComplex adaptive systems (MPCAS), MSc

Ladda ner

Original bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
Erik_Broback_Final_MasterThesis.pdf
Storlek:
36.21 MB
Format:
Adobe Portable Document Format

License bundle

Visar 1 - 1 av 1
Hämtar...
Bild (thumbnail)
Namn:
license.txt
Storlek:
2.35 KB
Format:
Item-specific license agreed upon to submission
Beskrivning: