On the Localization Equations of Topologically Twisted N=4 Super Yang-Mills Theory in Five Dimensions

Examensarbete för masterexamen

Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.12380/154363
Download file(s):
File Description SizeFormat 
154363.pdfFulltext695.27 kBAdobe PDFView/Open
Type: Examensarbete för masterexamen
Master Thesis
Title: On the Localization Equations of Topologically Twisted N=4 Super Yang-Mills Theory in Five Dimensions
Authors: Anderson, Louise
Abstract: In recent articles, topologically twisted N=4 supersymmetric Yang-Mills theory on a four-manifold of the form V=W x R^+ or V=W x I were considered. W here is a Riemannian three-manifold, and a suitable set of boundary conditions apply to the endpoints of I (or R^+). In the special case where W=S^3, spherically symmetric solutions where obtained to the localization equations. For large interval lengths, these consist of pairwise occurring (non gauge-equivalent) solutions, which then coincide for a certain critical interval length, only to disappear if it decreases below this critical value. Only for the instance were the interval length is of critical value was an exact analytical solution obtained. The only feasible explanation for this is that there exist a tunneling between the solutions in one solution-pair as one goes to five dimensions. This will be shown to be the case in this thesis. A five-dimensional version of the previously mentioned theory on R x S^3 x I is considered, and the localization equations of this theory obtained. An analytical expression of this five-dimensional supersymmetric field configuration has not been possible to obtain, similarly to the case in four dimensions, but the solution is instead obtained as a series expansion in terms of an infinitesimal parameter $\varepsilon$ stating how much the solutions differ from the exactly solvable static case for critical interval length in four dimensions, where we have stationary solutions in five dimensions as well.
Keywords: Elementarpartikelfysik;Grundläggande vetenskaper;Matematisk fysik;Elementary particle physics;Basic Sciences;Mathematical physics
Issue Date: 2011
Publisher: Chalmers tekniska högskola / Institutionen för fundamental fysik
Chalmers University of Technology / Department of Fundamental Physics
URI: https://hdl.handle.net/20.500.12380/154363
Collection:Examensarbeten för masterexamen // Master Theses



Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.